1
|
Breindl M, Spitzer D, Gerasimaitė R, Kairys V, Schubert T, Henfling R, Schwartz U, Lukinavičius G, Manelytė L. Biochemical and cellular insights into the Baz2B protein, a non-catalytic subunit of the chromatin remodeling complex. Nucleic Acids Res 2024; 52:337-354. [PMID: 38000389 PMCID: PMC10783490 DOI: 10.1093/nar/gkad1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Baz2B is a regulatory subunit of the ATP-dependent chromatin remodeling complexes BRF1 and BRF5, which control access to DNA during DNA-templated processes. Baz2B has been implicated in several diseases and also in unhealthy ageing, however limited information is available on the domains and cellular roles of Baz2B. To gain more insight into the Baz2B function, we biochemically characterized the TAM (Tip5/ARBP/MBD) domain with the auxiliary AT-hook motifs and the bromodomain (BRD). We observed alterations in histone code recognition in bromodomains carrying cancer-associated point mutations, suggesting their potential involvement in disease. Furthermore, the depletion of Baz2B in the Hap1 cell line resulted in altered cell morphology, reduced colony formation and perturbed transcriptional profiles. Despite that, super-resolution microscopy images revealed no changes in the overall chromatin structure in the absence of Baz2B. These findings provide insights into the biological function of Baz2B.
Collapse
Affiliation(s)
- Matthias Breindl
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| | - Dominika Spitzer
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| | - Rūta Gerasimaitė
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, DE-37077 Göttingen, Germany
| | - Visvaldas Kairys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | | - Ramona Henfling
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| | - Uwe Schwartz
- NGS Analysis Center, University of Regensburg, Regensburg DE-93053, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, DE-37077 Göttingen, Germany
| | - Laura Manelytė
- Biochemistry III, University of Regensburg, Regensburg DE-93053, Germany
| |
Collapse
|
2
|
Chen EV, Nicoludis JM, Powell BM, Li KS, Yatsunyk LA. Crystal structure of a three-tetrad, parallel, K +-stabilized human telomeric G-quadruplex at 1.35 Å resolution. Acta Crystallogr F Struct Biol Commun 2023; 79:144-150. [PMID: 37223975 PMCID: PMC10231262 DOI: 10.1107/s2053230x23003977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
The crystal structure of the G-rich human telomeric DNA Tel22 has been determined at 1.35 Å resolution in space group P6. Tel22 forms a non-canonical DNA structure called the G-quadruplex. The space group and unit-cell parameters are comparable to those in the crystal structures with PDB codes 6ip3 (1.40 Å resolution) and 1kf1 (2.15 Å resolution). The G-quadruplexes are highly similar in all of the structures. However, this structure of Tel22 displays clear density for polyethylene glycol and two potassium ions, which are located outside the ion channel in the G-quadruplex and play an important role in stabilizing the crystal contacts. In addition, 111 water molecules were identified (compared with 79 and 68 in PDB entries 6ip3 and 1kf1, respectively) that participate in intricate and extensive networks providing high stability to the G-quadruplex.
Collapse
Affiliation(s)
- E. V. Chen
- Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - J. M. Nicoludis
- Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - B. M. Powell
- Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - K. S. Li
- Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - L. A. Yatsunyk
- Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| |
Collapse
|
3
|
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354. [PMID: 36739915 DOI: 10.1016/j.pharmthera.2023.108354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) family member proteins (BRD2, BRD3, BRD4 and BRDT) play a pivotal role in interpreting the epigenetic information of histone Kac modification, thus controlling gene expression, remodeling chromatin structures and avoid replicative stress-induced DNA damages. Abnormal activation of BET proteins is tightly correlated to various human diseases, including cancer. Therefore, BET bromodomain inhibitors (BBIs) were considered as promising therapeutics to treat BET-related diseases, raising >70 clinical trials in the past decades. Despite preliminary effects achieved, drug resistance and adverse events represent two major challenges for current BBIs development. In this review, we will introduce the biological functions of BET proteins in both physiological and pathological conditions; and summarize the progress in current BBI drug development. Moreover, we will also discuss the major challenges in the front of BET inhibitor development and provide rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
4
|
Zhou Y, Overhulse JM, Dupper NJ, Guo Y, Kashemirov BA, Wei K, Govin J, Petosa C, McKenna CE. Toward more potent imidazopyridine inhibitors of Candida albicans Bdf1: Modeling the role of structural waters in selective ligand binding. J Comput Chem 2022; 43:2121-2130. [PMID: 36190786 PMCID: PMC9669269 DOI: 10.1002/jcc.26997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 01/12/2023]
Abstract
Novel agents to treat invasive fungal infections are urgently needed because the small number of established targets in pathogenic fungi makes the existing drug repertoire particularly vulnerable to the emergence of resistant strains. Recently, we reported that Candida albicans Bdf1, a bromodomain and extra-terminal domain (BET) bromodomain with paired acetyl-lysine (AcK) binding sites (BD1 and BD2) is essential for fungal cell growth and that an imidazopyridine (1) binds to BD2 with selectivity versus both BD1 and human BET bromodomains. Bromodomain binding pockets contain a conserved array of structural waters. Molecular dynamics simulations now reveal that one water molecule is less tightly bound to BD2 than to BD1, explaining the site selectivity of 1. This insight is useful in the performance of ligand docking studies to guide design of more effective Bdf1 inhibitors, as illustrated by the design of 10 new imidazopyridine BD2 ligands 1a-j, for which experimental binding and site selectivity data are presented.
Collapse
Affiliation(s)
- Yingsheng Zhou
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Justin M. Overhulse
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nathan J. Dupper
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yanchun Guo
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Boris A. Kashemirov
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kaiyao Wei
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS)Grenoble38000France
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB)Grenoble38000France
| | - Jérôme Govin
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB)Grenoble38000France
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS)Grenoble38000France
| | - Charles E. McKenna
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Elwakeel A. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Front Cell Dev Biol 2022; 10:879632. [PMID: 35493098 PMCID: PMC9047732 DOI: 10.3389/fcell.2022.879632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
p53 is a transcription factor that activates the expression of a set of genes that serve as a critical barrier to oncogenesis. Inactivation of p53 is the most common characteristic in sporadic human cancers. Mortalin is a differentially sub-cellularly localized member of the heat shock protein 70 family of chaperones that has essential mitochondrial and extra-mitochondrial functions. Elevated mortalin levels in multiple cancerous tissues and tumor-derived cell lines emphasized its key role in oncogenesis. One of mortalin’s major oncogenic roles is the inactivation of p53. Mortalin binds to p53 sequestering it in the cytoplasm. Hence, p53 cannot freely shuttle to the nucleus to perform its tumor suppressor functions as a transcription factor. This protein-protein interaction was reported to be cancer-specific, hence, a selective druggable target for a rationalistic cancer therapeutic strategy. In this review article, the chronological identification of mortalin-p53 interactions is summarized, the challenges and general strategies for targeting protein-protein interactions are briefly discussed, and information about compounds that have been reported to abrogate mortalin-p53 interaction is provided. Finally, the reasons why the disruption of this druggable interaction has not yet been applied clinically are discussed.
Collapse
|
6
|
Holdgate GA, Bardelle C, Lanne A, Read J, O'Donovan DH, Smith JM, Selmi N, Sheppard R. Drug discovery for epigenetics targets. Drug Discov Today 2021; 27:1088-1098. [PMID: 34728375 DOI: 10.1016/j.drudis.2021.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Dysregulation of the epigenome is associated with the onset and progression of several diseases, including cancer, autoimmune, cardiovascular, and neurological disorders. Members from the three families of epigenetic proteins (readers, writers, and erasers) have been shown to be druggable using small-molecule inhibitors. Increasing knowledge of the role of epigenetics in disease and the reversibility of these modifications explain why pharmacological intervention is an attractive strategy for tackling epigenetic-based disease. In this review, we provide an overview of epigenetics drug targets, focus on approaches used for initial hit identification, and describe the subsequent role of structure-guided chemistry optimisation of initial hits to clinical candidates. We also highlight current challenges and future potential for epigenetics-based therapies.
Collapse
Affiliation(s)
- Geoffrey A Holdgate
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK.
| | - Catherine Bardelle
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Alice Lanne
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Jon Read
- Structure and Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Nidhal Selmi
- iLAB, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert Sheppard
- Medicinal Chemistry, Cardiovascular, Renal, Metabolism R&D, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
7
|
Vaidergorn MM, da Silva Emery F, Ganesan A. From Hit Seeking to Magic Bullets: The Successful Union of Epigenetic and Fragment Based Drug Discovery (EPIDD + FBDD). J Med Chem 2021; 64:13980-14010. [PMID: 34591474 DOI: 10.1021/acs.jmedchem.1c00787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review progress in the application of fragment-based drug discovery (FBDD) to epigenetic drug discovery (EPIDD) targeted at epigenetic writer and eraser enzymes as well as reader domains over the last 15 years. The greatest successes to date are in prospecting for bromodomain binding ligands. From a diverse array of fragment hits, multiple potent and selective compounds ensued, including the oncology clinical candidates mivebresib, ABBV-744, pelabresib, and PLX51107.
Collapse
Affiliation(s)
- Miguel M Vaidergorn
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Flavio da Silva Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
8
|
Onishi-Seebacher M, Erikson G, Sawitzki Z, Ryan D, Greve G, Lübbert M, Jenuwein T. Repeat to gene expression ratios in leukemic blast cells can stratify risk prediction in acute myeloid leukemia. BMC Med Genomics 2021; 14:166. [PMID: 34174884 PMCID: PMC8234671 DOI: 10.1186/s12920-021-01003-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Repeat elements constitute a large proportion of the human genome and recent evidence indicates that repeat element expression has functional roles in both physiological and pathological states. Specifically for cancer, transcription of endogenous retrotransposons is often suppressed to attenuate an anti-tumor immune response, whereas aberrant expression of heterochromatin-derived satellite RNA has been identified as a tumor driver. These insights demonstrate separate functions for the dysregulation of distinct repeat subclasses in either the attenuation or progression of human solid tumors. For hematopoietic malignancies, such as Acute Myeloid Leukemia (AML), only very few studies on the expression/dysregulation of repeat elements were done. METHODS To study the expression of repeat elements in AML, we performed total-RNA sequencing of healthy CD34 + cells and of leukemic blast cells from primary AML patient material. We also developed an integrative bioinformatic approach that can quantify the expression of repeat transcripts from all repeat subclasses (SINE/ALU, LINE, ERV and satellites) in relation to the expression of gene and other non-repeat transcripts (i.e. R/G ratio). This novel approach can be used as an instructive signature for repeat element expression and has been extended to the analysis of poly(A)-RNA sequencing datasets from Blueprint and TCGA consortia that together comprise 120 AML patient samples. RESULTS We identified that repeat element expression is generally down-regulated during hematopoietic differentiation and that relative changes in repeat to gene expression can stratify risk prediction of AML patients and correlate with overall survival probabilities. A high R/G ratio identifies AML patient subgroups with a favorable prognosis, whereas a low R/G ratio is prevalent in AML patient subgroups with a poor prognosis. CONCLUSIONS We developed an integrative bioinformatic approach that defines a general model for the analysis of repeat element dysregulation in physiological and pathological development. We find that changes in repeat to gene expression (i.e. R/G ratios) correlate with hematopoietic differentiation and can sub-stratify AML patients into low-risk and high-risk subgroups. Thus, the definition of a R/G ratio can serve as a valuable biomarker for AML and could also provide insights into differential patient response to epigenetic drug treatment.
Collapse
Affiliation(s)
- M Onishi-Seebacher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Novartis Institute for Biomedical Research (NIBR), Basel, Switzerland
| | - G Erikson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Z Sawitzki
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB) and University of Freiburg, Freiburg, Germany
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - D Ryan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - G Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - T Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
9
|
D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. Chembiochem 2021; 22:2011-2031. [PMID: 33482040 PMCID: PMC8251876 DOI: 10.1002/cbic.202000787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitylation machinery regulates several fundamental biological processes from protein homeostasis to a wide variety of cellular signaling pathways. As a consequence, its dysregulation is linked to diseases including cancer, neurodegeneration, and autoimmunity. With this review, we aim to highlight the therapeutic potential of targeting E3 ligases, with a special focus on an emerging class of RING ligases, named tri-partite motif (TRIM) proteins, whose role as targets for drug development is currently gaining pharmaceutical attention. TRIM proteins exert their catalytic activity as scaffolds involved in many protein-protein interactions, whose multidomains and adapter-like nature make their druggability very challenging. Herein, we give an overview of the current understanding of this class of single polypeptide RING E3 ligases and discuss potential targeting options.
Collapse
Affiliation(s)
- Francesca D'Amico
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Rishov Mukhopadhyay
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| |
Collapse
|
10
|
Wang L, Wang Y, Yang Z, Xu S, Li H. Binding Selectivity of Inhibitors toward Bromodomains BAZ2A and BAZ2B Uncovered by Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations. ACS OMEGA 2021; 6:12036-12049. [PMID: 34056358 PMCID: PMC8154142 DOI: 10.1021/acsomega.1c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Two Bromodomain-Containing proteins BAZ2A and BAZ2B are responsible for remodeling chromatin and regulating noncoding RNAs. As for our current studies, integration of multiple short molecular dynamics simulations (MSMDSs) with molecular mechanics generalized Born surface area (MM-GBSA) method is adopted for insights into binding selectivity of three small molecules D8Q, D9T and UO1 to BAZ2A against BAZ2B. The calculations of MM-GBSA unveil that selectivity of inhibitors toward BAZ2A and BAZ2B highly depends on the enthalpy changes and the details uncover that D8Q has better selectivity toward BAZ2A than BAZ2B, D9T more favorably bind to BAZ2B than BAZ2A, and UO1 does not show obvious selectivity toward these two proteins. The analysis of interaction network between residues and inhibitors indicates that seven residues are mainly responsible for the selectivity of D8Q, six residues for D9T and four residues provide significant contributions to associations of UO1 with two proteins. Moreover the analysis of interaction network not only reveals warm spots of inhibitor bindings to BAZ2A and BAZ2B but also unveils that common residue pairs, including (W1816, W1887), (P1817, P1888), (F1818, F1889), (V1822, V1893), (N1823, N1894),(L1826, L1897), (V1827, V1898), (F1872, F1943), (N1873, N1944) and (V1879, I1950) belonging to (BAZ2A, BAZ2B), induce mainly binding differences of inhibitors to BAZ2A and BAZ2B. Hence, insights from our current studies offer useful dynamics information relating with conformational alterations and structure-affinity relationship at atomistic levels for novel therapeutic strategies toward BAZ2A and BAZ2B.
Collapse
Affiliation(s)
- Lifei Wang
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Yan Wang
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Zhiyong Yang
- Department
of Physics, Jiangxi Agricultural University, 1101 Zhimin Road, Economic and Technological
Development Zone, Nanchang, Jiangxi Province 330045, China
| | - Shuobo Xu
- School
of Information Science and Electrical Engineering, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Hongyun Li
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| |
Collapse
|
11
|
Misal Castro LC, Sultan I, Nishi K, Tsurugi H, Mashima K. Direct Synthesis of Indoles from Azoarenes and Ketones with Bis(neopentylglycolato)diboron Using 4,4′-Bipyridyl as an Organocatalyst. J Org Chem 2021; 86:3287-3299. [DOI: 10.1021/acs.joc.0c02661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luis C. Misal Castro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ibrahim Sultan
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kohei Nishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
12
|
Discovery of small molecules targeting the tandem tudor domain of the epigenetic factor UHRF1 using fragment-based ligand discovery. Sci Rep 2021; 11:1121. [PMID: 33441849 PMCID: PMC7806715 DOI: 10.1038/s41598-020-80588-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.
Collapse
|
13
|
Discovery of selective inhibitors for cyclic AMP response element-binding protein: a combined ligand and structure-based resources pipeline. Anticancer Drugs 2020; 30:363-373. [PMID: 30499778 DOI: 10.1097/cad.0000000000000727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bromodomains are epigenetic readers of acetyl-lysine involved in chromatin remodeling and transcriptional regulations. Over the past few years, extensive research has been carried out to discover small-molecule inhibitors against bromodomains to treat various diseases. Cyclic AMP response element-binding protein (CREBBP) bromodomain has emerged as a hot target for cancer therapy. This study aims at discovering new inhibitors against CREBBP bromodomain using ligand-based molecular docking. A library of 2168 lead-like compounds were docked into the Kac binding site of CREBBP bromodomain. On the basis of the energy score and interaction analysis, six compounds were selected. In order to validate the stability of these six protein-ligand complexes 20 ns molecular dynamics simulations and principal component analyses were carried out. Based on the different analyses these six compounds may provide valuable information for developing CREBBP selective inhibitors.
Collapse
|
14
|
Seal JT, Atkinson SJ, Aylott H, Bamborough P, Chung CW, Copley RCB, Gordon L, Grandi P, Gray JRJ, Harrison LA, Hayhow TG, Lindon M, Messenger C, Michon AM, Mitchell D, Preston A, Prinjha RK, Rioja I, Taylor S, Wall ID, Watson RJ, Woolven JM, Demont EH. The Optimization of a Novel, Weak Bromo and Extra Terminal Domain (BET) Bromodomain Fragment Ligand to a Potent and Selective Second Bromodomain (BD2) Inhibitor. J Med Chem 2020; 63:9093-9126. [DOI: 10.1021/acs.jmedchem.0c00796] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | - Anne-Marie Michon
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | - Simon Taylor
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
15
|
Zhang Z, Huang W, Zheng X, Li C, Shen Z. Drug Discovery of Acetophenone Derivatives as BRD4 Inhibitors. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190329223559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The bromodomain and extra-terminal proteins (BET), in particular BRD4,
has recently emerged as a potential therapeutic target for the treatment of many human disorders
such as cancer, inflammation, obesity and cardiovascular disease, which draw more and more
attention to discover potent BRD4 inhibitors in the past years. In this article, we described the
discovery process of an entirely new chemotype of BRD4 inhibitors.
Methods:
A fragment-based drug discovery strategy was employed in attempting to find a novel
chemotype of BRD4 inhibitors. Thus, the potential hits were firstly identified by docking study with
KAc binding pocket and AlphaScreen assay. Then the elected hit was further structurally optimized
based on the interaction revealed by the docking study and the Structure-Activity Relationship
(SAR).
Results:
A 1-(2-hydroxyphenyl)ethan-1-one fragment was first identified as an efficient hit to BRD4
with a weak inhibition activity and high ligand efficiency (IC50 = 8.9 μM, LE > 0.5) based on
virtual screening and biochemical assay. Then, two-rounds optimization of the hit by a fragmentbased
drug discovery approach enabled the discovery of a potent BRD4 inhibitor 9, which exhibit
nanomolar potency in biochemical assays (IC50 = 0.18 μM).
Conclusion:
The title compounds displayed potent inhibitory activity to BRD4, implying
acetophenone core is an effective KAc residue mimic, suggesting acetophenone derivatives as a new
chemotype may be promising for developing novel BRD4 inhibitors.
Collapse
Affiliation(s)
- Zhimin Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Xiaoliang Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Chuansheng Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Zhengrong Shen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| |
Collapse
|
16
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
17
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
18
|
Cheminformatics Explorations of Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:1-35. [PMID: 31621009 DOI: 10.1007/978-3-030-14632-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemistry of natural products is fascinating and has continuously attracted the attention of the scientific community for many reasons including, but not limited to, biosynthesis pathways, chemical diversity, the source of bioactive compounds and their marked impact on drug discovery. There is a broad range of experimental and computational techniques (molecular modeling and cheminformatics) that have evolved over the years and have assisted the investigation of natural products. Herein, we discuss cheminformatics strategies to explore the chemistry and applications of natural products. Since the potential synergisms between cheminformatics and natural products are vast, we will focus on three major aspects: (1) exploration of the chemical space of natural products to identify bioactive compounds, with emphasis on drug discovery; (2) assessment of the toxicity profile of natural products; and (3) diversity analysis of natural product collections and the design of chemical collections inspired by natural sources.
Collapse
|
19
|
Zaware N, Zhou MM. Bromodomain biology and drug discovery. Nat Struct Mol Biol 2019; 26:870-879. [PMID: 31582847 DOI: 10.1038/s41594-019-0309-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
The bromodomain (BrD) is a conserved structural module found in chromatin- and transcription-associated proteins that acts as the primary reader for acetylated lysine residues. This basic activity endows BrD proteins with versatile functions in the regulation of protein-protein interactions mediating chromatin-templated gene transcription, DNA recombination, replication and repair. Consequently, BrD proteins are involved in the pathogenesis of numerous human diseases. In this Review, we highlight our current understanding of BrD biology, and discuss the latest development of small-molecule inhibitors targeting BrDs as emerging epigenetic therapies for cancer and inflammatory disorders.
Collapse
Affiliation(s)
- Nilesh Zaware
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Heidenreich D, Moustakim M, Schmidt J, Merk D, Brennan PE, Fedorov O, Chaikuad A, Knapp S. Structure-Based Approach toward Identification of Inhibitory Fragments for Eleven-Nineteen-Leukemia Protein (ENL). J Med Chem 2018; 61:10929-10934. [DOI: 10.1021/acs.jmedchem.8b01457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David Heidenreich
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Moses Moustakim
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Jurema Schmidt
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Paul E. Brennan
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Oleg Fedorov
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
21
|
Dickson A. Mapping the Ligand Binding Landscape. Biophys J 2018; 115:1707-1719. [PMID: 30327139 PMCID: PMC6224774 DOI: 10.1016/j.bpj.2018.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
Abstract
The interaction between a ligand and a protein involves a multitude of conformational states. To achieve a particular deeply bound pose, the ligand must search across a rough free-energy landscape with many metastable minima. Creating maps of the ligand binding landscape is a great challenge, as binding and release events typically occur on timescales that are beyond the reach of molecular simulation. The WExplore enhanced sampling method is well suited to build these maps because it is designed to broadly explore free-energy landscapes and is capable of simulating ligand release pathways that occur on timescales as long as minutes. WExplore also uses only unbiased trajectory segments, allowing for the construction of Markov state models (MSMs) and conformation space networks that combine the results of multiple simulations. Here, we use WExplore to study two bromodomain-inhibitor systems using multiple docked starting poses (Brd4-MS436 and Baz2B-ICR7) and synthesize our results using a series of MSMs using time-lagged independent component analysis. Ranking the starting poses by exit rate agrees with the crystal structure pose in both cases. We also predict the most stable pose using the equilibrium populations from the MSM but find that the prediction is not robust as a function of MSM parameters. The simulated trajectories are synthesized into network models that visualize the entire binding landscape for each system, and we examine transition paths between deeply bound stable states. We find that, on average, transitions between deeply bound states convert through the unbound state 81% of the time, implying a trial-and-error approach to ligand binding. We conclude with a discussion of the implications of this result for both kinetics-based drug discovery and virtual screening pipelines that incorporate molecular dynamics.
Collapse
Affiliation(s)
- Alex Dickson
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan; Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
22
|
Dalle Vedove A, Spiliotopoulos D, D'Agostino VG, Marchand JR, Unzue A, Nevado C, Lolli G, Caflisch A. Structural Analysis of Small-Molecule Binding to the BAZ2A and BAZ2B Bromodomains. ChemMedChem 2018; 13:1479-1487. [DOI: 10.1002/cmdc.201800234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Dalle Vedove
- Centre for Integrative Biology; University of Trento; via Sommarive 9 38123 Povo-Trento Italy
| | - Dimitrios Spiliotopoulos
- Department of Biochemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Vito G. D'Agostino
- Centre for Integrative Biology; University of Trento; via Sommarive 9 38123 Povo-Trento Italy
| | - Jean-Rémy Marchand
- Department of Biochemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Andrea Unzue
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Cristina Nevado
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Graziano Lolli
- Centre for Integrative Biology; University of Trento; via Sommarive 9 38123 Povo-Trento Italy
| | - Amedeo Caflisch
- Department of Biochemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
23
|
Amato A, Lucas X, Bortoluzzi A, Wright D, Ciulli A. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach. ACS Chem Biol 2018. [PMID: 29529862 PMCID: PMC5913730 DOI: 10.1021/acschembio.7b01093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.
Collapse
Affiliation(s)
- Anastasia Amato
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Xavier Lucas
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alessio Bortoluzzi
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David Wright
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
24
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
25
|
W Young D. Using Fragment Based Drug Discovery to Target Epigenetic Regulators in Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/mojbb.2017.04.00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Marchand JR, Dalle Vedove A, Lolli G, Caflisch A. Discovery of Inhibitors of Four Bromodomains by Fragment-Anchored Ligand Docking. J Chem Inf Model 2017; 57:2584-2597. [PMID: 28862840 DOI: 10.1021/acs.jcim.7b00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high-throughput docking protocol called ALTA-VS (anchor-based library tailoring approach for virtual screening) was developed in 2005 for the efficient in silico screening of large libraries of compounds by preselection of only those molecules that have optimal fragments (anchors) for the protein target. Here we present an updated version of ALTA-VS with a broader range of potential applications. The evaluation of binding energy makes use of a classical force field with implicit solvent in the continuum dielectric approximation. In about 2 days per protein target on a 96-core compute cluster (equipped with Xeon E3-1280 quad core processors at 2.5 GHz), the screening of a library of nearly 77 000 diverse molecules with the updated ALTA-VS protocol has resulted in the identification of 19, 3, 3, and 2 μM inhibitors of the human bromodomains ATAD2, BAZ2B, BRD4(1), and CREBBP, respectively. The success ratio (i.e., number of actives in a competition binding assay in vitro divided by the number of compounds tested) ranges from 8% to 13% in dose-response measurements. The poses predicted by fragment-based docking for the three ligands of the BAZ2B bromodomain were confirmed by protein X-ray crystallography.
Collapse
Affiliation(s)
- Jean-Rémy Marchand
- Department of Biochemistry, University of Zürich , CH-8057, Zürich, Switzerland
| | | | - Graziano Lolli
- Centre for Integrative Biology, University of Trento , I-38123, Povo, Italy
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich , CH-8057, Zürich, Switzerland
| |
Collapse
|
27
|
Discovery of BAZ2A bromodomain ligands. Eur J Med Chem 2017; 139:564-572. [PMID: 28837921 DOI: 10.1016/j.ejmech.2017.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/28/2022]
Abstract
The bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) is implicated in aggressive prostate cancer. The BAZ2A bromodomain is a challenging target because of the shallow pocket of its natural ligand, the acetylated side chain of lysine. Here, we report the successful screening of a library of nearly 1500 small molecules by high-throughput docking and force field-based binding-energy evaluation. For seven of the 20 molecules selected in silico, evidence of binding to the BAZ2A bromodomain is provided by ligand-observed NMR spectroscopy. Two of these compounds show a favorable ligand efficiency of 0.42 kcal/mol per non-hydrogen atom in a competition-binding assay. The crystal structures of the BAZ2A bromodomain in complex with four fragment hits validate the predicted binding modes. The binding modes of compounds 1 and 3 are compatible with ligand growing for optimization of affinity for BAZ2A and selectivity against the close homologue BAZ2B.
Collapse
|
28
|
Lu S, Xu R, Li Z. Benzannulation of Pyrroles to 4,5-Disubstituted Indoles through Brønsted-Acid-Promoted Rearrangement of tert
-Butyl Peroxides. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenglin Lu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Ran Xu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Zhiping Li
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
29
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
30
|
Abstract
INTRODUCTION Epigenetic regulators including writers, erasers, and readers of chromatin marks have been implicated in numerous diseases and are therefore subject of intense academic and pharmaceutical research. While several small-molecule inhibitors targeting writers or erasers are either approved drugs or are currently being evaluated in clinical trials, the targeting of epigenetic readers has lagged behind. Proof-of-principle that epigenetic readers are also relevant drug targets was provided by landmark discoveries of selective inhibitors targeting the BET family of acetyl-lysine readers. More recently, high affinity chemical probes for non-BET acetyl- and methyl-lysine reader domains have also been developed. Areas covered: This article covers recent advances with the identification and validation of inhibitors and chemical probes targeting epigenetic reader domains. Issues related to epigenetic reader druggability, quality requirements for chemical probes, interpretation of cellular action, unexpected cross-talk, and future challenges are also discussed. Expert opinion: Chemical probes provide a powerful means to unravel biological functions of epigenetic readers and evaluate their potential as drug targets. To yield meaningful results, potency, selectivity, and cellular target engagement of chemical probes need to be stringently validated. Future chemical probes will probably need to fulfil additional criteria such as strict target specificity or the targeting of readers within protein complexes.
Collapse
Affiliation(s)
- Holger Greschik
- a Urologische Klinik und Zentrale Klinische Forschung , Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg , Freiburg , Germany
| | - Roland Schüle
- a Urologische Klinik und Zentrale Klinische Forschung , Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg , Freiburg , Germany.,b Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg , Freiburg , Germany.,c BIOSS Centre of Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Thomas Günther
- a Urologische Klinik und Zentrale Klinische Forschung , Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg , Freiburg , Germany
| |
Collapse
|
31
|
|
32
|
Navratilova I, Aristotelous T, Picaud S, Chaikuad A, Knapp S, Filappakopoulos P, Hopkins AL. Discovery of New Bromodomain Scaffolds by Biosensor Fragment Screening. ACS Med Chem Lett 2016; 7:1213-1218. [PMID: 27994766 DOI: 10.1021/acsmedchemlett.6b00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
The discovery of novel bromodomain inhibitors by fragment screening is complicated by the presence of dimethyl sulfoxide (DMSO), an acetyl-lysine mimetic, that can compromise the detection of low affinity fragments. We demonstrate surface plasmon resonance as a primary fragment screening approach for the discovery of novel bromodomain scaffolds, by describing a protocol to overcome the DMSO interference issue. We describe the discovery of several novel small molecules scaffolds that inhibit the bromodomains PCAF, BRD4, and CREBBP, representing canonical members of three out of the seven subfamilies of bromodomains. High-resolution crystal structures of the complexes of key fragments binding to BRD4(1), CREBBP, and PCAF were determined to provide binding mode data to aid the development of potent and selective inhibitors of PCAF, CREBBP, and BRD4.
Collapse
Affiliation(s)
- Iva Navratilova
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Tonia Aristotelous
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Sarah Picaud
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target
Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Apirat Chaikuad
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target
Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Stefan Knapp
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target
Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Panagis Filappakopoulos
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Andrew L. Hopkins
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
33
|
Marchand JR, Lolli G, Caflisch A. Derivatives of 3-Amino-2-methylpyridine as BAZ2B Bromodomain Ligands: In Silico Discovery and in Crystallo Validation. J Med Chem 2016; 59:9919-9927. [PMID: 27731638 DOI: 10.1021/acs.jmedchem.6b01258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 3-amino-2-methylpyridine derivative 1 was identified as ligand of the BAZ2B bromodomain by automatic docking of nearly 500 compounds, selected on the basis of previous fragment hits. Hit expansion by two in silico approaches, pharmacophore search followed by docking, and substructure search resulted in five additional ligands. The predicted binding mode of the six 3-amino-2-methylpyridine derivatives was validated by protein crystallography. A small displacement of residues 1894-1899 of the ZA loop is observed for two of the six ligands. In all structures, the pyridine head is involved in a water-mediated hydrogen bond with the side chain of the conserved Tyr1901 while the 3-amino linker acts as hydrogen bond donor for the backbone carbonyl of Pro1888. Heterogeneous orientations are observed for the tail groups (i.e., the 3-amino substituents). The sulfonyl group in the tail of compounds 1 and 2 is involved in a hydrogen bond with the backbone amide of Asn1894.
Collapse
Affiliation(s)
- Jean-Rémy Marchand
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Graziano Lolli
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
34
|
Vukovic S, Brennan PE, Huggins DJ. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:344007. [PMID: 27367338 DOI: 10.1088/0953-8984/28/34/344007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.
Collapse
Affiliation(s)
- Sinisa Vukovic
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | | | | |
Collapse
|
35
|
Galdeano C, Ciulli A. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Med Chem 2016; 8:1655-80. [PMID: 27193077 PMCID: PMC5321501 DOI: 10.4155/fmc-2016-0059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022] Open
Abstract
Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.
Collapse
Affiliation(s)
- Carles Galdeano
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) & Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Alessio Ciulli
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
36
|
Mechanisms of histone lysine-modifying enzymes: A computational perspective on the role of the protein environment. J Mol Graph Model 2016; 67:69-84. [DOI: 10.1016/j.jmgm.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
|
37
|
Zhu J, Caflisch A. Twenty Crystal Structures of Bromodomain and PHD Finger Containing Protein 1 (BRPF1)/Ligand Complexes Reveal Conserved Binding Motifs and Rare Interactions. J Med Chem 2016; 59:5555-61. [DOI: 10.1021/acs.jmedchem.6b00215] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Zhu
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
38
|
Lobley CMC, Sandy J, Sanchez-Weatherby J, Mazzorana M, Krojer T, Nowak RP, Sorensen TL. A generic protocol for protein crystal dehydration using the HC1b humidity controller. Acta Crystallogr D Struct Biol 2016; 72:629-40. [PMID: 27139626 PMCID: PMC4854313 DOI: 10.1107/s2059798316003065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/21/2016] [Indexed: 11/11/2022] Open
Abstract
Dehydration may change the crystal lattice and affect the mosaicity, resolution and quality of X-ray diffraction data. A dehydrating environment can be generated around a crystal in several ways with various degrees of precision and complexity. This study uses a high-precision crystal humidifier/dehumidifier to provide an airstream of known relative humidity in which the crystals are mounted: a precise yet hassle-free approach to altering crystal hydration. A protocol is introduced to assess the impact of crystal dehydration systematically applied to nine experimental crystal systems. In one case, that of glucose isomerase, dehydration triggering a change of space group from I222 to P21212 was observed. This observation is supported by an extended study of the behaviour of the glucose isomerase crystal structure during crystal dehydration.
Collapse
Affiliation(s)
- Carina M. C. Lobley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - James Sandy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | | | - Marco Mazzorana
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7DQ, England
| | - Radosław P. Nowak
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7DQ, England
| | - Thomas L. Sorensen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| |
Collapse
|
39
|
Unzue A, Zhao H, Lolli G, Dong J, Zhu J, Zechner M, Dolbois A, Caflisch A, Nevado C. The “Gatekeeper” Residue Influences the Mode of Binding of Acetyl Indoles to Bromodomains. J Med Chem 2016; 59:3087-97. [DOI: 10.1021/acs.jmedchem.5b01757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Andrea Unzue
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Hongtao Zhao
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Graziano Lolli
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jing Dong
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jian Zhu
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Melanie Zechner
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Aymeric Dolbois
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Cristina Nevado
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
40
|
Lolli G, Caflisch A. High-Throughput Fragment Docking into the BAZ2B Bromodomain: Efficient in Silico Screening for X-Ray Crystallography. ACS Chem Biol 2016; 11:800-7. [PMID: 26942307 DOI: 10.1021/acschembio.5b00914] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bromodomains are protein modules that bind to acetylated lysine side chains in histones and other proteins. The bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) has been reported to be poorly druggable. Here, we screened an in-house library of 350 fragments by automatic docking to the BAZ2B bromodomain. The top 12 fragments according to the predicted binding energy were selected for experiments of soaking into apo crystals of BAZ2B which yielded the structure of the complex for four of them, which is a hit rate of 33%. Additional crystal structures were solved for BAZ2B and two scaffolds identified by analogy. For three topologically similar fragments, the crystal structures reveal binding modes with different penetration, i.e., with zero, one, and two water molecules, respectively, located between the fragment and the side chain of a conserved tyrosine (Tyr1901) in the bottom of the acetyl lysine pocket of BAZ2B. Furthermore, a remarkable stereoselectivity of the acetyl lysine pocket emerges from the crystal structures of the bromodomains of BAZ2B and SMARCA4 in complex with the chiral diol MPD (2-methyl-2,4-pentanediol).
Collapse
Affiliation(s)
- Graziano Lolli
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
41
|
Abstract
The bromodomain (BrD) is a conserved protein modular domain found in many chromatin- and transcription-associated proteins that has the ability to recognize acetylated lysine residues. This activity allows bromodomains to play a vital role in many acetylation-mediated protein-protein interactions in the cell, ranging from substrate recruitment for histone acetyltransferases (HATs) to aiding in multiple-protein complex assembly for gene transcriptional activation or suppression in chromatin. In recent years, considerable efforts have been made to develop chemical inhibitors of these bromodomains in an effort to probe their cellular functions. Potent and selective inhibitors have been extensively developed for one group of the bromodomain family termed BET proteins that consist of tandem bromodomains followed by an extra terminal domain. Drug developers are actively designing inhibitors of other bromodomains and working to move the most successful inhibitors into the clinic.
Collapse
Affiliation(s)
- Steven G. Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
42
|
Palmer WS. Development of small molecule inhibitors of BRPF1 and TRIM24 bromodomains. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:65-71. [PMID: 27769360 DOI: 10.1016/j.ddtec.2016.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
The entry of small molecule inhibitors of the bromodomain and extra C-terminal domain (BET) family of bromodomains into the clinic has demonstrated the therapeutic potential for this class of epigenetic acetyl-lysine reader proteins. Within the past two years, the development of potent inhibitors for the bromodomain and PHD finger containing protein (BRPF) family and the tripartite motif containing protein 24 (TRIM24) have been reported and are the subject of this review. Both proteins contain other domains with diverse functions and can also be part of a complex of proteins which have implications in epigenetic signaling and disease. These new small molecule tools will be useful for unraveling the biological contribution of the bromodomain and enable pharmacological validation of these proteins.
Collapse
Affiliation(s)
- Wylie S Palmer
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
43
|
Cox OB, Krojer T, Collins P, Monteiro O, Talon R, Bradley A, Fedorov O, Amin J, Marsden BD, Spencer J, von Delft F, Brennan PE. A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain. Chem Sci 2016; 7:2322-2330. [PMID: 29910922 PMCID: PMC5977933 DOI: 10.1039/c5sc03115j] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023] Open
Abstract
Research into the chemical biology of bromodomains has been driven by the development of acetyl-lysine mimetics. The ligands are typically anchored by binding to a highly conserved asparagine residue. Atypical bromodomains, for which the asparagine is mutated, have thus far proven elusive targets, including PHIP(2) whose parent protein, PHIP, has been linked to disease progression in diabetes and cancers. The PHIP(2) binding site contains a threonine in place of asparagine, and solution screening have yielded no convincing hits. We have overcome this hurdle by combining the sensitivity of X-ray crystallography, used as the primary fragment screen, with a strategy for rapid follow-up synthesis using a chemically-poised fragment library, which allows hits to be readily modified by parallel chemistry both peripherally and in the core. Our approach yielded the first reported hit compounds of PHIP(2) with measurable IC50 values by an AlphaScreen competition assay. The follow-up libraries of four poised fragment hits improved potency into the sub-mM range while showing good ligand efficiency and detailed structural data.
Collapse
Affiliation(s)
- Oakley B Cox
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
- Diamond Light Source (DLS) , Harwell Science and Innovation Campus , Didcot , OX11 0DE , UK .
| | - Tobias Krojer
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Patrick Collins
- Diamond Light Source (DLS) , Harwell Science and Innovation Campus , Didcot , OX11 0DE , UK .
| | - Octovia Monteiro
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
| | - Romain Talon
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Anthony Bradley
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Oleg Fedorov
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
| | - Jahangir Amin
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton , BN1 9QJ , UK
| | - Brian D Marsden
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Kennedy Institute of Rheumatology , Nuffield Department of Orthopaedics , Rheumatology and Musculoskeletal Sciences , University of Oxford , Roosevelt Drive, Headington , Oxford OX3 7FY , UK
| | - John Spencer
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton , BN1 9QJ , UK
| | - Frank von Delft
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Diamond Light Source (DLS) , Harwell Science and Innovation Campus , Didcot , OX11 0DE , UK .
- Department of Biochemistry , University of Johannesburg , Aukland Park 2006 , South Africa
| | - Paul E Brennan
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , Oxford OX3 7FZ , UK .
| |
Collapse
|
44
|
Chaikuad A, Lang S, Brennan PE, Temperini C, Fedorov O, Hollander J, Nachane R, Abell C, Müller S, Siegal G, Knapp S. Structure-Based Identification of Inhibitory Fragments Targeting the p300/CBP-Associated Factor Bromodomain. J Med Chem 2016; 59:1648-53. [PMID: 26731131 PMCID: PMC4770306 DOI: 10.1021/acs.jmedchem.5b01719] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
P300/CBP-associated factor plays a central role in retroviral
infection and cancer development, and the C-terminal bromodomain provides
an opportunity for selective targeting. Here, we report several new
classes of acetyl-lysine mimetic ligands ranging from mM to low micromolar
affinity that were identified using fragment screening approaches.
The binding modes of the most attractive fragments were determined
using high resolution crystal structures providing chemical starting
points and structural models for the development of potent and selective
PCAF inhibitors.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, U.K
| | - Steffen Lang
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Paul E Brennan
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, U.K
| | - Claudia Temperini
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, U.K
| | | | - Ruta Nachane
- ZoBio , Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Chris Abell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Susanne Müller
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, U.K
| | - Gregg Siegal
- ZoBio , Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, U.K.,Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University and Buchmann Institute for Molecular Life Sciences , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
45
|
Theodoulou NH, Tomkinson NCO, Prinjha RK, Humphreys PG. Progress in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2016; 11:477-87. [PMID: 26749027 DOI: 10.1002/cmdc.201500540] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/09/2015] [Indexed: 12/19/2022]
Abstract
The bromodomain and extra terminal (BET) family of bromodomains have been the focus of extensive research, leading to the development of many potent, selective chemical probes and recent clinical assets. The profound biology associated with BET bromodomain inhibition has provided a convincing rationale for targeting bromodomains for the treatment of disease. However, the BET family represents just eight of the at least 56 human bromodomains identified to date. Until recently, there has been significantly less interest in non-BET bromodomains, leaving a vast area of research and the majority of this new target class yet to be thoroughly investigated. It has been widely reported that several non-BET bromodomain containing proteins are associated with various diseases including cancer and HIV. Therefore, the development of chemical probes for non-BET bromodomains will facilitate elucidation of their precise biological roles and potentially lead to the development of new medicines. This review summarises the progress made towards the development of non-BET bromodomain chemical probes to date. In addition, we highlight the potential for future work in this new and exciting area.
Collapse
Affiliation(s)
- Natalie H Theodoulou
- Epinova Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Rab K Prinjha
- Epinova Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Philip G Humphreys
- Epinova Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.
| |
Collapse
|
46
|
Cortopassi WA, Kumar K, Paton RS. Cation–π interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and selectivity. Org Biomol Chem 2016; 14:10926-10938. [DOI: 10.1039/c6ob02234k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new model is presented to explain and predict binding affinity of aromatic and heteroaromatic ligands for the CREBBP bromodomain based on cation–π interaction strength.
Collapse
Affiliation(s)
| | - Kiran Kumar
- Chemistry Research Laboratory
- University of Oxford
- Oxford OX1 3TA
- UK
| | - Robert S. Paton
- Chemistry Research Laboratory
- University of Oxford
- Oxford OX1 3TA
- UK
| |
Collapse
|
47
|
Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol 2015; 106:1-18. [PMID: 26707800 DOI: 10.1016/j.bcp.2015.12.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery.
Collapse
Affiliation(s)
- Elena Ferri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044 Grenoble, France; Centre National de la Recherche Scientifique, IBS, 38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, IBS, 38044 Grenoble, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States.
| |
Collapse
|
48
|
Huang XP, Karpiak J, Kroeze WK, Zhu H, Chen X, Moy SS, Saddoris KA, Nikolova VD, Farrell MS, Wang S, Mangano TJ, Deshpande DA, Jiang A, Penn RB, Jin J, Koller BH, Kenakin T, Shoichet BK, Roth BL. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 2015; 527:477-83. [PMID: 26550826 DOI: 10.1038/nature15699] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023]
Abstract
At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs.
Collapse
Affiliation(s)
- Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | - Joel Karpiak
- Department of Pharmaceutical Chemistry, University of California at San Francisco, Byers Hall, 1700 4th Street, San Francisco, California 94158-2550, USA
| | - Wesley K Kroeze
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Hu Zhu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Xin Chen
- Center for Integrative Chemical Biology and Drug Discovery (CICBDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7363, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| | - Sheryl S Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA
| | - Kara A Saddoris
- Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA
| | - Martilias S Farrell
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Sheng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Thomas J Mangano
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | - Deepak A Deshpande
- Center for Translational Medicine and Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Alice Jiang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | - Raymond B Penn
- Center for Translational Medicine and Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery (CICBDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7363, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| | - Beverly H Koller
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, USA
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California at San Francisco, Byers Hall, 1700 4th Street, San Francisco, California 94158-2550, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| |
Collapse
|
49
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
50
|
Chaikuad A, Knapp S, von Delft F. Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1627-39. [PMID: 26249344 PMCID: PMC4528798 DOI: 10.1107/s1399004715007968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022]
Abstract
The quest for an optimal limited set of effective crystallization conditions remains a challenge in macromolecular crystallography, an issue that is complicated by the large number of chemicals which have been deemed to be suitable for promoting crystal growth. The lack of rational approaches towards the selection of successful chemical space and representative combinations has led to significant overlapping conditions, which are currently present in a multitude of commercially available crystallization screens. Here, an alternative approach to the sampling of widely used PEG precipitants is suggested through the use of PEG smears, which are mixtures of different PEGs with a requirement of either neutral or cooperatively positive effects of each component on crystal growth. Four newly defined smears were classified by molecular-weight groups and enabled the preservation of specific properties related to different polymer sizes. These smears not only allowed a wide coverage of properties of these polymers, but also reduced PEG variables, enabling greater sampling of other parameters such as buffers and additives. The efficiency of the smear-based screens was evaluated on more than 220 diverse recombinant human proteins, which overall revealed a good initial crystallization success rate of nearly 50%. In addition, in several cases successful crystallizations were only obtained using PEG smears, while various commercial screens failed to yield crystals. The defined smears therefore offer an alternative approach towards PEG sampling, which will benefit the design of crystallization screens sampling a wide chemical space of this key precipitant.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Building N240 Room 3.03, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Frank von Delft
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|