1
|
Huang J, Qiao B, Yuan Y, Xie Y, Xia X, Li F, Wang L. PRMT3 and CARM1: Emerging Epigenetic Targets in Cancer. J Cell Mol Med 2025; 29:e70386. [PMID: 39964832 PMCID: PMC11834966 DOI: 10.1111/jcmm.70386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
The family of protein arginine methyltransferases (PRMTs) occupies an important position in biology, especially during the initiation and development of cancer. PRMT3 and CARM1(also known as PRMT4), being type I protein arginine methyltransferases, are key in controlling tumour progression by catalysing the mono-methylation and asymmetric di-methylation of both histone and non-histone substrates. This paper reviews the functions and potential therapeutic target value of PRMT3 and CARM1 in a variety of cancers. Studies have identified abnormal expressions of PRMT3 and CARM1 in several malignancies, closely linked to cancer progression, advancement, and resistance to treatment. Such as hepatocellular carcinoma, colorectal cancer, ovarian cancer, and endometrial cancer. These findings offer new strategies and directions for cancer treatment, especially in enhancing the effectiveness of conventional treatment methods.
Collapse
Affiliation(s)
- Jiezuo Huang
- College of Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Beining Qiao
- College of Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yixin Yuan
- Xiangya College of Public HealthCentral South UniversityChangshaChina
| | - Yuxuan Xie
- Hunan Normal University School of MedicineChangshaChina
| | - Xiaomeng Xia
- Department of Gynaecology and Obstetrics, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fenghe Li
- Department of Gynaecology and Obstetrics, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical ScienceCentral South UniversityChangshaChina
| |
Collapse
|
2
|
Zhou S, Zhang Q, Yang H, Zhu Y, Hu X, Wan G, Yu L. Targeting type I PRMTs as promising targets for the treatment of pulmonary disorders: Asthma, COPD, lung cancer, PF, and PH. Life Sci 2024; 342:122538. [PMID: 38428571 DOI: 10.1016/j.lfs.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Pulmonary disorders, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), pulmonary hypertension (PH), and lung cancer, seriously impair the quality of lives of patients. A deeper understanding of the occurrence and development of the above diseases may inspire new strategies to remedy the scarcity of treatments. Type I protein arginine methyltransferases (PRMTs) can affect processes of inflammation, airway remodeling, fibroblast proliferation, mitochondrial mass, and epithelial dysfunction through substrate methylation and non-enzymatic activity, thus affecting the occurrence and development of asthma, COPD, lung cancer, PF, and PH. As potential therapeutic targets, inhibitors of type I PRMTs are developed, moreover, representative compounds such as GSK3368715 and MS023 have also been used for early research. Here, we collated structures of type I PRMTs inhibitors and compared their activity. Finally, we highlighted the physiological and pathological associations of type I PRMTs with asthma, COPD, lung cancer, PF, and PH. The developing of type I PRMTs modulators will be beneficial for the treatment of these diseases.
Collapse
Affiliation(s)
- Shuyan Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Honglin Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guoquan Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Tong C, Chang X, Qu F, Bian J, Wang J, Li Z, Xu X. Overview of the development of protein arginine methyltransferase modulators: Achievements and future directions. Eur J Med Chem 2024; 267:116212. [PMID: 38359536 DOI: 10.1016/j.ejmech.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Protein methylation is a post-translational modification (PTM) that organisms undergo. This process is considered a part of epigenetics research. In recent years, there has been an increasing interest in protein methylation, particularly histone methylation, as research has advanced. Methylation of histones is a dynamic process that is subject to fine control by histone methyltransferases and demethylases. In addition, many non-histone proteins also undergo methylation, and these modifications collectively regulate physiological phenomena, including RNA transcription, translation, signal transduction, DNA damage response, and cell cycle. Protein arginine methylation is a crucial aspect of protein methylation, which plays a significant role in regulating the cell cycle and repairing DNA. It is also linked to various diseases. Therefore, protein arginine methyltransferases (PRMTs) that are involved in this process have gained considerable attention as a potential therapeutic target for treating diseases. Several PRMT inhibitors are in phase I/II clinical trials. This paper aims to introduce the structure, biochemical functions, and bioactivity assays of PRMTs. Additionally, we will review the structure-function of currently popular PRMT inhibitors. Through the analysis of various data on known PRMT inhibitors, we hope to provide valuable assistance for future drug design and development.
Collapse
Affiliation(s)
- Chao Tong
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| |
Collapse
|
4
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
5
|
Hsu SH, Hung WC. Protein arginine methyltransferase 3: A crucial regulator in metabolic reprogramming and gene expression in cancers. Cancer Lett 2023; 554:216008. [PMID: 36400311 DOI: 10.1016/j.canlet.2022.216008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Post-translational modification (PTM) of proteins increases proteome diversity, which is critical for maintaining cellular homeostasis. The importance of protein methylation in the regulation of diverse biological processes has been highlighted in the past decades. Methylation of the arginine residue on proteins is catalyzed by members of the protein arginine methyltransferase (PRMT) family. PRMTs play indispensable roles in various pathways that regulate cancer development, progression, and drug response. In this review, we discuss the role of PRMT3, a member of the PRMT family, in controlling oncogenic processes. Additionally, the effects of PRMT3 on the methylation of regulatory proteins involved in transcription, post-transcriptional control, ribosomal maturation, translation, biological synthesis, and metabolic signaling are summarized. Moreover, recent progresses in the development of PRMT3 inhibitors are introduced. Overall, this review highlights the importance of PRMT3 in tumorigenesis and discusses the underlying mechanisms by which PRMT3 modulates cellular metabolism and gene expression. These results also provide a molecular basis for therapeutic modalities by targeting PRMT3.
Collapse
Affiliation(s)
- Shih-Han Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 802, Taiwan.
| |
Collapse
|
6
|
Singh AP, Kumar R, Gupta D. Structural insights into the mechanism of human methyltransferase hPRMT4. J Biomol Struct Dyn 2022; 40:10821-10834. [PMID: 34308797 DOI: 10.1080/07391102.2021.1950567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Human PRMT4, also known as CARM1, is a type I arginine methyltransferase protein that catalyse the formation of asymmetrical dimethyl arginine product. Structural studies done to date on PRMT4 have shown that the N-terminal region, Rossmann fold and dimerization arm play an important role in PRMT4 activity. Elucidating the functions of these regions in catalysis remains to be explored. Studies have shown the existence of communication pathways in PRMT4, which need further elucidation. The molecular dynamics (MD) simulations performed in this study show differences in different monomeric and dimeric forms of hPRMT4, revealing the role of the N-terminal region, Rossmann fold and dimerization arm. The study shows the conformational changes that occur during dimerization and SAM binding. Our cross-correlation analysis showed a correlation between these regions. Further, we performed PSN and network analysis to establish the existence of communication networks and an allosteric pathway. This study shows the use of MD simulations and network analysis to explore the aspects of PRMT4 dimerization, SAM binding and demonstrates the existence of an allosteric network. These findings shed novel insights into the conformational changes associated with hPRMT4, the mechanism of its dimerization, SAM binding and clues for better inhibitor designs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amar Pratap Singh
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Sandoval JE, Ramabadran R, Stillson N, Sarah L, Fujimori DG, Goodell MA, Reich N. First-in-Class Allosteric Inhibitors of DNMT3A Disrupt Protein-Protein Interactions and Induce Acute Myeloid Leukemia Cell Differentiation. J Med Chem 2022; 65:10554-10566. [PMID: 35866897 DOI: 10.1021/acs.jmedchem.2c00725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context. Compound 2 induces differentiation of distinct myeloid leukemia cell lines including cells with mutated DNMT3A R882. To date, small molecules targeting DNMT3A are limited to competitive inhibitors of AdoMet or DNA and display extreme toxicity. Our work is the first to identify small molecules with a mechanism of inhibition involving the disruption of PPIs with DNMT3A. Ongoing optimization of compounds 1 and 2 provides a promising basis to induce myeloid differentiation and treatment of diseases that display aberrant PPIs with DNMT3A, such as acute myeloid leukemia.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510, United States
| | - Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nathaniel Stillson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Letitia Sarah
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
8
|
Price OM, Thakur A, Ortolano A, Towne A, Velez C, Acevedo O, Hevel JM. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). J Biol Chem 2021; 297:101336. [PMID: 34688662 PMCID: PMC8592882 DOI: 10.1016/j.jbc.2021.101336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation. PRMT1 dimer formation, which is required for methyltransferase activity, is mediated by interactions between a structure called the dimerization arm on one monomer and a surface of the Rossman Fold of the other monomer. Given the link between PRMT1 dysregulation and disease and the link between PRMT1 dimerization and activity, we searched the Catalogue of Somatic Mutations in Cancer (COSMIC) database to identify potential inactivating mutations occurring in the PRMT1 dimerization arm. We identified three mutations that correspond to W215L, Y220N, and M224V substitutions in human PRMT1V2 (isoform 1) (W197L, Y202N, M206V in rat PRMT1V1). Using a combination of site-directed mutagenesis, analytical ultracentrifugation, native PAGE, and activity assays, we found that these conservative substitutions surprisingly disrupt oligomer formation and substantially impair both S-adenosyl-L-methionine (AdoMet) binding and methyltransferase activity. Molecular dynamics simulations suggest that these substitutions introduce novel interactions within the dimerization arm that lock it in a conformation not conducive to dimer formation. These findings provide a clear, if putative, rationale for the contribution of these mutations to impaired arginine methylation in cells and corresponding health consequences.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Ariana Ortolano
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Arianna Towne
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA.
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
9
|
An update on allosteric modulators as a promising strategy targeting histone methyltransferase. Pharmacol Res 2021; 172:105865. [PMID: 34474102 DOI: 10.1016/j.phrs.2021.105865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Histone methylation is a vital post-translational modification process in epigenetic regulation. The perturbation of histone methylation accounts for many diseases, including malignant cancers. Although achieving significant advances over past decades, orthosteric inhibitors targeting histone methyltransferases still suffer from challenges on subtype selectivity and acquired drug-resistant mutations. As an alternative, new compounds targeting the evolutionarily less conserved allosteric sites, exemplified by HKMTs and PRMTs inhibitors, offer a promising strategy to address this quandary. Herein, we highlight the allosteric sites and mechanisms in histone methyltransferases along with representative allosteric modulators, expecting to facilitate the discovery of allosteric modulators in favor of epigenetic therapy.
Collapse
|
10
|
Jakobsson JE, Telu S, Lu S, Jana S, Pike VW. Broad Scope and High-Yield Access to Unsymmetrical Acyclic [ 11 C]Ureas for Biomedical Imaging from [ 11 C]Carbonyl Difluoride. Chemistry 2021; 27:10369-10376. [PMID: 33890705 PMCID: PMC10134011 DOI: 10.1002/chem.202100690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Effective methods are needed for labelling acyclic ureas with carbon-11 (t1/2 =20.4 min) as potential radiotracers for biomedical imaging with positron emission tomography (PET). Herein, we describe the rapid and high-yield syntheses of unsymmetrical acyclic [11 C]ureas under mild conditions (room temperature and within 7 min) using no-carrier-added [11 C]carbonyl difluoride with aliphatic and aryl amines. This methodology is compatible with diverse functionality (e. g., hydroxy, carboxyl, amino, amido, or pyridyl) in the substrate amines. The labelling process proceeds through putative [11 C]carbamoyl fluorides and for primary amines through isolable [11 C]isocyanate intermediates. Unsymmetrical [11 C]ureas are produced with negligible amounts of unwanted symmetrical [11 C]urea byproducts. Moreover, the overall labelling method tolerates trace water and the generally moderate to excellent yields show good reproducibility. [11 C]Carbonyl difluoride shows exceptional promise for application to the synthesis of acyclic [11 C]ureas as new radiotracers for biomedical imaging with PET.
Collapse
Affiliation(s)
- Jimmy E Jakobsson
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1003, USA
| |
Collapse
|
11
|
Iyamu ID, Al-Hamashi AA, Huang R. A Pan-Inhibitor for Protein Arginine Methyltransferase Family Enzymes. Biomolecules 2021; 11:854. [PMID: 34201091 PMCID: PMC8230315 DOI: 10.3390/biom11060854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) play important roles in transcription, splicing, DNA damage repair, RNA biology, and cellular metabolism. Thus, PRMTs have been attractive targets for various diseases. In this study, we reported the design and synthesis of a potent pan-inhibitor for PRMTs that tethers a thioadenosine and various substituted guanidino groups through a propyl linker. Compound II757 exhibits a half-maximal inhibition concentration (IC50) value of 5 to 555 nM for eight tested PRMTs, with the highest inhibition for PRMT4 (IC50 = 5 nM). The kinetic study demonstrated that II757 competitively binds at the SAM binding site of PRMT1. Notably, II757 is selective for PRMTs over a panel of other methyltransferases, which can serve as a general probe for PRMTs and a lead for further optimization to increase the selectivity for individual PRMT.
Collapse
Affiliation(s)
- Iredia D. Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
| | - Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad 10047, Iraq
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
| |
Collapse
|
12
|
Shen Y, Li F, Szewczyk MM, Halabelian L, Chau I, Eram MS, Dela Seña C, Park KS, Meng F, Chen H, Zeng H, Dong A, Wu H, Trush VV, McLeod D, Zepeda-Velázquez CA, Campbell RM, Mader MM, Watson BM, Schapira M, Arrowsmith CH, Al-Awar R, Barsyte-Lovejoy D, Kaniskan HÜ, Brown PJ, Vedadi M, Jin J. A First-in-Class, Highly Selective and Cell-Active Allosteric Inhibitor of Protein Arginine Methyltransferase 6. J Med Chem 2021; 64:3697-3706. [PMID: 33591753 DOI: 10.1021/acs.jmedchem.0c02160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.
Collapse
Affiliation(s)
- Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Carlo Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Viacheslav V Trush
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David McLeod
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | - Robert M Campbell
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46225, United States
| | - Mary M Mader
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46225, United States
| | - Brian M Watson
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46225, United States
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rima Al-Awar
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
13
|
Palte RL, Schneider SE, Altman MD, Hayes RP, Kawamura S, Lacey BM, Mansueto MS, Reutershan M, Siliphaivanh P, Sondey C, Xu H, Xu Z, Ye Y, Machacek MR. Allosteric Modulation of Protein Arginine Methyltransferase 5 (PRMT5). ACS Med Chem Lett 2020; 11:1688-1693. [PMID: 32944135 DOI: 10.1021/acsmedchemlett.9b00525] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) belongs to a family of enzymes that regulate the posttranslational modification of histones and other proteins via methylation of arginine. Methylation of histones is linked to an increase in transcription and regulates a manifold of functions such as signal transduction and transcriptional regulation. PRMT5 has been shown to be upregulated in the tumor environment of several cancer types, and the inhibition of PRMT5 activity was identified as a potential way to reduce tumor growth. Previously, four different modes of PRMT5 inhibition were known-competing (covalently or non-covalently) with the essential cofactor S-adenosyl methionine (SAM), blocking the substrate binding pocket, or blocking both simultaneously. Herein we describe an unprecedented conformation of PRMT5 in which the formation of an allosteric binding pocket abrogates the enzyme's canonical binding site and present the discovery of potent small molecule allosteric PRMT5 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Robert P. Hayes
- Computational and Structural Chemistry, West Point, Pennsylvania 19486, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shen Y, Li F, Szewczyk MM, Halabelian L, Park KS, Chau I, Dong A, Zeng H, Chen H, Meng F, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Discovery of a First-in-Class Protein Arginine Methyltransferase 6 (PRMT6) Covalent Inhibitor. J Med Chem 2020; 63:5477-5487. [PMID: 32367723 DOI: 10.1021/acs.jmedchem.0c00406] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein arginine methyltransferase 6 (PRMT6) plays important roles in several biological processes associated with multiple cancers. Well-characterized potent, selective, and cell-active PRMT6 inhibitors are invaluable tools for testing biological and therapeutic hypotheses. Although there are several known reversible PRMT6 inhibitors, covalent PRMT6 inhibitors have not been reported. Based on a cocrystal structure of PRMT6-MS023 (a type I PRMT inhibitor), we discovered the first potent and cell-active irreversible PRMT6 inhibitor, 4 (MS117). The covalent binding mode of compound 4 to PRMT6 was confirmed by mass spectrometry and kinetic studies and by a cocrystal structure. Compound 4 did not covalently modify other closely related PRMTs, potently inhibited PRMT6 in cells, and was selective for PRMT6 over other methyltransferases. We also developed two structurally similar control compounds, 5 (MS167) and 7 (MS168). We provide these valuable chemical tools to the scientific community for further studying PRMT6 physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
15
|
Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 2019; 76:2917-2932. [PMID: 31123777 PMCID: PMC6741777 DOI: 10.1007/s00018-019-03145-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.
Collapse
Affiliation(s)
| | - Y George Zheng
- College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
16
|
Hsu MC, Pan MR, Chu PY, Tsai YL, Tsai CH, Shan YS, Chen LT, Hung WC. Protein Arginine Methyltransferase 3 Enhances Chemoresistance in Pancreatic Cancer by Methylating hnRNPA1 to Increase ABCG2 Expression. Cancers (Basel) 2018; 11:cancers11010008. [PMID: 30577570 PMCID: PMC6356582 DOI: 10.3390/cancers11010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is poorly responsive to chemotherapy due to intrinsic or acquired resistance. Our previous study showed that epigenetic modifying enzymes including protein arginine methyltransferase 3 (PRMT3) are dysregulated in gemcitabine (GEM)-resistant pancreatic cancer cells. Here, we attempt to elucidate the role of PRMT3 in chemoresistance. Overexpression of PRMT3 led to increased resistance to GEM in pancreatic cancer cells, whereas reduction of PRMT3 restored GEM sensitivity in resistant cells. We identified a novel PRMT3 target, ATP-binding cassette subfamily G member 2 (ABCG2), which is known to play a critical role in drug resistance. PRMT3 overexpression upregulated ABCG2 expression by increasing its mRNA stability. Mass spectrometric analysis identified hnRNPA1 as a PRMT3 interacting protein, and methylation of hnRNPA1 at R31 by PRMT3 in vivo and in vitro. The expression of methylation-deficient hnRNPA1-R31K mutant reduced the RNA binding activity of hnRNPA1 and the expression of ABCG2 mRNA. Taken together, this provides the first evidence that PRMT3 methylates the RNA recognition motif (RRM) of hnRNPA1 and promotes the binding between hnRNPA1 and ABCG2 to enhance drug resistance. Inhibition of PRMT3 could be a novel strategy for the treatment of GEM-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City 500, Taiwan.
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Chia-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Insitute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Sakurai M, Kihara N, Watanabe N, Ikari Y, Takata T. Synthesis of α-Aminocarbonyl Compounds via Hetero Diels–Alder Reaction. CHEM LETT 2018. [DOI: 10.1246/cl.170970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masayoshi Sakurai
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Nobuhiro Kihara
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Nobuhiro Watanabe
- Department of Applied Chemistry, Faculty of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshihiro Ikari
- Department of Applied Chemistry, Faculty of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Toshikazu Takata
- Department of Polymer Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
Kaniskan HÜ, Eram MS, Zhao K, Szewczyk MM, Yang X, Schmidt K, Luo X, Xiao S, Dai M, He F, Zang I, Lin Y, Li F, Dobrovetsky E, Smil D, Min SJ, Lin-Jones J, Schapira M, Atadja P, Li E, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Liu F, Yu Z, Vedadi M, Jin J. Discovery of Potent and Selective Allosteric Inhibitors of Protein Arginine Methyltransferase 3 (PRMT3). J Med Chem 2018; 61:1204-1217. [PMID: 29244490 PMCID: PMC5808361 DOI: 10.1021/acs.jmedchem.7b01674] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is crucial for maturation of ribosomes and has been implicated in several diseases. We recently disclosed a highly potent, selective, and cell-active allosteric inhibitor of PRMT3, compound 4. Here, we report comprehensive structure-activity relationship studies that target the allosteric binding site of PRMT3. We conducted design, synthesis, and evaluation of novel compounds in biochemical, selectivity, and cellular assays that culminated in the discovery of 4 and other highly potent (IC50 values: ∼10-36 nM), selective, and cell-active allosteric inhibitors of PRMT3 (compounds 29, 30, 36, and 37). In addition, we generated compounds that are very close analogs of these potent inhibitors but displayed drastically reduced potency as negative controls (compounds 49-51). These inhibitors and negative controls are valuable chemical tools for the biomedical community to further investigate biological functions and disease associations of PRMT3.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Kehao Zhao
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Xiaobao Yang
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Keith Schmidt
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Xiao Luo
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Sean Xiao
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Miao Dai
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Feng He
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Irene Zang
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Ying Lin
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Elena Dobrovetsky
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Sun-Joon Min
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | | | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Peter Atadja
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - En Li
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre , 101 College Street, MaRS South Tower, Suite 707, Toronto, ON M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhengtian Yu
- Novartis Institutes for Biomedical Research (China), Zhangjiang Hi-Tech Park , Pudong New Area, Shanghai 201203, China
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
19
|
|
20
|
Zucconi BE, Cole PA. Allosteric regulation of epigenetic modifying enzymes. Curr Opin Chem Biol 2017; 39:109-115. [PMID: 28689145 DOI: 10.1016/j.cbpa.2017.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings.
Collapse
Affiliation(s)
- Beth E Zucconi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Terranova-Barberio M, Thomas S, Munster PN. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors. Immunotherapy 2017; 8:705-19. [PMID: 27197539 DOI: 10.2217/imt-2016-0014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade.
Collapse
Affiliation(s)
- Manuela Terranova-Barberio
- Department of Medicine, Division of Hematology & Oncology, University of California, Room A722, 1600 Divisadero St, Box 1770, San Francisco, CA 94115, USA
| | - Scott Thomas
- Department of Medicine, Division of Hematology & Oncology, University of California, Room A722, 1600 Divisadero St, Box 1770, San Francisco, CA 94115, USA
| | - Pamela N Munster
- Department of Medicine, Division of Hematology & Oncology, University of California, Room A722, 1600 Divisadero St, Box 1770, San Francisco, CA 94115, USA
| |
Collapse
|
22
|
Murn J, Shi Y. The winding path of protein methylation research: milestones and new frontiers. Nat Rev Mol Cell Biol 2017; 18:517-527. [PMID: 28512349 DOI: 10.1038/nrm.2017.35] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1959, while analysing the bacterial flagellar proteins, Ambler and Rees observed an unknown species of amino acid that they eventually identified as methylated lysine. Over half a century later, protein methylation is known to have a regulatory role in many essential cellular processes that range from gene transcription to signal transduction. However, the road to this now burgeoning research field was obstacle-ridden, not least because of the inconspicuous nature of the methyl mark itself. Here, we chronicle the milestone achievements and discuss the future of protein methylation research.
Collapse
Affiliation(s)
- Jernej Murn
- Department of Cell Biology, Harvard Medical School, and the Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Yang Shi
- Department of Cell Biology, Harvard Medical School, and the Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Johnstone S, Albert JS. Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective. Bioorg Med Chem Lett 2017; 27:2239-2258. [PMID: 28408223 DOI: 10.1016/j.bmcl.2017.03.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
New strategies to potentially improve drug safety and efficacy emerge with allosteric programs. Biased allosteric modulators can be designed with high subtype selectivity and defined receptor signaling endpoints, however, selecting the most meaningful parameters for optimization can be perplexing. Historically, "potency hunting" at the expense of physicochemical and pharmacokinetic optimization has led to numerous tool compounds with excellent pharmacological properties but no path to drug development. Conversely, extensive physicochemical and pharmacokinetic screening with only post hoc bias and allosteric characterization has led to inefficacious compounds or compounds with on-target toxicities. This field is rapidly evolving with new mechanistic understanding, changes in terminology, and novel opportunities. The intent of this digest is to summarize current understanding and debates within the field. We aim to discuss, from a medicinal chemistry perspective, the parameter choices available to drive SAR.
Collapse
Affiliation(s)
- Shawn Johnstone
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada.
| | - Jeffrey S Albert
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada; Department of Chemistry, AviSyn Pharma, 4275 Executive Square, Suite 200, La Jolla, CA 92037, United States.
| |
Collapse
|
24
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
25
|
Vedadi M, Blazer L, Eram MS, Barsyte-Lovejoy D, Arrowsmith CH, Hajian T. Targeting human SET1/MLL family of proteins. Protein Sci 2017; 26:662-676. [PMID: 28160335 PMCID: PMC5368065 DOI: 10.1002/pro.3129] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
The SET1 family of proteins, and in particular MLL1, are essential regulators of transcription and key mediators of normal development and disease. Here, we summarize the detailed characterization of the methyltransferase activity of SET1 complexes and the role of the key subunits, WDR5, RbBP5, ASH2L, and DPY30. We present new data on full kinetic characterization of human MLL1, MLL3, SET1A, and SET1B trimeric, tetrameric, and pentameric complexes to elaborate on substrate specificities and compare our findings with what has been reported before. We also review exciting recent work identifying potent inhibitors of oncogenic MLL1 function through disruption of protein–protein interactions within the MLL1 complex.
Collapse
Affiliation(s)
- Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8
| | - Levi Blazer
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| |
Collapse
|
26
|
Prezent MA, Daeva ED, Baranin SV, Zavarzin IV. A new synthesis of 2-(aminoalkyl)-1,2,4-triazolo[1,5- a ]pyrimidines. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
|
28
|
Shen Y, Szewczyk MM, Eram MS, Smil D, Kaniskan HÜ, de Freitas RF, Senisterra G, Li F, Schapira M, Brown PJ, Arrowsmith CH, Barsyte-Lovejoy D, Liu J, Vedadi M, Jin J. Discovery of a Potent, Selective, and Cell-Active Dual Inhibitor of Protein Arginine Methyltransferase 4 and Protein Arginine Methyltransferase 6. J Med Chem 2016; 59:9124-9139. [PMID: 27584694 DOI: 10.1021/acs.jmedchem.6b01033] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Well-characterized selective inhibitors of protein arginine methyltransferases (PRMTs) are invaluable chemical tools for testing biological and therapeutic hypotheses. Based on 4, a fragment-like inhibitor of type I PRMTs, we conducted structure-activity relationship (SAR) studies and explored three regions of this scaffold. The studies led to the discovery of a potent, selective, and cell-active dual inhibitor of PRMT4 and PRMT6, 17 (MS049). As compared to 4, 17 displayed much improved potency for PRMT4 and PRMT6 in both biochemical and cellular assays. It was selective for PRMT4 and PRMT6 over other PRMTs and a broad range of other epigenetic modifiers and nonepigenetic targets. We also developed 46 (MS049N), which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. Considering possible overlapping substrate specificity of PRMTs, 17 and 46 are valuable chemical tools for dissecting specific biological functions and dysregulation of PRMT4 and PRMT6 in health and disease.
Collapse
Affiliation(s)
- Yudao Shen
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jian Jin
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
29
|
Song X, Zhang L, Gao T, Ye T, Zhu Y, Lei Q, Feng Q, He B, Deng H, Yu L. Selective inhibition of EZH2 by ZLD10A blocks H3K27 methylation and kills mutant lymphoma cells proliferation. Biomed Pharmacother 2016; 81:288-294. [PMID: 27261606 DOI: 10.1016/j.biopha.2016.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
EZH2 (Enhancer of zeste homolog 2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which is involved in repressing gene expression by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation. EZH2 overexpression is implicated in tumorigenesis and has been a candidate oncogene in several tumor types. Recently, point mutations of EZH2 at Tyr641 and Ala677 were identified in diffuse large B cell lymphoma and follicular lymphoma, where they drive H3K27 hypertrimethylation and cancer progression. Here, we reported a novel, highly potent and selective small molecule inhibitor of EZH2, ZLD10A, which inhibited wild-type and mutant versions of EZH2 with nanomolar potency and had greater than 1000-fold selectivity against 10 other histone methyltransferases. Our results have shown that the compound suppressed global H3K27 methylation and cause the anti-proliferation effects in a concentration- and time-dependent manner in DLBCL cell lines. These results demonstrated that ZLD10A, as a novel EZH2 inhibitor, could be a potential promising agent for the treatment of EZH2 mutant lymphoma.
Collapse
Affiliation(s)
- Xuejiao Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Tiantao Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Bing He
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Hongxia Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Eram MS, Shen Y, Szewczyk M, Wu H, Senisterra G, Li F, Butler KV, Kaniskan HÜ, Speed BA, dela Seña C, Dong A, Zeng H, Schapira M, Brown PJ, Arrowsmith CH, Barsyte-Lovejoy D, Liu J, Vedadi M, Jin J. A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases. ACS Chem Biol 2016; 11:772-781. [PMID: 26598975 PMCID: PMC4798913 DOI: 10.1021/acschembio.5b00839] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and the pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective, and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical, and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, -3, -4, -6, and -8 but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease.
Collapse
Affiliation(s)
- Mohammad S. Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Yudao Shen
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Kyle V. Butler
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H. Ümit Kaniskan
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Brandon A. Speed
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Carlo dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Jing Liu
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jian Jin
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
31
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
32
|
Selective inhibition of EZH2 by ZLD1039 blocks H3K27 methylation and leads to potent anti-tumor activity in breast cancer. Sci Rep 2016; 6:20864. [PMID: 26868841 PMCID: PMC4751454 DOI: 10.1038/srep20864] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/08/2016] [Indexed: 02/05/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a candidate oncogenic driver due to its prevalent overexpression and aberrant repression of tumor suppressor genes in diverse cancers. Therefore, blocking EZH2 enzyme activity may present a valid therapeutic strategy for the treatment of cancers with EZH2 overexpression including breast cancers. Here, we described ZLD1039 a potent, highly selective, and orally bioavailable small molecule inhibitor of EZH2, which inhibited breast tumor growth and metastasis. ZLD1039 considerably inhibited EZH2 methyltransferase activity with nanomolar potency, decreased global histone-3 lysine-27 (H3K27) methylation, and reactivated silenced tumor suppressors connected to increased survival of patients with breast cancer. Comparable to conditional silencing of EZH2, its inhibition by ZLD1039 decreased cell proliferation, cell cycle arrest, and induced apoptosis. Comparably, treatment of xenograft-bearing mice with ZLD1039 led to tumor growth regression and metastasis inhibition. These data confirmed the dependency of breast cancer progression on EZH2 activity and the usefulness of ZLD1039 as a promising treatment for breast cancer.
Collapse
|
33
|
A new approach to the synthesis of 3-amino- and 3-benzoylamino-5-aminoalkyl-1,2,4-triazoles. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-0983-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
The new facile and straightforward method for the synthesis of 4 H -1,2,3-thiadiazolo[5,4- b ]indoles and determination of their antiproliferative activity. Eur J Med Chem 2016; 108:245-257. [DOI: 10.1016/j.ejmech.2015.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023]
|
35
|
Boriack-Sjodin PA, Swinger KK. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes. Biochemistry 2015; 55:1557-69. [PMID: 26652298 DOI: 10.1021/acs.biochem.5b01129] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.
Collapse
Affiliation(s)
- P Ann Boriack-Sjodin
- Epizyme, Inc. , 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Kerren K Swinger
- Epizyme, Inc. , 400 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Zhou R, Xie Y, Hu H, Hu G, Patel VS, Zhang J, Yu K, Huang Y, Jiang H, Liang Z, Zheng YG, Luo C. Molecular Mechanism underlying PRMT1 Dimerization for SAM Binding and Methylase Activity. J Chem Inf Model 2015; 55:2623-32. [PMID: 26562720 DOI: 10.1021/acs.jcim.5b00454] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine, which is important in a range of biological processes, including epigenetic regulation, signal transduction, and cancer progression. Although previous studies of PRMT1 mutants suggest that the dimerization arm and the N-terminal region of PRMT1 are important for activity, the contributions of these regions to the structural architecture of the protein and its catalytic methylation activity remain elusive. Molecular dynamics (MD) simulations performed in this study showed that both the dimerization arm and the N-terminal region undergo conformational changes upon dimerization. Because a correlation was found between the two regions despite their physical distance, an allosteric pathway mechanism was proposed based on a network topological analysis. The mutation of residues along the allosteric pathways markedly reduced the methylation activity of PRMT1, which may be attributable to the destruction of dimer formation and accordingly reduced S-adenosyl-L-methionine (SAM) binding. This study provides the first demonstration of the use of a combination of MD simulations, network topological analysis, and biochemical assays for the exploration of allosteric regulation upon PRMT1 dimerization. These findings illuminate the results of mechanistic studies of PRMT1, which have revealed that dimer formation facilitates SAM binding and catalytic methylation, and provided direction for further allosteric studies of the PRMT family.
Collapse
Affiliation(s)
- Ran Zhou
- Center for Systems Biology, Soochow University , Jiangsu 215006, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yiqian Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Hao Hu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Guang Hu
- Center for Systems Biology, Soochow University , Jiangsu 215006, China
| | - Viral Sanjay Patel
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 201203, China
| | - Kunqian Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University , Jiangsu 215006, China
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
37
|
Successful strategies in the discovery of small-molecule epigenetic modulators with anticancer potential. Future Med Chem 2015; 7:2243-61. [DOI: 10.4155/fmc.15.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As a class, epigenetic enzymes have been identified as clear targets for cancer therapeutics based on their broad hyperactivity in solid and hematological malignancies. The search for effective inhibitors of histone writers and of histone erasers has been a focus of drug discovery efforts both in academic and pharmaceutical laboratories and has led to the identification of some promising leads. This review focuses on the discovery strategies and preclinical evaluation studies of a subset of the more advanced compounds that target histone writers or histone erasers. The specificity and anticancer potential of these small molecules is discussed within the context of their development pipeline.
Collapse
|
38
|
Meng F, Cheng S, Ding H, Liu S, Liu Y, Zhu K, Chen S, Lu J, Xie Y, Li L, Liu R, Shi Z, Zhou Y, Liu YC, Zheng M, Jiang H, Lu W, Liu H, Luo C. Discovery and Optimization of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Pharmacophore- and Docking-Based Virtual Screening. J Med Chem 2015; 58:8166-81. [DOI: 10.1021/acs.jmedchem.5b01154] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fanwang Meng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sufang Cheng
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Ding
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shien Liu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Liu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kongkai Zhu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shijie Chen
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junyan Lu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiqian Xie
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linjuan Li
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Rongfeng Liu
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Zhe Shi
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yu Zhou
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Chih Liu
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Mingyue Zheng
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Wencong Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hong Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
39
|
Yang Y, Wang C, Li X, Chai Q, Fei Y, Xia R, Xu R, Yang L, Liu J. Chinese herbal medicine for Henoch-Schönlein purpura in children without renal damage: a systematic review of randomized controlled trials. Complement Ther Med 2015; 23:741-50. [PMID: 26365455 DOI: 10.1016/j.ctim.2015.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Henoch-Schönlein Purpura (HSP) is the most common necrotizing vasculitis affecting children. Traditional Chinese herbal medicine (CHM) was widely used. We aim to explore the evidence of effectiveness and safety of CHM for HSP in children without renal damage. METHODS Randomized controlled trials (RCTs) comparing CHM with conventional medications were searched from five databases. Eligible data were pooled using random-effects model using RevMan 5.2 Subgroup analysis for different co-interventions and sensitivity analysis for reducing heterogeneity were implemented. GRADE approach was adopted. RESULTS We included 15 trials with 1112HSP children (age 1-16 years old), disease duration one day to three months. The overall methodological quality of included trials is relatively low. Adjunctive oral CHM treatments reduced renal damage (6 trials, RR 0.47, 95%CI 0.31-0.72, I(2)=0%), and subsiding time (days) of purpura (5 trials, mean difference (MD) -3.60, 95%CI -4.21 to -2.99, I(2)=23%), joint pain (5 trials, MD -1.04, 95%CI -1.33 to -0.74, I(2)=1%) and abdomen pain (5 trials, MD -1.69, 95%CI -2.51 to -0.86, I(2)=74%). Subgroup and sensitivity analysis did not change the direction of results. No severe adverse events reported. CONCLUSIONS Orally taken adjunctive CHM treatments are effective for children suffering HSP in terms of reducing renal damage and subsiding time of purpura, and could possibly reduce subsiding pain of joint and abdomen. No reliable conclusion regarding safety is possible based on the safety data retrieved. Further rigorous trials are warranted.
Collapse
Affiliation(s)
- Ying Yang
- Chinese Medicine Department, Children's Hospital of Zhengzhou, PR China; Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, PR China
| | - Congcong Wang
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, PR China
| | - Xinxue Li
- Department of Academic Exchange, World Federation of Chinese Medicine Societies, PR China
| | - Qianyun Chai
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, PR China
| | - Yutong Fei
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, PR China.
| | - Ruyu Xia
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, PR China
| | - Rongqian Xu
- Pediatric Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, PR China
| | - Li Yang
- Anyang Hospital of Traditional Chinese Medicine, Henan Province, PR China
| | - Jianping Liu
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, PR China
| |
Collapse
|
40
|
A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 2015; 11:432-7. [PMID: 25915199 DOI: 10.1038/nchembio.1810] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/01/2015] [Indexed: 12/25/2022]
Abstract
Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.
Collapse
|
41
|
Kaniskan HÜ, Szewczyk MM, Yu Z, Eram MS, Yang X, Schmidt K, Luo X, Dai M, He F, Zang I, Lin Y, Kennedy S, Li F, Dobrovetsky E, Dong A, Smil D, Min SJ, Landon M, Lin-Jones J, Huang XP, Roth BL, Schapira M, Atadja P, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Zhao K, Jin J, Vedadi M. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew Chem Int Ed Engl 2015; 54:5166-70. [PMID: 25728001 PMCID: PMC4400258 DOI: 10.1002/anie.201412154] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Indexed: 01/03/2023]
Abstract
PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is essential for maturation of ribosomes, may have a role in lipogenesis, and is implicated in several diseases. A potent, selective, and cell-active PRMT3 inhibitor would be a valuable tool for further investigating PRMT3 biology. Here we report the discovery of the first PRMT3 chemical probe, SGC707, by structure-based optimization of the allosteric PRMT3 inhibitors we reported previously, and thorough characterization of this probe in biochemical, biophysical, and cellular assays. SGC707 is a potent PRMT3 inhibitor (IC50 =31±2 nM, KD =53±2 nM) with outstanding selectivity (selective against 31 other methyltransferases and more than 250 non-epigenetic targets). The mechanism of action studies and crystal structure of the PRMT3-SGC707 complex confirm the allosteric inhibition mode. Importantly, SGC707 engages PRMT3 and potently inhibits its methyltransferase activity in cells. It is also bioavailable and suitable for animal studies. This well-characterized chemical probe is an excellent tool to further study the role of PRMT3 in health and disease.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and System Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (USA)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Systematic discovery of molecular probes targeting multiple non-orthosteric and spatially distinct sites in the botulinum neurotoxin subtype A (BoNT/A). Mol Cell Probes 2015; 29:135-43. [PMID: 25745992 DOI: 10.1016/j.mcp.2015.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/29/2023]
Abstract
The development of molecular probes targeting proteins has traditionally relied on labeling compounds already known to bind to the protein of interest. These known ligands bind to orthosteric or allosteric sites in their target protein as a way to control their activity. Binding pockets other than known orthosteric or allosteric sites may exist that are large enough to accommodate a ligand without significantly disrupting protein activity. Such sites may provide opportunities to discriminate between subtypes or other closely related proteins, since they are under less evolutionary pressure to be conserved. The Protein Scanning with Virtual Ligand Screening (PSVLS) approach was previously used to identify a novel inhibitor and a fluorescent probe against the catalytic site of the botulinum neurotoxin subtype A (BoNT/A). PSVLS screens compound databases against multiple sites within a target protein, and the results for all the sites probed against BoNT/A, not only the catalytic site, are available online. Here, we analyze the PSVLS data for multiple sites in order to identify molecular probes with affinity for binding pockets other than the catalytic site of BoNT/A. BoNT/A is a large protein with a light (LC) and a heavy (HC) chain that can be assayed separately. We used scintillation proximity assay (SPA) to test experimentally 5 probe candidates predicted computationally to have affinity for different non-orthosteric binding regions within the HC and LC, and one compound predicted not to have affinity for either domain. The binding profiles obtained experimentally confirmed the targeting of multiple and spatially distinct pockets within BoNT/A. Moreover, inhibition assay results indicate that some of these probes do not significantly interfere with the catalytic activity of BoNT/A.
Collapse
|
43
|
Zhang M, Gong Y. Synthesis of 2,3,3a,4,5,6-Hexahydrobenzo[b]thiophene-3a-carbaldehydes via a Tandem Reaction of Cyclic β-Thiocyanatoenals with Electron-Deficient Alkenes Triggered by Fluoride. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Min Zhang
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 People's Republic of China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 People's Republic of China
| |
Collapse
|
44
|
Kaniskan HÜ, Szewczyk MM, Yu Z, Eram MS, Yang X, Schmidt K, Luo X, Dai M, He F, Zang I, Lin Y, Kennedy S, Li F, Dobrovetsky E, Dong A, Smil D, Min SJ, Landon M, Lin-Jones J, Huang XP, Roth BL, Schapira M, Atadja P, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Zhao K, Jin J, Vedadi M. A Potent, Selective and Cell-Active Allosteric Inhibitor of Protein Arginine Methyltransferase 3 (PRMT3). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
46
|
Schapira M, Ferreira de Freitas R. Structural biology and chemistry of protein arginine methyltransferases. MEDCHEMCOMM 2014; 5:1779-1788. [PMID: 26693001 PMCID: PMC4655611 DOI: 10.1039/c4md00269e] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
PRMT inhibitors can compete with cofactor, substrate, or bind at allosteric sites found in the active or inactive states.
Protein arginine methyltransferases (PRMTs), an emerging target class in drug discovery, can methylate histones and other substrates, and can be divided into three subgroups, based on the methylation pattern of the reaction product (monomethylation, symmetrical or asymmetrical dimethylation). Here, we review the growing body of structural information characterizing this protein family, including structures in complex with substrate-competitive and allosteric inhibitors. We outline structural differences between type I, II and III enzymes and propose a model underlying class-specificity. We analyze the structural plasticity and diversity of the substrate, cofactor and allosteric binding sites, and propose that the conformational dynamics of PRMTs can be exploited towards the discovery of allosteric inhibitors that would antagonize conformationally active states.
Collapse
Affiliation(s)
- Matthieu Schapira
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada . ; Tel: +1-416-978-3092 ; The Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - Renato Ferreira de Freitas
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada . ; Tel: +1-416-978-3092
| |
Collapse
|
47
|
Ma A, Yu W, Li F, Bleich RM, Herold JM, Butler KV, Norris JL, Korboukh V, Tripathy A, Janzen WP, Arrowsmith CH, Frye SV, Vedadi M, Brown PJ, Jin J. Discovery of a selective, substrate-competitive inhibitor of the lysine methyltransferase SETD8. J Med Chem 2014; 57:6822-33. [PMID: 25032507 PMCID: PMC4136711 DOI: 10.1021/jm500871s] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The lysine methyltransferase SETD8 is the only known methyltransferase that catalyzes monomethylation of histone H4 lysine 20 (H4K20). Monomethylation of H4K20 has been implicated in regulating diverse biological processes including the DNA damage response. In addition to H4K20, SETD8 monomethylates non-histone substrates including proliferating cell nuclear antigen (PCNA) and promotes carcinogenesis by deregulating PCNA expression. However, selective inhibitors of SETD8 are scarce. The only known selective inhibitor of SETD8 to date is nahuoic acid A, a marine natural product, which is competitive with the cofactor. Here, we report the discovery of the first substrate-competitive inhibitor of SETD8, UNC0379 (1). This small-molecule inhibitor is active in multiple biochemical assays. Its affinity to SETD8 was confirmed by ITC (isothermal titration calorimetry) and SPR (surface plasmon resonance) studies. Importantly, compound 1 is selective for SETD8 over 15 other methyltransferases. We also describe structure-activity relationships (SAR) of this series.
Collapse
Affiliation(s)
- Anqi Ma
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, ‡Department of Pharmacology, School of Medicine, §Lineberger Comprehensive Cancer Center, and ∥Department of Biochemistry and Biophysics, UNC Macromolecular Interactions Facility, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 2014; 143:275-94. [PMID: 24704322 DOI: 10.1016/j.pharmthera.2014.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023]
Abstract
Dynamic chromatin structure is modulated by post-translational modifications on histones, such as acetylation, phosphorylation and methylation. Research on histone methylation has become the most flourishing area of epigenetics in the past fourteen years, and a large amount of data has been accumulated regarding its biology and disease implications. Correspondingly, a lot of efforts have been made to develop small molecule compounds that can specifically modulate histone methyltransferases and methylation reader proteins, aiming for potential therapeutic drugs. Here, we summarize recent progress in chemical probe and drug discovery of histone methyltransferases and methylation reader proteins. For each target, we will review their biological/biochemical functions first, and then focus on their disease implications and drug discovery. We can also see that structure-based compound design and optimization plays a critical role in facilitating the development of highly potent and selective chemical probes and inhibitors for these targets.
Collapse
Affiliation(s)
- Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
49
|
Campbell RM, Tummino PJ. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest 2014; 124:64-9. [PMID: 24382391 DOI: 10.1172/jci71605] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past several years, there has been rapidly expanding evidence of epigenetic dysregulation in cancer, in which histone and DNA modification play a critical role in tumor growth and survival. These findings have gained the attention of the drug discovery and development community, and offer the potential for a second generation of cancer epigenetic agents for patients following the approved "first generation" of DNA methylation (e.g., Dacogen, Vidaza) and broad-spectrum HDAC inhibitors (e.g., Vorinostat, Romidepsin). This Review provides an analysis of prospects for discovery and development of novel cancer agents that target epigenetic proteins. We will examine key examples of epigenetic dysregulation in tumors as well as challenges to epigenetic drug discovery with emerging biology and novel classes of drug targets. We will also highlight recent successes in cancer epigenetics drug discovery and consider important factors for clinical success in this burgeoning area.
Collapse
|
50
|
Ma A, Yu W, Xiong Y, Butler KV, Brown PJ, Jin J. Structure-activity relationship studies of SETD8 inhibitors. MEDCHEMCOMM 2014; 5:1892-1898. [PMID: 25554733 DOI: 10.1039/c4md00317a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SETD8 (also known as SET8, PR-SET7, or KMT5A (lysine methyltransferase 5A)) is the only known lysine methyltransferase that catalyzes monomethylation of histone H4 lysine 20 (H4K20). In addition to H4K20, SETD8 monomethylates non-histone substrates such as the tumor suppressor p53 and proliferating cell nuclear antigen (PCNA). Because of its role in regulating diverse biological processes, SETD8 has been pursued as a potential therapeutic target. We recently reported the first substrate-competitive SETD8 inhibitor, UNC0379 (1), which is selective for SETD8 over 15 other methyltransferases. We characterized this inhibitor in a battery of biochemical and biophysical assays. Here we describe our comprehensive structure-activity relationship (SAR) studies of this chemical series. In addition to 2- and 4-substituents, we extensively explored 6- and 7-substituents of the quinazoline scaffold. These SAR studies led to the discovery of several new compounds, which displayed similar potencies as compound 1, and interesting SAR trends.
Collapse
Affiliation(s)
- Anqi Ma
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Wenyu Yu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Yan Xiong
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Kyle V Butler
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Jian Jin
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States ; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States ; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| |
Collapse
|