1
|
Pandey S, Kamal A, Kushwaha AK, Singh HK, Maury SK, Singh S. Photo-triggered C-arylation of active-methylene compounds with diazonium salts via an electron donor-acceptor (EDA) complex. Chem Commun (Camb) 2024; 60:1136-1139. [PMID: 38189089 DOI: 10.1039/d3cc05356c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The elucidation of the C-arylation of active methylene compounds under visible light conditions without a photocatalyst presents an intellectual challenge. The photo-induced C-arylation of active methylene compounds via electron donor-acceptor (EDA) complexes shows a strategic path for the synthesis of pharmacologically relevant compounds. This expansive and efficacious methodology facilitates C-arylation under environmentally conscientious conditions, exhibiting exemplary compatibility with diverse functional groups and yielding numerous compounds. This environmentally sustainable transformation underscores the merits of the procedural simplicity and benign reaction conditions. Notably, all resultant products were judiciously derived from active methylene compounds and diazonium salts through the intermediacy of the EDA complex.
Collapse
Affiliation(s)
- Shikha Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| |
Collapse
|
2
|
Paul Konken C, Beutel B, Schinor B, Song J, Gerwien H, Korpos E, Burmeister M, Riemann B, Schäfers M, Sorokin L, Haufe G. Influence of N-arylsulfonamido d-valine N-substituents on the selectivity and potency of matrix metalloproteinase inhibitors. Bioorg Med Chem 2023; 90:117350. [PMID: 37270903 DOI: 10.1016/j.bmc.2023.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
To develop matrix metalloproteinase inhibitors (MMPIs) for both therapy and medicinal imaging by fluorescence-based techniques or positron-emission tomography (PET), a small library of eighteen N-substituted N-arylsulfonamido d-valines were synthesized and their potency to inhibit two gelatinases (MMP-2, and MMP-9), two collagenases (MMP-8, and MMP-13) and macrophage elastase (MMP-12) was determined in a Structure-Activity-Relation study with ({4-[3-(5-methylthiophen-2-yl)-1,2,4-oxadiazol-5-yl]phenyl}sulfonyl)-d-valine (1) as a lead. All compounds were shown to be more potent MMP-2/-9 inhibitors (nanomolar range) compared to other tested MMPs. This is a remarkable result considering that a carboxylic acid group is the zinc binding moiety. The compound with a terminal fluoropropyltriazole group at the furan ring (P1' substituent) was only four times less potent in inhibiting MMP-2 activity than the lead compound 1, making this compound a promising probe for PET application (after using a prosthetic group approach to introduce fluorine-18). Compounds with a TEG spacer and a terminal azide or even a fluorescein moiety at the sulfonylamide N atom (P2' substituent) were almost as active as the lead structure 1, making the latter derivative a suitable fluorescence imaging tool.
Collapse
Affiliation(s)
- Christian Paul Konken
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Bernd Beutel
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Benjamin Schinor
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Jian Song
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Hanna Gerwien
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Eva Korpos
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Miriam Burmeister
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Michael Schäfers
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lydia Sorokin
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
3
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
5
|
Lei Z, Jian M, Li X, Wei J, Meng X, Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: state of the art and recent advances. J Mater Chem B 2021; 8:3261-3291. [PMID: 31750853 DOI: 10.1039/c9tb02189b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are closely associated with various physiological and pathological processes, and have been regarded as potential biomarkers for severe diseases including cancer. Accurate determination of MMPs would advance our understanding of their roles in disease progression, and is of great significance for disease diagnosis, treatment and prognosis. In this review, we present a comprehensive overview of the developed bioassays/biosensors for detection of MMPs, and highlight the recent advancement in nanomaterial-based immunoassays for MMP abundance measurements and nanomaterial-based biosensors for MMP activity determination. Enzyme-linked immunosorbent assay (ELISA)-based immunoassays provide information about total levels of MMPs with high specificity and sensitivity, while target-based biosensors measure the amounts of active MMPs, and allow imaging of MMP activities in vivo. For multiplex and high-throughput analysis of MMPs, microfluidics and microarray-based assays are described. Additionally, we put forward the existing challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | | | | | | | | | | |
Collapse
|
6
|
Jones MA, MacCuaig WM, Frickenstein AN, Camalan S, Gurcan MN, Holter-Chakrabarty J, Morris KT, McNally MW, Booth KK, Carter S, Grizzle WE, McNally LR. Molecular Imaging of Inflammatory Disease. Biomedicines 2021; 9:152. [PMID: 33557374 PMCID: PMC7914540 DOI: 10.3390/biomedicines9020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases include a wide variety of highly prevalent conditions with high mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders. Many diseases that are not considered inflammatory per se are associated with varying levels of inflammation. Imaging of the immune system and inflammatory response is of interest as it can give insight into disease progression and severity. Clinical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) are traditionally limited to the visualization of anatomical information; then, the presence or absence of an inflammatory state must be inferred from the structural abnormalities. Improvement in available contrast agents has made it possible to obtain functional information as well as anatomical. In vivo imaging of inflammation ultimately facilitates an improved accuracy of diagnostics and monitoring of patients to allow for better patient care. Highly specific molecular imaging of inflammatory biomarkers allows for earlier diagnosis to prevent irreversible damage. Advancements in imaging instruments, targeted tracers, and contrast agents represent a rapidly growing area of preclinical research with the hopes of quick translation to the clinic.
Collapse
Affiliation(s)
- Meredith A. Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Seda Camalan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Jennifer Holter-Chakrabarty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Katherine T. Morris
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Kristina K. Booth
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Steven Carter
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
van der Krogt JMA, van Binsbergen WH, van der Laken CJ, Tas SW. Novel positron emission tomography tracers for imaging of rheumatoid arthritis. Autoimmun Rev 2021; 20:102764. [PMID: 33476822 DOI: 10.1016/j.autrev.2021.102764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Positron emission tomography (PET) is a nuclear imaging modality that relies on visualization of molecular targets in tissues, which is nowadays combined with a structural imaging modality such as computed tomography (CT) or Magnetic Resonance Imaging (MRI) and referred to as hybrid PET imaging. This technique allows to image specific immunological targets in rheumatoid arthritis (RA). Moreover, quantification of the PET signal enables highly sensitive monitoring of therapeutic effects on the molecular target. PET may also aid in stratification of the immuno-phenotype at baseline in order to develop personalized therapy. In this systematic review we will provide an overview of novel PET tracers, investigated in the context of RA, either pre-clinically, or clinically, that specifically visualize immune cells or stromal cells, as well as other factors and processes that contribute to pathology. The potential of these tracers in RA diagnosis, disease monitoring, and prediction of treatment outcome will be discussed. In addition, novel PET tracers established within the field of oncology that may be of use in RA will also be reviewed in order to expand the future opportunities of PET imaging in RA.
Collapse
Affiliation(s)
- Jeffrey M A van der Krogt
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter H van Binsbergen
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Conny J van der Laken
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Prasher P, Sharma M, Singh SP, Rawat DS. Barbiturate derivatives for managing multifaceted oncogenic pathways: A mini review. Drug Dev Res 2020; 82:364-373. [PMID: 33210368 DOI: 10.1002/ddr.21761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Abstract
Development and progression of metastasis comprises synchronized erroneous expressions of several composite pathways, which are difficult to manage simultaneously with the representative anticancer molecules. The emergence of the drug resistance and the complex interplay between these pathways further potentiates cancer related complexities. Barbiturates and their derivatives present a commendable anticancer profile by attenuating the cancer manifesting metabolic and enzymatic pathways including, but not limited to matrix metalloproteinases, xanthine oxidase, amino peptidases, histone deacetylases, and Ras/mitogen-activated protein kinase. The derivatization and conjugation of barbiturates with pharmacophores delivers a suitable hybrid profile in containing the anomalous expression of these pathways. The present report presents a succinct collation of the barbiturates and their derivatives in managing the various cancer causing pathways.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Samarth P Singh
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Devendra S Rawat
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| |
Collapse
|
9
|
Lin D, Wallace M, Allentoff AJ, Donnelly DJ, Gomes E, Voronin K, Gong S, Huang RYC, Kim H, Caceres-Cortes J, Bonacorsi S. Chemoselective Methionine Bioconjugation: Site-Selective Fluorine-18 Labeling of Proteins and Peptides. Bioconjug Chem 2020; 31:1908-1916. [PMID: 32687313 DOI: 10.1021/acs.bioconjchem.0c00256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Schwegmann K, Hohn M, Hermann S, Schäfers M, Riemann B, Haufe G, Wagner S, Breyholz HJ. Optimizing the Biodistribution of Radiofluorinated Barbiturate Tracers for Matrix Metalloproteinase Imaging by Introduction of Fluorescent Dyes as Pharmacokinetic Modulators. Bioconjug Chem 2020; 31:1117-1132. [DOI: 10.1021/acs.bioconjchem.9b00817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Michael Hohn
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| | - Hans-Jörg Breyholz
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| |
Collapse
|
11
|
Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules 2019; 24:molecules24162982. [PMID: 31426440 PMCID: PMC6719134 DOI: 10.3390/molecules24162982] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases which are secreted or anchored in the cell membrane and are capable of degrading the multiple components of the extracellular matrix (ECM). MMPs are frequently overexpressed or highly activated in numerous human diseases. Owing to the important role of MMPs in human diseases, many MMP inhibitors (MMPIs) have been developed as novel therapeutics, and some of them have entered clinical trials. However, so far, only one MMPI (doxycycline) has been approved by the FDA. Therefore, the evaluation of the activity of a specific subset of MMPs in human diseases using clinically relevant imaging techniques would be a powerful tool for the early diagnosis and assessment of the efficacy of therapy. In recent years, numerous MMPIs labeled imaging agents have emerged. This article begins by providing an overview of the MMP subfamily and its structure and function. The latest advances in the design of subtype selective MMPIs and their biological evaluation are then summarized. Subsequently, the potential use of MMPI-labeled diagnostic agents in clinical imaging techniques are discussed, including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging (OI). Finally, this article concludes with future perspectives and clinical utility.
Collapse
|
12
|
Hohn M, Chang M, Meisel JE, Frost E, Schwegmann K, Hermann S, Schäfers M, Riemann B, Haufe G, Breyholz H, Wagner S. Synthesis and Preliminary In Vitroand In VivoEvaluation of Thiirane‐Based Slow‐Binding MMP Inhibitors as Potential Radiotracers for PET Imaging. ChemistrySelect 2018. [DOI: 10.1002/slct.201803093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Michael Hohn
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
- Organic Chemistry InstituteUniversity of Münster Corrensstr. 40 D-48149 Münster Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, 354 McCourtney HallUniversity of Notre Dame Notre Dame IN 46556–5710 USA
| | - Jayda E. Meisel
- Chemical, BiologicalRadiological, Nuclearand Explosive DefenseBattelle Memorial Institute 505 King Avenue Columbus Ohio 43201 USA
| | - Emma Frost
- Department of Chemistry and Biochemistry, 354 McCourtney HallUniversity of Notre Dame Notre Dame IN 46556–5710 USA
| | - Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
| | - Michael Schäfers
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
- Cells in Motion (CiM) Cluster of ExcellenceUniversity of Münster D-48149 Münster Germany
| | - Burkhard Riemann
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| | - Günter Haufe
- Organic Chemistry InstituteUniversity of Münster Corrensstr. 40 D-48149 Münster Germany
- Cells in Motion (CiM) Cluster of ExcellenceUniversity of Münster D-48149 Münster Germany
| | - Hans‐Jörg Breyholz
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| | - Stefan Wagner
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| |
Collapse
|
13
|
Beutel B, Song J, Konken CP, Korpos E, Schinor B, Gerwien H, Vidyadharan R, Burmeister M, Li L, Haufe G, Sorokin L. New in Vivo Compatible Matrix Metalloproteinase (MMP)-2 and MMP-9 Inhibitors. Bioconjug Chem 2018; 29:3715-3725. [DOI: 10.1021/acs.bioconjchem.8b00618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bernd Beutel
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Christian Paul Konken
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Benjamin Schinor
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Hanna Gerwien
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Reshma Vidyadharan
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Miriam Burmeister
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| |
Collapse
|
14
|
Ye Y, Toczek J, Gona K, Kim HY, Han J, Razavian M, Golestani R, Zhang J, Wu TL, Ghosh M, Jung JJ, Sadeghi MM. Novel Arginine-containing Macrocyclic MMP Inhibitors: Synthesis, 99mTc-labeling, and Evaluation. Sci Rep 2018; 8:11647. [PMID: 30076321 PMCID: PMC6076275 DOI: 10.1038/s41598-018-29941-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in tissue remodeling. Accordingly, MMP inhibitors and related radiolabeled analogs are important tools for MMP-targeted imaging and therapy in a number of diseases. Herein, we report design, synthesis, and evaluation of a new Arginine-containing macrocyclic hydroxamate analog, RYM, its hydrazinonicotinamide conjugate, RYM1 and 99mTc-labeled analog 99mTc-RYM1 for molecular imaging. RYM exhibited potent inhibition against a panel of recombinant human (rh) MMPs in vitro. RYM1 was efficiently labeled with 99mTcO4- to give 99mTc-RYM1 in a high radiochemical yield and high radiochemical purity. RYM1 and its decayed labeling product displayed similar inhibition potencies against rhMMP-12. Furthermore, 99mTc-RYM1 exhibited specific binding with lung tissue from lung-specific interleukin-13 transgenic mice, in which MMP activity is increased in conjunction with tissue remodeling and inflammation. The results support further development of such new water-soluble Arginine-containing macrocyclic hydroxamate MMP inhibitors for targeted imaging and therapy.
Collapse
Affiliation(s)
- Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hye-Yeong Kim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Reza Golestani
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, CT, USA
| | - Mousumi Ghosh
- Yale West Campus Analytical Core, Yale University, West Haven, CT, USA
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
15
|
Butsch V, Börgel F, Galla F, Schwegmann K, Hermann S, Schäfers M, Riemann B, Wünsch B, Wagner S. Design, (Radio)Synthesis, and in Vitro and in Vivo Evaluation of Highly Selective and Potent Matrix Metalloproteinase 12 (MMP-12) Inhibitors as Radiotracers for Positron Emission Tomography. J Med Chem 2018; 61:4115-4134. [DOI: 10.1021/acs.jmedchem.8b00200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Viktoria Butsch
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Frederik Börgel
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Fabian Galla
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Katrin Schwegmann
- European Institute for Molecular Imaging, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 − CiM), University of Münster, 48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 − CiM), University of Münster, 48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| |
Collapse
|
16
|
Hong J, Chen YF, Shen JJ, Ding Y. Noninvasive Detection and Imaging of Matrix Metalloproteinases for Cancer Diagnosis. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
|
18
|
Breyholz HJ, Kopka K, Schäfers M, Wagner S. Syntheses of Radioiodinated Pyrimidine-2,4,6-Triones as Potential Agents for Non-Invasive Imaging of Matrix Metalloproteinases. Pharmaceuticals (Basel) 2017; 10:ph10020049. [PMID: 28556793 PMCID: PMC5490406 DOI: 10.3390/ph10020049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/24/2017] [Accepted: 05/28/2017] [Indexed: 11/16/2022] Open
Abstract
Dysregulated expression or activation of matrix metalloproteinases (MMPs) is observed in many kinds of live-threatening diseases. Therefore, MMP imaging for example with radiolabelled MMP inhibitors (MMPIs) potentially represents a valuable tool for clinical diagnostics using non-invasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. This work includes the organic chemical syntheses and in vitro evaluation of five iodinated barbiturate based MMPIs and the selection of derivative 9 for radiosyntheses of isotopologues [123I]9 potentially useful for MMP SPECT imaging and [124I]9 for MMP PET imaging.
Collapse
Affiliation(s)
- Hans-Jörg Breyholz
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149 Münster, Germany.
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.
| |
Collapse
|
19
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
20
|
Kalinin DV, Wagner S, Riemann B, Hermann S, Schmidt F, Becker-Pauly C, Rose-John S, Schäfers M, Holl R. Novel Potent Proline-Based Metalloproteinase Inhibitors: Design, (Radio)Synthesis, and First in Vivo Evaluation as Radiotracers for Positron Emission Tomography. J Med Chem 2016; 59:9541-9559. [PMID: 27696839 DOI: 10.1021/acs.jmedchem.6b01291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As dysregulation of matrix metalloproteinase (MMP) activity is associated with a wide range of pathophysiological processes like cancer, atherosclerosis, and arthritis, MMPs represent a valuable target for the development of new therapeutics and diagnostic tools. We herein present the chiral pool syntheses, in vitro evaluation, and SAR studies of a series of d- and l-proline- as well as of (4R)-4-hydroxy-l-proline-derived MMP inhibitors possessing general formula 1. Some of the synthesized hydroxamic acids were found to be potent MMP inhibitors with IC50 values in the nanomolar range, also demonstrating no off-target effects toward the other tested Zn2+-dependent metalloproteases (ADAMs and meprins). Utilizing the structure of the (2S,4S)-configured 4-hydroxyproline derivative 4, a selective picomolar inhibitor of MMP-13, the radiolabeled counterpart [18F]4 was successfully synthesized. The radiotracer's biodistribution in mice as well as its serum stability were evaluated for assessing its potential use as a MMP-13 targeting PET imaging agent.
Collapse
Affiliation(s)
- Dmitrii V Kalinin
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstraße 48, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster , Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster , Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Sven Hermann
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany.,European Institute for Molecular Imaging, University of Münster , Waldeyerstraße 15, 48149 Münster, Germany
| | - Frederike Schmidt
- Biochemical Institute, Christian-Albrechts-University Kiel , 24098 Kiel, Germany
| | | | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University Kiel , 24098 Kiel, Germany
| | - Michael Schäfers
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany.,European Institute for Molecular Imaging, University of Münster , Waldeyerstraße 15, 48149 Münster, Germany
| | - Ralph Holl
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstraße 48, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel , 38124 Braunschweig, Germany
| |
Collapse
|
21
|
Aryan R, Beyzaei H, Sadeghi F. Facile Synthesis of Some Novel Tetrasubstituted 2,4-Diaminopyrimidine Derivatives in Aqueous Glucose Solution as a Fully Green Medium and Promoter. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Reza Aryan
- Department of Chemistry, Faculty of Science; University of Zabol; P.O. Box 9861335856 Zabol Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science; University of Zabol; P.O. Box 9861335856 Zabol Iran
| | - Fatemeh Sadeghi
- Department of Chemistry, Faculty of Science; University of Zabol; P.O. Box 9861335856 Zabol Iran
| |
Collapse
|
22
|
Novel fluorine-18 labeled 5-(1-pyrrolidinylsulfonyl)-7-azaisatin derivatives as potential PET tracers for in vivo imaging of activated caspases in apoptosis. Bioorg Med Chem 2015. [PMID: 26210158 DOI: 10.1016/j.bmc.2015.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The programmed type I cell death, defined as apoptosis, is induced by complex regulated signaling pathways that trigger the intracellular activation of executioner caspases-3, -6 and -7. Once activated, these enzymes initiate cellular death through cleavage of proteins which are responsible for DNA repair, signaling and cell maintenance. Several radiofluorinated inhibitors of caspases-3 and -7, comprising a moderate lipophilic 5-(1-pyrrolidinylsulfonyl)isatin lead structure, are currently being investigated for imaging apoptosis in vivo by us and others. The purpose of this study was to increase the intrinsic hydrophilicity of the aforementioned lead structure to alter the pharmacokinetic behavior of the resulting caspase-3 and -7 targeted radiotracer. Therefore, fluorinated and non-fluorinated derivatives of 5-(1-pyrrolidinylsulfonyl)-7-azaisatin were synthesized and tested for their inhibitory properties against recombinant caspases-3 and -7. Fluorine-18 has been introduced by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of an alkyne precursor with 2-[(18)F]fluoroethylazide. Using dynamic micro-PET biodistribution studies in vivo the kinetic behavior of one promising PET-compatible 5-pyrrolidinylsulfonyl 7-azaisatin derivative has been compared to a previously described isatin based radiotracer.
Collapse
|
23
|
Best D, Burns DJ, Lam HW. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds. Angew Chem Int Ed Engl 2015; 54:7410-3. [PMID: 25959544 PMCID: PMC4479025 DOI: 10.1002/anie.201502324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/16/2022]
Abstract
A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor.
Collapse
Affiliation(s)
- Daniel Best
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - David J Burns
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - Hon Wai Lam
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK).
| |
Collapse
|
24
|
Best D, Burns DJ, Lam HW. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Müller A, Krämer SD, Meletta R, Beck K, Selivanova SV, Rancic Z, Kaufmann PA, Vos B, Meding J, Stellfeld T, Heinrich TK, Bauser M, Hütter J, Dinkelborg LM, Schibli R, Ametamey SM. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability. Nucl Med Biol 2014; 41:562-9. [PMID: 24853402 DOI: 10.1016/j.nucmedbio.2014.04.085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Atherosclerotic plaque rupture is the primary cause for myocardial infarction and stroke. During plaque progression macrophages and mast cells secrete matrix-degrading proteolytic enzymes, such as matrix metalloproteinases (MMPs). We studied levels of MMPs and tissue inhibitor of metalloproteinases-3 (TIMP-3) in relation to the characteristics of carotid plaques. We evaluated in vitro two radiolabeled probes targeting active MMPs towards non-invasive imaging of rupture-prone plaques. METHODS Human carotid plaques obtained from endarterectomy were classified into stable and vulnerable by visual and histological analysis. MMP-1, MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MMP-14, TIMP-3, and CD68 levels were investigated by quantitative polymerase chain reaction. Immunohistochemistry was used to localize MMP-2 and MMP-9 with respect to CD68-expressing macrophages. Western blotting was applied to detect their active forms. A fluorine-18-labeled MMP-2/MMP-9 inhibitor and a tritiated selective MMP-9 inhibitor were evaluated by in vitro autoradiography as potential lead structures for non-invasive imaging. RESULTS Gene expression levels of all MMPs and CD68 were elevated in plaques. MMP-1, MMP-9, MMP-12 and MMP-14 were significantly higher in vulnerable than stable plaques. TIMP-3 expression was highest in stable and low in vulnerable plaques. Immunohistochemistry revealed intensive staining of MMP-9 in vulnerable plaques. Western blotting confirmed presence of the active form in plaque lysates. In vitro autoradiography showed binding of both inhibitors to stable and vulnerable plaques. CONCLUSIONS MMPs differed in their expression patterns among plaque phenotypes, providing possible imaging targets. The two tested MMP-2/MMP-9 and MMP-9 inhibitors may be useful to detect atherosclerotic plaques, but not the vulnerable lesions selectively.
Collapse
Affiliation(s)
- Adrienne Müller
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Romana Meletta
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Katharina Beck
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Zoran Rancic
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Bernhard Vos
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | - Jörg Meding
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | - Timo Stellfeld
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | | | - Marcus Bauser
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | - Joachim Hütter
- Global Drug Discovery, Bayer Healthcare, Berlin, Germany
| | | | - Roger Schibli
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Müller A, Beck K, Rancic Z, Müller C, Fischer CR, Betzel T, Kaufmann PA, Schibli R, Kramer SD, Ametamey SM. Imaging Atherosclerotic Plaque Inflammation via Folate Receptor Targeting Using a Novel
18
F-Folate Radiotracer. Mol Imaging 2014. [DOI: 10.2310/7290.2013.00074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Adrienne Müller
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Katharina Beck
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Zoran Rancic
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Cristina Müller
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Cindy R. Fischer
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Thomas Betzel
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Philipp A. Kaufmann
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Roger Schibli
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Stefanie D. Kramer
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| | - Simon M. Ametamey
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Zurich, Switzerland; University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich, Switzerland; Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen-PSI, Switzerland; and University Hospital Zurich, Department of Radiology, Cardiac Imaging/Nuclear Medicine, Zurich, Switzerland
| |
Collapse
|
27
|
Altıparmak B, Lambrecht FY, Citak A. Design of radiolabeled gelatinase inhibitor peptide ((99m)Tc-CLP) and evaluation in rats. Appl Radiat Isot 2014; 89:130-3. [PMID: 24631744 DOI: 10.1016/j.apradiso.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 01/16/2014] [Accepted: 02/13/2014] [Indexed: 11/15/2022]
Abstract
In malignant tissues, MMP-9 (gelatinase B, 92 kDa type IV collagenase) and MMP-2 (gelatinase A, 72 kDa type IV collagenase) are the most prevalent matrix metalloproteinases related to the tumor aggressiveness and metastatic potential. Since elevated levels of gelatinases are associated with poor prognosis in cancer patients, these enzymes are potential targets for tumor imaging to possibly predict metastases. In the present study, a cyclic decapeptide, CLP (Cys-Leu-Pro-Gly-His-Trp-Gly-Phe-Pro-Ser-Cys), was selected as a basic peptide because of its selective inhibitory activity toward gelatinases. The peptide was labelled with (99m)Tc with a radiolabelling efficiency of 94.6±4.1%. After determining the appropriate conditions for radiolabelling, a biodistribution study of radiolabelled peptide in Albino Wistar rats was done. According to biodistribution data, (99m)Tc-CLP showed high uptake in the lung, liver, uterus and spleen. The amount of normal tissue MMPs enzymes is known to be lower than a tumor tissue. In this connection, our findings show that matrix metalloproteinases inhibitory peptide which is CLP is labeled with (99m)Tc with high yield and radiolabeled peptide might be might be utilized for the imaging of gelatinase activity due to overexpression of MMP-2 and MMP-9 in tumor tissue.
Collapse
Affiliation(s)
- Burcu Altıparmak
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, 35100 Izmir, Turkey
| | - Fatma Yurt Lambrecht
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, 35100 Izmir, Turkey.
| | - Asli Citak
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
28
|
Hu HY, Gehrig S, Reither G, Subramanian D, Mall MA, Plettenburg O, Schultz C. FRET-based and other fluorescent proteinase probes. Biotechnol J 2014; 9:266-81. [PMID: 24464820 DOI: 10.1002/biot.201300201] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/28/2022]
Abstract
The continuous detection of enzyme activities and their application in medical diagnostics is one of the challenges in the translational sciences. Proteinases represent one of the largest groups of enzymes in the human genome and many diseases are based on malfunctions of proteolytic activity. Fluorescent sensors may shed light on regular and irregular proteinase activity in vitro and in vivo and provide a deeper insight into the function of these enzymes and their role in pathophysiological processes. The focus of this review is on Förster resonance energy transfer (FRET)-based proteinase sensors and reporters because these probes are most likely to provide quantitative data. The medical relevance of proteinases are discussed using lung diseases as a prominent example. Probe design and probe targeting are described and fluorescent probe development for disease-relevant proteinases, including matrix-metalloproteinases, cathepsins, caspases, and other selected proteinases, is reviewed.
Collapse
Affiliation(s)
- Hai-Yu Hu
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany; Sanofi Deutschland GmbH, Diabetes Division, R&D, Industriepark Hoechst, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Pitkänen A, Ndode-Ekane XE, Łukasiuk K, Wilczynski GM, Dityatev A, Walker MC, Chabrol E, Dedeurwaerdere S, Vazquez N, Powell EM. Neural ECM and epilepsy. PROGRESS IN BRAIN RESEARCH 2014; 214:229-62. [DOI: 10.1016/b978-0-444-63486-3.00011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Garofalo A, Parat A, Bordeianu C, Ghobril C, Kueny-Stotz M, Walter A, Jouhannaud J, Begin-Colin S, Felder-Flesch D. Efficient synthesis of small-sized phosphonated dendrons: potential organic coatings of iron oxide nanoparticles. NEW J CHEM 2014. [DOI: 10.1039/c4nj00654b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Hugenberg V, Riemann B, Hermann S, Schober O, Schäfers M, Szardenings K, Lebedev A, Gangadharmath U, Kolb H, Walsh J, Zhang W, Kopka K, Wagner S. Inverse 1,2,3-Triazole-1-yl-ethyl Substituted Hydroxamates as Highly Potent Matrix Metalloproteinase Inhibitors: (Radio)synthesis, in Vitro and First in Vivo Evaluation. J Med Chem 2013; 56:6858-70. [DOI: 10.1021/jm4006753] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Verena Hugenberg
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular
Imaging, University of Münster,
Mendelstrasse 11, D-48149 Münster, Germany
| | - Otmar Schober
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular
Imaging, University of Münster,
Mendelstrasse 11, D-48149 Münster, Germany
- Interdisciplinary Centre of Clinical Research (IZKF), Albert-Schweitzer-Campus
1, Building D3, D-48149 Münster, Germany
| | - Katrin Szardenings
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Artem Lebedev
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Umesh Gangadharmath
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Hartmuth Kolb
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Joseph Walsh
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Wei Zhang
- Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City,
California 90230, United States
| | - Klaus Kopka
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus
1, Building A1, D-48149 Münster, Germany
| |
Collapse
|
32
|
Abstract
OBJECTIVE A review of the innovative role molecular imaging plays in musculoskeletal radiology is provided. Musculoskeletal molecular imaging is under development in four key areas: imaging the activity of osteoblasts and osteoclasts, imaging of molecular and cellular biomarkers of arthritic joint destruction, cellular imaging of osteomyelitis, and imaging generators of musculoskeletal pain. CONCLUSION Together, these applications suggest that next-generation musculoskeletal radiology will facilitate quantitative visualization of molecular and cellular biomarkers, an advancement that appeared futuristic just a decade ago.
Collapse
|
33
|
Selivanova SV, Stellfeld T, Heinrich TK, Müller A, Krämer SD, Schubiger PA, Schibli R, Ametamey SM, Vos B, Meding J, Bauser M, Hütter J, Dinkelborg LM. Design, Synthesis, and Initial Evaluation of a High Affinity Positron Emission Tomography Probe for Imaging Matrix Metalloproteinases 2 and 9. J Med Chem 2013; 56:4912-20. [DOI: 10.1021/jm400156p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Timo Stellfeld
- Global Drug Discovery, Bayer
Healthcare, 13353 Berlin, Germany
| | | | - Adrienne Müller
- Center for Radiopharmaceutical
Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Stefanie D. Krämer
- Center for Radiopharmaceutical
Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - P. August Schubiger
- Center for Radiopharmaceutical
Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical
Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Simon M. Ametamey
- Center for Radiopharmaceutical
Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Bernhard Vos
- Global Drug Discovery, Bayer
Healthcare, 13353 Berlin, Germany
| | - Jörg Meding
- Global Drug Discovery, Bayer
Healthcare, 13353 Berlin, Germany
| | - Marcus Bauser
- Global Drug Discovery, Bayer
Healthcare, 13353 Berlin, Germany
| | - Joachim Hütter
- Global Drug Discovery, Bayer
Healthcare, 13353 Berlin, Germany
| | | |
Collapse
|
34
|
Jia L, Cheng Z, Shi L, Li J, Wang C, Jiang D, Zhou W, Meng H, Qi Y, Cheng D, Zhang L. Fluorine-18 labeling by click chemistry: multiple probes in one pot. Appl Radiat Isot 2013; 75:64-70. [PMID: 23455406 DOI: 10.1016/j.apradiso.2013.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/31/2012] [Accepted: 01/29/2013] [Indexed: 12/18/2022]
Abstract
Click chemistry has been widely applied in drug development including radiopharmaceuticals and has shown great advantages. Here we reported a novel strategy for rapid preparation of multiple (18)F labeled PET probes in one pot using the 'Click Reaction' of Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of terminal alkynes and organic azides (CuAAC). Preliminary results showed its high efficiency and potential for speeding up the preclinical screening of PET probes.
Collapse
Affiliation(s)
- Lina Jia
- Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Calamai E, Dall'Angelo S, Koss D, Domarkas J, McCarthy TJ, Mingarelli M, Riedel G, Schweiger LF, Welch A, Platt B, Zanda M. 18F-barbiturates are PET tracers with diagnostic potential in Alzheimer's disease. Chem Commun (Camb) 2013; 49:792-4. [DOI: 10.1039/c2cc38443d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Hyafil F, Feldman L, Le Guludec D, Fayad ZA. Evaluating Efficacy of Pharmaceutical Interventions in Atherosclerosis: Role of Magnetic Resonance Imaging and Positron Emission Tomography. ACTA ACUST UNITED AC 2012; 79:689-704. [DOI: 10.1002/msj.21349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Design, synthesis and biological evaluation of 5-hydroxy, 5-substituted-pyrimidine-2,4,6-triones as potent inhibitors of gelatinases MMP-2 and MMP-9. Eur J Med Chem 2012; 58:368-76. [DOI: 10.1016/j.ejmech.2012.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 09/25/2012] [Indexed: 01/17/2023]
|
38
|
Haufe G, Suzuki S, Yasui H, Terada C, Kitayama T, Shiro M, Shibata N. CF Bond Activation of Unactivated Aliphatic Fluorides: Synthesis of Fluoromethyl-3,5-diaryl-2-oxazolidinones by Desymmetrization of 2-Aryl-1,3-difluoropropan-2-ols. Angew Chem Int Ed Engl 2012; 51:12275-9. [DOI: 10.1002/anie.201207304] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Indexed: 01/01/2023]
|
39
|
Haufe G, Suzuki S, Yasui H, Terada C, Kitayama T, Shiro M, Shibata N. CF Bond Activation of Unactivated Aliphatic Fluorides: Synthesis of Fluoromethyl-3,5-diaryl-2-oxazolidinones by Desymmetrization of 2-Aryl-1,3-difluoropropan-2-ols. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207304] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Abstract
Angiogenesis is an integral part of tumor growth and invasion. This has led to the emergence of several antiangiogenic therapies and stimulated efforts to accurately evaluate the extent of angiogenesis before and in response to anticancer treatment. The most commonly used approach has been the assessment of new vessel formation in histological samples. However, it is becoming apparent that this is insufficient for a full understanding of tumor physiology and for in vivo guidance of cancer management. Imaging has the potential to provide noninvasive and repeatable assessment of the angiogenic process. Imaging approaches use a variety of modalities and are aimed at either assessment of the functional integrity of tumor vasculature or assessment of its molecular status. This review summarizes the aims and methods of clinical tumor angiogenesis imaging, including present technologies and ones that will be developed within the next 5-10 years.
Collapse
Affiliation(s)
- Neel Patel
- Department of Radiology, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK.
| | | | | | | |
Collapse
|
41
|
Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat Rev Rheumatol 2012; 8:719-28. [DOI: 10.1038/nrrheum.2012.148] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Knapinska A, Fields GB. Chemical biology for understanding matrix metalloproteinase function. Chembiochem 2012; 13:2002-20. [PMID: 22933318 PMCID: PMC3951272 DOI: 10.1002/cbic.201200298] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Indexed: 12/20/2022]
Abstract
The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action.
Collapse
Affiliation(s)
| | - Gregg B. Fields
- Departments of Chemistry and Biology Torrey Pines Institute for Molecular Studies 11350 SW Village Parkway, Port St. Lucie, FL 34987 (USA)
| |
Collapse
|
43
|
Hugenberg V, Breyholz HJ, Riemann B, Hermann S, Schober O, Schäfers M, Gangadharmath U, Mocharla V, Kolb H, Walsh J, Zhang W, Kopka K, Wagner S. A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates: (radio)synthesis and in vitro and first in vivo evaluation. J Med Chem 2012; 55:4714-27. [PMID: 22540974 DOI: 10.1021/jm300199g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In vivo imaging of MMPs is of great (pre)clinical interest and can potentially be realized with modern three-dimensional and noninvasive in vivo molecular imaging techniques such as positron emission tomography (PET). Consequently, MMP inhibitors (MMPIs) radiolabeled with positron emitting nuclides (e.g., (18)F) represent a suitable tool for the visualization of activated MMPs with PET. On the basis of our previous work and results regarding radiolabeled and unlabeled derivatives of the nonselective MMPIs, we discovered a new class of fluorinated MMPIs with a triazole-substituted hydroxamate substructure. These novel MMPIs are characterized by an increased hydrophilicity compared with the lead structures and excellent MMP inhibition potencies for MMP-2, MMP-8, MMP-9, and MMP-13 (IC(50) = 0.006-107 nM). Therefore, one promising fluorinated triazole-substituted hydroxamate (30b) was selected and resynthesised as its (18)F-labeled version to yield the potential PET radioligand [(18)F]30b. The biodistribution behavior of this novel compound was investigated with small animal PET.
Collapse
Affiliation(s)
- Verena Hugenberg
- Department of Nuclear Medicine, University Hospital Münster , Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Claesener M, Schober O, Wagner S, Kopka K. Radiosynthesis of a ⁶⁸Ga labeled matrix metalloproteinase inhibitor as a potential probe for PET imaging. Appl Radiat Isot 2012; 70:1723-8. [PMID: 22750564 DOI: 10.1016/j.apradiso.2012.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
A matrix metalloproteinase inhibitor based on a barbiturate scaffold was conjugated with a cyclooctyne derivative of the (radio)metal chelator DOTA via strain induced azide alkyne cycloaddition. Subsequent radiolabeling with (68)Ga yielded the corresponding radiometal labeled target compound (68)Ga-4 with a yield of 87% (decay corrected). The target molecule was also synthesized by a second synthesis route, the reaction of a pre-labeled (68)Ga-cyclooctyne-DOTA derivative (68)Ga-1 with an azide bearing barbiturate 3. This approach offers a valuable alternative for providing the desired (68)Ga-radiolabeled target compound. But, in this case, the strain induced cycloaddition of the reported pre-labeled cyclooctyne-DOTA derivative (68)Ga-1 with azides was proven to be slow at room temperature and heating was necessary for acceptable reaction times.
Collapse
Affiliation(s)
- Michael Claesener
- University Hospital Münster, Department of Nuclear Medicine, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany.
| | | | | | | |
Collapse
|