1
|
Shukla M, Rathi K, Hassam M, Yadav DK, Karnatak M, Rawat V, Verma VP. An overview on the antimalarial activity of 1,2,4-trioxanes, 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes. Med Res Rev 2024; 44:66-137. [PMID: 37222435 DOI: 10.1002/med.21979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms. Additionally, the demand for discovering new potent drugs grows due to the prolonged life cycle of conventional therapy brought on by the emergence of resistant strains and ongoing changes in existing therapies. The 1,2,4-trioxane ring system in artemisinin (ART) is the most significant endoperoxide structural scaffold and is thought to be the key pharmacophoric moiety required for the pharmacodynamic potential of endoperoxide-based antimalarials. Several derivatives of artemisinin have also been found as potential treatments for multidrug-resistant strain in this area. Many 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes derivatives have been synthesised as a result, and many of these have shown promise antimalarial activity both in vivo and in vitro against Plasmodium parasites. As a consequence, efforts to develop a functionally straight-forward, less expensive, and vastly more effective synthetic pathway to trioxanes continue. This study aims to give a thorough examination of the biological properties and mode of action of endoperoxide compounds derived from 1,2,4-trioxane-based functional scaffolds. The present system of 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane compounds and dimers with potentially antimalarial activity will be highlighted in this systematic review (January 1963-December 2022).
Collapse
Affiliation(s)
- Monika Shukla
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Komal Rathi
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Mohammad Hassam
- Department of Chemistry, Chemveda Life Sciences Pvt Ltd, Hyderabad, Telangana, India
| | - Dinesh Kumar Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| |
Collapse
|
2
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
3
|
Makhmudiyarova NN, Ishmukhametova IR. Mannich Reaction in the Synthesis of Azaperoxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance. Antimicrob Agents Chemother 2022; 66:e0206521. [PMID: 35416709 DOI: 10.1128/aac.02065-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current best practice for the treatment of malaria relies on short half-life artemisinins that are failing against emerging Kelch 13 mutant parasite strains. Here, we introduce a liposome-like self-assembly of a dimeric artesunate glycerophosphocholine conjugate (dAPC-S) as an amphiphilic prodrug for the short-lived antimalarial drug, dihydroartemisinin (DHA), with enhanced killing of Kelch 13 mutant artemisinin-resistant parasites. Cryo-electron microscopy (cryoEM) images and the dynamic light scattering (DLS) technique show that dAPC-S typically exhibits a multilamellar liposomal structure with a size distribution similar to that of the liposomes generated using thin-film dispersion (dAPC-L). Liquid chromatography-mass spectrometry (LCMS) was used to monitor the release of DHA. Sustainable release of DHA from dAPC-S and dAPC-L assemblies increased the effective dose and thus efficacy against Kelch 13 mutant artemisinin-resistant parasites in an in vitro assay. To better understand the enhanced killing effect, we investigated processes for deactivation of both the assemblies and DHA, including the roles of serum components and trace levels of iron. Analysis of parasite proteostasis pathways revealed that dAPC assemblies exert their activity via the same mechanism as DHA. We conclude that this easily prepared multilamellar liposome-like dAPC-S with long-acting efficacy shows potential for the treatment of severe and artemisinin-resistant malaria.
Collapse
|
5
|
Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Spiral molecules with antimalarial activities: A review. Eur J Med Chem 2022; 237:114361. [DOI: 10.1016/j.ejmech.2022.114361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
6
|
Siddiqui G, Giannangelo C, De Paoli A, Schuh AK, Heimsch KC, Anderson D, Brown TG, MacRaild CA, Wu J, Wang X, Dong Y, Vennerstrom JL, Becker K, Creek DJ. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infect Dis 2022; 8:210-226. [PMID: 34985858 PMCID: PMC8762662 DOI: 10.1021/acsinfecdis.1c00550] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Plasmodium
falciparum causes the
most lethal form of malaria. Peroxide antimalarials based on artemisinin
underpin the frontline treatments for malaria, but artemisinin resistance
is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides,
are in clinical development and offer a potential alternative. Here,
we used chemoproteomics to investigate the protein alkylation targets
of artemisinin and ozonide probes, including an analogue of the ozonide
clinical candidate, artefenomel. We greatly expanded the list of proteins
alkylated by peroxide antimalarials and identified significant enrichment
of redox-related proteins for both artemisinins and ozonides. Disrupted
redox homeostasis was confirmed by dynamic live imaging of the glutathione
redox potential using a genetically encoded redox-sensitive fluorescence-based
biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based
thiol metabolomics also confirmed changes in cellular thiol levels.
This work shows that peroxide antimalarials disproportionately alkylate
proteins involved in redox homeostasis and that disrupted redox processes
are involved in the mechanism of action of these important antimalarials.
Collapse
Affiliation(s)
- Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy G. Brown
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Christopher A. MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Hassam M, Singh AS, Yadav DK, Singh C, Puri SK, Verma VP. Reduction of the Double Bond of 6-Arylvinyl-1,2,4-trioxanes Leads to a Remarkable Increase in Their Antimalarial Activity against Multidrug-Resistant Plasmodium yoelii nigeriensis in a Swiss Mice Model. ACS OMEGA 2021; 6:30790-30799. [PMID: 34805707 PMCID: PMC8600630 DOI: 10.1021/acsomega.1c05041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Novel 6-arylethyl-1,2,4-trioxanes6a-i and 7a-i are easily accessible in one step from the diimide reduction of 6-arylvinyl-1,2,4-trioxanes 5a-i. All of these new trioxanes were assessed for their oral antimalarial activity against multidrug-resistant Plasmodium yoelii nigeriensis in a Swiss mice model. Most of the saturated trioxanes 6c, 6f, 6g, 6h, and 6i, the active compounds of the series, provided 100% protection to the malaria-infected mice at a dose of 24 mg/kg × 4 days. Further, trioxane 6i, the most active compound of the series, also showed 100% protection even at a dose of 12 mg/kg × 4 days and 20% protection at a dose of 6 mg/kg × 4 days. In this model, β-arteether provided 100% protection at a dose of 48 mg/kg × 4 days and only 20% protection at a dose of 24 mg/kg × 4 days via the oral route, which was found to exhibit 4-fold antimalarial activity compared with the currently used drug β-arteether.
Collapse
Affiliation(s)
- Mohammad Hassam
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ajit Shankar Singh
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Dinesh Kumar Yadav
- Department
of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Chandan Singh
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sunil K. Puri
- Parasitology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| |
Collapse
|
8
|
Wittlin S, Mäser P. From Magic Bullet to Magic Bomb: Reductive Bioactivation of Antiparasitic Agents. ACS Infect Dis 2021; 7:2777-2786. [PMID: 34472830 DOI: 10.1021/acsinfecdis.1c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paul Ehrlich coined the term "magic bullet" to describe how a drug kills the parasite inside its human host without harming the host itself. Ehrlich concluded that the drug must have a greater affinity to the parasite than to human cells. Today, the specificity of drug action is understood in terms of the drug target. An ideal target is a protein that is essential for the proliferation of the pathogen but absent in human cells. Examples are the enzymes of folate synthesis or of the nonmevalonate pathway in the malaria parasites. However, there are other ways how a drug can kill selectively. Of particular relevance is the specific activation of a prodrug inside the pathogen but not in the host, as this is how the current frontrunners of parasite chemotherapy work. Artemisinins for malaria, fexinidazole for human African trypanosomiasis, benznidazole for Chagas' disease, metronidazole for intestinal protozoa: these molecules are "magic bombs" that are triggered selectively. They are prodrugs that need to be activated by chemical reduction, i.e., the acquisition of an electron, which occurs in the parasite. Such a mode of action is shared by the novel antimalarial peroxides arterolane and artefenomel, which are activated by reduction of the endoperoxide bond with ferrous heme as the likely electron donor, a metabolic end-product of Plasmodium falciparum. Here we provide an overview on the molecular basis of selectivity of antiparasitic drug action with particular reference to the ozonides, the new generation of antimalarial peroxides designed by Jonathan Vennerstrom.
Collapse
Affiliation(s)
- Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
9
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
10
|
Leas DA, Sanford AG, Wu J, Cal M, Kaiser M, Wittlin S, Hemsley RM, Darner EB, Lui LM, Davis PH, Vennerstrom JL. Diaryl Ureas as an Antiprotozoal Chemotype. ACS Infect Dis 2021; 7:1578-1583. [PMID: 33971090 DOI: 10.1021/acsinfecdis.1c00135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We now describe the physicochemical profiling, in vitro ADME, and antiparasitic activity of eight N,N'-diarylureas to assess their potential as a broad-spectrum antiprotozoal chemotype. Chromatographic LogD7.4 values ranged from 2.5 to 4.5; kinetic aq. solubilities were ≤6.3 μg/mL, and plasma protein binding ranged from 95 to 99%. All of the compounds had low intrinsic clearance values in human, but not mouse, liver microsomes. Although no N,N'-diarylurea had submicromolar potency against Trypanosoma cruzi, two had submicromolar potencies against Toxoplasma gondii and Trypanosoma brucei rhodesiense, and five had submicromolar potencies against Leishmania donovani. Plasmodium falciparum appeared to be the most susceptible to growth inhibition by this compound series. Most of the N,N'-diarylureas had antiprotozoal selectivities ≥10. One N,N'-diarylurea had demonstrable activity in mouse models of malaria and toxoplasmosis.
Collapse
Affiliation(s)
- Derek A. Leas
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Austin G. Sanford
- Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Monica Cal
- University of Basel, CH-4003 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
| | - Marcel Kaiser
- University of Basel, CH-4003 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
| | - Sergio Wittlin
- University of Basel, CH-4003 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
| | - Ryan M. Hemsley
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| | - Elyssa B. Darner
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| | - LeeAnna M. Lui
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
11
|
Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021; 213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Malaria is a life-threatening infectious disease caused by protozoal parasites belonging to the genus Plasmodium. It caused an estimated 405,000 deaths and 228 million malaria cases globally in 2018 as per the World Malaria Report released by World Health Organization (WHO) in 2019. Artemisinin (ART), a "Nobel medicine" and its derivatives have proven potential application in antimalarial drug discovery programs. In this review, antimalarial activity of the most active artemisinin derivatives modified at C-10/C-11/C-16/C-6 positions and synthetic peroxides (endoperoxides, 1,2,4-trioxolanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes) are systematically summarized. The developmental trend of ART derivatives, and cyclic peroxides along with their antimalarial activity and how the activity is affected by structural variations on different sites of the compounds are discussed. This compilation would be very useful towards scaffold hopping aimed at avoiding the unnecessary complexity in cyclic peroxides, and ultimately act as a handy resource for the development of potential chemotherapeutics against Plasmodium species.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
12
|
Gellini C, Muniz-Miranda M, Pagliai M, Salvi PR. Spectroscopic studies on antimalarial Artesunate: Raman and surface-enhanced Raman scattering and adsorption geometries of Artesunate on silver nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Chen J, Gonciarz RL, Renslo AR. Expanded scope of Griesbaum co-ozonolysis for the preparation of structurally diverse sensors of ferrous iron. RSC Adv 2021; 11:34338-34342. [PMID: 35497286 PMCID: PMC9042324 DOI: 10.1039/d1ra05932g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/19/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Sterically shielded 1,2,4-trioxolanes prepared by Griesbaum co-ozonolysis have been utilized as chemical sensors of ferrous iron in several recently described chemical probes of labile iron. Here we report optimized conditions for co-ozonolysis that proceed efficiently and with high diastereoselectivity across an expanded range of substrates, and should enable a new generation of labile iron probes with altered reaction kinetics and physicochemical properties. Improved, low temperature conditions for Griesbaum co-ozonolysis enables the preparation of structurally diverse 1,2,4-trioxolane-based sensors of ferrous iron for caging of reporters and therapeutic payloads.![]()
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
14
|
Makhmudiyarova NN, Ishmukhametova IR, Ibragimov AG, Dhzemilev UM. Synthesis of a New Class of Macrocyclic Phosphorus-Containing Tri- and Diperoxides in the Presence of Lanthanide Catalysts. DOKLADY CHEMISTRY 2020. [DOI: 10.1134/s001250082036001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Wu J, Wang X, Chiu FCK, Häberli C, Shackleford DM, Ryan E, Kamaraj S, Bulbule VJ, Wallick AI, Dong Y, White KL, Davis PH, Charman SA, Keiser J, Vennerstrom JL. Structure-Activity Relationship of Antischistosomal Ozonide Carboxylic Acids. J Med Chem 2020; 63:3723-3736. [PMID: 32134263 DOI: 10.1021/acs.jmedchem.0c00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Semisynthetic artemisinins and other bioactive peroxides are best known for their powerful antimalarial activities, and they also show substantial activity against schistosomes-another hemoglobin-degrading pathogen. Building on this discovery, we now describe the initial structure-activity relationship (SAR) of antischistosomal ozonide carboxylic acids OZ418 (2) and OZ165 (3). Irrespective of lipophilicity, these ozonide weak acids have relatively low aqueous solubilities and high protein binding values. Ozonides with para-substituted carboxymethoxy and N-benzylglycine substituents had high antischistosomal efficacies. It was possible to increase solubility, decrease protein binding, and maintain the high antischistosomal activity in mice infected with juvenile and adult Schistosoma mansoni by incorporating a weak base functional group in these compounds. In some cases, adding polar functional groups and heteroatoms to the spiroadamantane substructure increased the solubility and metabolic stability, but in all cases decreased the antischistosomal activity.
Collapse
Affiliation(s)
- Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland.,University of Basel, CH-4003 Basel, Switzerland
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Eileen Ryan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sriraghavan Kamaraj
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States
| | - Vivek J Bulbule
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States
| | - Alexander I Wallick
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland.,University of Basel, CH-4003 Basel, Switzerland
| | - Jonathan L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 986125, United States
| |
Collapse
|
16
|
Giannangelo C, Anderson D, Wang X, Vennerstrom JL, Charman SA, Creek DJ. Ozonide Antimalarials Alkylate Heme in the Malaria Parasite Plasmodium falciparum. ACS Infect Dis 2019; 5:2076-2086. [PMID: 31622078 DOI: 10.1021/acsinfecdis.9b00257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of action of ozonide antimalarials involves activation by intraparasitic iron and the formation of highly reactive carbon-centered radicals that alkylate malaria parasite proteins. Given free intraparasitic heme is generally thought to be the iron source responsible for ozonide activation and its likely close proximity to the activated drug, we investigated heme as a possible molecular target of the ozonides. Using an extraction method optimized for solubilization of free heme, untargeted LC-MS analysis of ozonide-treated parasites identified several regioisomers of ozonide-alkylated heme, which resulted from covalent modification of the heme porphyrin ring by an ozonide-derived carbon-centered radical. In addition to the intact alkylated heme adduct, putative ozonide-alkylated heme degradation products were also detected. This study directly demonstrates ozonide modification of heme within the malaria parasite Plasmodium falciparum, revealing that this process may be important for the biological activity of ozonide antimalarials.
Collapse
Affiliation(s)
- Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Vil’ VA, Terent’ev AO, Mulina OM. Bioactive Natural and Synthetic Peroxides for the Treatment of Helminth and Protozoan Pathogens: Synthesis and Properties. Curr Top Med Chem 2019; 19:1201-1225. [DOI: 10.2174/1568026619666190620143848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
The significant spread of helminth and protozoan infections, the uncontrolled intake of the
known drugs by a large population, the emergence of resistant forms of pathogens have prompted people
to search for alternative drugs. In this review, we have focused attention on structures and synthesis of
peroxides active against parasites causing neglected tropical diseases and toxoplasmosis. To date, promising
active natural, semi-synthetic and synthetic peroxides compounds have been found.
Collapse
Affiliation(s)
- Vera A. Vil’
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Alexander O. Terent’ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| |
Collapse
|
18
|
Tiwari MK, Yadav DK, Chaudhary S. Recent Developments in Natural Product Inspired Synthetic 1,2,4- Trioxolanes (Ozonides): An Unusual Entry into Antimalarial Chemotherapy. Curr Top Med Chem 2019; 19:831-846. [DOI: 10.2174/1568026619666190412104042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
Abstract
According to WHO “World health statistics 2018”, malaria alongside acute respiratory infections
and diarrhoea, is one of the major infectious disease causing children’s death in between the
age of 1-5 years. Similarly, according to another report (2016) malaria accounts for approximately
3.14% of the total disease burden worldwide. Although malaria has been widely eradicated in many
parts of the world, the global number of cases continues to rise due to the rapid spread of malaria parasites
that are resistant to antimalarial drugs. Artemisinin (8), a major breakthrough in the antimalarial
chemotherapy was isolated from the plant Artemisia annua in 1972. Its semi-synthetic derivatives such
as artemether (9), arteether (10), and artesunic acid (11) are quite effective against multi-drug resistant
malaria strains and are currently the drug of choice for the treatment of malaria. Inspite of exhibiting
excellent antimalarial activity by artemisinin (8) and its derivatives, parallel programmes for the discovery
of novel natural and synthetic peroxides were also the area of investigation of medicinal chemists
all over the world. In these continuous efforts of extensive research, natural ozonide (1,2,4-
trioxolane) was isolated from Adiantum monochlamys (Pteridaceae) and Oleandra wallichii (Davalliaceae)
in 1976. These naturally occurring stable ozonides inspired chemists to investigate this novel
class for antimalarial chemotherapy. The first identification of unusually stable synthetic antimalarial
1,2,4-trioxolanes was reported in 1992. Thus, an unusual entry of ozonides in the field of antimalarial
chemotherapy had occurred in the early nineties. This review highlights the recent advancements and
historical developments observed during the past 42 years (1976-2018) focusing mainly on important
ventures of the antimalarial 1,2,4-trioxolanes (ozonides).
Collapse
Affiliation(s)
- Mohit K. Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur-302017, India
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon city, 406-799, Korea
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur-302017, India
| |
Collapse
|
19
|
Ozonide Antimalarial Activity in the Context of Artemisinin-Resistant Malaria. Trends Parasitol 2019; 35:529-543. [PMID: 31176584 DOI: 10.1016/j.pt.2019.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
The ozonides are one of the most advanced drug classes in the antimalarial development pipeline and were designed to improve on limitations associated with current front-line artemisinin-based therapies. Like the artemisinins, the pharmacophoric peroxide bond of ozonides is essential for activity, and it appears that these antimalarials share a similar mode of action, raising the possibility of cross-resistance. Resistance to artemisinins is associated with Plasmodium falciparum mutations that allow resistant parasites to escape short-term artemisinin-mediated damage (elimination half-life ~1 h). Importantly, some ozonides (e.g., OZ439) have a sustained in vivo drug exposure profile, providing a major pharmacokinetic advantage over the artemisinin derivatives. Here, we describe recent progress made towards understanding ozonide antimalarial activity and discuss ozonide utility within the context of artemisinin resistance.
Collapse
|
20
|
Makhmudiyarova NN, Rakhimov RS, Tyumkina TV, Meshcheryakova ES, Ibragimov AG, Dzhemilev UM. Sm-Catalyzed Synthesis and Biological Activity of Acyclic and Cyclic Azadiperoxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019050075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Akimova TI, Rybin VG, Soldatkina OA. New Tetracyclic Spiro-1,2,4-trioxolanes (Ozonides). Synthesis and Mass Spectrometric Study. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019010123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Tse EG, Korsik M, Todd MH. The past, present and future of anti-malarial medicines. Malar J 2019; 18:93. [PMID: 30902052 PMCID: PMC6431062 DOI: 10.1186/s12936-019-2724-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
Great progress has been made in recent years to reduce the high level of suffering caused by malaria worldwide. Notably, the use of insecticide-treated mosquito nets for malaria prevention and the use of artemisinin-based combination therapy (ACT) for malaria treatment have made a significant impact. Nevertheless, the development of resistance to the past and present anti-malarial drugs highlights the need for continued research to stay one step ahead. New drugs are needed, particularly those with new mechanisms of action. Here the range of anti-malarial medicines developed over the years are reviewed, beginning with the discovery of quinine in the early 1800s, through to modern day ACT and the recently-approved tafenoquine. A number of new potential anti-malarial drugs currently in development are outlined, along with a description of the hit to lead campaign from which it originated. Finally, promising novel mechanisms of action for these and future anti-malarial medicines are outlined.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marat Korsik
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia. .,School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
23
|
Makhmudiyarova NN, Ishmukhametova IR, Tyumkina TV, Ibragimov AG, Dzhemilev UM. Synthesis of N -aryl-hexaoxazadispiroalkanes using lanthanide catalysts. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Tyumkina TV, Makhmudiyarova NN, Kiyamutdinova GM, Meshcheryakova ES, Bikmukhametov KS, Abdullin MF, Khalilov LM, Ibragimov AG, Dzhemilev UM. Synthesis, molecular structure, conformation and biological activity of Ad-substituted N-aryl-tetraoxaspiroalkanes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Spangler B, Kline T, Hanson J, Li X, Zhou S, Wells JA, Sato AK, Renslo AR. Toward a Ferrous Iron-Cleavable Linker for Antibody–Drug Conjugates. Mol Pharm 2018; 15:2054-2059. [DOI: 10.1021/acs.molpharmaceut.8b00242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin Spangler
- Graduate Program in Chemistry & Chemical Biology, University of California, San Francisco, California 94143, United States
| | - Toni Kline
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | - Jeffrey Hanson
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | - Xiaofan Li
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | - Sihong Zhou
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | | | - Aaron K. Sato
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | | |
Collapse
|
26
|
Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts In Vitro Antimalarial Activity. Antimicrob Agents Chemother 2018; 62:AAC.01566-17. [PMID: 29263074 DOI: 10.1128/aac.01566-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023] Open
Abstract
The peroxide bond of the artemisinins inspired the development of a class of fully synthetic 1,2,4-trioxolane-based antimalarials, collectively known as the ozonides. Similar to the artemisinins, heme-mediated degradation of the ozonides generates highly reactive radical species that are thought to mediate parasite killing by damaging critical parasite biomolecules. We examined the relationship between parasite dependent degradation and antimalarial activity for two ozonides, OZ277 (arterolane) and OZ439 (artefenomel), using a combination of in vitro drug stability and pulsed-exposure activity assays. Our results showed that drug degradation is parasite stage dependent and positively correlates with parasite load. Increasing trophozoite-stage parasitemia leads to substantially higher rates of degradation for both OZ277 and OZ439, and this is associated with a reduction in in vitro antimalarial activity. Under conditions of very high parasitemia (∼90%), OZ277 and OZ439 were rapidly degraded and completely devoid of activity in trophozoite-stage parasite cultures exposed to a 3-h drug pulse. This study highlights the impact of increasing parasite load on ozonide stability and in vitro antimalarial activity and should be considered when investigating the antimalarial mode of action of the ozonide antimalarials under conditions of high parasitemia.
Collapse
|
27
|
Vil' VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO. Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions. Molecules 2017; 22:E1881. [PMID: 29099089 PMCID: PMC6150334 DOI: 10.3390/molecules22111881] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
The biological activity of organic peroxides is usually associated with the antimalarial properties of artemisinin and its derivatives. However, the analysis of published data indicates that organic peroxides exhibit a variety of biological activity, which is still being given insufficient attention. In the present review, we deal with natural, semi-synthetic and synthetic peroxides exhibiting anthelmintic, antiprotozoal, fungicidal, antiviral and other activities that have not been described in detail earlier. The review is mainly concerned with the development of methods for the synthesis of biologically active natural peroxides, as well as its isolation from natural sources and the modification of natural peroxides. In addition, much attention is paid to the substantially cheaper biologically active synthetic peroxides. The present review summarizes 217 publications mainly from 2000 onwards.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| |
Collapse
|
28
|
Dong Y, Wang X, Kamaraj S, Bulbule VJ, Chiu FCK, Chollet J, Dhanasekaran M, Hein CD, Papastogiannidis P, Morizzi J, Shackleford DM, Barker H, Ryan E, Scheurer C, Tang Y, Zhao Q, Zhou L, White KL, Urwyler H, Charman WN, Matile H, Wittlin S, Charman SA, Vennerstrom JL. Structure–Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439). J Med Chem 2017; 60:2654-2668. [DOI: 10.1021/acs.jmedchem.6b01586] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sriraghavan Kamaraj
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Vivek J. Bulbule
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Francis C. K. Chiu
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jacques Chollet
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Manickam Dhanasekaran
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Christopher D. Hein
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Petros Papastogiannidis
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Julia Morizzi
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Helena Barker
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Eileen Ryan
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Yuanqing Tang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Qingjie Zhao
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Lin Zhou
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Karen L. White
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Heinrich Urwyler
- Basilea Pharmaceutica Ltd., Grenzacherstrasse 487, CH-4058 Basel, Switzerland
| | - William N. Charman
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Susan A. Charman
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
29
|
Rudrapal M, Chetia D. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3575-3590. [PMID: 27843298 PMCID: PMC5098533 DOI: 10.2147/dddt.s118116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Malaria disease continues to be a major health problem worldwide due to the emergence of multidrug-resistant strains of Plasmodium falciparum. In recent days, artemisinin (ART)-based drugs and combination therapies remain the drugs of choice for resistant P. falciparum malaria. However, resistance to ART-based drugs has begun to appear in some parts of the world. Endoperoxide compounds (natural/semisynthetic/synthetic) representing a huge number of antimalarial agents possess a wide structural diversity with a desired antimalarial effectiveness against resistant P. falciparum malaria. The 1,2,4-trioxane ring system lacking the lactone ring that constitutes the most important endoperoxide structural scaffold is believed to be the key pharmacophoric moiety and is primarily responsible for the pharmacodynamic potential of endoperoxide-based antimalarials. Due to this reason, research into endoperoxide, particularly 1,2,4-trioxane-, 1,2,4-trioxolane- and 1,2,4,5-teraoxane-based scaffolds, has gained significant interest in recent years for developing antimalarial drugs against resistant malaria. In this paper, a comprehensive effort has been made to review the development of endoperoxide antimalarials from traditional antimalarial leads (natural/semisynthetic) and structural diversity of endoperoxide molecules derived from 1,2,4-trioxane-, 1,2,4-trioxolane- and 1,2,4,5-teraoxane-based structural scaffolds, including their chimeric (hybrid) molecules, which are newer and potent antimalarial agents.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
30
|
Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains. Antimicrob Agents Chemother 2016; 60:4501-10. [PMID: 27161632 PMCID: PMC4958167 DOI: 10.1128/aac.00574-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/03/2016] [Indexed: 12/03/2022] Open
Abstract
Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective.
Collapse
|
31
|
Mischlinger J, Agnandji ST, Ramharter M. Single dose treatment of malaria - current status and perspectives. Expert Rev Anti Infect Ther 2016; 14:669-78. [PMID: 27254098 DOI: 10.1080/14787210.2016.1192462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Despite increased international efforts for control and ultimate elimination, malaria remains a major health problem. Currently, artemisinin-based combination therapies are the treatment of choice for uncomplicated malaria exhibiting high efficacy in clinical trial settings in sub-Saharan Africa. However, their administration over a three-day period is associated with important problems of treatment adherence resulting in markedly reduced effectiveness of currently recommended antimalarials under real world settings. AREAS COVERED Antimalarial drug candidates and antimalarial drug combinations currently under advanced clinical development for the indication as single dose antimalarial therapy. Expert commentary: Several new drug candidates and combinations are currently undergoing pivotal proof-of-concept studies or clinical development programmes. The development of a single dose combination therapy would constitute a breakthrough in the control of malaria. Such an innovative treatment approach would simultaneously close the effectiveness gap of current three-day therapies and revolutionize population based interventions in the context of malaria elimination campaigns.
Collapse
Affiliation(s)
- Johannes Mischlinger
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Selidji T Agnandji
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Michael Ramharter
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany.,c Department of Medicine I, Division of Infectious Diseases and Tropical Medicine , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
32
|
Makhmudiyarova NN, Khatmullina GM, Rakhimov RS, Meshcheryakova ES, Ibragimov AG, Dzhemilev UM. The first example of catalytic synthesis of N-aryl-substituted tetraoxazaspiroalkanes. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Perlovich GL, Volkova TV, Sharapova AV, Kazachenko VP, Strakhova NN, Proshin AN. Adamantane derivatives of sulfonamides: sublimation, solubility, solvation and transfer processes in biologically relevant solvents. Phys Chem Chem Phys 2016; 18:9281-94. [PMID: 26976747 DOI: 10.1039/c6cp00379f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight adamantane derivatives of sulfonamides were synthesized and characterized. Temperature dependencies of saturation vapor pressure were obtained using the transpiration method and thermodynamic functions of the sublimation processes were calculated. Solubility values of the selected compounds in buffer (pH 7.4), 1-octanol and 1-hexane were determined at different temperatures using the isothermal saturation method. Thermophysical characteristics of fusion processes (melting points and fusion enthalpies) of the substances were studied using the DSC method. Transfer processes from buffer to 1-octanol, from buffer to 1-hexane and 1-hexane to 1-octanol were analyzed. The impact of the molecules' structural modification on sublimation, solubility and solvation/hydration processes in the solvents was studied. Correlation equations connecting the thermodynamic functions with physicochemical descriptors were obtained.
Collapse
Affiliation(s)
- G L Perlovich
- Department of Physical Chemistry of Drugs, Krestov's Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str. 1, Ivanovo, 153045, Russia.
| | | | | | | | | | | |
Collapse
|
34
|
Fernández-Álvaro E, Hong WD, Nixon GL, O’Neill PM, Calderón F. Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action. J Med Chem 2016; 59:5587-603. [DOI: 10.1021/acs.jmedchem.5b01485] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Fernández-Álvaro
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| | - W. David Hong
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Gemma L. Nixon
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Paul M. O’Neill
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Félix Calderón
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| |
Collapse
|
35
|
Rosenthal PJ. Artefenomel: a promising new antimalarial drug. THE LANCET. INFECTIOUS DISEASES 2015; 16:6-8. [PMID: 26448142 DOI: 10.1016/s1473-3099(15)00343-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Cortes S, Albuquerque A, Cabral LIL, Lopes L, Campino L, Cristiano MLS. In Vitro Susceptibility of Leishmania infantum to Artemisinin Derivatives and Selected Trioxolanes. Antimicrob Agents Chemother 2015; 59:5032-5. [PMID: 26014947 PMCID: PMC4505222 DOI: 10.1128/aac.00298-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is among the world's most neglected diseases. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. A small library of artemisinin-derived trioxanes and synthetic trioxolanes was tested against promastigote and intramacrophage amastigote forms of Leishmania infantum. The trioxolanes LC50 and LC95 presented the best activity and safety profiles, showing potential for further studies in the context of leishmanial therapy. Our results indicate that the compounds tested exhibit peroxide-dependent activity.
Collapse
Affiliation(s)
- Sofia Cortes
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Centro de Malária e Outras Doenças Tropicais, IHMT, UNL, Lisbon, Portugal
| | - Andreia Albuquerque
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Lília I L Cabral
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve (UAlg), Campus de Gambelas, Faro, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal
| | - Liliana Lopes
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Departamento Ciências Biomédicas e Medicina, UAlg, Campus de Gambelas, Faro, Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal Departamento Ciências Biomédicas e Medicina, UAlg, Campus de Gambelas, Faro, Portugal
| | - Maria L S Cristiano
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve (UAlg), Campus de Gambelas, Faro, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
37
|
Lau SH, Galván A, Merchant RR, Battilocchio C, Souto JA, Berry MB, Ley SV. Machines vs Malaria: A Flow-Based Preparation of the Drug Candidate OZ439. Org Lett 2015; 17:3218-21. [DOI: 10.1021/acs.orglett.5b01307] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shing-Hing Lau
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Alicia Galván
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Rohan R. Merchant
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Claudio Battilocchio
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - José A. Souto
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
- Departamento
de Química Orgánica, Universidade de Vigo, Vigo, 36310, Spain
| | | | - Steven V. Ley
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
38
|
Conyers RC, Mazzone JR, Tripathi AK, Sullivan DJ, Posner GH. Antimalarial chemotherapy: orally curative artemisinin-derived trioxane dimer esters. Bioorg Med Chem Lett 2015; 25:245-8. [PMID: 25481079 PMCID: PMC4277730 DOI: 10.1016/j.bmcl.2014.11.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/27/2022]
Abstract
Eight new artemisinin-derived trioxane dimer esters 5 have been prepared and tested for antimalarial efficacy in malaria-infected mice. At a single oral dose of only 6mg/kg combined with 18mg/kg of mefloquine, each of the dimer esters 5 outperformed the antimalarial drug artemether (2). The most efficacious dimer, dichlorobenzoate ester 5h, prolonged mouse survival past day 30 of infection with three of the four mice in this group having no detectable parasitemia and appearing and acting healthy on day 30.
Collapse
Affiliation(s)
- Ryan C Conyers
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Jennifer R Mazzone
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Abhai K Tripathi
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - David J Sullivan
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - Gary H Posner
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
39
|
Perlovich GL, Ryzhakov AM, Tkachev VV, Proshin AN. Adamantane derivatives of sulfonamide molecular crystals: structure, sublimation thermodynamic characteristics, molecular packing, and hydrogen bond networks. CrystEngComm 2015. [DOI: 10.1039/c4ce02076f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The crystal structures of six adamantane derivatives of sulfonamides have been determined by X-ray diffraction and their sublimation and fusion processes have been studied.
Collapse
Affiliation(s)
- German L. Perlovich
- Krestov's Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo, Russia
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
| | - Alex M. Ryzhakov
- Krestov's Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo, Russia
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
| | - Valery V. Tkachev
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
- , Russia
- Laboratory of Structural Chemistry
- Institute of Problems of Chemical Physics
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
- , Russia
| |
Collapse
|
40
|
Affiliation(s)
- David S Barnett
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| |
Collapse
|
41
|
Fontaine SD, DiPasquale AG, Renslo AR. Efficient and stereocontrolled synthesis of 1,2,4-trioxolanes useful for ferrous iron-dependent drug delivery. Org Lett 2014; 16:5776-9. [PMID: 25331549 PMCID: PMC4227544 DOI: 10.1021/ol5028392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ferrous iron-promoted reduction of a hindered peroxide bond underlies the antimalarial action of the 1,2,4-trioxane artemisinin and the 1,2,4-trioxolane arterolane. In appropriately designed systems, a 1,2,4-trioxolane ring can serve as a trigger to realize ferrous iron-dependent and parasite-selective drug delivery, both in vitro and in vivo. A stereocontrolled, expeditious (three steps), and efficient (67-71% overall yield) synthesis of 1,2,4-trioxolanes possessing the requisite 3″ substitution pattern that enables ferrous iron-dependent drug delivery is reported. The key synthetic step involves a diastereoselective Griesbaum co-ozonolysis reaction to afford primarily products with a trans relationship between the 3″ substituent and the peroxide bridge, as confirmed by X-ray structural analysis of a 3″-substituted 4-nitrobenzoate analogue.
Collapse
Affiliation(s)
- Shaun D Fontaine
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco , 1700 Fourth Street, San Francisco, California 94158, United States
| | | | | |
Collapse
|
42
|
Fontaine SD, Spangler B, Gut J, Lauterwasser EMW, Rosenthal PJ, Renslo AR. Drug delivery to the malaria parasite using an arterolane-like scaffold. ChemMedChem 2014; 10:47-51. [PMID: 25314098 DOI: 10.1002/cmdc.201402362] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Indexed: 11/06/2022]
Abstract
Antimalarial agents artemisinin and arterolane act via initial reduction of a peroxide bond in a process likely mediated by ferrous iron sources in the parasite. Here, we report the synthesis and antiplasmodial activity of arterolane-like 1,2,4-trioxolanes specifically designed to release a tethered drug species within the malaria parasite. Compared with our earlier drug delivery scaffolds, these new arterolane-inspired systems are of significantly decreased molecular weight and possess superior metabolic stability. We describe an efficient, concise and scalable synthesis of the new systems, and demonstrate the use of the aminonucleoside antibiotic puromycin as a chemo/biomarker to validate successful drug release in live Plasmodium falciparum parasites. Together, the improved drug-like properties, more efficient synthesis, and proof of concept using puromycin, suggests these new molecules as improved vehicles for targeted drug delivery to the malaria parasite.
Collapse
Affiliation(s)
- Shaun D Fontaine
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158 (USA)
| | | | | | | | | | | |
Collapse
|
43
|
Ex vivo activity of endoperoxide antimalarials, including artemisone and arterolane, against multidrug-resistant Plasmodium falciparum isolates from Cambodia. Antimicrob Agents Chemother 2014; 58:5831-40. [PMID: 25049252 DOI: 10.1128/aac.02462-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Novel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria. We conducted blinded ex vivo activity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked immunosorbent assay against 200 P. falciparum isolates from areas of artemisinin-resistant malaria in western and northern Cambodia in 2009 and 2010. The order of potency and geometric mean (GM) 50% inhibitory concentrations (IC50s) were as follows: artemisone (2.40 nM) > artesunate (8.49 nM) > dihydroartemisinin (11.26 nM) > artemiside (15.28 nM) > OZ277 (31.25 nM) > OZ78 (755.27 nM). Ex vivo activities of test endoperoxides positively correlated with dihydroartemisinin and artesunate. The isolates were over 2-fold less susceptible to dihydroartemisinin than the artemisinin-sensitive P. falciparum W2 clone and showed sensitivity comparable to those with test endoperoxides and artesunate, with isolate/W2 IC50 susceptibility ratios of <2.0. All isolates had P. falciparum chloroquine resistance transporter mutations, with negative correlations in sensitivity to endoperoxides and chloroquine. The activities of endoperoxides (artesunate, dihydroartemisinin, OZ277, and artemisone) significantly correlated with that of the ACT partner drug, mefloquine. Isolates had mutations associated with clinical resistance to mefloquine, with 35% prevalence of P. falciparum multidrug resistance gene 1 (pfmdr1) amplification and 84.5% occurrence of the pfmdr1 Y184F mutation. GM IC50s for mefloquine, lumefantrine, and endoperoxides (artesunate, dihydroartemisinin, OZ277, OZ78, and artemisone) correlated with pfmdr1 copy number. Given that current ACTs are failing potentially from reduced sensitivity to artemisinins and partner drugs, newly identified mutations associated with artemisinin resistance reported in the literature and pfmdr1 mutations should be examined for their combined contributions to emerging ACT resistance.
Collapse
|
44
|
Terent'ev AO, Borisov DA, Vil’ VA, Dembitsky VM. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products. Beilstein J Org Chem 2014; 10:34-114. [PMID: 24454562 PMCID: PMC3896255 DOI: 10.3762/bjoc.10.6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/16/2013] [Indexed: 12/16/2022] Open
Abstract
The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.
Collapse
Key Words
- 1,2,4,5-tetraoxanes
- 1,2,4-trioxanes
- 1,2,4-trioxolanes
- 1,2-dioxanes
- 1,2-dioxenes
- 1,2-dioxolanes
- cyclic peroxides
- ozonides
Collapse
Affiliation(s)
- Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valery M Dembitsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
- Institute for Drug Research, P.O. Box 12065, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
45
|
Oliveira R, Newton AS, Guedes RC, Miranda D, Amewu RK, Srivastava A, Gut J, Rosenthal PJ, O'Neill PM, Ward SA, Lopes F, Moreira R. An Endoperoxide‐Based Hybrid Approach to Deliver Falcipain Inhibitors Inside Malaria Parasites. ChemMedChem 2013; 8:1528-36. [DOI: 10.1002/cmdc.201300202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Rudi Oliveira
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Ana S. Newton
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Rita C. Guedes
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Daniela Miranda
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Richard K. Amewu
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX (UK)
| | - Abhishek Srivastava
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA (UK)
| | - Jiri Gut
- Department of Medicine, University of California, San Francisco, CA 94143 (USA)
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143 (USA)
| | - Paul M. O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX (UK)
| | - Stephen A. Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA (UK)
| | - Francisca Lopes
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Rui Moreira
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| |
Collapse
|
46
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
47
|
Mott BT, Tripathi A, Siegler MA, Moore CD, Sullivan DJ, Posner GH. Synthesis and antimalarial efficacy of two-carbon-linked, artemisinin-derived trioxane dimers in combination with known antimalarial drugs. J Med Chem 2013; 56:2630-41. [PMID: 23425037 DOI: 10.1021/jm400058j] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Malaria continues to be a difficult disease to eradicate largely because of the widespread populations it affects and the resistance that malaria parasites have developed against once very potent therapies. The natural product artemisinin has been a boon for antimalarial chemotherapy, as artemisinin combination therapy (ACT) has become the first line of chemotherapy. Because the threat of resistance is always on the horizon, it is imperative to continually identify new treatments, comprising both advanced analogues of all antimalarial drugs, especially artemisinin, and the exploration of novel combinations, ideally with distinct mechanisms of action. Here we report for the first time the synthesis of a series of two-carbon-linked artemisinin-derived dimers, their unique structural features, and demonstration of their antimalarial efficacy via single oral dose administration in two 60-day survival studies of Plasmodium berghei infected mice. Several of the new endoperoxide chemical entities consistently demonstrated excellent antimalarial efficacy, and combinations with two non-peroxide antimalarial drugs have been studied.
Collapse
Affiliation(s)
- Bryan T Mott
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abiodun OO, Brun R, Wittlin S. In vitro interaction of artemisinin derivatives or the fully synthetic peroxidic anti-malarial OZ277 with thapsigargin in Plasmodium falciparum strains. Malar J 2013; 12:43. [PMID: 23368889 PMCID: PMC3566918 DOI: 10.1186/1475-2875-12-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/16/2013] [Indexed: 01/08/2023] Open
Abstract
Background Semi-synthetic artemisinin derivatives are powerful peroxidic drugs in artemisinin-based combination therapy (ACT) recommended as first-line treatment of Plasmodium falciparum malaria in disease-endemic countries. Studies by Eckstein-Ludwig and co-workers showed both thapsigargin and artemisinin specifically inhibit the sarcoplasmic reticulum Ca2+−ATPase of Plasmodium falciparum (PfATP6). In the present study the type of interaction between thapsigargin and artemisinin derivatives as well as the ozonide OZ277 (RBx11160 or arterolane) was evaluated in parasite cultures. The latter compound is an adamantane-based peroxide and the first fully synthetic clinical candidate recently registered in India by Ranbaxy Laboratories Ltd. for anti-malarial combination therapy. Methods Drug interaction studies were performed using a previously described fixed ratio method and anti-malarial activity measured using the [3H] hypoxanthine incorporation assay. Results The sum 50% and 90% fractional inhibitory concentration (∑FIC50, 90) of the interaction of thapsigargin with OZ277, artemether or artesunate, against NF54 and K1 strains of P. falciparum ranged from 0.9 to 1.4. Conclusion The interaction of thapsigargin with OZ277, artesunate or artemether was additive, data consistent with previous observations indicating that activity of anti-malarial peroxides does not derive from reversible interactions with parasite targets.
Collapse
Affiliation(s)
- Oyindamola O Abiodun
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
49
|
Copple IM, Mercer AE, Firman J, Donegan G, Herpers B, Wong MH, Chadwick J, Bringela AD, Cristiano MLS, van de Water B, Ward SA, O'Neill PM, Park BK. Examination of the cytotoxic and embryotoxic potential and underlying mechanisms of next-generation synthetic trioxolane and tetraoxane antimalarials. Mol Med 2012; 18:1045-55. [PMID: 22669474 DOI: 10.2119/molmed.2012.00154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/22/2012] [Indexed: 11/06/2022] Open
Abstract
Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria.
Collapse
Affiliation(s)
- Ian M Copple
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Keiser J, Ingram K, Vargas M, Chollet J, Wang X, Dong Y, Vennerstrom JL. In vivo activity of aryl ozonides against Schistosoma species. Antimicrob Agents Chemother 2012; 56:1090-2. [PMID: 22106214 PMCID: PMC3264258 DOI: 10.1128/aac.05371-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/10/2011] [Indexed: 11/20/2022] Open
Abstract
We evaluated the in vivo antischistosomal activities of 11 structurally diverse synthetic peroxides. Of all compounds tested, ozonide (1,2,4-trioxolane) OZ418 had the highest activity against adult Schistosoma mansoni, with total and female worm burden reductions of 80 and 90% (P < 0.05), respectively. Furthermore, treatment of S. haematobium-infected mice with OZ418 reduced the total worm burden by 86%. In conclusion, OZ418 is a promising antischistosomal lead compound.
Collapse
Affiliation(s)
- Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|