1
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
2
|
Nishio Y, Lindsley CW, Bender AM. Classics in Chemical Neuroscience: Tianeptine. ACS Chem Neurosci 2024; 15:3863-3873. [PMID: 39382192 PMCID: PMC11587517 DOI: 10.1021/acschemneuro.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Tianeptine (1) is an unusual antidepressant in that its mechanism of action appears to be independent from any activity at serotonin receptors or monoamine transporters. In fact, tianeptine has been shown to be a moderately potent agonist for the mu opioid receptor (MOR) and to a lesser extent the delta opioid receptor (DOR). Additionally, tianeptine's efficacy may be related to its action on glutamate-mediated pathways of neuroplasticity. Regardless of which neurotransmitter system is primarily responsible for the observed efficacy, the MOR agonist activity is problematic with respect to abuse liability. Increasing numbers of case reports have demonstrated that tianeptine is indeed being used recreationally at doses far beyond what are considered therapeutically relevant or safe, and scheduling reclassifications or outright bans on tianeptine products are ongoing around the world. It is the aim of this review to discuss the medicinal chemistry and pharmacology of tianeptine and to summarize this intriguing discrepancy between tianeptine's historical use as a safe and effective antidepressant and its emerging potential for abuse.
Collapse
Affiliation(s)
- Yu Nishio
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, and Department of
Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, and Department of
Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, and Department of
Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Li Y, Cotham WE, Eliasof A, Bland K, Walla M, Pellechia PJ, Chen C, Fan D, McLaughlin JP, Liu-Chen LY. Conformational Plasticity Enhances the Brain Penetration of a Metabolically Stable, Dual-Functional Opioid-Peptide CycloAnt. Int J Mol Sci 2024; 25:11389. [PMID: 39518941 PMCID: PMC11546339 DOI: 10.3390/ijms252111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
CycloAnt is an opioid peptide that produces potent and efficacious antinociception with significantly reduced side effects upon systemic administration in mice. To verify its CNS-mediated antinociception, we determined its binding affinity at the opioid receptors, its proteolytic stability in mouse serum, metabolic stability in mouse liver microsomes, and pharmacokinetics in mice. CycloAnt exhibited stability toward proteolytic degradation in serum and resistance against metabolism mediated by cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyl transferases (UGTs) in mouse liver microsomes. A pharmacokinetic study of CycloAnt in mice confirmed that CycloAnt crossed the blood-brain barrier (BBB) with a brain-to-plasma ratio of 11.5%, a high extent of BBB transport for a peptide. To elucidate the structural basis underlying its BBB penetration, we investigated its conformation in water and DMSO using 1H NMR spectroscopy. The results show that CycloAnt displays an extended conformation in water with most amide NHs being exposed, while in less polar DMSO, it adopts a compact conformation with all amide NHs locked in intramolecular hydrogen bonds. The chameleonic property helps CycloAnt permeate the BBB.
Collapse
Affiliation(s)
- Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - William E. Cotham
- Mass Spectrometry Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Kathryn Bland
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| | - Michael Walla
- Mass Spectrometry Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Perry J. Pellechia
- Nuclear Magnetic Resonance Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Chongguang Chen
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| | - Daping Fan
- School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - Jay P. McLaughlin
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| |
Collapse
|
4
|
Zadina JE, Szabo LZ, Al-Obeidi F, Zhang X, Ferreira Nakatani L, Ogbu C, Heien ML, Falk T, Bartlett MJ, Polt R. Cyclic Glycopeptide Analogs of Endomorphin-1 Provide Highly Effective Antinociception in Male and Female Mice. ACS Med Chem Lett 2024; 15:1731-1740. [PMID: 39411536 PMCID: PMC11472388 DOI: 10.1021/acsmedchemlett.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Opioids acting at the mu opioid receptor (MOR) remain the most effective treatment for moderate to severe pain, but their use is limited by serious side effects. We have shown that a cyclized analog of endomorphin-1 provided pain relief comparable to that of morphine with reduction or absence of several side effects, including abuse liability. Glycosylation can promote penetration of cellular barriers. Here we developed cyclic glycopeptide endomorphin (glycoEM) analogs as drug candidates for potent and long-lasting analgesia. The analogs were assessed in receptor binding and functional assays and for blood-brain barrier penetration by microdialysis and MS. Two of the analogs showed MOR selectivity and more potent and longer lasting antinociception than morphine in male and female mice. Comparable antinociception occurred at A2 doses 5-fold lower (20-fold on a molar basis) than morphine doses. The results support further study of the glycoEMs for clinical application.
Collapse
Affiliation(s)
- James E. Zadina
- Department of Medicine and Pharmacology and Brain Institute, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
- SE
Louisiana Veterans Health Care System, New Orleans, Louisiana 70119, United States
| | - Lajos Z. Szabo
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Fahad Al-Obeidi
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Xing Zhang
- Department of Medicine and Pharmacology and Brain Institute, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
- SE
Louisiana Veterans Health Care System, New Orleans, Louisiana 70119, United States
| | - Leticia Ferreira Nakatani
- Department of Medicine and Pharmacology and Brain Institute, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
- SE
Louisiana Veterans Health Care System, New Orleans, Louisiana 70119, United States
| | - Chidiebere Ogbu
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - M. Leandro Heien
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Torsten Falk
- Department
of Neurology, The University of Arizona, Tucson, Arizona 85724, United States
| | - Mitchell J. Bartlett
- Departments
of Surgery and Neurosurgery, The University
of Arizona, Tucson, Arizona 85724, United States
| | - Robin Polt
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Wegert A, Monnee M, de Graaf W, van Holst F, Bolcato G, Díaz JL, Dordal A, Portillo-Salido E, Reinoso RF, Yeste S, Torrens A, Almansa C. Towards Multitargeted Ligands as Pain Therapeutics: Dual Ligands of the Ca vα2δ-1 Subunit of Voltage-Gated Calcium Channel and the μ-Opioid Receptor. ChemMedChem 2024; 19:e202300473. [PMID: 38230842 DOI: 10.1002/cmdc.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The synthesis and pharmacological activity of a new series of dual ligands combining activities towards the α2δ-1 subunit of voltage-gated calcium channels (Cavα2δ-1) and the μ-opioid receptor (MOR) as novel pain therapeutics are reported. A careful exploration of the pharmacophores related to both targets, which in principle had few common characteristics, led to the design of novel compounds exhibiting both activities. The construction of the dual ligands started from published Cavα2δ-1 ligands, onto which MOR ligand pharmacophoric elements were added. This exercise led to new amino-acidic substances with good affinities on both targets as well as good metabolic and physicochemical profiles and low potential for drug-drug interactions. A representative compound, (2S,4S)-4-(4-chloro-3-(((cis)-4-(dimethylamino)-4-phenylcyclohexyl)methyl)-5-fluorophenoxy)pyrrolidine-2-carboxylic acid, displayed promising analgesic activities in several in vivo pain models as well as a reduced side-effect profile in relation to morphine.
Collapse
Affiliation(s)
- Anita Wegert
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Menno Monnee
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Wouter de Graaf
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Frank van Holst
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | | | - José Luis Díaz
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Albert Dordal
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | | | - Raquel F Reinoso
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Sandra Yeste
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Antoni Torrens
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Carmen Almansa
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| |
Collapse
|
6
|
Eliasof A, Liu-Chen LY, Li Y. Peptide-derived ligands for the discovery of safer opioid analgesics. Drug Discov Today 2024; 29:103950. [PMID: 38514040 PMCID: PMC11127667 DOI: 10.1016/j.drudis.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Drugs targeting the μ-opioid receptor (MOR) remain the most efficacious analgesics for the treatment of pain, but activation of MOR with current opioid analgesics also produces harmful side effects, notably physical dependence, addiction, and respiratory depression. Opioid peptides have been accepted as promising candidates for the development of safer and more efficacious analgesics. To develop peptide-based opioid analgesics, strategies such as modification of endogenous opioid peptides, development of multifunctional opioid peptides, G protein-biased opioid peptides, and peripherally restricted opioid peptides have been reported. This review seeks to provide an overview of the opioid peptides that produce potent antinociception with much reduced side effects in animal models and highlight the potential advantages of peptides as safer opioid analgesics.
Collapse
Affiliation(s)
- Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lee-Yuan Liu-Chen
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
7
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
8
|
Rehrauer KJ, Cunningham CW. IUPHAR Review - Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol Res 2023; 197:106966. [PMID: 37865129 DOI: 10.1016/j.phrs.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Though efficacious in managing chronic, severe pain, opioid analgesics are accompanied by significant adverse effects including constipation, tolerance, dependence, and respiratory depression. The life-threatening risks associated with µ opioid receptor agonist-based analgesics challenges their use in clinic. A rational approach to combatting these adverse effects is to develop agents that incorporate activity at a second pharmacologic target in addition to µ opioid receptor activation. The promise of such bivalent or bifunctional ligands is the development of an analgesic with an improved side effect profile. In this review, we highlight ongoing efforts in the development of bivalent and bifunctional analgesics that combine µ agonism with efficacy at κ and δ opioid receptors, the nociceptin opioid peptide (NOP) receptor, σ receptors, and cannabinoid receptors. Several examples of bifunctional analgesics in preclinical and clinical development are highlighted, as are strategies being employed toward the rational design of novel agents.
Collapse
Affiliation(s)
- Kyle J Rehrauer
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA; CUW Center for Structure-Based Drug Discovery and Development, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA.
| |
Collapse
|
9
|
Scherrer KH, Eans SO, Medina JM, Senadheera SN, Khaliq T, Murray TF, McLaughlin JP, Aldrich JV. Tryptophan Substitution in CJ-15,208 ( cyclo[Phe-D-Pro-Phe-Trp]) Introduces δ-Opioid Receptor Antagonism, Preventing Antinociceptive Tolerance and Stress-Induced Reinstatement of Extinguished Cocaine-Conditioned Place Preference. Pharmaceuticals (Basel) 2023; 16:1218. [PMID: 37765026 PMCID: PMC10535824 DOI: 10.3390/ph16091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The macrocyclic tetrapeptide CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]) and its D-Trp isomer exhibit kappa opioid receptor (KOR) antagonism which prevents stress-induced reinstatement of extinguished cocaine-conditioned place preference. Here, we evaluated the effects of substitution of Trp and D-Trp on the peptides' opioid activity, antinociceptive tolerance, and the ability to prevent relapse to extinguished drug-CPP. Six analogs were synthesized using a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, efficacy in the [35S]GTPγS assay, metabolic stability in mouse liver microsomes, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance, and conditioned place preference (CPP) were also assessed in vivo, and the ameliorating effect of analogs on the reinstatement of extinguished cocaine-place preference was assessed. Substitutions of other D-amino acids for D-Trp did not affect (or in one case increased) KOR affinity, while two of the three substitutions of an L-amino acid for Trp decreased KOR affinity. In contrast, all but one substitution increased mu opioid receptor (MOR) affinity in vitro. The metabolic stabilities of the analogs were similar to those of their respective parent peptides, with analogs containing a D-amino acid being much more rapidly metabolized than those containing an L-amino acid in this position. In vivo, CJ-15,208 analogs demonstrated antinociception, although potencies varied over an 80-fold range and the mediating opioid receptors differed by substitution. KOR antagonism was lost for all but the D-benzothienylalanine analog, and the 2'-naphthylalanine analog instead demonstrated significant delta opioid receptor (DOR) antagonism. Introduction of DOR antagonism coincided with reduced acute opioid antinociceptive tolerance and prevented stress-induced reinstatement of extinguished cocaine-CPP.
Collapse
Affiliation(s)
- Kristen H. Scherrer
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Shainnel O. Eans
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Jessica M. Medina
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Sanjeewa N. Senadheera
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
| | - Tanvir Khaliq
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA;
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
11
|
Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Multitargeted Opioid Ligand Discovery as a Strategy to Retain Analgesia and Reduce Opioid-Related Adverse Effects. J Med Chem 2023; 66:3746-3784. [PMID: 36856340 DOI: 10.1021/acs.jmedchem.2c01695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The global "opioid crisis" has placed enormous pressure on the opioid ligand discovery community to produce novel opioid analgesics with superior opioid-related adverse-effect profiles compared with morphine. In this Perspective, the multitargeted opioid ligand strategy for the discovery of opioid analgesics with superior preclinical therapeutic indices relative to morphine is reviewed and discussed. Dual-targeted μ-opioid (MOP)/δ-opioid (DOP) ligands in which the in vitro DOP antagonist potency at least equals that of the MOP agonist activity, and are devoid of DOP or κ-opioid (KOP) agonist activity, are sufficiently promising candidates to warrant further investigation. Dual-targeted MOP/NOP partial agonists have superior preclinical therapeutic indices to morphine and/or fentanyl in nonhuman primates and are also considered promising. Based on the poor preclinical and clinical therapeutic indices of cebranopadol, which is a full agonist at MOP, DOP, and NOP receptors and a partial agonist at the KOP receptor, this pharmacologic template should be avoided.
Collapse
|
12
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
13
|
Differential Effects of a Novel Opioid Ligand UTA1003 on Antinociceptive Tolerance and Motor Behaviour. Pharmaceuticals (Basel) 2022; 15:ph15070789. [PMID: 35890089 PMCID: PMC9318816 DOI: 10.3390/ph15070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Analgesic tolerance is a major problem in the clinic for the maintenance of opioid-induced long-term pain relief. Opioids with mixed activity on multiple opioid receptors promise reduced antinociceptive tolerance in preclinical studies, but these compounds typically show poor bioavailability upon oral, subcutaneous, intraperitoneal, or intravenous administration. We designed UTA1003 as a novel opioid that acts as a mu (MOP) and kappa (KOP) opioid receptor agonist and a partial agonist for delta (DOP) opioid receptor. In the present study, its antinociceptive effects, as well as its effects on antinociceptive tolerance and motor behaviour, were investigated in male rats. Acute antinociception was measured before (basal) and at different time points after subcutaneous injection of UTA1003 or morphine using the tail flick and hot plate assays. Various motor behavioural activities, including horizontal locomotion, rearing, and turning, were automatically measured in an open-field arena. The antinociceptive and behavioural effects of repeated administration of UTA1003 and morphine were determined over eight days. UTA1003 induced mild antinociceptive effects after acute administration but induced no tolerance after repeated treatment. Importantly, UTA1003 co-treatment with morphine prevented antinociceptive tolerance compared to morphine alone. UTA1003 showed less motor suppression than morphine in both acute and sub-chronic treatment regimens, while it did not affect morphine-induced motor suppression or hyper-excitation. Based on these activities, we speculate that UTA1003 crosses the blood-brain barrier after subcutaneous administration and, therefore, could be developed as a lead molecule to avoid opioid-induced antinociceptive tolerance and motor suppression. Further structural modifications to improve its antinociceptive effects, toxicity profile, and ADME parameters are nevertheless required.
Collapse
|
14
|
Peripheral antinociceptive effects of a bifunctional μ and δ opioid receptor ligand in rat model of inflammatory bladder pain. Neuropharmacology 2021; 196:108701. [PMID: 34256047 DOI: 10.1016/j.neuropharm.2021.108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
There is a need to develop a novel analgesic for pain associated with interstitial cystitis/painful bladder syndrome (IC/PBS). The use of the conventional μ-opioid receptor agonists to manage IC/PBS pain is controversial due to adverse CNS effects. These effects are attenuated in benzylideneoxymorphone (BOM), a low-efficacy μ-opioid receptor agonist/δ-opioid receptor antagonist that attenuates thermal pain and is devoid of reinforcing effects. We hypothesize that BOM will inhibit bladder pain by attenuating responses of urinary bladder distension (UBD)-sensitive afferent fibers. Therefore, the effect of BOM was tested on responses of UBD-sensitive afferent fibers in L6 dorsal root from inflamed and non-inflamed bladder of rats. Immunohistochemical (IHC) examination reveals that following the induction of inflammation there were significant high expressions of μ, δ, and μ-δ heteromer receptors in DRG. BOM dose-dependently (1-10 mg/kg, i.v) attenuated mechanotransduction properties of these afferent fibers from inflamed but not from non-inflamed rats. In behavioral model of bladder pain, BOM significantly attenuated visceromotor responses (VMRs) to UBD only in inflamed group of rats when injected either systemically (10 mg/kg, i.v.) or locally into the bladder (0.1 ml of 10 mg/ml). Furthermore, oxymorphone (OXM), a high-efficacy μ-opioid receptor agonist, attenuated responses of mechanosensitive bladder afferent fibers and VMRs to UBD. Naloxone (10 mg/kg, i.v.) significantly reversed the inhibitory effects of BOM and OXM on responses of bladder afferent fibers and VMRs suggesting μ-opioid receptor-related analgesic effects of these compounds. The results reveal that a low-efficacy, bifunctional opioid-based compound can produce analgesia by attenuating mechanotransduction functions of afferent fibers innervating the urinary bladder.
Collapse
|
15
|
Fujita W. Aiming at Ideal Therapeutics-MOPr/DOPr or MOPr-DOPr Heteromertargeting Ligand. Curr Top Med Chem 2021; 20:2843-2851. [PMID: 32324516 DOI: 10.2174/1568026620666200423095231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The recent alarming reports related to "opioid crisis" necessitate the development of safer and effective analgesics without unwanted side effects. Thus, there needs to be an alternative target or strategy for the development of drugs for the treatment of opioid use/abuse. As one of the novel targets, in these two decades, ligands targeting opioid receptor "heteromerization" including mu-opioid receptor (MOPr)-delta opioid receptor (DOPr) heteromer have been proposed and the pharmacological advancement of reduced side effects has been broadly accepted and well recognized. In this review, some of the ligands targeting both MOPr and DOPr or MOPr-DOPr heteromers are introduced especially focusing on their pharmacological effects in vivo. CONCLUSION It has been found that most of those ligands possess potent antinociceptive activity (as much as or higher than that of morphine) with reduced side effects such as tolerance. In addition, some of them are also able to reduce or prevent physiological withdrawal symptoms observed under chronic opioid use. Importantly, there are an increasing number of evidence that show changes in heteromer expression in various pathological animal models and these strongly argue for targeting heteromers for the development of the next generation of pain medication in the near future.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
16
|
Wtorek K, Piekielna-Ciesielska J, Janecki T, Janecka A. The search for opioid analgesics with limited tolerance liability. Peptides 2020; 130:170331. [PMID: 32497566 DOI: 10.1016/j.peptides.2020.170331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Reducing the well-known side effects of opioids prescribed to treat chronic pain remains unresolved, despite extensive research in this field. Among several options to tackle this problem the synthesis of multifunctional compounds containing hybridized structures gained a lot of interest. Recently, extensively investigated are combinations of opioid agonist and antagonist pharmacophores embodied in a single molecule. To this end, agonism at the μ opioid receptor (MOR) with simultaneous antagonism at the δ opioid receptor (DOR) emerged as a promising avenue to obtaining novel analogs devoid of serious adverse effects associated with morphine-based analgesics. In this review we covered up-to-date research on the synthesis of peptide-based ligands with MOR agonist/DOR antagonist profile.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | | | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
17
|
Piekielna-Ciesielska J, Wtorek K, Janecka A. Biased Agonism as an Emerging Strategy in the Search for Better Opioid Analgesics. Curr Med Chem 2020; 27:1562-1575. [PMID: 31057099 DOI: 10.2174/0929867326666190506103124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Morphine and related drugs that act through activating opioid receptors are the most effective analgesics for the relief of severe pain. They have been used for decades, despite the range of unwanted side effects that they produce, as no alternative has been found so far. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists and to improve the therapeutic utility of opioid drugs. In the search for safer and more potent analgesics, analogs with mixed opioid receptor profile gained a lot of interest. However, recently the concept of biased agonism, that highlights the fact that some ligands are able to differentially activate receptor downstream pathways, became a new approach in the design of novel drug candidates for clinical application. In this review, we summarize current knowledge on the development of opioid ligands of peptide and nonpeptide structure, showing how much opioid pharmacology evolved in recent years.
Collapse
Affiliation(s)
| | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
18
|
Stevenson GW, Giuvelis D, Cormier J, Cone K, Atherton P, Krivitsky R, Warner E, St Laurent B, Dutra J, Bidlack JM, Szabò L, Polt R, Bilsky EJ. Behavioral pharmacology of the mixed-action delta-selective opioid receptor agonist BBI-11008: studies on acute, inflammatory and neuropathic pain, respiration, and drug self-administration. Psychopharmacology (Berl) 2020; 237:1195-1208. [PMID: 31912192 PMCID: PMC8106974 DOI: 10.1007/s00213-019-05449-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/27/2019] [Indexed: 01/23/2023]
Abstract
RATIONALE AND OBJECTIVES The present study characterized the behavioral pharmacology of a novel, mixed-action delta-selective (78:1) opioid receptor agonist, BBI-11008. This glycopeptide drug candidate was tested in assays assessing antinociception (acute, inflammatory, and neuropathic pain-like conditions) and side-effect endpoints (respiratory depression and drug self-administration). RESULTS BBI-11008 had a 78-fold greater affinity for the delta opioid receptor than the mu receptor, and there was no binding to the kappa opioid receptor. BBI-11008 (3.2-100; 10-32 mg kg-1, i.v.) and morphine (1-10; 1-3.2 mg kg-1, i.v.) produced antinociceptive and anti-allodynic effects in assays of acute thermal nociception and complete Freund's adjuvant (CFA)-induced inflammatory pain, with BBI-11008 being less potent than morphine in both assays. BBI-11008 (1-18 mg kg-1, i.v.) had similar efficacy to gabapentin (10-56 mg kg-1, i.v.) in a spinal nerve ligation (SNL) model of neuropathic pain. In the respiration assay, with increasing %CO2 exposure, BBI-11008 produced an initial increase (32 mg kg-1, s.c.) and then decrease (56 mg kg-1, s.c.) in minute volume (MV) whereas morphine (3.2-32 mg kg-1, s.c.) produced dose-dependent decreases in MV. In the drug self-administration procedure, BBI-11008 did not maintain self-administration at any dose tested. CONCLUSIONS These results suggest that the glycopeptide drug candidate possesses broad-spectrum antinociceptive and anti-allodynic activity across a range of pain-like conditions. Relative to morphine or fentanyl, the profile for BBI-11008 in the respiration and drug self-administration assays suggests that BBI-11008 may have less pronounced deleterious side effects. Continued assessment of this compound is warranted.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/chemistry
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Dose-Response Relationship, Drug
- Humans
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/psychology
- Male
- Mice
- Morphine/administration & dosage
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Neuralgia/psychology
- Pain Measurement/drug effects
- Pain Measurement/psychology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Respiratory Mechanics/drug effects
- Respiratory Mechanics/physiology
- Self Administration
Collapse
Affiliation(s)
- Glenn W Stevenson
- Department of Psychology, University of New England, Biddeford, ME, 04005, USA.
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA.
| | - Denise Giuvelis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005, USA
| | - James Cormier
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005, USA
| | - Katherine Cone
- Department of Psychology, University of New England, Biddeford, ME, 04005, USA
| | - Phillip Atherton
- Department of Psychology, University of New England, Biddeford, ME, 04005, USA
| | - Rebecca Krivitsky
- Department of Psychology, University of New England, Biddeford, ME, 04005, USA
| | - Emily Warner
- Department of Psychology, University of New England, Biddeford, ME, 04005, USA
| | - Brooke St Laurent
- Department of Psychology, University of New England, Biddeford, ME, 04005, USA
| | - Julio Dutra
- Department of Psychology, University of New England, Biddeford, ME, 04005, USA
| | - Jean M Bidlack
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Edward J Bilsky
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, 04005, USA
- Department of Biomedical Sciences College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, WA, 98901, USA
| |
Collapse
|
19
|
García M, Virgili M, Alonso M, Alegret C, Fernández B, Port A, Pascual R, Monroy X, Vidal-Torres A, Serafini MT, Vela JM, Almansa C. 4-Aryl-1-oxa-4,9-diazaspiro[5.5]undecane Derivatives as Dual μ-Opioid Receptor Agonists and σ 1 Receptor Antagonists for the Treatment of Pain. J Med Chem 2020; 63:2434-2454. [PMID: 31743642 DOI: 10.1021/acs.jmedchem.9b01256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis and pharmacological activity of a new series of 1-oxa-4,9-diazaspiro[5.5]undecane derivatives as potent dual ligands for the sigma-1 receptor (σ1R) and the μ-opioid receptor (MOR) are reported. The different positions of the central scaffold, designed using a merging strategy of both target pharmacophores, were explored using a versatile synthetic approach. Phenethyl derivatives in position 9, substituted pyridyl moieties in position 4 and small alkyl groups in position 2 provided the best profiles. One of the best compounds, 15au, showed a balanced dual profile (i.e., MOR agonism and sigma antagonism) and a potent analgesic activity, comparable to the MOR agonist oxycodone in the paw pressure test in mice. Contrary to oxycodone, as expected from the addition of σ1R antagonism, 15au showed local, peripheral activity in this test, which was reversed by the σ1R agonist PRE-084. At equianalgesic doses, 15au showed less constipation than oxycodone, providing evidence that dual MOR agonism and σ1R antagonism may be a useful strategy for obtaining potent and safer analgesics.
Collapse
Affiliation(s)
- Mónica García
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Marina Virgili
- Carrer Baldiri Reixac, Enantia, SL, 10 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Mònica Alonso
- Carrer Baldiri Reixac, Enantia, SL, 10 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Carles Alegret
- Carrer Baldiri Reixac, Enantia, SL, 10 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Begoña Fernández
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Adriana Port
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Rosalía Pascual
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Xavier Monroy
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alba Vidal-Torres
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - María-Teresa Serafini
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Carmen Almansa
- Drug Discovery and Preclinical Development, Carrer Baldiri Reixac, ESTEVE Pharmaceuticals SA, 4-8 Parc Científic de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Henry S, Anand JP, Twarozynski JJ, Brinkel AC, Pogozheva ID, Sears BF, Jutkiewicz EM, Traynor JR, Mosberg HI. Aromatic-Amine Pendants Produce Highly Potent and Efficacious Mixed Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Peptidomimetics with Enhanced Metabolic Stability. J Med Chem 2020; 63:1671-1683. [PMID: 31986033 DOI: 10.1021/acs.jmedchem.9b01818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported a novel SAR campaign that converted a metabolically unstable series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist bicyclic core peptidomimetics with promising analgesic activity and reduced abuse liabilities into a more stable series of benzylic core analogues. Herein, we expanded the SAR of that campaign and determined that the incorporation of amines into the benzylic pendant produces enhanced MOR-efficacy in this series, whereas the reincorporation of an aromatic ring into the pendant enhanced MOR-potency. Two compounds, which contain a piperidine (14) or an isoindoline (17) pendant, retained the desired opioid profile in vitro, possessed metabolic half-lives of greater than 1 h in mouse liver microsomes (MLMs), and were active antinociceptive agents in the acetic acid stretch assay (AASA) at subcutaneous doses of 1 mg/kg.
Collapse
Affiliation(s)
- Sean Henry
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Jessica P Anand
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jack J Twarozynski
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ashley C Brinkel
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Bryan F Sears
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Emily M Jutkiewicz
- Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - John R Traynor
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States.,Department of Pharmacology, Medical School , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States.,Edward F. Domino Research Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
21
|
Montgomery D, Anand JP, Griggs NW, Fernandez TJ, Hartman JG, Sánchez-Santiago AA, Pogozheva ID, Traynor JR, Mosberg HI. Novel Dimethyltyrosine-Tetrahydroisoquinoline Peptidomimetics with Aromatic Tetrahydroisoquinoline Substitutions Show in Vitro Kappa and Mu Opioid Receptor Agonism. ACS Chem Neurosci 2019; 10:3682-3689. [PMID: 31199621 DOI: 10.1021/acschemneuro.9b00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dimethyltyrosine-tetrahydroisoquinoline (Dmt-Tiq) scaffold was originally developed in the production of selective delta opioid receptor (DOR) antagonists. Installation of a 7-benzyl pendant on the tetrahydroisoquinoline core of this classic opioid scaffold introduced kappa opioid receptor (KOR) agonism. Further modification of this pendant resulted in retention of KOR agonism and the addition of mu opioid receptor (MOR) partial agonism, a bifunctional profile with potential to be used in the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica P. Anand
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas J. Fernandez
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua G. Hartman
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashley A. Sánchez-Santiago
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
He R, Chen X, Li Y, Liu Q, Liao C, Chen L, Huang Y. NH4I-Promoted and H2O-Controlled Intermolecular Bis-sulfenylation and Hydroxysulfenylation of Alkenes via a Radical Process. J Org Chem 2019; 84:8750-8758. [DOI: 10.1021/acs.joc.9b01047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Runfa He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Qiang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chunshu Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | | | | |
Collapse
|
23
|
Stefanucci A, Lei W, Pieretti S, Dimmito MP, Luisi G, Novellino E, Nowakowski M, Koźmiński W, Mirzaie S, Zengin G, Streicher JM, Mollica A. Novel Cyclic Biphalin Analogues by Ruthenium-Catalyzed Ring Closing Metathesis: in Vivo and in Vitro Biological Profile. ACS Med Chem Lett 2019; 10:450-456. [PMID: 30996778 DOI: 10.1021/acsmedchemlett.8b00495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
In this work we report the application of the ring-closing metathesis (RCM) to the preparation of two cyclic olefin-bridged analogues of biphalin (Tyr-d-Ala-Gly-Phe-NH-NH ← Phe ← Gly ← d-Ala ← Tyr), using the second generation Grubbs' catalyst. The resulting cis- and trans-cyclic isomers were identified, fully characterized, and tested in vitro at μ (ΜΟR), δ (DOR), and κ (KOR) opioid receptors and in vivo for antinociceptive activity. Both were shown to be full agonists at MOR and potential partial antagonists at DOR, with low potency KOR agonism. They also share a strong antinociceptive effect after intracerebroventricular (i.c.v.) and intravenous (i.v.) administration, higher than that of the cyclic biphalin analogues containing a disulfide bridge between the side chains of two d-Cys or d-Pen residues, previously described by our group.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Grazia Luisi
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sako Mirzaie
- Department of Biochemistry, Islamic Azad University, Sanandaj, Iran
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
24
|
Nastase AF, Anand JP, Bender AM, Montgomery D, Griggs NW, Fernandez TJ, Jutkiewicz EM, Traynor JR, Mosberg HI. Dual Pharmacophores Explored via Structure-Activity Relationship (SAR) Matrix: Insights into Potent, Bifunctional Opioid Ligand Design. J Med Chem 2019; 62:4193-4203. [PMID: 30916966 DOI: 10.1021/acs.jmedchem.9b00378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Short-acting μ-opioid receptor (MOR) agonists have long been used for the treatment of severe, breakthrough pain. However, selective MOR agonists including fentanyl and morphine derivatives are limited clinically due to high risks of dependence, tolerance, and respiratory depression. We recently reported the development of a long-acting, bifunctional MOR agonist/δ-opioid receptor (DOR) antagonist analgesic devoid of tolerance or dependence in mice (AAH8, henceforth referred to as 2B). To address the need for short-acting treatments for breakthrough pain, we present a series of novel, short-acting, high-potency MOR agonist/DOR antagonist ligands with antinociceptive activity in vivo. In this study, we utilized a two-dimensional structure-activity relationship matrix to identify pharmacological trends attributable to combinations of two key pharmacophore elements within the chemotype. This work enhances our ability to modulate efficacy at MOR and DOR, accessing a variety of bifunctional profiles while maintaining high affinity and potency at both receptors.
Collapse
|
25
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
26
|
Pasternak GW, Childers SR, Pan YX. Emerging Insights into Mu Opioid Pharmacology. Handb Exp Pharmacol 2019; 258:89-125. [PMID: 31598835 DOI: 10.1007/164_2019_270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Opioid analgesics, most of which act through mu opioid receptors, have long represented valuable therapeutic agents to treat severe pain. Concerted drug development efforts for over a 100 years have resulted in a large variety of opioid analgesics used in the clinic, but all of them continue to exhibit the side effects, especially respiratory depression, that have long plagued the use of morphine. The recent explosion in fatalities resulting from overdose of prescription and synthetic opioids has dramatically increased the need for safer analgesics, but recent developments in mu receptor research have provided new strategies to develop such drugs. This chapter reviews recent advances in developing novel opioid analgesics from an understanding of mu receptor structure and function. This includes a summary of the mechanism of agonist binding deduced from the crystal structure of mu receptors. It will also highlight the development of novel agonist mechanisms, including biased agonists, bivalent ligands, and allosteric modulators of mu receptor function, and describe how receptor phosphorylation modulates these pathways. Finally, it will summarize research on the alternative pre-mRNA splicing mechanisms that produces a multiplicity of mu receptor isoforms. Many of these isoforms exhibit different pharmacological specificities and brain circuitry localization, thus providing an opportunity to develop novel drugs with increased therapeutic windows.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven R Childers
- Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Ying-Xian Pan
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
27
|
Mores KL, Cassell RJ, van Rijn RM. Arrestin recruitment and signaling by G protein-coupled receptor heteromers. Neuropharmacology 2018; 152:15-21. [PMID: 30419245 DOI: 10.1016/j.neuropharm.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/28/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCR) have a long history of being considered a prime target for drug development to treat a plethora of diseases and disorders. In fact in 1827, the first approved therapeutic in the United States was morphine, a drug that targets a GPCR, namely the mu opioid receptor. However, with the rise in biologics over the last two decades, the market share of small molecules targeting GPCRs has declined. Still, two phenomena concerning GPCR pharmacology, specifically heteromerization and biased signaling, have bolstered new interests in this particular class of drug targets. Heteromerization, the process by which two distinct GPCRs come together to form a unique signaling complex, has been demonstrated between many different GPCRs and has spurred efforts to discover heteromer selective drugs. Additionally, the discovery of biased signaling, a concept by which a GPCR can transduce intracellular signaling by favoring a specific pathway (e.g. G-protein) over another pathway (e.g. arrestin), has led to the development of signal-biased drugs with potentially fewer side effects. Our goal for this review is to highlight studies that have investigated the interplay of these two phenomena by providing an overview of the current literature describing instances where GPCR heteromers have distinct arrestin recruitment profiles when compared to the individual GPCRs, with a focus on those GPCRs expressed in the central nervous system. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, United States; Purdue Institute for Drug Discovery, United States; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, 47907, United States.
| |
Collapse
|
28
|
Nastase AF, Griggs NW, Anand JP, Fernandez TJ, Harland AA, Trask TJ, Jutkiewicz EM, Traynor JR, Mosberg HI. Synthesis and Pharmacological Evaluation of Novel C-8 Substituted Tetrahydroquinolines as Balanced-Affinity Mu/Delta Opioid Ligands for the Treatment of Pain. ACS Chem Neurosci 2018; 9:1840-1848. [PMID: 29677442 PMCID: PMC9976708 DOI: 10.1021/acschemneuro.8b00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of opioids for the treatment of pain, while largely effective, is limited by detrimental side effects including analgesic tolerance, physical dependence, and euphoria, which may lead to opioid abuse. Studies have shown that compounds with a μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist profile reduce or eliminate some of these side effects including the development of tolerance and dependence. Herein we report the synthesis and pharmacological evaluation of a series of tetrahydroquinoline-based peptidomimetics with substitutions at the C-8 position. Relative to our lead peptidomimetic with no C-8 substitution, this series affords an increase in DOR affinity and provides greater balance in MOR and DOR binding affinities. Moreover, compounds with carbonyl moieties at C-8 display the desired MOR agonist/DOR antagonist profile whereas alkyl substitutions elicit modest DOR agonism. Several compounds in this series produce a robust antinociceptive effect in vivo and show antinociceptive activity for greater than 2 h after intraperitoneal administration in mice.
Collapse
Affiliation(s)
- Anthony F. Nastase
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States,Interdepartmental Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica P. Anand
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States,Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas J. Fernandez
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aubrie A. Harland
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States,Interdepartmental Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Tyler J. Trask
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emily M. Jutkiewicz
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States,Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States,Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States,Interdepartmental Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor Michigan 48109, United States,Edward F Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States,Corresponding Author Phone: 734-764-8117. Fax: 734-763-5595.
| |
Collapse
|
29
|
Gach-Janczak K, Piekielna-Ciesielska J, Adamska-Bartłomiejczyk A, Wtorek K, Ferrari F, Calo' G, Szymaszkiewicz A, Piasecka-Zelga J, Janecka A. In vitro and in vivo activity of cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH 2, a mu opioid receptor agonist biased toward β-arrestin. Peptides 2018; 105:51-57. [PMID: 29684591 DOI: 10.1016/j.peptides.2018.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Morphine and related drugs, which are the most effective analgesics for the relief of severe pain, act through activating opioid receptors. The endogenous ligands of these receptors are opioid peptides which cannot be used as antinociceptive agents due to their low bioactivity and stability in biological fluids. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists in order to improve therapeutic utility of opioids. Analgesic effects of morphine are mediated mostly through activation of the mu opioid receptor. However, in the search for safer and more effective drug candidates, analogs with mixed opioid receptor profile gained a lot of interest. Recently, the concept of biased agonists able to differentially activate GPCR downstream pathways, became a new approach in the design of novel drug candidates. It is hypothesized that compounds promoting G-protein signaling may produce analgesia while β-arrestin recruitment may be responsible for opioid side effects. In this report we showed that replacement of the tyrosine residue in the mu-selective ligand Tyr-c[d-Lys-Phe-Asp]NH2 with 2',6'-dimethyltyrosine (Dmt) produced a cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH2 with mu/delta opioid receptor agonist profile. This analog showed improved antinociception in the hot-plate test, probably due to the simultaneous activation of mu and delta receptors but also significantly inhibited the gastrointestinal transit. Using the bioluminescence resonance energy transfer (BRET) assay it was shown that this analog was a mu receptor agonist biased toward β-arrestin. β-Arrestin-dependent signaling is most likely responsible for the observed inhibition of gastrointestinal motility exerted by the novel cyclopeptide.
Collapse
Affiliation(s)
| | | | | | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University, Lodz, Poland
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Joanna Piasecka-Zelga
- Institute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Head of Research Laboratory for Medicine and Veterinary Products, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University, Lodz, Poland.
| |
Collapse
|
30
|
Dietis N, Niwa H, Tose R, McDonald J, Ruggieri V, Filaferro M, Vitale G, Micheli L, Ghelardini C, Salvadori S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505. Br J Pharmacol 2018; 175:2881-2896. [PMID: 29524334 PMCID: PMC6016625 DOI: 10.1111/bph.14199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting more than one opioid receptor type simultaneously may have analgesic advantages in reducing side-effects. We have evaluated the mixed μ opioid receptor agonist/ δ opioid receptor antagonist UFP-505 in vitro and in vivo. EXPERIMENTAL APPROACH We measured receptor density and function in single μ, δ and μ /δ receptor double expression systems. GTPγ35 S binding, cAMP formation and arrestin recruitment were measured. Antinociceptive activity was measured in vivo using tail withdrawal and paw pressure tests following acute and chronic treatment. In some experiments, we collected tissues to measure receptor densities. KEY RESULTS UFP-505 bound to μ receptors with full agonist activity and to δ receptors as a low efficacy partial agonist At μ, but not δ receptors, UFP-505 binding recruited arrestin. Unlike morphine, UFP-505 treatment internalized μ receptors and there was some evidence for internalization of δ receptors. Similar data were obtained in a μ /δ receptor double expression system. In rats, acute UFP-505 or morphine, injected intrathecally, was antinociceptive. In tissues harvested from these experiments, μ and δ receptor density was decreased after UFP-505 but not morphine treatment, in agreement with in vitro data. Both morphine and UFP-505 induced significant tolerance. CONCLUSIONS AND IMPLICATIONS In this study, UFP-505 behaved as a full agonist at μ receptors with variable activity at δ receptors. This bifunctional compound was antinociceptive in rats after intrathecal administration. In this model, dual targeting provided no advantages in terms of tolerance liability. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - H Niwa
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - R Tose
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - J McDonald
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - V Ruggieri
- Department of Oncology Haematology and Respiratory DiseasesUniversity of Modena and Reggio EmiliaModenaItaly
| | - M Filaferro
- Department of Biomedical, Metabolic and Neuro‐SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - G Vitale
- Section of Pharmacology, Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - L Micheli
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - C Ghelardini
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - S Salvadori
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - G Calo
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - R Guerrini
- Department of Pharmaceutical SciencesUniversity of FerraraFerraraItaly
| | - D J Rowbotham
- Department of Health SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - D G Lambert
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| |
Collapse
|
31
|
Delta/mu opioid receptor interactions in operant conditioning assays of pain-depressed responding and drug-induced rate suppression: assessment of therapeutic index in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235:1609-1618. [PMID: 29572653 PMCID: PMC5924452 DOI: 10.1007/s00213-018-4876-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/23/2022]
Abstract
RATIONALE AND OBJECTIVES Although delta/mu receptor interactions vary as a function of behavioral endpoint, there have been no assessments of these interactions using assays of pain-depressed responding. This is the first report of delta/mu interactions using an assay of pain-depressed behavior. METHODS A mult-cycle FR10 operant schedule was utilized in the presence of (nociception) and in the absence of (rate suppression) a lactic acid inflammatory pain-like manipulation. SNC80 and methadone were used as selective/high efficacy delta and mu agonists, respectively. Both SNC80 and methadone alone produced a dose-dependent restoration of pain-depressed responding and dose-dependent response rate suppression. Three fixed ratio mixtures, based on the relative potencies of the drugs in the nociception assay, also produced dose-dependent antinociception and sedation. Isobolographic analysis indicated that all three mixtures produced supra-additive antinociceptive effects and simply additive sedation effects. CONCLUSIONS The therapeutic index (TI) inversely varied as a function of amount of SNC80 in the mixture, such that lower amounts of SNC80 produced a higher TI, and larger amounts produced a lower TI. Compared to literature using standard pain-elicited assays, the orderly relationship between SNC80 and TI reported here may be a unique function of assessing pain-depressed behavior.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Opioid use and abuse has led to a worldwide opioid epidemic. And while opioids are clinically useful when appropriately indicated, they are associated with a wide range of dangerous side effects and whether they are effective at treating or eliminating chronic pain is controversial. There has long been a need for the development of nonopioid alternative treatments for patients that live in pain, and until recently, only a few effective treatments were available. Today, there are a wide range of nonopioid treatments available including NSAIDs, acetaminophen, corticosteroids, nerve blocks, SSRIs, neurostimulators, and anticonvulsants. However, these treatments are still not entirely effective at treating pain, which has sparked a new exploration of novel nonopioid pharmacotherapies. RECENT FINDINGS This manuscript will outline the most recent trends in novel nonopioid pharmacotherapy development including tramadol/dexketoprofen, TrkA inhibitors, tapentadol, opioid agonists, Nektar 181, TRV 130, ßarrestin2, bisphosphonates, antibodies, sodium channel blockers, NMDA antagonists, TRP receptors, transdermal vitamin D, AAK1 kinase inhibition, calcitonin gene-related peptide (CGRP), TRPV4 antagonists, cholecystokinin, delta opioid receptor, neurokinin, and gene therapy. The pharmacotherapies discussed in this manuscript outline promising opioid alternatives which can change the future of chronic pain treatment.
Collapse
|
33
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Fentanyls continue to replace heroin in the drug arena: the cases of ocfentanil and carfentanil. Forensic Toxicol 2017; 36:12-32. [PMID: 29367860 PMCID: PMC5754389 DOI: 10.1007/s11419-017-0379-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/23/2017] [Indexed: 01/25/2023]
Abstract
Purpose Ocfentanil and carfentanil are two potent synthetic opioids that are analogues of fentanyl and are actively involved in the recent fentanyl crisis. The aim of this review is to provide all the available information on these two fentanyl analogues. Methods All reviewed information was gathered through a detailed search of PubMed and the World Wide Web using relevant keywords. Results Like most of the members of the family of fentanyls, they are either sold as heroin to unsuspecting users or used extensively to lace heroin street samples. Despite the fact that ocfentanil was studied clinically in the early 1990s, it did not manage to find its place in clinical practice. On the other hand, carfentanil is mainly used today as an anesthetic agent in large animals. Ocfentanil and carfentanil are used and abused extensively, mainly in Europe and in the United States. As a result, they are the cause of some verified intoxication cases and deaths worldwide. This review provides information concerning chemistry, synthesis, prevalence, pharmacology, and toxicology, as well as the current legal status of these two fentanyl analogues. Analytical methods developed for the determination of ocfentanil and carfentanil in biological specimens and seized materials, as well as related intoxication and lethal cases are also presented. Conclusions Ocfentanil and carfentanil are undeniably very dangerous opioid drugs and a very serious matter of concern for public safety. The authorities should take the appropriate actions to avoid the expansion of this threat by taking proper and prompt measures.
Collapse
|
35
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
36
|
Adamska-Bartłomiejczyk A, De Marco R, Gentilucci L, Kluczyk A, Janecka A. Design and characterization of opioid ligands based on cycle-in-macrocycle scaffold. Bioorg Med Chem 2017; 25:2399-2405. [DOI: 10.1016/j.bmc.2017.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
37
|
Abstract
Unusual amino acids are fundamental building blocks of modern medicinal chemistry. The combination of readily functionalized amine and carboxyl groups attached to a chiral central core along with one or two potentially diverse side chains provides a unique three-dimensional structure with a high degree of functionality. This makes them invaluable as starting materials for syntheses of complex molecules, highly diverse elements for SAR campaigns, integral components of peptidomimetic drugs, and potential drugs on their own. This Perspective highlights the diversity of unnatural amino acid structures found in hit-to-lead and lead optimization campaigns and clinical stage and approved drugs, reflecting their increasingly important role in medicinal chemistry.
Collapse
Affiliation(s)
- Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland Australia 4072
| |
Collapse
|
38
|
Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J Med Chem 2016; 59:8381-97. [PMID: 27556704 DOI: 10.1021/acs.jmedchem.6b00748] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.
Collapse
Affiliation(s)
- András Váradi
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Gina F Marrone
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Travis C Palmer
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ankita Narayan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Márton R Szabó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Valerie Le Rouzic
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Steven G Grinnell
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Joan J Subrath
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Evelyn Warner
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Sanjay Kalra
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Amanda Hunkele
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jeremy Pagirsky
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jessica M Medina
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jin Xu
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ying-Xian Pan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Gavril W Pasternak
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jay P McLaughlin
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Susruta Majumdar
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| |
Collapse
|
39
|
The behavioral effects of a mixed efficacy antinociceptive peptide, VRP26, following chronic administration in mice. Psychopharmacology (Berl) 2016; 233:2479-87. [PMID: 27117141 PMCID: PMC5068912 DOI: 10.1007/s00213-016-4296-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE VRP26 displays mu opioid receptor agonist and delta opioid receptor antagonist activity in vitro, a pharmacological profile purported to produce reduced tolerance, dependence, and rewarding effects. We hypothesized that VRP26 would display reduced adverse effects after chronic administration as compared with the traditional opioid analgesic fentanyl. OBJECTIVE The aim of this study is to explore the development of tolerance, dependence, and conditioned place preference of VRP26 as compared with the traditional opioid analgesic fentanyl. METHODS The antinociceptive effects of VRP26 and fentanyl were assessed using the mouse warm water tail withdrawal (WWTW) assay. Measurement of antinociceptive tolerance and physical dependence occurred after 7 days of continuous administration of either fentanyl (0.3 mg/kg/day) or VRP26 (10 mg/kg/day); tolerance was measured by a shift in the antinociceptive dose response curve in the WWTW assay. Physical dependence was determined by observation of withdrawal symptoms after precipitated withdrawal. Rewarding effects were measured by the ability of VRP26 or fentanyl to produce conditioned place preference. RESULTS Fentanyl produced significant tolerance and dependence, as well as significant conditioned place preference. VRP26 produced neither tolerance nor physical dependence, nor did it produce significant conditioned place preference. CONCLUSIONS These results suggest that chronic treatment with VRP26 may produce less tolerance or physical dependence than chronic treatment with clinically available mu opioid analgesics such as fentanyl. Additionally, VRP26 produces less rewarding effects than fentanyl. This desirable in vivo profile may be due to the mixed efficacy nature of VRP26 and could provide the framework for safer opioid analgesics.
Collapse
|
40
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
41
|
Harland AA, Bender AM, Griggs NW, Gao C, Anand JP, Pogozheva ID, Traynor JR, Jutkiewicz EM, Mosberg HI. Effects of N-Substitutions on the Tetrahydroquinoline (THQ) Core of Mixed-Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Ligands. J Med Chem 2016; 59:4985-98. [PMID: 27148755 PMCID: PMC4885601 DOI: 10.1021/acs.jmedchem.6b00308] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
N-Acetylation of the tetrahydroquinoline (THQ) core of a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands increases DOR affinity, resulting in ligands with balanced MOR and DOR affinities. We report a series of N-substituted THQ analogues that incorporate various carbonyl-containing moieties to maintain DOR affinity and define the steric and electronic requirements of the binding pocket across the opioid receptors. 4h produced in vivo antinociception (ip) for 1 h at 10 mg/kg.
Collapse
Affiliation(s)
- Aubrie A Harland
- Interdepartmental Program in Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Aaron M Bender
- Interdepartmental Program in Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nicholas W Griggs
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Chao Gao
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jessica P Anand
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Emily M Jutkiewicz
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Henry I Mosberg
- Interdepartmental Program in Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Komatsu T, Katsuyama S, Nagase H, Mizoguchi H, Sakurada C, Tsuzuki M, Sakurada S, Sakurada T. Intrathecal morphine-3-glucuronide-induced nociceptive behavior via Delta-2 opioid receptors in the spinal cord. Pharmacol Biochem Behav 2016; 140:68-74. [DOI: 10.1016/j.pbb.2015.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
|
43
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
44
|
Deekonda S, Cole J, Sunna S, Rankin D, Largent-Milnes TM, Davis P, BassiriRad NM, Lai J, Vanderah TW, Porecca F, Hruby VJ. Enkephalin analogues with N-phenyl-N-(piperidin-2-ylmethyl)propionamide derivatives: Synthesis and biological evaluations. Bioorg Med Chem Lett 2016; 26:222-7. [PMID: 26611918 PMCID: PMC4873255 DOI: 10.1016/j.bmcl.2015.10.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
N-Phenyl-N-(piperidin-2-ylmethyl)propionamide based bivalent ligands are unexplored for the design of opioid based ligands. Two series of hybrid molecules bearing N-phenyl-N-(piperidin-2-ylmethyl)propionamide derived small molecules conjugated with an enkephalin analogues with and without a linker (β-alanine) were designed and synthesized. Both bivalent ligand series exhibited remarkable binding affinities from nanomolar to subnanomolar range at both μ and δ opioid receptors and displayed potent agonist activities as well. The replacement of Tyr with Dmt and introduction of a linker between the small molecule and enkephalin analogue resulted in highly potent ligands. Both series of ligands showed excellent binding affinities at both μ (0.6-0.9nM) and δ (0.2-1.2nM) opioid receptors respectively. Similarly, these bivalent ligands exhibited potent agonist activities in both MVD and GPI assays. Ligand 17 was evaluated for in vivo antinociceptive activity in non-injured rats following spinal administration. Ligand 17 was not significantly effective in alleviating acute pain. The most likely explanations for this low intrinsic efficacy in vivo despite high in vitro binding affinity, moderate in vitro activity are (i) low potency suggesting that higher doses are needed; (ii) differences in experimental design (i.e. non-neuronal, high receptor density for in vitro preparations versus CNS site of action in vitro); (iii) pharmacodynamics (i.e. engaging signalling pathways); (iv) pharmacokinetics (i.e. metabolic stability). In summary, our data suggest that further optimisation of this compound 17 is required to enhance intrinsic antinociceptive efficacy.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Jacob Cole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Sydney Sunna
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Neemah M BassiriRad
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Frank Porecca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
45
|
Váradi A, Palmer TC, Notis Dardashti R, Majumdar S. Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles. Molecules 2015; 21:E19. [PMID: 26703561 PMCID: PMC4782750 DOI: 10.3390/molecules21010019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022] Open
Abstract
Multicomponent reactions (MCRs) are extremely popular owing to their facile execution, high atom-efficiency and the high diversity of products. MCRs can be used to access various heterocycles and highly functionalized scaffolds, and thus have been invaluable tools in total synthesis, drug discovery and bioconjugation. Traditional isocyanide-based MCRs utilize an external nucleophile attacking the reactive nitrilium ion, the key intermediate formed in the reaction of the imine and the isocyanide. However, when reactants with multiple nucleophilic groups (bisfunctional reactants) are used in the MCR, the nitrilium intermediate can be trapped by an intramolecular nucleophilic attack to form various heterocycles. The implications of nitrilium trapping along with widely applied conventional isocyanide-based MCRs in drug design are discussed in this review.
Collapse
Affiliation(s)
- András Váradi
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Travis C Palmer
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | | | - Susruta Majumdar
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
46
|
Multitarget opioid ligands in pain relief: New players in an old game. Eur J Med Chem 2015; 108:211-228. [PMID: 26656913 DOI: 10.1016/j.ejmech.2015.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022]
Abstract
Still nowadays pain is one of the most common disabling conditions and yet it remains too often unsolved. Analgesic opioid drugs, and mainly MOR agonists such as morphine, are broadly employed for pain management. MOR activation, however, has been seen to cause not only analgesia but also undesired side effects. A potential pain treatment option is represented by the simultaneous targeting of different opioid receptors. In fact, ligands possessing multitarget capabilities led to an improved pharmacological fingerprint. This review focuses on the examination of multitarget opioid ligands which have been distinguished in peptide and non-peptide and further listed as bivalent and bifunctional ligands. Moreover, the potential of these compounds, both as analgesic drugs and pharmacological tools to explore heteromer receptors, has been stressed.
Collapse
|
47
|
Harland AA, Yeomans L, Griggs NW, Anand JP, Pogozheva ID, Jutkiewicz EM, Traynor JR, Mosberg HI. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities. J Med Chem 2015; 58:8952-69. [PMID: 26524472 DOI: 10.1021/acs.jmedchem.5b01270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.
Collapse
Affiliation(s)
- Aubrie A Harland
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Larisa Yeomans
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nicholas W Griggs
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jessica P Anand
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Irina D Pogozheva
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Emily M Jutkiewicz
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Henry I Mosberg
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
48
|
Deekonda S, Wugalter L, Rankin D, Largent-Milnes TM, Davis P, Wang Y, Bassirirad NM, Lai J, Kulkarni V, Vanderah TW, Porreca F, Hruby VJ. Design and synthesis of novel bivalent ligands (MOR and DOR) by conjugation of enkephalin analogues with 4-anilidopiperidine derivatives. Bioorg Med Chem Lett 2015; 25:4683-8. [PMID: 26323872 PMCID: PMC4642889 DOI: 10.1016/j.bmcl.2015.07.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
Abstract
We describe the design and synthesis of novel bivalent ligands based on the conjugation of 4-anilidopiperidine derivatives with enkephalin analogues. The design of non-peptide analogues is explored with 5-amino substituted (tetrahydronaphthalen-2yl) methyl containing 4-anilidopiperidine derivatives, while non-peptide-peptide ligands are explored by conjugating the C-terminus of enkephalin analogues (H-Xxx-DAla-Gly-Phe-OH) to the amino group of 4-anilidopiperidine small molecule derivatives with and without a linker. These novel bivalent ligands are evaluated for biological activities at μ and δ opioid receptors. They exhibit very good affinities at μ and δ opioid receptors, and potent agonist activities in MVD and GPI assays. Among these the lead bivalent ligand 17 showed excellent binding affinities (0.1 nM and 0.5 nM) at μ and δ opioid receptors respectively, and was found to have very potent agonist activities in MVD (56 ± 5.9 nM) and GPI (4.6 ± 1.9 nM) assays. In vivo the lead bivalent ligand 17 exhibited a short duration of action (<15 min) comparable to 4-anilidopiperidine derivatives, and moderate analgesic activity. The ligand 17 has limited application against acute pain but may have utility in settings where a highly reversible analgesic is required.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - Lauren Wugalter
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Yue Wang
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Vinod Kulkarni
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA.
| |
Collapse
|
49
|
Váradi A, Palmer TC, Haselton N, Afonin D, Subrath JJ, Le Rouzic V, Hunkele A, Pasternak GW, Marrone GF, Borics A, Majumdar S. Synthesis of Carfentanil Amide Opioids Using the Ugi Multicomponent Reaction. ACS Chem Neurosci 2015; 6:1570-7. [PMID: 26148793 DOI: 10.1021/acschemneuro.5b00137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a novel approach to synthesize carfentanil amide analogues utilizing the isocyanide-based four-component Ugi multicomponent reaction. A small library of bis-amide analogues of carfentanil was created using N-alkylpiperidones, aniline, propionic acid, and various aliphatic isocyanides. Our lead compound showed high affinity for mu (MOR) and delta opioid receptors (DOR) with no appreciable affinity for kappa (KOR) receptors in radioligand binding assays. The compound was found to be a mixed MOR agonist/partial DOR agonist in [(35)S]GTPγS functional assays, and it showed moderate analgesic potency in vivo. The compound showed no visible signs of physical dependence or constipation in mice. In addition, it produced less respiratory depression than morphine. Most mixed MOR/DOR opioids reported in the literature are peptides and thereby systemically inactive. Our approach utilizing a multicomponent reaction has the promise to deliver potent and efficacious small-molecule analgesics with potential clinical utility.
Collapse
Affiliation(s)
- András Váradi
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Travis C. Palmer
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Nathan Haselton
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Daniel Afonin
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Joan J. Subrath
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Valerie Le Rouzic
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Amanda Hunkele
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gavril W. Pasternak
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gina F. Marrone
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Attila Borics
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary H-6726
| | - Susruta Majumdar
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
50
|
Bender AM, Griggs NW, Anand JP, Traynor JR, Jutkiewicz EM, Mosberg HI. Asymmetric synthesis and in vitro and in vivo activity of tetrahydroquinolines featuring a diverse set of polar substitutions at the 6 position as mixed-efficacy μ opioid receptor/δ opioid receptor ligands. ACS Chem Neurosci 2015; 6:1428-35. [PMID: 25938166 DOI: 10.1021/acschemneuro.5b00100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We previously reported a small series of mixed-efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist peptidomimetics featuring a tetrahydroquinoline scaffold and showed the promise of this series as effective analgesics after intraperitoneal administration in mice. We report here an expanded structure-activity relationship study of the pendant region of these compounds and focus in particular on the incorporation of heteroatoms into this side chain. These analogues provide new insight into the binding requirements for this scaffold at MOR, DOR, and the κ opioid receptor (KOR), and several of them (10j, 10k, 10m, and 10n) significantly improve upon the overall MOR agonist/DOR antagonist profile of our previous compounds. In vivo data for 10j, 10k, 10m, and 10n are also reported and show the antinociceptive potency and duration of action of compounds 10j and 10m to be comparable to those of morphine.
Collapse
Affiliation(s)
- Aaron M. Bender
- Interdepartmental Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica P. Anand
- Department of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emily M. Jutkiewicz
- Department of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Interdepartmental Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|