1
|
Simões MC, Cristóvão JS, Pardon E, Steyaert J, Fritz G, Gomes CM. Functional modulation of RAGE activation by multimeric S100B using single-domain antibodies. J Biol Chem 2024; 300:107983. [PMID: 39542249 DOI: 10.1016/j.jbc.2024.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
S100B is a multifunctional protein primarily found in the brain, where it plays crucial roles in cell proliferation, differentiation, and survival. It has intracellular and extracellular functions and, depending on S100B levels, can exhibit both neurotrophic and neurotoxic activities, both mediated by the receptor for advanced glycation end products (RAGEs). Here, we report the discovery and characterization of nanobodies (Nbs) targeting dimeric and tetrameric S100B, which are the two most abundant oligomeric functional forms of the protein, aiming to modulate S100B-mediated RAGE activation. Two Nbs were selected for detailed structural and functional studies and found to bind tetrameric S100B with high affinity, as determined by biolayer interferometry (BLI) analysis and size-exclusion chromatography-stable binary complex formation. Structural and docking analyses revealed preferential contact sites of Nbs with S100B regions implicated in interactions with RAGE, namely residues at the interfacial cleft on dimeric S100B and at hydrophobic cleft formed by the association of two homodimeric units in the tetramer. In accordance, assays in SH-SY5Y cells showed that Nbs modulate the RAGE-mediated neurotrophic activity of S100B by hindering its functional interactions with the receptor. BLI competition assays between tetrameric S100B and the RAGE-VC1 domain confirmed that Nbs selectively block S100B-mediated RAGE engagement, in agreement with cell activation experiments. These findings highlight Nbs as powerful tools for elucidating molecular and cellular mechanisms through the modulation of S100B and RAGE functions, inspiring potential therapeutic applications.
Collapse
Affiliation(s)
- Margarida C Simões
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana S Cristóvão
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Günter Fritz
- Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Cláudio M Gomes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Shi G, Koichi N, Wan R, Wang Y, Reisdorf R, Wilson A, Huang TC, Amadio PC, Meves A, Zhao C, Moran SL. Pentamidine-loaded gelatin decreases adhesion formation of flexor tendon. J Orthop Translat 2024; 45:75-87. [PMID: 38511123 PMCID: PMC10950576 DOI: 10.1016/j.jot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 03/22/2024] Open
Abstract
Background Prevention of adhesion formation following flexor tendon repair is essential for restoration of normal finger function. Although many medications have been studied in the experimental setting to prevent adhesions, clinical application is limited due to the complexity of application and delivery in clinical translation. Methods In this study, optimal dosages of gelatin and pentamidine were validated by gelatin concentration test. Following cell viability, cell migration, live and dead cell, and cell adhesion assay of the Turkey tenocytes, a model of Turkey tendon repair was established to evaluate the effectiveness of the Pentamidine-Gelatin sheet. Results Pentamidine carried with gelatin, a Food and drug administration (FDA) approved material for drug delivery, showed good dynamic release, biocompatibility, and degradation. The optimal dose of pentamidine (25ug) was determined in the in vivo study using tenocyte viability, migration, and cell adhesion assays. Further biochemical analyses demonstrated that this positive effect may be due to pentamidine downregulating the Wnt signaling pathway without affecting collagen expression. Conclusions We tested a FDA-approved antibiotic, pentamidine, for reducing adhesion formation after flexor tendon repair in both in vitro and in vivo using a novel turkey animal model. Compared with the non-pentamidine treatment group, pentamidine treated turkeys had significantly reduced adhesions and improved digit function after six weeks of tendon healing. The translational potential of this article This study for the first time showed that a common clinical drug, pentamidine, has a potential for clinical application to reduce tendon adhesions and improve tendon gliding function without interfering with tendon healing.
Collapse
Affiliation(s)
- Guidong Shi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Nakagawa Koichi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rou Wan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yicun Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ramona Reisdorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Abigayle Wilson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Tony C.T. Huang
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Teramoto H, Hirashima N, Tanaka M. Calcineurin B1 Deficiency Reduces Proliferation, Increases Apoptosis, and Alters Secretion in Enteric Glial Cells of Mouse Small Intestine in Culture. Cells 2023; 12:1867. [PMID: 37508531 PMCID: PMC10378349 DOI: 10.3390/cells12141867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the roles of calcineurin (CN) in glial cells, we previously generated conditional knockout (CKO) mice lacking CNB1 in glial cells. Because these CKO mice showed dysfunction and inflammation of the small intestine in addition to growth impairment and postweaning death, we have focused on enteric glial cells (EGCs) in the small intestine. In this study, we examined the effects of CNB1 deficiency on the proliferation and survival of EGCs and the expression and secretion of EGC-derived substances in culture to reveal the mechanisms of how CNB1 deficiency leads to dysfunction and inflammation of the small intestine. In primary myenteric cultures of the small intestine, EGCs from the CKO mice showed reduced proliferation and increased apoptosis compared with EGCs from control mice. In purified EGC cultures from the CKO mice, Western blot analysis showed increased expression of S100B, iNOS, GFAP, and GDNF, and increased phosphorylation of NF-κB p65. In the supernatants of purified EGC cultures from the CKO mice, ELISA showed reduced secretion of TGF-β1. In contrast, GDNF secretion was not altered in purified EGC cultures from the CKO mice. Furthermore, treatment with an S100B inhibitor partially rescued the CKO mice from growth impairment and postweaning death in vivo. In conclusion, CNB1 deficiency leads to reduced proliferation and increased apoptosis of EGCs and abnormal expression and secretion of EGC-derived substances, which may contribute to dysfunction and inflammation of the small intestine.
Collapse
Affiliation(s)
- Hikaru Teramoto
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Naohide Hirashima
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
4
|
Ismail TM, Crick RG, Du M, Shivkumar U, Carnell A, Barraclough R, Wang G, Cheng Z, Yu W, Platt-Higgins A, Nixon G, Rudland PS. Targeted Destruction of S100A4 Inhibits Metastasis of Triple Negative Breast Cancer Cells. Biomolecules 2023; 13:1099. [PMID: 37509135 PMCID: PMC10377353 DOI: 10.3390/biom13071099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Most patients who die of cancer do so from its metastasis to other organs. The calcium-binding protein S100A4 can induce cell migration/invasion and metastasis in experimental animals and is overexpressed in most human metastatic cancers. Here, we report that a novel inhibitor of S100A4 can specifically block its increase in cell migration in rat (IC50, 46 µM) and human (56 µM) triple negative breast cancer (TNBC) cells without affecting Western-blotted levels of S100A4. The moderately-weak S100A4-inhibitory compound, US-10113 has been chemically attached to thalidomide to stimulate the proteasomal machinery of a cell. This proteolysis targeting chimera (PROTAC) RGC specifically eliminates S100A4 in the rat (IC50, 8 nM) and human TNBC (IC50, 3.2 nM) cell lines with a near 20,000-fold increase in efficiency over US-10113 at inhibiting cell migration (IC50, 1.6 nM and 3.5 nM, respectively). Knockdown of S100A4 in human TNBC cells abolishes this effect. When PROTAC RGC is injected with mouse TNBC cells into syngeneic Balb/c mice, the incidence of experimental lung metastases or local primary tumour invasion and spontaneous lung metastasis is reduced in the 10-100 nM concentration range (Fisher's Exact test, p ≤ 0.024). In conclusion, we have established proof of principle that destructive targeting of S100A4 provides the first realistic chemotherapeutic approach to selectively inhibiting metastasis.
Collapse
Affiliation(s)
- Thamir M. Ismail
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Rachel G. Crick
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Min Du
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Uma Shivkumar
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Andrew Carnell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Roger Barraclough
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Zhenxing Cheng
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
- Department of Gastroenterology, First Affiliated Hospital, Anhui Medical University, Hefei 210009, China
| | - Weiping Yu
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
| | - Angela Platt-Higgins
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Gemma Nixon
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Philip S. Rudland
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| |
Collapse
|
5
|
Lin L, Gao Y, Hu X, Ouyang J, Liu C. Pentamidine inhibits proliferation, migration and invasion in endometrial cancer via the PI3K/AKT signaling pathway. BMC Womens Health 2022; 22:470. [PMID: 36434592 PMCID: PMC9700983 DOI: 10.1186/s12905-022-02078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pentamidine has been reported to have many pharmacological effects including anti- protozoal, anti-inflammatory, and anti-tumor activities. The aim of this study is to investigate the potential therapeutic role of Pentamidine and molecular mechanisms of Pentamidine on PI3K/AKT signaling pathway underlying the anti-tumor properties in endometrial cancer. METHODS Our study was carried out in the central laboratory of Harbin Medical University from 2019 to 2021. Human endometrial cancer cell lines Ishikawa and HEC-1A were treated with Pentamidine. The proliferation ability of cells was investigated by MTS and colony formation assays. The cell cycle distribution was detected by flow cytometry. Cell migration and invasion were analyzed by using the wound healing assay and Transwell assay. Western blotting was performed to measure the levels of AKT, p-AKT, MMP-2, and MMP-9. RESULTS Our results revealed that treatment of Pentamidine inhibited proliferation, migration and invasion of Ishikawa and HEC-1A endometrial cancer cells. Mechanistic investigation showed that Pentamidine inhibited PI3K/AKT signaling pathway and also reduced the expression of MMP-2 and MMP-9. In addition, co-treatment with PI3K kinase inhibitor LY294002 and Pentamidine leaded to increased repression of cell viability and the protein expression of p-AKT in Ishikawa cells. CONCLUSIONS Pentamidine suppresses PI3K/AKT signaling pathway, and inhibits proliferation, migration and invasion of EC cells. These findings suggested that Pentamidine might be a potential candidate for treating EC through PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lin Lin
- grid.412596.d0000 0004 1797 9737Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001 Heilongjiang Province People’s Republic of China
| | - Yunan Gao
- grid.411491.8Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001 Heilongjiang Province People’s Republic of China
| | - Xiaochen Hu
- grid.412596.d0000 0004 1797 9737Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin city, 150001 Heilongjiang Province People’s Republic of China
| | - Jiabao Ouyang
- grid.412596.d0000 0004 1797 9737Ultrasound Department, The First Affiliated Hospital of Harbin Medical University, Harbin city, 150001 Heilongjiang Province People’s Republic of China
| | - Chunbo Liu
- grid.412596.d0000 0004 1797 9737Ultrasound Department, The First Affiliated Hospital of Harbin Medical University, Harbin city, 150001 Heilongjiang Province People’s Republic of China
| |
Collapse
|
6
|
Biophysical and pharmacokinetic characterization of a small-molecule inhibitor of RUNX1/ETO tetramerization with anti-leukemic effects. Sci Rep 2022; 12:14158. [PMID: 35986043 PMCID: PMC9391460 DOI: 10.1038/s41598-022-17913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity. Previously, we identified the first-in-class small-molecule inhibitor of NHR2 tetramer formation, 7.44, which was shown to specifically interfere with NHR2, restore gene expression down-regulated by RUNX1/ETO, inhibit the proliferation of RUNX1/ETO-depending SKNO-1 cells, and reduce the RUNX1/ETO-related tumor growth in a mouse model. However, no biophysical and structural characterization of 7.44 binding to the NHR2 domain has been reported. Likewise, the compound has not been characterized as to physicochemical, pharmacokinetic, and toxicological properties. Here, we characterize the interaction between the NHR2 domain of RUNX1/ETO and 7.44 by biophysical assays and show that 7.44 interferes with NHR2 tetramer stability and leads to an increase in the dimer population of NHR2. The affinity of 7.44 with respect to binding to NHR2 is Klig = 3.75 ± 1.22 µM. By NMR spectroscopy combined with molecular dynamics simulations, we show that 7.44 binds with both heteroaromatic moieties to NHR2 and interacts with or leads to conformational changes in the N-termini of the NHR2 tetramer. Finally, we demonstrate that 7.44 has favorable physicochemical, pharmacokinetic, and toxicological properties. Together with biochemical, cellular, and in vivo assessments, the results reveal 7.44 as a lead for further optimization towards targeted therapy of t(8;21) AML.
Collapse
|
7
|
Abstract
Pentamidine (PTM), which is a diamine that is widely known for its antimicrobial activity, is a very interesting drug whose mechanism of action is not fully understood. In recent years, PTM has been proposed as a novel potential drug candidate for the treatment of mental illnesses, myotonic dystrophy, diabetes, and tumors. Nevertheless, the systemic administration of PTM causes severe side effects, especially nephrotoxicity. In order to efficiently deliver PTM and reduce its side effects, several nanosystems that take advantage of the chemical characteristics of PTM, such as the presence of two positively charged amidine groups at physiological pH, have been proposed as useful delivery tools. Polymeric, lipidic, inorganic, and other types of nanocarriers have been reported in the literature for PTM delivery, and they are all in different development phases. The available approaches for the design of PTM nanoparticulate delivery systems are reported in this review, with a particular emphasis on formulation strategies and in vitro/in vivo applications. Furthermore, a critical view of the future developments of nanomedicine for PTM applications, based on recent repurposing studies, is provided. Created with BioRender.com.
Collapse
|
8
|
Alasady MJ, Terry AR, Pierce AD, Cavalier MC, Blaha CS, Adipietro KA, Wilder PT, Weber DJ, Hay N. The calcium-binding protein S100B reduces IL6 production in malignant melanoma via inhibition of RSK cellular signaling. PLoS One 2021; 16:e0256238. [PMID: 34411141 PMCID: PMC8376063 DOI: 10.1371/journal.pone.0256238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.
Collapse
Affiliation(s)
- Milad J. Alasady
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Alexander R. Terry
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Adam D. Pierce
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Cavalier
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Catherine S. Blaha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Kaylin A. Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul T. Wilder
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
9
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
10
|
Katte RH, Dowarha D, Chou RH, Yu C. S100P Interacts with p53 while Pentamidine Inhibits This Interaction. Biomolecules 2021; 11:634. [PMID: 33923162 PMCID: PMC8145327 DOI: 10.3390/biom11050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
S100P, a small calcium-binding protein, associates with the p53 protein with micromolar affinity. It has been hypothesized that the oncogenic function of S100P may involve binding-induced inactivation of p53. We used 1H-15N HSQC experiments and molecular modeling to study the molecular interactions between S100P and p53 in the presence and absence of pentamidine. Our experimental analysis indicates that the S100P-53 complex formation is successfully disrupted by pentamidine, since S100P shares the same binding site for p53 and pentamidine. In addition, we showed that pentamidine treatment of ZR-75-1 breast cancer cells resulted in reduced proliferation and increased p53 and p21 protein levels, indicating that pentamidine is an effective antagonist that interferes with the S100P-p53 interaction, leading to re-activation of the p53-21 pathway and inhibition of cancer cell proliferation. Collectively, our findings suggest that blocking the association between S100P and p53 by pentamidine will prevent cancer progression and, therefore, provide a new avenue for cancer therapy by targeting the S100P-p53 interaction.
Collapse
Affiliation(s)
- Revansiddha H. Katte
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (R.H.K.); (D.D.)
| | - Deepu Dowarha
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (R.H.K.); (D.D.)
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (R.H.K.); (D.D.)
| |
Collapse
|
11
|
Young BD, Yu W, Rodríguez DJV, Varney KM, MacKerell AD, Weber DJ. Specificity of Molecular Fragments Binding to S100B versus S100A1 as Identified by NMR and Site Identification by Ligand Competitive Saturation (SILCS). Molecules 2021; 26:E381. [PMID: 33450915 PMCID: PMC7828390 DOI: 10.3390/molecules26020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/29/2022] Open
Abstract
S100B, a biomarker of malignant melanoma, interacts with the p53 protein and diminishes its tumor suppressor function, which makes this S100 family member a promising therapeutic target for treating malignant melanoma. However, it is a challenge to design inhibitors that are specific for S100B in melanoma versus other S100-family members that are important for normal cellular activities. For example, S100A1 is most similar in sequence and structure to S100B, and this S100 protein is important for normal skeletal and cardiac muscle function. Therefore, a combination of NMR and computer aided drug design (CADD) was used to initiate the design of specific S100B inhibitors. Fragment-based screening by NMR, also termed "SAR by NMR," is a well-established method, and was used to examine spectral perturbations in 2D [1H, 15N]-HSQC spectra of Ca2+-bound S100B and Ca2+-bound S100A1, side-by-side, and under identical conditions for comparison. Of the 1000 compounds screened, two were found to be specific for binding Ca2+-bound S100A1 and four were found to be specific for Ca2+-bound S100B, respectively. The NMR spectral perturbations observed in these six data sets were then used to model how each of these small molecule fragments showed specificity for one S100 versus the other using a CADD approach termed Site Identification by Ligand Competitive Saturation (SILCS). In summary, the combination of NMR and computational approaches provided insight into how S100A1 versus S100B bind small molecules specifically, which will enable improved drug design efforts to inhibit elevated S100B in melanoma. Such a fragment-based approach can be used generally to initiate the design of specific inhibitors for other highly homologous drug targets.
Collapse
Affiliation(s)
- Brianna D. Young
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
| | - Wenbo Yu
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| | - Darex J. Vera Rodríguez
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| | - Alexander D. MacKerell
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| |
Collapse
|
12
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
13
|
Wu KJ, Wang W, Wang HMD, Leung CH, Ma DL. Interfering with S100B-effector protein interactions for cancer therapy. Drug Discov Today 2020; 25:1754-1761. [PMID: 32679172 DOI: 10.1016/j.drudis.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
S100 calcium-binding protein B (S100B) is overexpressed in various malignant tumors, where it regulates cancer cell proliferation and metabolism by physical interactions with other molecules. Interfering with S100B-effector protein interactions is a potential strategy to treat malignant tumors. Although some S100B inhibitors have been discovered by virtual screening (VS), most target the S100B-p53 interaction. Hence, there is scope for the discovery of other S100B-effector protein interaction modulators for malignant tumors. In this review, we provide an overview of S100B-effector protein interaction inhibitor discovery using VS and discuss promising S100B-effector protein interaction targets that permit in silico analysis for drug discovery.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China.
| |
Collapse
|
14
|
Katte RH, Chou RH, Yu C. Pentamidine inhibit S100A4 - p53 interaction and decreases cell proliferation activity. Arch Biochem Biophys 2020; 691:108442. [PMID: 32649952 DOI: 10.1016/j.abb.2020.108442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Metastasis-associated S100A4 protein is a small calcium-binding protein typically overexpressed in several tumor forms, and it is widely accepted that S100A4 plays a significant role in the metastasis of cancer. Tumor suppressor p53 is one of the S100A4's main targets. Previous reports show that through p53, S100A4 regulates collagen expression and cell proliferation. When S100A4 interacts with p53, the S100A4 destabilizes wild type p53. In the current study, based on 1H-15N HSQC NMR experiments and HADDOCK results, S100A4 interacts with the intrinsically unstructured transactivation domain (TAD) of the protein p53 and the pentamidine molecules in the presence of calcium ions. Our results suggest that the p53 TAD and pentamidine molecules share similar binding sites on the S100A4 protein. This observation indicates that a competitive binding mechanism can interfere with the binding of S100A4-p53 and increase the level of p53. Also, we compare different aspects of p53 activity in the WST-1 test using MCF 7 cells. We found that the presence of a pentamidine molecule results in higher p53 activity, which is also reflected in less cell proliferation. Collectively, our results indicate that disrupting the S100A4-p53 interaction would prevent cancer progression, and thus S100A4-p53 inhibitors provide a new avenue for cancer therapy.
Collapse
Affiliation(s)
- Revansiddha H Katte
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
15
|
Wu KJ, Ho SH, Dong JY, Fu L, Wang SP, Liu H, Wu C, Leung CH, Wang HMD, Ma DL. Aliphatic Group-Tethered Iridium Complex as a Theranostic Agent against Malignant Melanoma Metastasis. ACS APPLIED BIO MATERIALS 2020; 3:2017-2027. [DOI: 10.1021/acsabm.9b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Yi Dong
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Ling Fu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
16
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
17
|
Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019; 39:2314-2342. [PMID: 30957264 DOI: 10.1002/med.21585] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are closely implicated in various types of cellular activities and are thus pivotal to health and disease states. Given their fundamental roles in a wide range of biological processes, the modulation of PPIs has enormous potential in drug discovery. However, owing to the general properties of large, flat, and featureless interfaces of PPIs, previous attempts have demonstrated that the generation of therapeutic agents targeting PPI interfaces is challenging, rendering them almost "undruggable" for decades. To date, rapid progress in chemical and structural biology techniques has promoted the exploitation of allostery as a novel approach in drug discovery. By attaching to allosteric sites that are topologically and spatially distinct from PPI interfaces, allosteric modulators can achieve improved physiochemical properties. Thus, allosteric modulators may represent an alternative strategy to target intractable PPIs and have attracted intense pharmaceutical interest. In this review, we first briefly introduce the characteristics of PPIs and then present different approaches for investigating PPIs, as well as the latest methods for modulating PPIs. Importantly, we comprehensively review the recent progress in the development of allosteric modulators to inhibit or stabilize PPIs. Finally, we conclude with future perspectives on the discovery of allosteric PPI modulators, especially the application of computational methods to aid in allosteric PPI drug discovery.
Collapse
Affiliation(s)
- Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Center for Single-Cell Omics, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Ihn HJ, Kim K, Cho HS, Park EK. Pentamidine Inhibits Titanium Particle-Induced Osteolysis In Vivo and Receptor Activator of Nuclear Factor-κB Ligand-Mediated Osteoclast Differentiation In Vitro. Tissue Eng Regen Med 2019; 16:265-273. [PMID: 31205855 DOI: 10.1007/s13770-019-00186-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 11/30/2022] Open
Abstract
Background Wear debris-induced osteolysis leads to periprosthetic loosening and subsequent prosthetic failure. Since excessive osteoclast formation is closely implicated in periprosthetic osteolysis, identification of agents to suppress osteoclast formation and/or function is crucial for the treatment and prevention of wear particle-induced bone destruction. In this study, we examined the potential effect of pentamidine treatment on titanium (Ti) particle-induced osteolysis, and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Methods The effect of pentamidine treatment on bone destruction was examined in Ti particle-induced osteolysis mouse model. Ti particles were implanted onto mouse calvaria, and vehicle or pentamidine was administered for 10 days. Then, calvarial bone tissue was analyzed using micro-computed tomography and histology. We performed in vitro osteoclastogenesis assay using bone marrow-derived macrophages (BMMs) to determine the effect of pentamidine on osteoclast formation. BMMs were treated with 20 ng/mL RANKL and 10 ng/mL macrophage colony-stimulating factor in the presence or absence of pentamidine. Osteoclast differentiation was determined by tartrate-resistant acid phosphatase staining, real-time polymerase chain reaction, and immunofluorescence staining. Results Pentamidine administration decreased Ti particle-induced osteoclast formation significantly and prevented bone destruction compared to the Ti particle group in vivo. Pentamidine also suppressed RANKL-induced osteoclast differentiation and actin ring formation markedly, and inhibited the expression of nuclear factor of activated T cell c1 and osteoclast-specific genes in vitro. Additionally, pentamidine also attenuated RANKL-mediated phosphorylation of IκBα in BMMs. Conclusion These results indicate that pentamidine is effective in inhibiting osteoclast formation and significantly attenuates wear debris-induced bone loss in mice.
Collapse
Affiliation(s)
- Hye Jung Ihn
- 1Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940 Republic of Korea
| | - Kiryeong Kim
- 2Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940 Republic of Korea
| | - Hye-Sung Cho
- 2Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940 Republic of Korea
| | - Eui Kyun Park
- 2Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940 Republic of Korea
| |
Collapse
|
19
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
20
|
Abstract
The S100B protein is an intra- and extracellular signaling protein that
plays a role in a multitude of cellular processes and abnormal S100B is
associated with various neurological diseases and cancers. S100B recognizes and
binds effector proteins in a calcium-dependent manner. S100B has been shown to
interact with the actin capping protein CapZ, protein kinase C, Hdm2 and 4, RAGE
receptor, and p53, among others. These protein partners interact with
a common area on the S100B protein surface, validating the method of using the
consensus sequence for S100B target search. In addition, each S100B target
protein distinguishes itself by additional contacts with S100B. This perspective
suggests that the combination of sequence homology search and structural
analysis promises to identify newer S100B-binding partners beyond the use of the
consensus sequence alone as the given example in the XPB subunit of the TFIIH
general transcription factor. XPB is a helicase required for both transcription
and DNA repair. Inherited xpb mutations are associated with human disease
Xeroderma Pigmentasum, Cockayne syndrome, and trichothiodystrophy. S100B protein
is likely associated with much more biological pathways and processes. We
believe that S100B will attract more and more attentions in the scientific
community and S100B related studies will have important implications in human
health and medicine.
Collapse
Affiliation(s)
- K D Prez
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| | - L Fan
- Department of Biochemistry, University of California Riverside, 900 University Ave, Riverside, California, USA
| |
Collapse
|
21
|
Yang T, Cheng J, Yang Y, Qi W, Zhao Y, Long H, Xie R, Zhu B. S100B Mediates Stemness of Ovarian Cancer Stem-Like Cells Through Inhibiting p53. Stem Cells 2016; 35:325-336. [PMID: 27501952 DOI: 10.1002/stem.2472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | | | | | - Rongkai Xie
- Department of Obstetrics and Gynecology; Xinqiao Hospital, Third Military Medical University; Chongqing 400037 China
| | | |
Collapse
|
22
|
Cavalier MC, Melville Z, Aligholizadeh E, Raman EP, Yu W, Fang L, Alasady M, Pierce AD, Wilder PT, MacKerell AD, Weber DJ. Novel protein-inhibitor interactions in site 3 of Ca(2+)-bound S100B as discovered by X-ray crystallography. Acta Crystallogr D Struct Biol 2016; 72:753-60. [PMID: 27303795 PMCID: PMC4908867 DOI: 10.1107/s2059798316005532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/02/2016] [Indexed: 02/07/2023] Open
Abstract
Structure-based drug discovery is under way to identify and develop small-molecule S100B inhibitors (SBiXs). Such inhibitors have therapeutic potential for treating malignant melanoma, since high levels of S100B downregulate wild-type p53 tumor suppressor function in this cancer. Computational and X-ray crystallographic studies of two S100B-SBiX complexes are described, and both compounds (apomorphine hydrochloride and ethidium bromide) occupy an area of the S100B hydrophobic cleft which is termed site 3. These data also reveal novel protein-inhibitor interactions which can be used in future drug-design studies to improve SBiX affinity and specificity. Of particular interest, apomorphine hydrochloride showed S100B-dependent killing in melanoma cell assays, although the efficacy exceeds its affinity for S100B and implicates possible off-target contributions. Because there are no structural data available for compounds occupying site 3 alone, these studies contribute towards the structure-based approach to targeting S100B by including interactions with residues in site 3 of S100B.
Collapse
Affiliation(s)
- Michael C. Cavalier
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zephan Melville
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ehson Aligholizadeh
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - E. Prabhu Raman
- Computer Aided Drug Design Center, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Wenbo Yu
- Computer Aided Drug Design Center, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Lei Fang
- Computer Aided Drug Design Center, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Milad Alasady
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam D. Pierce
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Paul T. Wilder
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander D. MacKerell
- Computer Aided Drug Design Center, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Her S, Cui L, Bristow RG, Allen C. Dual Action Enhancement of Gold Nanoparticle Radiosensitization by Pentamidine in Triple Negative Breast Cancer. Radiat Res 2016; 185:549-62. [PMID: 27135970 DOI: 10.1667/rr14315.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive disease with a high risk of recurrence and death. Here, we present a novel strategy to enhance the radiotherapy of TNBC by combining gold nanoparticles (AuNPs) with pentamidine, a clinically approved anti-parasitic agent with anti-cancer properties. The radiosensitization effects of PEG-stabilized AuNPs (PEG-AuNPs) in combination with pentamidine were evaluated in two human TNBC cell lines (MDA-MB-231 and MDA-MB-436). Our results showed that PEG-AuNPs alone sensitized both cell lines to radiation, achieving dose enhancement factors of 1.26 and 1.15 in MDA-MB-231 and MDA-MB-436, respectively. In combination with pentamidine, the greatest dose enhancement was achieved in MDA-MB-231 after 24 h of treatment with 500 μM PEG-AuNPs and 20 μM pentamidine (dose enhancement factor of 1.55). Based on the in vitro data, it is projected that this combination would result in a 10 log increase in cell kill compared to radiation alone in a clinical setting, where 50 Gy is administered to breast cancer patients in 25 fractions over 5 weeks. Studies to elucidate the underlying mechanism of radiosensitization revealed that the adsorption of pentamidine onto the PEG-AuNP surface increased the cellular uptake of gold compared to PEG-AuNPs alone. In addition, the combination resulted in a significantly greater number of residual DNA double-strand breaks compared to that of either agent alone after a 2 Gy dose. Taken together, the dual action of pentamidine on the physical and biological pathways of radiosensitization by PEG-AuNPs results in superior radiotherapeutic effects of the combined treatment group in MDA-MB-231.
Collapse
Affiliation(s)
- Sohyoung Her
- a Departments of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| | - Lei Cui
- a Departments of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| | - Robert G Bristow
- b Radiation Oncology and Medical Biophysics and.,d Ontario Cancer Institute and.,e STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christine Allen
- a Departments of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy.,c The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; and.,e STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Dhar A, Mallick S, Ghosh P, Maiti A, Ahmed I, Bhattacharya S, Mandal T, Manna A, Roy K, Singh S, Nayak DK, Wilder PT, Markowitz J, Weber D, Ghosh MK, Chattopadhyay S, Guha R, Konar A, Bandyopadhyay S, Roy S. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide. Biopolymers 2016; 102:344-58. [PMID: 24839139 DOI: 10.1002/bip.22505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development.
Collapse
Affiliation(s)
- Amlanjyoti Dhar
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cavalier MC, Ansari MI, Pierce AD, Wilder PT, McKnight LE, Raman EP, Neau DB, Bezawada P, Alasady MJ, Charpentier TH, Varney KM, Toth EA, MacKerell AD, Coop A, Weber DJ. Small Molecule Inhibitors of Ca(2+)-S100B Reveal Two Protein Conformations. J Med Chem 2016; 59:592-608. [PMID: 26727270 DOI: 10.1021/acs.jmedchem.5b01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design.
Collapse
Affiliation(s)
- Michael C Cavalier
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Mohd Imran Ansari
- Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Adam D Pierce
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Paul T Wilder
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Laura E McKnight
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - E Prabhu Raman
- Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | | | - Padmavani Bezawada
- Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Milad J Alasady
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Thomas H Charpentier
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Eric A Toth
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Alexander D MacKerell
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Andrew Coop
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Computer Aided Drug Design Center, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - David J Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| |
Collapse
|
26
|
Cerofolini L, Amato J, Borsi V, Pagano B, Randazzo A, Fragai M. Probing the interaction of distamycin A with S100β: the "unexpected" ability of S100β to bind to DNA-binding ligands. J Mol Recognit 2015; 28:376-84. [PMID: 25694263 DOI: 10.1002/jmr.2452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/11/2022]
Abstract
DNA-minor-groove-binding ligands are potent antineoplastic molecules. The antibiotic distamycin A is the prototype of one class of these DNA-interfering molecules that have been largely used in vitro. The affinity of distamycin A for DNA is well known, and the structural details of the complexes with some B-DNA and G-quadruplex-forming DNA sequences have been already elucidated. Here, we show that distamycin A binds S100β, a protein involved in the regulation of several cellular processes. The reported affinity of distamycin A for the calcium(II)-loaded S100β reinforces the idea that some biological activities of the DNA-minor-groove-binding ligands arise from the binding to cellular proteins.
Collapse
Affiliation(s)
- Linda Cerofolini
- Giotto Biotech, Via Madonna del Piano 6, Sesto Fiorentino, Florence, 50019, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Chuang CH, Cheng TC, Leu YL, Chuang KH, Tzou SC, Chen CS. Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int J Mol Sci 2015; 16:3202-12. [PMID: 25648320 PMCID: PMC4346889 DOI: 10.3390/ijms16023202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
Akt acts as a pivotal regulator in the PI3K/Akt signaling pathway and represents a potential drug target for cancer therapy. To search for new inhibitors of Akt kinase, we performed a structure-based virtual screening using the DOCK 4.0 program and the X-ray crystal structure of human Akt kinase. From the virtual screening, 48 compounds were selected and subjected to the Akt kinase inhibition assay. Twenty-six of the test compounds showed more potent inhibitory effects on Akt kinase than the reference compound, H-89. These 26 compounds were further evaluated for their cytotoxicity against HCT-116 human colon cancer cells and HEK-293 normal human embryonic kidney cells. Twelve compounds were found to display more potent or comparable cytotoxic activity compared to compound H-89 against HCT-116 colon cancer cells. The best results were obtained with Compounds a46 and a48 having IC50 values (for HCT-116) of 11.1 and 9.5 µM, respectively, and selectivity indices (IC50 for HEK-293/IC50 for HCT-116) of 12.5 and 16.1, respectively. Through structure-based virtual screening and biological evaluations, we have successfully identified several new Akt inhibitors that displayed cytotoxic activity against HCT-116 human colon cancer cells. Especially, Compounds a46 and a48 may serve as useful lead compounds for further development of new anticancer agents.
Collapse
Affiliation(s)
- Chih-Hung Chuang
- Institutes of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Ta-Chun Cheng
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Ling Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan.
| | - Chien-Shu Chen
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
28
|
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B. Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|
29
|
Cavalier MC, Pierce AD, Wilder PT, Alasady MJ, Hartman KG, Neau DB, Foley TL, Jadhav A, Maloney DJ, Simeonov A, Toth EA, Weber DJ. Covalent small molecule inhibitors of Ca(2+)-bound S100B. Biochemistry 2014; 53:6628-40. [PMID: 25268459 PMCID: PMC4211652 DOI: 10.1021/bi5005552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated levels of the tumor marker S100B are observed in malignant melanoma, and this EF-hand-containing protein was shown to directly bind wild-type (wt) p53 in a Ca(2+)-dependent manner, dissociate the p53 tetramer, and inhibit its tumor suppression functions. Likewise, inhibiting S100B with small interfering RNA (siRNA(S100B)) is sufficient to restore wild-type p53 levels and its downstream gene products and induce the arrest of cell growth and UV-dependent apoptosis in malignant melanoma. Therefore, it is a goal to develop S100B inhibitors (SBiXs) that inhibit the S100B-p53 complex and restore active p53 in this deadly cancer. Using a structure-activity relationship by nuclear magnetic resonance approach (SAR by NMR), three persistent binding pockets are found on S100B, termed sites 1-3. While inhibitors that simultaneously bind sites 2 and 3 are in place, no molecules that simultaneously bind all three persistent sites are available. For this purpose, Cys84 was used in this study as a potential means to bridge sites 1 and 2 because it is located in a small crevice between these two deeper pockets on the protein. Using a fluorescence polarization competition assay, several Cys84-modified S100B complexes were identified and examined further. For five such SBiX-S100B complexes, crystallographic structures confirmed their covalent binding to Cys84 near site 2 and thus present straightforward chemical biology strategies for bridging sites 1 and 3. Importantly, one such compound, SC1982, showed an S100B-dependent death response in assays with WM115 malignant melanoma cells, so it will be particularly useful for the design of SBiX molecules with improved affinity and specificity.
Collapse
Affiliation(s)
- Michael C Cavalier
- Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Penumutchu SR, Chou RH, Yu C. Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One 2014; 9:e103947. [PMID: 25084534 PMCID: PMC4118983 DOI: 10.1371/journal.pone.0103947] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023] Open
Abstract
The S100P protein is a member of the S100 family of calcium-binding proteins and possesses both intracellular and extracellular functions. Extracellular S100P binds to the cell surface receptor for advanced glycation end products (RAGE) and activates its downstream signaling cascade to meditate tumor growth, drug resistance and metastasis. Preventing the formation of this S100P-RAGE complex is an effective strategy to treat various disease conditions. Despite its importance, the detailed structural characterization of the S100P-RAGE complex has not yet been reported. In this study, we report that S100P preferentially binds to the V domain of RAGE. Furthermore, we characterized the interactions between the RAGE V domain and Ca2+-bound S100P using various biophysical techniques, including isothermal titration calorimetry (ITC), fluorescence spectroscopy, multidimensional NMR spectroscopy, functional assays and site-directed mutagenesis. The entropy-driven binding between the V domain of RAGE and Ca+2-bound S100P was found to lie in the micromolar range (Kd of ∼6 µM). NMR data-driven HADDOCK modeling revealed the putative sites that interact to yield a proposed heterotetrameric model of the S100P-RAGE V domain complex. Our study on the spatial structural information of the proposed protein-protein complex has pharmaceutical relevance and will significantly contribute toward drug development for the prevention of RAGE-related multifarious diseases.
Collapse
Affiliation(s)
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
31
|
Huang TL, Mayence A, Vanden Eynde JJ. Some non-conventional biomolecular targets for diamidines. A short survey. Bioorg Med Chem 2014; 22:1983-92. [DOI: 10.1016/j.bmc.2014.02.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/24/2022]
|
32
|
Boone BA, Lotze MT. Targeting damage-associated molecular pattern molecules (DAMPs) and DAMP receptors in melanoma. Methods Mol Biol 2014; 1102:537-52. [PMID: 24258998 DOI: 10.1007/978-1-62703-727-3_29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Damage-associated molecular pattern molecules (DAMPs) are proteins released from cells under stress due to nutrient deprivation, hypoxia, trauma, or treatment with chemotherapy, among a variety of other causes. When released, DAMPs activate innate immunity, providing a pathway to a systemic inflammatory response in the absence of infection. By regulating inflammation in the tumor microenvironment, promoting angiogenesis, and increasing autophagy with evasion of apoptosis, DAMPs facilitate cancer growth. DAMPs and DAMP receptors have a key role in melanoma pathogenesis. Due to their crucial role in the development of melanoma and chemoresistance, DAMPs represent intriguing targets at a time when novel treatments are desperately needed.
Collapse
Affiliation(s)
- Brian A Boone
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
33
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
The evolution of S100B inhibitors for the treatment of malignant melanoma. Future Med Chem 2013; 5:97-109. [PMID: 23256816 DOI: 10.4155/fmc.12.191] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Malignant melanoma continues to be an extremely fatal cancer due to a lack of viable treatment options for patients. The calcium-binding protein S100B has long been used as a clinical biomarker, aiding in malignant melanoma staging and patient prognosis. However, the discovery of p53 as a S100B target and the consequent impact on cell apoptosis redirected research efforts towards the development of inhibitors of this S100B-p53 interaction. Several approaches, including computer-aided drug design, fluorescence polarization competition assays, NMR, x-ray crystallography and cell-based screens have been performed to identify compounds that block the S100B-p53 association, reactivate p53 transcriptional activities and induce cancer cell death. Eight promising compounds, including pentamidine, are presented in this review and the potential for future modifications is discussed. Synthesis of compound derivatives will likely exhibit increased S100B affinity and mimic important S100B-target dynamic properties that will result in high specificity.
Collapse
|
35
|
Miki Y, Gion Y, Mukae Y, Hayashi A, Sato H, Yoshino T, Takahashi K. Morphologic, flow cytometric, functional, and molecular analyses of S100B positive lymphocytes, unique cytotoxic lymphocytes containing S100B protein. Eur J Haematol 2013; 90:99-110. [DOI: 10.1111/ejh.12036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | - Yuka Gion
- Department of Pathology; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama University; Okayama
| | - Yuriko Mukae
- Department of Medical Technology; Kawasaki College of Allied Health Professions; Okayama
| | | | - Hiaki Sato
- Department of Medical Technology; Graduate School of Health Sciences; Okayama University; Okayama
| | - Tadashi Yoshino
- Department of Pathology; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama University; Okayama
| | - Kiyoshi Takahashi
- Department of Medical Technology; Graduate School of Health Sciences; Okayama University; Okayama
| |
Collapse
|
36
|
Ponterini G. Fluorescence Observables and Enzyme Kinetics in the Investigation of PPI Modulation by Small Molecules: Detection, Mechanistic Insight, and Functional Consequences. DISRUPTION OF PROTEIN-PROTEIN INTERFACES 2013. [PMCID: PMC7123529 DOI: 10.1007/978-3-642-37999-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potential of fluorescence-based methods and kinetic analysis in the screening and molecular-scale mechanistic investigation of PPI modulation by small molecules is discussed through several representative examples collected and commented. These experimental approaches take advantage of a variety of observables. Changes in the protein aggregation pattern have been monitored through fluorescence properties such as spectra, intensities (related to quantum yields), time-decays, and anisotropies of intrinsic protein fluorophores, of extrinsic fluorescent tags and, even, of the same small molecules added to modulate PPIs, as well as through bimolecular excited-state processes such as static and collisional quenching, including electron and excitation-energy transfer, or exciton interaction, whose efficiencies are crucially structure dependent. Besides allowing for qualitative and quantitative information on the small-molecule induced PPI modulation, these approaches can take advantage from the sensitivity of fluorescence observables on fine structural details to shed light on the molecular-scale mechanisms of action and their functional consequences. Direct investigation of the latter by kinetic inhibition analysis represents a useful change in perspective whenever PPI are relevant for enzyme activity. Dissociative inhibition, that is, the ability of some small molecules to inhibit enzymes by disrupting their active oligomeric assembly is shortly reviewed.
Collapse
|
37
|
McKnight LE, Raman EP, Bezawada P, Kudrimoti S, Wilder PT, Hartman KG, Godoy-Ruiz R, Toth EA, Coop A, MacKerell AD, Weber DJ. Structure-Based Discovery of a Novel Pentamidine-Related Inhibitor of the Calcium-Binding Protein S100B. ACS Med Chem Lett 2012; 3:975-979. [PMID: 23264854 DOI: 10.1021/ml300166s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Molecular Dynamics simulations of the pentamidine-S100B complex, where two molecules of pentamidine bind per monomer of S100B, were performed in an effort to determine what properties would be desirable in a pentamidine-derived compound as an inhibitor for S100B. These simulations predicted that increasing the linker length of the compound would allow a single molecule to span both pentamidine binding sites on the protein. The resulting compound, SBi4211 (also known as heptamidine), was synthesized and experiments to study its inhibition of S100B were performed. The 1.65 Å X-ray crystal structure was determined for Ca(2+)-S100B-heptamdine and gives high-resolution information about key contacts that facilitate the interaction between heptamidine and S100B. Additionally, NMR HSQC experiments with both compounds show that heptamidine interacts with the same region of S100B as pentamidine. Heptamidine is able to selectively kill melanoma cells with S100B over those without S100B, indicating that its binding to S100B has an inhibitory effect and that this compound may be useful in designing higher-affinity S100B inhibitors as a treatment for melanoma and other S100B-related cancers.
Collapse
Affiliation(s)
| | - E. Prabhu Raman
- Department of Pharmaceutical
Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Padmavani Bezawada
- Department of Pharmaceutical
Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Sucheta Kudrimoti
- Department of Pharmaceutical
Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | | | | | | | | - Andrew Coop
- Department of Pharmaceutical
Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Department of Pharmaceutical
Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
38
|
Qiu G, Jiang J, Liu XS. Pentamidine sensitizes chronic myelogenous leukemia K562 cells to TRAIL-induced apoptosis. Leuk Res 2012; 36:1417-21. [PMID: 22938941 DOI: 10.1016/j.leukres.2012.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/11/2012] [Accepted: 07/28/2012] [Indexed: 02/05/2023]
Abstract
Pentamidine (PMD) is an anti-protozoa drug with potential anticancer activity. Here we show that PMD at clinically achievable plasma drug concentrations slightly inhibited the growth of human leukemia cell lines. PMD close to its therapeutic doses sensitized TRAIL-resistant K562 cells to the cytokine and potentiated TRAIL-induced apoptosis through activation of caspase-8 and -3. When we investigated the underlying mechanism, we observed that treatment with PMD increased DR5 expression at both mRNA and protein levels and down-regulated anti-apoptotic XIAP and Mcl-1 protein levels. This study provides a rationale for a more in-depth exploration into the combined treatment with PMD and TRAIL as a valuable strategy for leukemia therapy.
Collapse
Affiliation(s)
- Geng Qiu
- Department of Biochemistry, Shantou University Medical College, Shantou, Guangdong, China
| | | | | |
Collapse
|
39
|
Molecular dynamic simulation insights into the normal state and restoration of p53 function. Int J Mol Sci 2012; 13:9709-9740. [PMID: 22949826 PMCID: PMC3431824 DOI: 10.3390/ijms13089709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022] Open
Abstract
As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level.
Collapse
|
40
|
Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Med Chem 2012; 4:603-13. [PMID: 22458680 DOI: 10.4155/fmc.12.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Structure-based virtual screening makes explicit or implicit use of 3D target structure information to detect novel active compounds. Results of nearly 300 currently available original applications have been analyzed to characterize the state-of-the-art in this field. Compound selection from docking calculations is much influenced by subjective criteria. Although submicromolar compounds are identified, the majority of docking hits are only weakly potent. However, only a small percentage of docking hits can be reproduced by ligand-based methods. When docking calculations identify potent hits, they often originate from specialized compound sources (e.g., pharmaceutical compound decks or target-focused libraries) and also display a notable bias towards kinase targets. Structure-based virtual screening is the dominant approach to computational hit identification. Docking calculations frequently identify active compounds. Limited accuracy of compound scoring and ranking currently presents a major caveat of the approach that is often compensated for by chemical intuition and knowledge.
Collapse
|
41
|
Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 2012; 14:e16. [PMID: 22831787 DOI: 10.1017/erm.2012.10] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, might influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of 'druggable' protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favour discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets.
Collapse
|
42
|
Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 2012; 120:644-59. [PMID: 22145907 DOI: 10.1111/j.1471-4159.2011.07612.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica Sacro Cuore, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Reddy TRK, Li C, Guo X, Myrvang HK, Fischer PM, Dekker LV. Design, synthesis, and structure-activity relationship exploration of 1-substituted 4-aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-one analogues as inhibitors of the annexin A2-S100A10 protein interaction. J Med Chem 2011; 54:2080-94. [PMID: 21375334 PMCID: PMC3081224 DOI: 10.1021/jm101212e] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S100 proteins are small adaptors that regulate the activity of partner proteins by virtue of direct protein interactions. Here, we describe the first small molecule blockers of the interaction between S100A10 and annexin A2. Molecular docking yielded candidate blockers that were screened for competition of the binding of an annexin A2 peptide to S100A10. Several inhibitory clusters were identified with some containing compounds with potency in the lower micromolar range. We chose 3-hydroxy-1-(2-hydroxypropyl)-5-(4-isopropylphenyl)-4-(4-methylbenzoyl)-1H-pyrrol-2(5H)-one (1a) as a starting point for structure-activity studies. These confirmed the hypothetical binding mode from the virtual screen for this series of molecules. Selected compounds disrupted the physiological complex of annexin A2 and S100A10, both in a broken cell preparation and inside MDA-MB-231 breast cancer cells. Thus, this class of compounds has promising properties as inhibitors of the interaction between annexin A2 and S100A10 and may help to elucidate the cellular function of this protein interaction.
Collapse
Affiliation(s)
- Tummala R K Reddy
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Jung HJ, Suh SI, Suh MH, Baek WK, Park JW. Pentamidine reduces expression of hypoxia-inducible factor-1α in DU145 and MDA-MB-231 cancer cells. Cancer Lett 2011; 303:39-46. [PMID: 21316841 DOI: 10.1016/j.canlet.2011.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/28/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Pentamidine is an aromatic diamine used for the treatment of human protozoa infections. Recently, pentamidine has been reported to exhibit anticancer properties. In this study, we report that pentamidine inhibits expression of hypoxia-inducible factor (HIF)-1α in cancer cells. Pentamidine decreased HIF-1α protein translation and enhanced its protein degradation in DU145 prostate cancer and MDA-MB-231 breast cancer cells. In parallel with reduction of de novo synthesis of HIF-1α, pentamidine was able to suppress global protein translation, an effect accompanied by the reduction of eIF4F complex formation and also the induction of eIF2α phosphorylation. These results show that pentamidine is a potential inhibitor of HIF-1α and its potential as a cancer therapeutic reagent warrants further study.
Collapse
Affiliation(s)
- Hui-Jung Jung
- Chronic Disease Research Center, School of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Rassool FV, Tomkinson AE. Targeting abnormal DNA double strand break repair in cancer. Cell Mol Life Sci 2010; 67:3699-710. [PMID: 20697770 PMCID: PMC3014093 DOI: 10.1007/s00018-010-0493-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/19/2022]
Abstract
A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agents that selectively inhibit the DSB repair pathways that cancer cells are more dependent upon will facilitate the design of therapeutic strategies that exploit the differences in DSB repair between normal and cancer cells. Here, we discuss the pathways of DSB repair, alterations in DSB repair in cancer, inhibitors of DSB repair and future directions for cancer therapies that target DSB repair.
Collapse
Affiliation(s)
- Feyruz V. Rassool
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 West Baltimore Street, BRB, Rm 7-025, Baltimore, MD 21201 USA
| | - Alan E. Tomkinson
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 West Baltimore Street, BRB, Rm 7-025, Baltimore, MD 21201 USA
| |
Collapse
|
46
|
Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R. S100B Protein, A Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovasc Psychiatry Neurol 2010; 2010:656481. [PMID: 20827421 PMCID: PMC2933911 DOI: 10.1155/2010/656481] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/08/2010] [Indexed: 12/15/2022] Open
Abstract
S100B belongs to a multigenic family of Ca(2+)-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy metabolism, the dynamics of cytoskeleton constituents (and hence, of cell shape and migration), Ca(2+) homeostasis, and cell proliferation and differentiation. As an extracellular signal, at low, physiological concentrations, S100B protects neurons against apoptosis, stimulates neurite outgrowth and astrocyte proliferation, and negatively regulates astrocytic and microglial responses to neurotoxic agents, while at high doses S100B causes neuronal death and exhibits properties of a damage-associated molecular pattern protein. S100B also exerts effects outside the brain; as an intracellular regulator, S100B inhibits the postinfarction hypertrophic response in cardiomyocytes, while as an extracellular signal, (high) S100B causes cardiomyocyte death, activates endothelial cells, and stimulates vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
47
|
Wilder PT, Charpentier TH, Liriano MA, Gianni K, Varney KM, Pozharski E, Coop A, Toth EA, Mackerell AD, Weber DJ. In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. ACTA ACUST UNITED AC 2010; 2010:109-126. [PMID: 21132089 DOI: 10.2147/ijhts.s8210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
S100B is highly over-expressed in many cancers, including malignant melanoma. In such cancers, S100B binds wild-type p53 in a calcium-dependent manner, sequestering it, and promoting its degradation, resulting in the loss of p53-dependent tumor suppression activities. Therefore, S100B inhibitors may be able to restore wild-type p53 levels in certain cancers and provide a useful therapeutic strategy. In this regard, an automated and sensitive fluorescence polarization competition assay (FPCA) was developed and optimized to screen rapidly for lead compounds that bind Ca(2+)-loaded S100B and inhibit S100B target complex formation. A screen of 2000 compounds led to the identification of 26 putative S100B low molecular weight inhibitors. The binding of these small molecules to S100B was confirmed by nuclear magnetic resonance spectroscopy, and additional structural information was provided by x-ray crystal structures of several compounds in complexes with S100B. Notably, many of the identified inhibitors function by chemically modifying Cys84 in protein. These results validate the use of high-throughput FPCA to facilitate the identification of compounds that inhibit S100B. These lead compounds will be the subject of future optimization studies with the ultimate goal of developing a drug with therapeutic activity for the treatment of malignant melanoma and/or other cancers with elevated S100B.
Collapse
Affiliation(s)
- Paul T Wilder
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Agamennone M, Cesari L, Lalli D, Turlizzi E, Del Conte R, Turano P, Mangani S, Padova A. Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands. ChemMedChem 2010; 5:428-35. [PMID: 20077460 DOI: 10.1002/cmdc.200900393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
S100B contributes to cell proliferation by binding the C terminus of p53 and inhibiting its tumor suppressor function. The use of multiple computational approaches to screen fragment libraries targeting the human S100B-p53 interaction site is reported. This in silico screening led to the identification of 280 novel prospective ligands. NMR spectroscopic experiments revealed specific binding at the p53 interaction site for a set of these compounds and confirmed their potential for further rational optimization. The X-ray crystal structure determined for one of the binders revealed key intermolecular interactions, thus paving the way for structure-based ligand optimization.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Dipartimento di Scienze del Farmaco, Università "G. d'Annunzio", Via dei Vestini, 66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Shijun Z, Matthews M, Bunting KL, Polo JM, Farès C, Arrowsmith CH, Yang SN, Garcia M, Coop A, MacKerell AD, Privé GG, Melnick A. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17:400-11. [PMID: 20385364 PMCID: PMC2858395 DOI: 10.1016/j.ccr.2009.12.050] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 10/29/2009] [Accepted: 02/05/2010] [Indexed: 11/30/2022]
Abstract
The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low-molecular-weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was nontoxic and potently suppressed DLBCL tumors in vivo. The compound also killed primary DLBCLs from human patients.
Collapse
Affiliation(s)
- Leandro C. Cerchietti
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | | | - Xiao Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Gustavo F. Da Silva
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Zhong Shijun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Marilyn Matthews
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Karen L. Bunting
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | - Jose M. Polo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Cheryl H. Arrowsmith
- Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shao Ning Yang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | - Monica Garcia
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | - Andrew Coop
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Gilbert G. Privé
- Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| |
Collapse
|
50
|
Rani SG, Mohan SK, Yu C. Molecular level interactions of S100A13 with amlexanox: inhibitor for formation of the multiprotein complex in the nonclassical pathway of acidic fibroblast growth factor. Biochemistry 2010; 49:2585-92. [PMID: 20178375 DOI: 10.1021/bi9019077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
S100A13 and acidic fibroblast growth factor (FGF1) are involved in a wide array of important biological processes, such as angiogenesis, cell differentiation, neurogenesis, and tumor growth. Generally, the biological function of FGF1 is to recognize a specific tyrosine kinase on the cell surface and initiate the cell signal transduction cascade. Amlexanox (2-amino-7-isopropyl-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxylic acid) is an antiallergic drug that binds S100A13 and FGF1 and inhibits the heat shock induced release of S100A13 and FGF1. In the present study, we investigated the interaction of amlexanox with S100A13 using various biophysical techniques, including isothermal titration calorimetry, fluorescence spectrophotometry, and multidimensional NMR spectroscopy. We report the three-dimensional solution structure of the S100A13-amlexanox complex. These data show that amlexanox binds specifically to the FGF1-S100A13 interface and prevents the formation of the FGF1-releasing complex. In addition, we demonstrate that amlexanox acts as an antagonist of S100A13 by binding to its FGF1 binding site and subsequently inhibiting the nonclassical pathway of these proteins. This inhibition likely results in the ability of amlexanox to antagonize the angiogenic and mitogenic activity of FGF1.
Collapse
Affiliation(s)
- Sandhya G Rani
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | |
Collapse
|