1
|
Ariyoshi J, Asanuma H, Kamiya Y. Protocol for Controlling the Strand Selectivity of siRNA Using Acyclic Artificial Nucleic Acids. Curr Protoc 2025; 5:e70103. [PMID: 40110740 DOI: 10.1002/cpz1.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Small interfering RNA (siRNA) has emerged as a promising therapeutic candidate against previously intractable diseases. An effective siRNA must have high on-target activity while off-target effects are minimized. This balance can be achieved by enhancing the selectivity of the antisense strand through sequence optimization and appropriate chemical modifications. Acyclic artificial nucleic acids such as serinol nucleic acids (SNA) have demonstrated on-target activity while suppressing off-target effects. This article provides guidelines for designing SNA-modified siRNA and outlines a method for the experimental evaluation of the on-target and off-target activities of siRNAs, ensuring accurate functional validation in cell systems. These protocols benefit researchers developing siRNA-based therapeutics to optimize siRNA selectivity and efficacy while minimizing off-target effects through innovative design strategies. © 2025 Wiley Periodicals LLC. Basic Protocol 1: Design of SNA-modified siRNA Basic Protocol 2: Design and preparation of vector plasmids using inverse PCR Alternate Protocol: Design and preparation of vector plasmid using restriction enzymes and ligase Basic Protocol 3: Evaluation of the on- and off-target effects of siRNAs using the dual-luciferase assay Support Protocol 1: Agarose gel electrophoresis and protocol for purifying DNA from gels Support Protocol 2: Transformation and amplification of plasmids.
Collapse
Affiliation(s)
- Jumpei Ariyoshi
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yukiko Kamiya
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
3
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Nowak R, Gazecka M, Hoffmann M, Kierzek R, Pöhlmann S, Zmora P. TMPRSS2-specific antisense oligonucleotides inhibit host cell entry of emerging viruses. Virology 2024; 600:110218. [PMID: 39276670 DOI: 10.1016/j.virol.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Emerging viruses, such as novel influenza A viruses (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose a constant threat to animal and human health. Identification of host cell factors necessary for viral replication but dispensable for cellular survival might reveal novel, attractive targets for therapeutic intervention. Proteolytic activation of IAV hemagglutinin (HA) and SARS-CoV-2 spike protein (S) by the type II transmembrane serine protease (TTSPs), e.g. TMPRSS2 is sought to be critical for viral spread and pathogenesis. Here, we investigated the secondary structure of TMPRSS2 mRNA coding sequence and designed TMPRSS2-specific antisense oligonucleotides (ASOs). Several of these ASOs markedly reduced the TMPRSS2 expression and decreased IAV infection and SARS-CoV-2 entry into cells.
Collapse
Affiliation(s)
- Rafal Nowak
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Monika Gazecka
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Pawel Zmora
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
5
|
Li Q, Dong M, Chen P. Advances in structural-guided modifications of siRNA. Bioorg Med Chem 2024; 110:117825. [PMID: 38954918 DOI: 10.1016/j.bmc.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
6
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
8
|
Hayashi J, Ochi Y, Senpuku K, Wada SI, Wada F, Harada-Shiba M, Urata H. Rational design of prodrug-type apoB-targeted siRNA for nuclease resistance improvement without compromising gene silencing potency. Bioorg Med Chem 2024; 104:117693. [PMID: 38552598 DOI: 10.1016/j.bmc.2024.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Synthetic siRNA molecules without chemical modifications are easily degraded in the body, and 2'-O-modifications are frequently introduced to enhance stability. However, such chemical modifications tend to impact the gene knockdown potency of siRNA negatively. To circumvent this problem, we previously developed a prodrug-type siRNA bearing 2'-O-methyldithiomethyl (MDTM) groups, which can be converted into unmodified siRNA under the reductive environment in cells. In this study, we developed a nuclease-resistant prodrug-type 2'-O-MDTM siRNA for deployment in future animal experiments. To rationally design siRNA modified with a minimal number of 2'-O-MDTM nucleotide residues, we identified the sites susceptible to nuclease digestion and tolerant to 2'-O-methyl (2'-OMe) modification in the antisense strand of apolipoprotein B-targeted siRNA. Subsequently, we optimized the positions where the 2'-OMe and 2'-O-MDTM groups should be incorporated. siRNA bearing the 2'-O-MDTM and 2'-OMe groups at their respective optimized positions exhibited efficient knockdown potency in vitro and enhanced stability in serum.
Collapse
Affiliation(s)
- Junsuke Hayashi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yosuke Ochi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kota Senpuku
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Fumito Wada
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Mariko Harada-Shiba
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Hidehito Urata
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
9
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Keyvani V, Mahmoudian RA, Mollazadeh S, Kheradmand N, Ghorbani E, Khazaei M, Saeed Al-Hayawi I, Hassanian SM, Ferns GA, Avan A, Anvari K. Insight into RNA-based Therapies for Ovarian Cancer. Curr Pharm Des 2023; 29:2692-2701. [PMID: 37916491 DOI: 10.2174/0113816128270476231023052228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Fan Y, Yang Z. Inhaled siRNA Formulations for Respiratory Diseases: From Basic Research to Clinical Application. Pharmaceutics 2022; 14:1193. [PMID: 35745766 PMCID: PMC9227582 DOI: 10.3390/pharmaceutics14061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
The development of siRNA technology has provided new opportunities for gene-specific inhibition and knockdown, as well as new ideas for the treatment of disease. Four siRNA drugs have already been approved for marketing. However, the instability of siRNA in vivo makes systemic delivery ineffective. Inhaled siRNA formulations can deliver drugs directly to the lung, showing great potential for treating respiratory diseases. The clinical applications of inhaled siRNA formulations still face challenges because effective delivery of siRNA to the lung requires overcoming the pulmonary and cellular barriers. This paper reviews the research progress for siRNA inhalation formulations for the treatment of various respiratory diseases and summarizes the chemical structural modifications and the various delivery systems for siRNA. Finally, we conclude the latest clinical application research for inhaled siRNA formulations and discuss the potential difficulty in efficient clinical application.
Collapse
Affiliation(s)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 224 Waterloo Rd., Kowloon Tong, Hong Kong, China;
| |
Collapse
|
12
|
Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022; 21:417-439. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Recent years have seen unprecedented activity in the development of RNA-silencing oligonucleotide therapeutics for metabolic diseases. Improved oligonucleotide design and optimization of synthetic nucleic acid chemistry, in combination with the development of highly selective and efficient conjugate delivery technology platforms, have established and validated oligonucleotides as a new class of drugs. To date, there are five marketed oligonucleotide therapies, with many more in clinical studies, for both rare and common liver-driven metabolic diseases. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in metabolism, review past and current clinical trials, and discuss ongoing challenges and possible future developments.
Collapse
|
13
|
Dedeoğlu BG, Noyan S. Experimental MicroRNA Targeting Validation. Methods Mol Biol 2022; 2257:79-90. [PMID: 34432274 DOI: 10.1007/978-1-0716-1170-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
microRNAs (miRNAs) have recently been recognized as a new dimension of posttranscriptional regulation. It is well defined that most human protein-coding genes are regulated by one or more miRNAs. Therefore, it is crucial to identify genes targeted by the miRNAs to better understand their functions. Although bioinformatics tools have the ability to identify target candidates it is still essential to identify physiological targets by experimental approaches. Currently, the majority of miRNA-target experimental validation approaches assess the changes in target expression in mRNA or protein level upon miRNA upregulation or downregulation. Additionally, finding out direct physical interactions between miRNAs and their targets is also among the experimental techniques. In this chapter we reviewed the existing experimental techniques for miRNA target identification by considering their advantages and potential drawbacks.
Collapse
Affiliation(s)
| | - Senem Noyan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Zhao Y, Shu R, Liu J. The development and improvement of ribonucleic acid therapy strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:997-1013. [PMID: 34540356 PMCID: PMC8437697 DOI: 10.1016/j.omtn.2021.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological understanding of RNA has evolved since the discovery of catalytic RNAs in the early 1980s and the establishment of RNA interference (RNAi) in the 1990s. RNA is no longer seen as the simple mid-product between transcription and translation but as potential molecules to be developed as RNA therapeutic drugs. RNA-based therapeutic drugs have gained recognition because of their ability to regulate gene expression and perform cellular functions. Various nucleobase, backbone, and sugar-modified oligonucleotides have been synthesized, as natural oligonucleotides have some limitations such as poor low nuclease resistance, binding affinity, poor cellular uptake, and toxicity, which affect their use as RNA therapeutic drugs. In this review, we briefly discuss different RNA therapeutic drugs and their internal connections, including antisense oligonucleotides, small interfering RNAs (siRNAs) and microRNAs (miRNAs), aptamers, small activating RNAs (saRNAs), and RNA vaccines. We also discuss the important roles of RNA vaccines and their use in the fight against COVID-19. In addition, various chemical modifications and delivery systems used to improve the performance of RNA therapeutic drugs and overcome their limitations are discussed.
Collapse
Affiliation(s)
- Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Rui Shu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Jiang Liu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Yamada K, Hildebrand S, Davis SM, Miller R, Conroy F, Sapp E, Caiazzi J, Alterman JF, Roux L, Echeverria D, Hassler MR, Pfister EL, DiFiglia M, Aronin N, Khvorova A. Structurally constrained phosphonate internucleotide linkage impacts oligonucleotide-enzyme interaction, and modulates siRNA activity and allele specificity. Nucleic Acids Res 2021; 49:12069-12088. [PMID: 34850120 PMCID: PMC8643693 DOI: 10.1093/nar/gkab1126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Oligonucleotides is an emerging class of chemically-distinct therapeutic modalities, where extensive chemical modifications are fundamental for their clinical applications. Inter-nucleotide backbones are critical to the behaviour of therapeutic oligonucleotides, but clinically explored backbone analogues are, effectively, limited to phosphorothioates. Here, we describe the synthesis and bio-functional characterization of an internucleotide (E)-vinylphosphonate (iE-VP) backbone, where bridging oxygen is substituted with carbon in a locked stereo-conformation. After optimizing synthetic pathways for iE-VP-linked dimer phosphoramidites in different sugar contexts, we systematically evaluated the impact of the iE-VP backbone on oligonucleotide interactions with a variety of cellular proteins. Furthermore, we systematically evaluated the impact of iE-VP on RNA-Induced Silencing Complex (RISC) activity, where backbone stereo-constraining has profound position-specific effects. Using Huntingtin (HTT) gene causative of Huntington's disease as an example, iE-VP at position 6 significantly enhanced the single mismatch discrimination ability of the RISC without negative impact on silencing of targeting wild type htt gene. These findings suggest that the iE-VP backbone can be used to modulate the activity and specificity of RISC. Our study provides (i) a new chemical tool to alter oligonucleotide-enzyme interactions and metabolic stability, (ii) insight into RISC dynamics and (iii) a new strategy for highly selective SNP-discriminating siRNAs.
Collapse
Affiliation(s)
- Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Sarah M Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Faith Conroy
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Harvard Medical School and MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Edith L Pfister
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Harvard Medical School and MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
16
|
Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, Nikolskii A, Gattinger P, Kovchina V, Barvinskaia E, Yumashev K, Smirnov V, Maerle A, Kozlov I, Shatilov A, Timofeeva A, Andreev S, Koloskova O, Kuznetsova N, Vasina D, Nikiforova M, Rybalkin S, Sergeev I, Trofimov D, Martynov A, Berzin I, Gushchin V, Kovalchuk A, Borisevich S, Valenta R, Khaitov R, Skvortsova V. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy 2021; 76:2840-2854. [PMID: 33837568 PMCID: PMC8251148 DOI: 10.1111/all.14850] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Background First vaccines for prevention of Coronavirus disease 2019 (COVID‐19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti‐SARS‐CoV‐2 effect of siRNA both in vitro and in vivo. Methods To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS‐CoV‐2 genes fused with the firefly luciferase reporter gene and SARS‐CoV‐2‐infected cells was used. The most potent siRNA, siR‐7, was modified by Locked nucleic acids (LNAs) to obtain siR‐7‐EM with increased stability and was formulated with the peptide dendrimer KK‐46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation – siR‐7‐EM/KK‐46. Using the Syrian Hamster model for SARS‐CoV‐2 infection the antiviral capacity of siR‐7‐EM/KK‐46 complex was evaluated. Results We identified the siRNA, siR‐7, targeting SARS‐CoV‐2 RNA‐dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA‐modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR‐7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR‐7‐EM/KK‐46 in vivo. Conclusions Thus, we developed a therapeutic strategy for COVID‐19 based on inhalation of a modified siRNA‐peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID‐19 patients.
Collapse
Affiliation(s)
| | - Alexandra Nikonova
- NRC Institute of Immunology FMBA Moscow Russia
- Mechnikov Research Institute for Vaccines and Sera Moscow Russia
| | | | | | | | | | | | | | | | | | | | | | | | - Ivan Kozlov
- NRC Institute of Immunology FMBA Moscow Russia
| | | | | | | | | | - Nadezhda Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Daria Vasina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Maria Nikiforova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | | | | | | | | | - Igor Berzin
- Federal Medico‐biological Agency of Russia (FMBA Russia) Moscow Russia
| | - Vladimir Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Aleksey Kovalchuk
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Sergei Borisevich
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Rudolf Valenta
- NRC Institute of Immunology FMBA Moscow Russia
- Medical University of Vienna Vienna Austria
| | | | | |
Collapse
|
17
|
Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem Pharmacol 2021; 189:114432. [PMID: 33513339 PMCID: PMC8187268 DOI: 10.1016/j.bcp.2021.114432] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
More than two decades after the natural gene-silencing mechanism of RNA interference was elucidated, small interfering RNA (siRNA)-based therapeutics have finally broken into the pharmaceutical market. With three agents already approved and many others in advanced stages of the drug development pipeline, siRNA drugs are on their way to becoming a standard modality of pharmacotherapy. The majority of late-stage candidates are indicated for rare or orphan diseases, whose patients have an urgent need for novel and effective therapies. Additionally, there are agents that have the potential to meet the need of a broader population. Inclisiran, for instance, is being developed for hypercholesterolemia and has shown benefit in patients who are uncontrolled even after maximal statin therapy. This review provides a brief overview of mechanisms of siRNA action, physiological barriers to its delivery and activity, and the most common chemical modifications and delivery platforms used to overcome these barriers. Furthermore, this review presents comprehensive profiles of the three approved siRNA drugs (patisiran, givosiran, and lumasiran) and the seven other siRNA candidates in Phase 3 clinical trials (vutrisiran, nedosiran, inclisiran, fitusiran, teprasiran, cosdosiran, and tivanisiran), summarizing their modifications and delivery strategies, disease-specific mechanisms of action, updated clinical trial status, and future outlooks.
Collapse
Affiliation(s)
- M May Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
18
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
19
|
Kaczmarek JC, Patel AK, Rhym LH, Palmiero UC, Bhat B, Heartlein MW, DeRosa F, Anderson DG. Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials 2021; 275:120966. [PMID: 34147715 DOI: 10.1016/j.biomaterials.2021.120966] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Non-viral vectors offer the potential to deliver nucleic acids including mRNA and DNA into cells in vivo. However, designing materials that effectively deliver to target organs and then to desired compartments within the cell remains a challenge. Here we develop polymeric materials that can be optimized for either DNA transcription in the nucleus or mRNA translation in the cytosol. We synthesized poly(beta amino ester) terpolymers (PBAEs) with modular changes to monomer chemistry to investigate influence on nucleic acid delivery. We identified two PBAEs with a single monomer change as being effective for either DNA (D-90-C12-103) or mRNA (DD-90-C12-103) delivery to lung endothelium following intravenous injection in mice. Physical properties such as particle size or charge did not account for the difference in transfection efficacy. However, endosome co-localization studies revealed that D-90-C12-103 nanoparticles resided in late endosomes to a greater extent than DD-90-C12-103. We compared luciferase expression in vivo and observed that, even with nucleic acid optimized vectors, peak luminescence using mRNA was two orders of magnitude greater than pDNA in the lungs of mice following systemic delivery. This study indicates that different nucleic acids require tailored delivery vectors, and further support the potential of PBAEs as intracellular delivery materials.
Collapse
Affiliation(s)
- James C Kaczmarek
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Asha Kumari Patel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Luke H Rhym
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Umberto Capasso Palmiero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Chemistry, Materials, And Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | | | | | | | - Daniel G Anderson
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Damiati LA, El-Messeiry S. An Overview of RNA-Based Scaffolds for Osteogenesis. Front Mol Biosci 2021; 8:682581. [PMID: 34169095 PMCID: PMC8217814 DOI: 10.3389/fmolb.2021.682581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering provides new hope for the combination of cells, scaffolds, and bifactors for bone osteogenesis. This is achieved by mimicking the bone's natural behavior in recruiting the cell's molecular machinery for our use. Many researchers have focused on developing an ideal scaffold with specific features, such as good cellular adhesion, cell proliferation, differentiation, host integration, and load bearing. Various types of coating materials (organic and non-organic) have been used to enhance bone osteogenesis. In the last few years, RNA-mediated gene therapy has captured attention as a new tool for bone regeneration. In this review, we discuss the use of RNA molecules in coating and delivery, including messenger RNA (mRNA), RNA interference (RNAi), and long non-coding RNA (lncRNA) on different types of scaffolds (such as polymers, ceramics, and metals) in osteogenesis research. In addition, the effect of using gene-editing tools-particularly CRISPR systems-to guide RNA scaffolds in bone regeneration is also discussed. Given existing knowledge about various RNAs coating/expression may help to understand the process of bone formation on the scaffolds during osseointegration.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021; 31:245-270. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi), a gene regulatory process mediated by small interfering RNAs (siRNAs), has made remarkable progress as a potential therapeutic agent against various diseases. However, RNAi is associated with fundamental challenges such as poor systemic delivery and susceptibility to the nucleases. Targeting ligand-bound delivery vehicles has improved the accumulation of drug at the target site, which has resulted in high transfection efficiency and enhanced gene silencing. Recently, folate receptor (FR)-mediated targeted delivery of siRNAs has garnered attention due to their enhanced cellular uptake and high transfection efficiency toward tumor cells. Folic acid (FA), due to its small size, low immunogenicity, high in vivo stability, and high binding affinity toward FRs, has attracted much attention for targeted siRNA delivery. FRs are overexpressed in a large number of tumors, including ovarian, breast, kidney, and lung cancer cells. In this review, we discuss recent advances in FA-mediated siRNA delivery to treat cancers and inflammatory diseases. This review summarizes various FA-conjugated nanoparticle systems reported so far in the literature, including liposome, silica, metal, graphene, dendrimers, chitosan, organic copolymers, and RNA nanoparticles. This review will help in the design and development of potential delivery vehicles for siRNA drug targeting to tumor cells using an FR-mediated approach.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rahul R Nikam
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
22
|
MicroRNAs Regulating Autophagy in Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:191-264. [PMID: 34260028 DOI: 10.1007/978-981-16-2830-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Social and economic impacts of neurodegenerative diseases (NDs) become more prominent in our constantly aging population. Currently, due to the lack of knowledge about the aetiology of most NDs, only symptomatic treatment is available for patients. Hence, researchers and clinicians are in need of solid studies on pathological mechanisms of NDs. Autophagy promotes degradation of pathogenic proteins in NDs, while microRNAs post-transcriptionally regulate multiple signalling networks including autophagy. This chapter will critically discuss current research advancements in the area of microRNAs regulating autophagy in NDs. Moreover, we will introduce basic strategies and techniques used in microRNA research. Delineation of the mechanisms contributing to NDs will result in development of better approaches for their early diagnosis and effective treatment.
Collapse
|
23
|
Koizumi M, Hirota Y, Nakayama M, Tamura M, Obuchi W. RNA interference activity of single-stranded oligonucleotides linked between the passenger strand and the guide strand with an aryl phosphate linker. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:647-664. [PMID: 34047248 DOI: 10.1080/15257770.2021.1927077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Recently, we demonstrated that asymmetrical 18 base-paired double-strand oligonucleotides comprised of alternately combined 2'-O-methyl RNA and DNA, termed MED-siRNAs, show high RNase resistance, efficient cleavage of target mRNA, and the subsequent reduction of target protein expression. The 5'-terminal phosphate group and the 3'-overhang of the guide strand were required to fully activate the RNAi activity of MED-siRNAs. Here, we evaluated MED-siRNAs modified with aryl phosphate groups at the 5'-end of the guide strand. The 5'-aryl phosphorylated MED-siRNAs showed highly efficient reduction of target protein expression comparable to 5'-phosphorylated MED-siRNAs. Moreover, 5'-aryl phosphorylated MED-siRNAs linked between the aryl phosphate group at the 5'-end of the guide strand and the hydroxyl group at the 3'-end of the passenger strand with alkyl amide linkers or peptides (e.g., DL-Ser-L-Ala-L-Tyr), resulted in single-stranded MED-siRNAs with a highly efficient cleavage activity of target mRNA with binding to Argonaute 2 via an RNA interference mechanism. These linker techniques could also be used to create siRNAs composed of naturally-occurring molecules such as amino acids. These findings suggest the possibility of using these single-stranded MED-siRNAs as siRNA reagents.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1927077 .
Collapse
Affiliation(s)
- Makoto Koizumi
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Yasuhide Hirota
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Makiko Nakayama
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Masakazu Tamura
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Wataru Obuchi
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| |
Collapse
|
24
|
Bollu A, Hassan MK, Dixit M, Sharma NK. The 2'-caged-tethered-siRNA shows light-dependent temporal controlled RNAi activity for GFP gene into HEK293T cells. Bioorg Med Chem 2020; 30:115932. [PMID: 33316720 DOI: 10.1016/j.bmc.2020.115932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022]
Abstract
Small interfering RNA (siRNA) exhibits gene-specific RNAi activity by the formation of RISC complex with mRNA of gene. The structural modification of siRNA at appropriate positions affects the structure of RISC complex and then RNAi activity. The modified siRNA are mostly prepared from the incorporation of sugar ring modified, and nucleobase modified RNA nucleotides. It is learned that the introduction of the sterically hindered nucleoside at the specific position of siRNA, severely affects siRNA-RISC complex formation. This report describes the syntheses of bulkier siRNA from 2'-caged-tethered-siRNAs, containing bulkier photolabile protecting group (o-nitrobenzyl) at 2'-position of ribose nucleoside. Importantly, these 2'-caged-siRNAs exhibit the light-dependent RNA interference (RNAi) activity into HEK293T cells for the GFP gene expression. The 2'-caged-siRNAs are synthesized by caging the sense and antisense strand of siRNA. The biochemical evaluations of these caged-siRNAs show that antisense-strand caged-siRNAs decrease RNAi activity temporarily in dark while enhancing RNAi activity, almost like control, after exposure withUV- light. However, 2'-caged sense strand siRNA increase RNAi activity temporarily while decreasing RNAi activity after exposure with light. These caged-siRNAs are also stable in the serum (fetal bovine serum) as like native siRNA. Hence these results strongly support that 2'-caged-tethered-siRNAs are promising analogues to control RNAi activity by UV-light.
Collapse
Affiliation(s)
- Amarnath Bollu
- National Institute of Science Education and Research (NISER), SCS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India
| | - Md Khurshidul Hassan
- National Institute of Science Education and Research (NISER), SBS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India
| | - Manjusha Dixit
- National Institute of Science Education and Research (NISER), SBS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER), SCS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease is the leading cause of death globally, with the number of deaths rising every year. Much effort has gone into development of new treatment strategies. Many RNA species have important regulatory functions in disease initiation and progression, providing interesting new treatment options. This review focuses on different classes of RNA-based therapeutics and provides examples of current clinical and preclinical studies. Current challenges that prevent clinical translation and possibilities to overcome them will be discussed. RECENT FINDINGS Different RNA-based molecules have been developed, such as antisense oligos, microRNA mimics and small interfering RNAs. Modifications are used to prevent degradation and immune activation and improve affinity. Additionally, in order to improve delivery of the RNA molecules to the target tissues, viral or nonviral vectors can be used. SUMMARY RNA-based therapy has been shown to be a promising new treatment strategy for different disorders. However, several challenges, such as delivery problems and low efficacy remain. Future research will likely focus on effective delivery to target tissues in order to improve efficacy and avoid harmful side-effects.
Collapse
|
26
|
Habibian M, Harikrishna S, Fakhoury J, Barton M, Ageely EA, Cencic R, Fakih HH, Katolik A, Takahashi M, Rossi J, Pelletier J, Gagnon KT, Pradeepkumar PI, Damha MJ. Effect of 2'-5'/3'-5' phosphodiester linkage heterogeneity on RNA interference. Nucleic Acids Res 2020; 48:4643-4657. [PMID: 32282904 PMCID: PMC7229817 DOI: 10.1093/nar/gkaa222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
We report on the synthesis of siRNAs containing both 2′-5′- and 3′-5′-internucleotide linkages and their effects on siRNA structure, function, and interaction with RNAi proteins. Screening of these siRNAs against their corresponding mRNA targets showed that 2′-5′ linkages were well tolerated in the sense strand, but only at a few positions in the antisense strand. Extensive modification of the antisense strand minimally affected 5′-phosphorylation of the siRNA by kinases, however, it negatively affected siRNA loading into human AGO2. Modelling and molecular dynamics simulations were fully consistent with these findings. Furthermore, our studies indicated that the presence of a single 5′p-rN1-(2′-5′)-N2 unit in the antisense strand does not alter the ‘clover leaf’ bend and sugar puckers that are critical for anchoring the 5′-phosphate to Ago 2 MID domain. Importantly, 2′-5′-linkages had the added benefit of abrogating immune-stimulatory activity of siRNAs. Together, these results demonstrate that 2′-5′/3′-5′-modified siRNAs, when properly designed, can offer an efficient new class of siRNAs with diminished immune-stimulatory responses.
Collapse
Affiliation(s)
- Maryam Habibian
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - S Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Johans Fakhoury
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Maria Barton
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Eman A Ageely
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA
| | - Regina Cencic
- Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Hassan H Fakih
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Adam Katolik
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Mayumi Takahashi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
27
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
28
|
Glazier DA, Liao J, Roberts BL, Li X, Yang K, Stevens CM, Tang W. Chemical Synthesis and Biological Application of Modified Oligonucleotides. Bioconjug Chem 2020; 31:1213-1233. [PMID: 32227878 DOI: 10.1021/acs.bioconjchem.0c00060] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA plays a myriad of roles in the body including the coding, decoding, regulation, and expression of genes. RNA oligonucleotides have garnered significant interest as therapeutics via antisense oligonucleotides or small interfering RNA strategies for the treatment of diseases ranging from hyperlipidemia, HCV, and others. Additionally, the recently developed CRISPR-Cas9 mediated gene editing strategy also relies on Cas9-associated RNA strands. However, RNA presents numerous challenges as both a synthetic target and a potential therapeutic. RNA is inherently unstable, difficult to deliver into cells, and potentially immunogenic by itself or upon modification. Despite these challenges, with the help of chemically modified oligonucleotides, multiple RNA-based drugs have been approved by the FDA. The progress is made possible due to the nature of chemically modified oligonucleotides bearing advantages of nuclease stability, stronger binding affinity, and some other unique properties. This review will focus on the chemical synthesis of RNA and its modified versions. How chemical modifications of the ribose units and of the phosphatediester backbone address the inherent issues with using native RNA for biological applications will be discussed along the way.
Collapse
Affiliation(s)
- Daniel A Glazier
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junzhuo Liao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Brett L Roberts
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ka Yang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher M Stevens
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Lennox KA, Behlke MA. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. Methods Mol Biol 2020; 2115:23-55. [PMID: 32006393 DOI: 10.1007/978-1-0716-0290-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically modified oligonucleotides (ONs) are routinely used in the laboratory to assess gene function, and clinical advances are rapidly progressing as continual efforts are being made to optimize ON efficacy. Over the years, RNA interference (RNAi) has become one of the main tools used to inhibit RNA expression across a wide variety of species. Efforts have been made to improve the exogenous delivery of the double-stranded RNA components to the endogenous intracellular RNAi machinery to direct efficacious degradation of a user-defined RNA target. More recently, synthetic RNA ONs are being used to mimic the bacterial-derived CRISPR/Cas system to direct specific editing of the mammalian genome. Both of these techniques rely on the use of various chemical modifications to the RNA phosphate backbone or sugar in specific positions throughout the ONs to improve the desired biological outcome. Relevant chemical modifications also include conjugated targeting ligands to assist ON delivery to specific cell types. Chemical modifications are most beneficial for therapeutically relevant ONs, as they serve to enhance target binding, increase drug longevity, facilitate cell-specific targeting, improve internalization into productive intracellular compartments, and mitigate both sequence-specific as well as immune-related off-target effects (OTEs). The knowledge gained from years of optimizing RNAi reagents and characterizing the biochemical and biophysical properties of each chemical modification will hopefully accelerate the CRISPR/Cas technology into the clinic, as well as further expand the use of RNAi to treat currently undruggable diseases. This review discusses the most commonly employed chemical modifications in RNAi reagents and CRISPR/Cas guide RNAs and provides an overview of select publications that have demonstrated success in improving ON efficacy and/or mitigating undesired OTEs.
Collapse
Affiliation(s)
- Kim A Lennox
- Integrated DNA Technologies, Inc., Coralville, IA, USA.
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| |
Collapse
|
30
|
RNA Secondary Structure Motifs of the Influenza A Virus as Targets for siRNA-Mediated RNA Interference. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:627-642. [PMID: 31945726 PMCID: PMC6965531 DOI: 10.1016/j.omtn.2019.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
Abstract
The influenza A virus is a human pathogen that poses a serious public health threat due to rapid antigen changes and emergence of new, highly pathogenic strains with the potential to become easily transmitted in the human population. The viral genome is encoded by eight RNA segments, and all stages of the replication cycle are dependent on RNA. In this study, we designed small interfering RNA (siRNA) targeting influenza segment 5 nucleoprotein (NP) mRNA structural motifs that encode important functions. The new criterion for choosing the siRNA target was the prediction of accessible regions based on the secondary structure of segment 5 (+)RNA. This design led to siRNAs that significantly inhibit influenza virus type A replication in Madin-Darby canine kidney (MDCK) cells. Additionally, chemical modifications with the potential to improve siRNA properties were introduced and systematically validated in MDCK cells against the virus. A substantial and maximum inhibitory effect was achieved at concentrations as low as 8 nM. The inhibition of viral replication reached approximately 90% for the best siRNA variants. Additionally, selected siRNAs were compared with antisense oligonucleotides targeting the same regions; this revealed that effectiveness depends on both the target accessibility and oligonucleotide antiviral strategy. Our new approach of target-site preselection based on segment 5 (+)RNA secondary structure led to effective viral inhibition and a better understanding of the impact of RNA structural motifs on the influenza replication cycle.
Collapse
|
31
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
32
|
Koizumi M, Hirota Y, Nakayama M, Tamura M, Obuchi W, Kurimoto A, Tsuchida H, Maeda H. Design of 2'- O-methyl RNA and DNA double-stranded oligonucleotides: naturally-occurring nucleotide components with strong RNA interference gene expression inhibitory activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:292-309. [PMID: 31509065 DOI: 10.1080/15257770.2019.1663384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Double-stranded RNAs consisting of 21-nucleotide passenger and guide strands, known as small interfering RNAs (siRNAs), can be used for the identification of gene functions and the regulation of genes involved in disease for therapeutics. The difficulty with unmodified siRNAs lies in the chemical synthesis of RNA, its degradation by RNase, the immune response derived from natural RNA, and the off-target effects mediated by the passenger strand. In this study, asymmetrical 18 base-paired double-strand oligonucleotides comprised of alternately combined DNAs and 2'-O-methyl RNAs, denoted as MED-siRNA, were evaluated. These modified oligonucleotides showed high RNase resistance, a reduced immune response, a highly efficient cleavage of target mRNA with binding to Argonaute 2 (Ago2) via RNA interference, and the subsequent reduction of target protein expression. These findings suggest the possibility of alternatives to unmodified siRNAs with potential use in therapeutics.
Collapse
Affiliation(s)
- Makoto Koizumi
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Yasuhide Hirota
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Makiko Nakayama
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Masakazu Tamura
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Wataru Obuchi
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Akiko Kurimoto
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Hiroshi Tsuchida
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| | - Hiroaki Maeda
- R&D and Biologics Divisions, Daiichi Sankyo Co. Ltd, Shinagawa, Tokyo, Japan
| |
Collapse
|
33
|
Wang S, Allen N, Vickers TA, Revenko AS, Sun H, Liang XH, Crooke ST. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2019. [PMID: 29514240 PMCID: PMC5909429 DOI: 10.1093/nar/gky145] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Nickolas Allen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alexey S Revenko
- Department of Antisense Drug, Discovery, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
34
|
Shmushkovich T, Monopoli KR, Homsy D, Leyfer D, Betancur-Boissel M, Khvorova A, Wolfson AD. Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs. Nucleic Acids Res 2019; 46:10905-10916. [PMID: 30169779 PMCID: PMC6237813 DOI: 10.1093/nar/gky745] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Progress in oligonucleotide chemistry has produced a shift in the nature of siRNA used, from formulated, minimally modified siRNAs, to unformulated, heavily modified siRNA conjugates. The introduction of extensive chemical modifications is essential for conjugate-mediated delivery. Modifications have a significant impact on siRNA efficacy through interference with recognition and processing by RNAi enzymatic machinery, severely restricting the sequence space available for siRNA design. Many algorithms available publicly can successfully predict the activity of non-modified siRNAs, but the efficiency of the algorithms for designing heavily modified siRNAs has never been systematically evaluated experimentally. Here we screened 356 cholesterol-conjugated siRNAs with extensive modifications and developed a linear regression-based algorithm that effectively predicts siRNA activity using two independent datasets. We further demonstrate that predictive determinants for modified and non-modified siRNAs differ substantially. The algorithm developed from the non-modified siRNAs dataset has no predictive power for modified siRNAs and vice versa. In the context of heavily modified siRNAs, the introduction of chemical asymmetry fully eliminates the requirement for thermodynamic bias, the major determinant for non-modified siRNA efficacy. Finally, we demonstrate that in addition to the sequence of the target site, the accessibility of the neighboring 3′ region significantly contributes to siRNA efficacy.
Collapse
Affiliation(s)
| | | | - Diana Homsy
- Advirna, 60 Prescott Street, Worcester, MA 01605, USA
| | - Dmitriy Leyfer
- Advirna, 60 Prescott Street, Worcester, MA 01605, USA.,Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | | | - Anastasia Khvorova
- University of Massachusetts Medical School, 368 Plantation Street. Worcester, MA 01655, USA
| | | |
Collapse
|
35
|
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2019; 22:551-569. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) are an attractive new agent with potential as a therapeutic tool because of its ability to inhibit specific genes for many conditions, including viral infections and cancers. However, despite this potential, many challenges remain, including off-target effects, difficulties with delivery, immune responses, and toxicity. Traditional genetic vectors do not guarantee that siRNAs will silence genes in vivo. Rational design strategies, such as chemical modification, viral vectors, and non-viral vectors, including cationic liposomes, polymers, nanocarriers, and bioconjugated siRNAs, provide important opportunities to overcome these challenges. We summarize the results of research into vector delivery of siRNAs as a therapeutic agent from their design to clinical trials in ophthalmic diseases, cancers, respiratory diseases, and liver virus infections. Finally, we discuss the current state of siRNA delivery methods and the need for greater understanding of the requirements.
Collapse
|
36
|
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019; 10:444. [PMID: 31105570 PMCID: PMC6498891 DOI: 10.3389/fphar.2019.00444] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to recognize a homologous mRNA sequence in the cell and induce its degradation. The main problems in the development of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases in biological fluids. Various approaches have been proposed to solve the problem of siRNA delivery in vivo (e.g., viruses, cationic lipids, polymers, nanoparticles), but all have limitations for therapeutic use. One of the most promising approaches to solve the problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands, peptides, or polymers). Bioconjugates are "ideal nanoparticles" since they do not need a positive charge to form complexes, are less toxic, and are less effectively recognized by components of the immune system because of their small size. This review is focused on strategies and principles for constructing siRNA bioconjugates for in vivo use.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
37
|
Raja MAG, Katas H, Amjad MW. Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA. Asian J Pharm Sci 2019; 14:497-510. [PMID: 32104477 PMCID: PMC7032099 DOI: 10.1016/j.ajps.2018.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/07/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
Upon the discovery of RNA interference (RNAi), canonical small interfering RNA (siRNA) has been recognized to trigger sequence-specific gene silencing. Despite the benefits of siRNAs as potential new drugs, there are obstacles still to be overcome, including off-target effects and immune stimulation. More recently, Dicer substrate siRNA (DsiRNA) has been introduced as an alternative to siRNA. Similarly, it also is proving to be potent and target-specific, while rendering less immune stimulation. DsiRNA is 25–30 nucleotides in length, and is further cleaved and processed by the Dicer enzyme. As with siRNA, it is crucial to design and develop a stable, safe, and efficient system for the delivery of DsiRNA into the cytoplasm of targeted cells. Several polymeric nanoparticle systems have been well established to load DsiRNA for in vitro and in vivo delivery, thereby overcoming a major hurdle in the therapeutic uses of DsiRNA. The present review focuses on a comparison of siRNA and DsiRNA on the basis of their design, mechanism, in vitro and in vivo delivery, and therapeutics.
Collapse
Affiliation(s)
- Maria Abdul Ghafoor Raja
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 73211, Saudi Arabia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Muhammad Wahab Amjad
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 73211, Saudi Arabia
| |
Collapse
|
38
|
S-Acyl-2-Thioethyl: A Convenient Base-Labile Protecting Group for the Synthesis of siRNAs Containing 5′-Vinylphosphonate. Molecules 2019; 24:molecules24020225. [PMID: 30634486 PMCID: PMC6359142 DOI: 10.3390/molecules24020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
We recently reported that (E)-5′-vinylphosphonate (5′-VP) is a metabolically-stable phosphate mimic for siRNA and demonstrated that 5′-VP improves the potency of the fully modified siRNAs in vivo. Here, we report an alternative synthesis of 5′-VP modified guide strand using S-pivaloyl-2-thioethyl (tBu-SATE) protecting group. The tBu-SATE group is readily removed during the final cleavage of the oligonucleotide from the solid support and providing a more convenient route for the synthesis of siRNA guide strand carrying a 5′-vinylphosphonate.
Collapse
|
39
|
Stability and evaluation of siRNAs labeled at the sense strand with a 3′-azobenzene unit. Bioorg Med Chem Lett 2018; 28:3613-3616. [DOI: 10.1016/j.bmcl.2018.10.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022]
|
40
|
Roovers J, De Jonghe P, Weckhuysen S. The therapeutic potential of RNA regulation in neurological disorders. Expert Opin Ther Targets 2018; 22:1017-1028. [PMID: 30372655 DOI: 10.1080/14728222.2018.1542429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gene regulation is the term used to describe the mechanisms by which a cell increases or decreases the amount of a gene product (RNA or protein). In complex organs such as the brain, gene regulation is of the utmost importance; aberrations in the regulation of specific genes can lead to neurological disorders. Understanding these mechanisms can create new strategies for targeting these disorders and progress is being made. Two drugs that function at the RNA level (nusinersen and eteplirsen) have now been approved by the FDA for the treatment of Spinomuscular atrophy and Duchenne muscular dystrophy, respectively; several other compounds for neurological disease are currently being investigated in preclinical studies and clinical trials. Areas covered: We highlight how gene regulation at the level of RNA molecules can be used as a therapeutic strategy to treat neurological disorders. We provide examples of how such an approach is being studied or used and discuss the current hurdles. Expert opinion: Targeting gene expression at the RNA level is a promising strategy to treat genetic neurological disorders. Safe administration, long-term efficacy, and potential side effects, however, still need careful evaluation before RNA therapeutics can be applied on a larger scale.
Collapse
Affiliation(s)
- Jolien Roovers
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium
| | - Peter De Jonghe
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| | - Sarah Weckhuysen
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| |
Collapse
|
41
|
Syntheses of prodrug-type 2'-O-methyldithiomethyl oligonucleotides modified at natural four nucleoside residues and their conversions into natural 2'-hydroxy oligonucleotides under reducing condition. Bioorg Med Chem 2018; 26:5838-5844. [PMID: 30420326 DOI: 10.1016/j.bmc.2018.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
We previously reported that reducing-environment-responsive prodrug-type small interfering RNA (siRNA) bearing 2'-O-methyldithiomethyl (2'-O-MDTM) uridine exhibits efficient knockdown activity and nuclease resistance. In this report, we describe the preparation of 2'-O-MDTM oligonucleotides modified not only at uridine but also at adenosine, guanosine and cytidine residues by post-synthetic modification. Precursor oligonucleotides bearing 2'-O-(2,4,6-trimethoxybenzylthiomethyl) (2'-O-TMBTM) adenosine, guanosine, and cytidine were reacted with dimethyl(methylthio)sulfonium tetrafluoroborate to form 2'-O-MDTM oligonucleotides in the same manner as the oligonucleotide bearing 2'-O-TMBTM uridine. Furthermore, the oligonucleotides bearing 2'-O-MDTM adenosine, guanosine, and cytidine were efficiently converted into corresponding natural 2'-hydroxy oligonucleotides under the cytosol-mimetic reducing condition.
Collapse
|
42
|
Therapeutic Potential of OMe-PS-miR-29b1 for Treating Liver Fibrosis. Mol Ther 2018; 26:2798-2811. [PMID: 30287074 DOI: 10.1016/j.ymthe.2018.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts secretes excess amounts of extracellular matrix (ECM) proteins. miR-29b1 has the potential to treat liver fibrosis, because it targets several profibrotic genes. We previously demonstrated that miR-29b1 and the hedgehog (Hh) pathway inhibitor GDC-0449 could, together, inhibit the activation of HSCs and ECM production in common bile-duct-ligated (CBDL) mice. Herein, we determined the effect of chemical modifications of miR-29b1 on its stability, immunogenicity, and Argonaute-2 (Ago2) loading in vitro, after modifying its antisense strand with phosphorothioate (PS-miR-29b1), 2'-O-methyl-phosphorothioate (OMe-miR-29b1), locked nucleic acid (LNA-miR-29b1), and N,N'-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine (ZEN-miR-29b1). Chemical modifications significantly improved stability of miR-29b1 in 50% FBS. Among all the modified miRNAs tested, OMe-PS-miR-29b1 showed the highest stability with low immunogenicity, without the loss of efficacy in vitro. Therefore, OMe-PS-miR-29b1 was complexed with poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-tetraethylenepentamine (mPEG-b-PCC-g-DC-g-TEPA) cationic micelles, and anti-fibrotic efficacy was evaluated in CBDL mice. There was a significant improvement in liver histology and decrease in the levels of injury markers. Further, mRNA/protein levels of collagen, α-SMA, and TIMP-1 were significantly lower for the OMe-PS-miR-29b1-loaded micelles compared to miR-29b1-loaded micelles. In conclusion, micellar delivery of OMe-PS-miR-29b1 is a promising strategy to treat liver fibrosis.
Collapse
|
43
|
Kano T, Katsuragi Y, Maeda Y, Ueno Y. Synthesis and properties of 4′-C-aminoalkyl-2′-fluoro-modified RNA oligomers. Bioorg Med Chem 2018; 26:4574-4582. [DOI: 10.1016/j.bmc.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/16/2023]
|
44
|
Gymnotic delivery and gene silencing activity of reduction-responsive siRNAs bearing lipophilic disulfide-containing modifications at 2'-position. Bioorg Med Chem 2018; 26:4635-4643. [PMID: 30121212 DOI: 10.1016/j.bmc.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022]
Abstract
Modified oligoribonucleotides used as siRNAs bearing biolabile disulfide-containing groups at some 2'-positions were synthesized following a post-synthesis transformation of solid-supported 2'-O-acetylthiomethyl RNA, previously described. Thus, the reduction-responsive and lipophilic benzyldithiomethyl (BnSSM) modification was introduced at different locations into siRNAs targeting the Ewing sarcoma EWS-Fli1 protein. Thermal stability, serum stability and response to glutathione treatment of modified siRNAs were thoroughly investigated. Among 17 modified siRNAs, significant gene silencing activities were demonstrated for the 8 most stable siRNAs in serum (half-life > 1 h) when using a transfection reagent. Of special interest, two naked 2'-O-BnSSM siRNAs transfection exhibited a remarkable gene silencing activity after 24 h incubation. These inhibitions are consistent with an efficient gymnotic delivery demonstrated by the presence of the corresponding fluorescent siRNAs within cells.
Collapse
|
45
|
Hayashi J, Nishigaki M, Ochi Y, Wada SI, Wada F, Nakagawa O, Obika S, Harada-Shiba M, Urata H. Effective gene silencing activity of prodrug-type 2′-O-methyldithiomethyl siRNA compared with non-prodrug-type 2′-O-methyl siRNA. Bioorg Med Chem Lett 2018; 28:2171-2174. [DOI: 10.1016/j.bmcl.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
|
46
|
Gatta AK, Hariharapura RC, Udupa N, Reddy MS, Josyula VR. Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opin Drug Discov 2018; 13:709-725. [PMID: 29902093 DOI: 10.1080/17460441.2018.1480607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA interference has become a tool of choice in the development of drugs in various therapeutic areas of Post Transcriptional Gene Silencing (PTGS). The critical element in developing successful RNAi therapeutics lies in designing small interfering RNA (siRNA) using an efficient algorithm satisfying the designing criteria. Further, translation of siRNA from bench-side to bedside needs an efficient delivery system and/or chemical modification. Areas covered: This review emphasizes the importance of dicer, the criteria for efficient siRNA design, the currently available algorithms and strategies to overcome off-target effects, immune stimulatory effects and endosomal trap. Expert opinion: Specificity and stability are the primary concerns for siRNA therapeutics. The design criteria and algorithms should be chosen rationally to have a siRNA sequence that binds to the corresponding mRNA as it happens in the Watson and Crick base pairing. However, it must evade a few more hurdles (Endocytosis, Serum stability etc.) to be functional in the cytosol.
Collapse
Affiliation(s)
- Aditya Kiran Gatta
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Raghu Chandrashekhar Hariharapura
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Nayanabhirama Udupa
- b Research Directorate of Health Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Meka Sreenivasa Reddy
- c Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| |
Collapse
|
47
|
Abstract
RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-associated pathologies. However, unmodified nucleic acids are highly instable in biological systems, and their weak interaction with plasma proteins confers an unfavorable pharmacokinetics. In this review, we first provide an overview of the most efficient chemical strategies that, over the past 30 years, have been used to significantly improve the therapeutic potential of oligonucleotides. Oligonucleotides targeting and delivery technologies are then presented, including covalent conjugates between oligonucleotides and targeting ligand, and noncovalent association with lipid or polymer nanoparticles. Finally, we specifically focus on the endosomal escape step, which represents a major stumbling block for the effective use of oligonucleotides as therapeutic agents. The need for approaches to quantitatively measure endosomal escape and cytosolic arrival of biomolecules is discussed in the context of the development of efficient oligonucleotide targeting and delivery vectors.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Marco Lucchino
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| |
Collapse
|
48
|
Dellafiore M, Aviñó A, Alagia A, Montserrat JM, Iribarren AM, Eritja R. siRNA Modified with 2′-Deoxy-2′-C
-methylpyrimidine Nucleosides. Chembiochem 2018; 19:1409-1413. [DOI: 10.1002/cbic.201800077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 01/23/2023]
Affiliation(s)
- María Dellafiore
- INGEBI (CONICET); Vuelta de Obligado 2490 -1428 Buenos Aires Argentina
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC); Spanish Council for Scientific Research (CSIC); Jordi Girona 18-26 08034 Barcelona Spain
- NetworkingCenter on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Av. Monforte de Lemos 3-5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Adele Alagia
- Institute for Advanced Chemistry of Catalonia (IQAC); Spanish Council for Scientific Research (CSIC); Jordi Girona 18-26 08034 Barcelona Spain
- NetworkingCenter on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Av. Monforte de Lemos 3-5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Javier M. Montserrat
- Instituto de Ciencias; Universidad Nacional de General Sarmiento; J. M. Gutiérrez 1150 Los Polvorines Prov. Buenos Aires B1613GSX Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Godoy Cruz 2290 Buenos Aires C1425FQB Argentina
| | - Adolfo M. Iribarren
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Godoy Cruz 2290 Buenos Aires C1425FQB Argentina
- Laboratorio de Biotransformaciones; Universidad Nacional de Quilmes; Roque Saenz Peña352 1876 Bernal Prov Buenos Aires Argentina
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC); Spanish Council for Scientific Research (CSIC); Jordi Girona 18-26 08034 Barcelona Spain
- NetworkingCenter on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Av. Monforte de Lemos 3-5. Pabellón 11. Planta 0 Madrid 28029 Spain
| |
Collapse
|
49
|
Deshpande S, Singh N. Probing the nanoparticle-AGO2 interaction for enhanced gene knockdown. SOFT MATTER 2018; 14:4169-4177. [PMID: 29687822 DOI: 10.1039/c8sm00534f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNAi is emerging as a promising technology for treatment of various diseases due to its ability to silence specific target genes. To date, a number of nanoparticle based formulations have been reported for the delivery of small interfering RNA (siRNA), with continuous modifications in the nanoparticle design for enhancing their efficiency. While majority of the design aspects are focused on avoiding or overcoming endosomal entrapment, limited studies are available that address the role of interaction of nanoparticles with the RNA induced silencing complex (RISC) machinery, which is a crucial aspect deciding the outcome. Here, we systematically probed the effect of steric hindrance of nanoparticles on RISC interaction, by modulating two parameters, nanoparticle size and hardness. An assay was developed for quantifying the extent of RISC interaction of different nanoparticles in vitro, which was then correlated with their gene knockdown efficiency. The results suggest that the soft and small nanoparticles were most efficacious in knocking down polo-like-kinase 1 (PLK1) siRNA, a gene overexpressed in a variety of cancer types.
Collapse
Affiliation(s)
- Sonal Deshpande
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi-110016, India. sneetu.iitd.ac.in
| | | |
Collapse
|
50
|
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705328. [PMID: 29736981 PMCID: PMC6261797 DOI: 10.1002/adma.201705328] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Indexed: 04/14/2023]
Abstract
Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katy N Olafson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Padmini S Pillai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, School of Engineering and Applied Science, Philadelphia, PA, 19104, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|