1
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
2
|
Liu Y, Zhou Q, Huo Y, Sun X, Hu J. Recent advances in developing modified C14 side chain pleuromutilins as novel antibacterial agents. Eur J Med Chem 2024; 269:116313. [PMID: 38503168 DOI: 10.1016/j.ejmech.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Owing to the increasing resistance to most existing antimicrobial drugs, research has shifted towards developing novel antimicrobial agents with mechanisms of action distinct from those of current clinical options. Pleuromutilins are antibiotics known for their distinct mechanism of action, inhibiting bacterial protein synthesis by binding to the peptidyl transferase center of the ribosome. Recent studies have revealed that pleuromutilin derivatives can disrupt bacterial cell membranes, thereby enhancing antibacterial efficacy. Both marketed pleuromutilin derivatives and those in clinical trials have been developed by structurally modifying the pleuromutilin C14 side chain to improve their antimicrobial activity. Therefore, this review aims to review advancement in the chemical structural characteristics, antibacterial activities, and structure-activity relationship studies of pleuromutilins, specifically focusing on modifications made to the C14 side chain in recent years. These findings provide a valuable reference for future research and development of pleuromutilins.
Collapse
Affiliation(s)
- Yue Liu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Qinjiang Zhou
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yiwen Huo
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Xiujuan Sun
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jinxing Hu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
3
|
Heidtmann CV, Fejer AR, Stærk K, Pedersen M, Asmussen MG, Hertz FB, Prabhala BK, Frimodt-Møller N, Klitgaard JK, Andersen TE, Nielsen CU, Nielsen P. Hit-to-Lead Identification and Validation of a Triaromatic Pleuromutilin Antibiotic Candidate. J Med Chem 2024; 67:3692-3710. [PMID: 38385364 DOI: 10.1021/acs.jmedchem.3c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Herein, we report the hit-to-lead identification of a drug-like pleuromutilin conjugate 16, based on a triaromatic hit reported in 2020. The lead arose as the clear candidate from a hit-optimization campaign in which Gram-positive antibacterial activity, solubility, and P-gp affinity were optimized. Conjugate 16 was extensively evaluated for its in vitro ADMET performance which, apart from solubility, was overall on par with lefamulin. This evaluation included Caco-2 cell permeability, plasma protein binding, hERG inhibition, cytotoxicity, metabolism in microsomes and CYP3A4, resistance induction, and time-kill kinetics. Intravenous pharmacokinetics of 16 proved satisfactory in both mice and pigs; however, oral bioavailability was limited likely due to insufficient solubility. The in vivo efficacy was evaluated in mice, systemically infected with Staphylococcus aureus, where 16 showed rapid reduction in blood bacteriaemia. Through our comprehensive studies, lead 16 has emerged as a highly promising and safe antibiotic candidate for the treatment of Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Christoffer V Heidtmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Andreas R Fejer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kristian Stærk
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Maria Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Marco G Asmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frederik B Hertz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Janne K Klitgaard
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
- Department of Biochemistry and Molecular Biology, Research Unit of Molecular Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Thomas E Andersen
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Carsten U Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
4
|
Zhang J, Liu Q, Zhao H, Li G, Yi Y, Shang R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure-Activity Relationship Model. Int J Mol Sci 2024; 25:2256. [PMID: 38396934 PMCID: PMC10888563 DOI: 10.3390/ijms25042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The quantitative structure-activity relationship (QSAR) is one of the most popular methods for the virtual screening of new drug leads and optimization. Herein, we collected a dataset of 955 MIC values of pleuromutilin derivatives to construct a 2D-QSAR model with an accuracy of 80% and a 3D-QSAR model with a non-cross-validated correlation coefficient (r2) of 0.9836 and a cross-validated correlation coefficient (q2) of 0.7986. Based on the obtained QSAR models, we designed and synthesized pleuromutilin compounds 1 and 2 with thiol-functionalized side chains. Compound 1 displayed the highest antimicrobial activity against both Staphylococcus aureus ATCC 29213 (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) < 0.0625 μg/mL. These experimental results confirmed that the 2D and 3D-QSAR models displayed a high accuracy of the prediction function for the discovery of lead compounds from pleuromutilin derivatives.
Collapse
Affiliation(s)
- Jiaming Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Haoxia Zhao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Guiyu Li
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| |
Collapse
|
5
|
Lavekar AG, Thakare R, Saima, Equbal D, Chopra S, Sinha AK. Indole-based aryl sulfides target the cell wall of Staphylococcus aureus without detectable resistance. Drug Dev Res 2024; 85:e22123. [PMID: 37840429 DOI: 10.1002/ddr.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Sulfur-containing classes of the scaffold "Arylthioindoles" have been evaluated for antibacterial activity; they demonstrated excellent potency against methicillin-resistant Staphylococcus aureus (MRSA) as well as against vancomycin-resistant strains and a panel of clinical isolates of resistant strains. In this study, we have elucidated the mechanism of action of lead compounds, wherein they target the cell wall of S. aureus. Further, S. aureus failed to develop resistance against two lead compounds tested in a serial passage experiment in the presence of the compounds over a period of 40 days. Both the compounds demonstrated comparable in vivo efficacy with vancomycin in a neutropenic mice thigh infection model. The results of these antibacterial activities emphasize the excellent potential of thioethers for developing novel antibiotics and may fill in as a target for the adjustment of accessible molecules to develop new powerful antibacterial agents with fewer side effects.
Collapse
Affiliation(s)
- Aditya G Lavekar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ritesh Thakare
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Department of Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saima
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- School of Advanced Chemical Sciences, Solan, Himachal Pradesh, India
| | - Danish Equbal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Liu Q, Zhang H, Yi Y, Wang P, Pu W, Wang S, Shang R. Synthesis and evaluation of novel pleuromutilin derivatives targeting the 50S ribosomal subunit for antibacterial ability. Eur J Med Chem 2023; 262:115882. [PMID: 37879170 DOI: 10.1016/j.ejmech.2023.115882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Multidrug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus, have become a major global public health concern. Therefore, developing new antibiotics that do not possess cross-resistance for the currently available antibiotics is critical. Herein, we synthesized a novel class of pleuromutilin derivatives containing substituted triazine with improved antibacterial activity. Among these derivatives, 6d, which contains 4-dimethylamino-1,3,5-triazine in the side chain of pleuromutilin, exhibited highly promising antimicrobial activity and mitigated antibiotic resistance. The high antibacterial potency of 6d was further supported by docking model analysis and green fluorescent protein inhibition assay. Additionally, cytotoxicity and acute oral toxicity evaluation and in vivo mouse systemic infection experiments revealed that 6d possessed tolerable toxicity and promising therapeutic efficacy.
Collapse
Affiliation(s)
- Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - YunPeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, 202 Gongyebeilu, Jinan, 250023, Shandong, China
| | - Panpan Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
7
|
Zhou Y, Yi Y, Yang J, Zhang H, Liu Q, Wang S, Pu W, Shang R. Anti-methicillin-resistant Staphylococcus aureus activity and safety evaluation of 14-O-[(5-ethoxycarbonyl-4,6-dimethylpyrimidine-2-yl) thioacetyl] mutilin (EDT). Sci Rep 2023; 13:15267. [PMID: 37709940 PMCID: PMC10502144 DOI: 10.1038/s41598-023-42621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have threated the public health worldwide, which emphasizes the urgent need for new drugs with novel mechanism of actions. 14-O-[(5-ethoxycarbonyl-4,6-dimethylpyrimidine-2-yl) thioacetyl] mutilin (EDT) is a pleuromutilin compound with high activity against several Gram-positive bacteria in vitro and in vivo. This study aimed to verifying the potential anti-MRSA activity and evaluating the safety of EDT. In in vitro antibacterial activity assays, EDT exhibited potent antibacterial activity against MRSA isolated from clinic (minimum inhibitory concentration = 0.0313-0.125 μg/mL), increased post-antibiotic effect (PAE) values and limited potential for the development of resistance. Docking model and green fluorescent protein (GFP) inhibition assay further elucidated the higher antibacterial activities of EDT via mechanism of action. In safety evaluation, EDT exhibited low cytotoxic effect and acute oral toxicity in mice and avoided to significantly increase the number of revertant colonies of six tested strains in the Ames study. Furthermore, EDT displayed a moderate inhibitory effect on CYP3A4 and moderate stability in mouse and human liver microsomes, providing a promising agent for the development of new antimicrobial candidate.
Collapse
Affiliation(s)
- Yuhang Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250023, People's Republic of China
| | - Jing Yang
- Gansu Analysis and Research Center, Lanzhou, 730000, People's Republic of China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
8
|
Han MJ, Pan M, Xiao G, Yuan Y, Chen S, Zou Z. Assessing Boron-Pleuromutilin AN11251 for the Development of Antibacterial Agents. Molecules 2023; 28:4628. [PMID: 37375183 DOI: 10.3390/molecules28124628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Pleuromutilins are a group of antibiotics derived from the naturally occurring compound. The recent approval of lefamulin for both intravenous and oral doses in humans to treat community-acquired bacterial pneumonia has prompted investigations in modifying the structure to broaden the antibacterial spectrum, enhance the activity, and improve the pharmacokinetic properties. AN11251 is a C(14)-functionalized pleuromutilin with a boron-containing heterocycle substructure. It was demonstrated to be an anti-Wolbachia agent with therapeutic potential for Onchocerciasis and lymphatic filariasis. Here, the in vitro and in vivo PK parameters of AN11251 were measured including PPB, intrinsic clearance, half-life, systemic clearance, and volume of distribution. The results indicate that the benzoxaborole-modified pleuromutilin possesses good ADME and PK properties. AN11251 has potent activities against the Gram-positive bacterial pathogens tested, including various drug-resistant strains, and against the slow-growing mycobacterial species. Finally, we employed PK/PD modeling to predict the human dose for treatment of disease caused by Wolbachia, Gram-positive bacteria, or Mycobacterium tuberculosis, which might facilitate the further development of AN11251.
Collapse
Affiliation(s)
- Ming-Jie Han
- Department of DMPK & Tox, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing 100192, China
| | - Miaomiao Pan
- Department of TB Biology, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing 100192, China
| | - Genhui Xiao
- Department of TB Biology, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing 100192, China
| | - Ying Yuan
- Department of TB Biology, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing 100192, China
| | - Shawn Chen
- Department of TB Biology, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing 100192, China
| | - Zhiyang Zou
- Department of DMPK & Tox, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing 100192, China
| |
Collapse
|
9
|
Yong C, Yu J, Wu C, Zhang X, Li Y, Xie C, He X, Liu D, Wang Z, Lai P, Zhang Y. Design, Synthesis, and Biological Activity of Thioguanine-Modified Pleuromutilin Derivatives. ACS Med Chem Lett 2023; 14:737-745. [PMID: 37312858 PMCID: PMC10258896 DOI: 10.1021/acsmedchemlett.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/02/2023] [Indexed: 06/15/2023] Open
Abstract
Antibiotic overuse has caused the increasingly serious problem of bacterial drug resistance, with numerous marketed antibiotics exhibiting significantly reduced activity against drug-resistant bacteria. Therefore, there is urgent demand for the development of novel antibiotics. Pleuromutilin is a tricyclic diterpene exhibiting antibacterial activity against Gram-positive bacteria and is currently considered the most promising natural antibiotic. In this study, novel pleuromutilin derivatives were designed and synthesized by introducing thioguanine units, and their antibacterial activities against drug-resistant strains were evaluated in vitro and in vivo. Compound 6j was observed to have a rapid bactericidal effect, low cytotoxicity, and potent antibacterial activity. The in vitro results suggest that 6j has a significant therapeutic effect on local infections, and its activity is equal to that of retapamulin, an anti-Staphylococcus aureus pleuromutilin derivative.
Collapse
Affiliation(s)
- Can Yong
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Jianglin Yu
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Chunxia Wu
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Xiujuan Zhang
- Department
of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yun Li
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Chuan Xie
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Xiaolong He
- Department
of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Dongfang Liu
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhouyu Wang
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Peng Lai
- Department
of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuanyuan Zhang
- Department
of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
10
|
Wang J, Hu YH, Zhou KX, Wang W, Li F, Li K, Zhang GY, Tang YZ. Design, Synthesis and Biological Evaluation of Novel Pleuromutilin Derivatives Containing 6-Chloro-1-R-1 H-pyrazolo[3,4- d]pyrimidine-4-amino Side Chain. Molecules 2023; 28:molecules28093975. [PMID: 37175382 PMCID: PMC10180054 DOI: 10.3390/molecules28093975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Two series of pleuromutilin derivatives were designed and synthesized as inhibitors against Staphylococcus aureus (S. aureus). 6-chloro-4-amino-1-R-1H-pyrazolo[3,4-d]pyrimidine or 4-(6-chloro-1-R-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-phenylthiol were connected to pleuromutilin. A diverse array of substituents was introduced at the N-1 position of the pyrazole ring. The in vitro antibacterial activities of these semisynthetic derivatives were evaluated against two standard strains, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Staphylococcus aureus (S. aureus), ATCC 29213 and two clinical S. aureus strains (144, AD3) using the broth dilution method. Compounds 12c, 19c and 22c (MIC = 0.25 μg/mL) manifested good in vitro antibacterial ability against MRSA which was similar to that of tiamulin (MIC = 0.5 μg/mL). Among them, compound 22c killed MRSA in a time-dependent manner and performed faster bactericidal kinetics than tiamulin in time-kill curves. In addition, compound 22c exhibited longer PAE than tiamulin, and showed no significant inhibition on the cell viability of RAW 264.7, Caco-2 and 16-HBE cells at high doses (≤8 μg/mL). The neutropenic murine thigh infection model study revealed that compound 22c displayed more effective in vivo bactericidal activity than tiamulin in reducing MRSA load. The molecular docking studies indicated that compound 22c was successfully localized inside the binding pocket of 50S ribosomal, and four hydrogen bonds played important roles in the binding of them.
Collapse
Affiliation(s)
- Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yu-Han Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Fei Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ke Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
11
|
Wu Z, Zhu X, Hong A, He G, Wang Z, Xu Q, Hu Z, Wu X, Wang Y, Chen Q, Zhao X, Li L, Deng X. Discovery of urea-based pleuromutilin derivatives as potent gram-positive antibacterial agents. Bioorg Chem 2023; 136:106547. [PMID: 37105000 DOI: 10.1016/j.bioorg.2023.106547] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
There is an urgent need to discover new antibacterial drugs and provide new treatment options for clinical antimicrobial resistance (AMR) pathogen infections. Inspired by the structural insights from analyzing the co-crystal structure of lefamulin with the ribosomes of S. aureus, a series of novel pleuromutilin derivatives of phenylene sulfide incorporated with urea moiety were designed and synthesized. The structure-activity relationship (SAR) study revealed that derivatives with urea in the meta position of phenylene sulfide had optimal antibacterial activities in vitro. Among them, 21h was the most potent one against Methicillin-resistant Staphylococcus aureus (MRSA) and clinical AMR Gram-positive bacteria with minimum inhibitory concentrations (MICs) in the range of 0.00195-0.250 μg/mL. And it possessed low resistance frequency, prolonged Post-Antibiotic Effect and the capability to overcome lefamulin-induced resistance. Furthermore, 21h exhibited potent antibacterial activity in vivo in both the thigh infection model and trauma infection model, representing a promising lead for the development of new antibiotics against Gram-positive pathogens, especially for AMR bacteria.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoli Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Anjin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Guanghui He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiyu Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaobing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiufang Chen
- Women and Children's Hospital, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
12
|
Xia J, Xin L, Li J, Tian L, Wu K, Zhang S, Yan W, Li H, Zhao Q, Liang C. Discovery of Quaternized Pyridine-Thiazole-Pleuromutilin Derivatives with Broad-Spectrum Antibacterial and Potent Anti-MRSA Activity. J Med Chem 2023; 66:5061-5078. [PMID: 37051724 DOI: 10.1021/acs.jmedchem.2c02135] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The quaternization of compounds has emerged as a promising molecular design strategy for the development of antibiotics. Herein, we report the design, synthesis, antibacterial activities, and structure-activity relationships of a series of novel pleuromutilin derivatives containing a quaternary amine C-14 side chain. Most of these derivatives exhibited broad-spectrum antibacterial activity against the tested bacteria. 10b was the most effective antibacterial agent that displayed excellent antibacterial activity against five clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, remarkable antimycoplasma activity, rapid bactericidal effects, and a strong ability to damage bacterial biofilms. Further mechanistic studies indicated that 10b destroyed bacterial cell membranes to exert its antibacterial effects. Moreover, 10b exhibited high survival protection and potent in vivo antibacterial efficacy (ED50 = 4.94 mg/kg) in a mouse model of systemic MRSA infection. These findings suggest that 10b is a promising candidate for the treatment of multi-drug-resistant infectious diseases, especially MRSA infections.
Collapse
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Liang Xin
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Jingyi Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Kangxiong Wu
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Shaojun Zhang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Wenjing Yan
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Han Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Qianqian Zhao
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Chengyuan Liang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
13
|
Zhang ZQ, Liu J, Zhang GY, Li B, Li K, Jin Z, Bai X, Tang YZ. Design, synthesis, antibacterial activity evaluation and molecular docking study of pleuromutilin derivatives bearing amide side chains. Chem Biol Drug Des 2022; 100:564-579. [PMID: 35730249 DOI: 10.1111/cbdd.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
A seize of pleuromutilin derivatives containing amide side chains were designed and synthesized as potential antibiotics against Methicillin-resistant Staphylococcus aureus (MRSA). Among all target compounds (compounds 11-30), compound 25 was found to have the strongest antibacterial activity against MRSA (minimum inhibitory concentration = 0.5 μg/ml). The result of the time-kill curves indicated that compound 25 could repress the growth of MRSA in vitro obviously (-3.72 log10 CFU/ml reduction). Furthermore, molecular docking studies demonstrated that compound 25 was localized in the binding pocket of 50S ribosomal subunit (ΔGb = -8.99 kcal/mol). Besides, compound 25 displayed low cytotoxicity to RAW 264.7 cells. The results suggested that compound 25 might be further developed into a novel antimicrobial agent against MRSA.
Collapse
Affiliation(s)
- Zhuo-Qi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu Bai
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Varlı M, Pham HT, Kim SM, Taş İ, Gamage CDB, Zhou R, Pulat S, Park SY, Sesal NC, Hur JS, Kang KB, Kim H. An acetonic extract and secondary metabolites from the endolichenic fungus Nemania sp. EL006872 exhibit immune checkpoint inhibitory activity in lung cancer cell. Front Pharmacol 2022; 13:986946. [PMID: 36160406 PMCID: PMC9495263 DOI: 10.3389/fphar.2022.986946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Endolichenic fungi (ELF), which live the inside the lichen thallus, contain many secondary metabolites that show various biological activities. Recent studies show that lichen and ELF secondary metabolites have antioxidant, antibacterial, antifungal, cytotoxic, and anticancer activities. Purpose: Here, the effects of an ELF extract and its bioactive compounds were investigated on the H1975 cell line focusing on immune checkpoint marker inhibition. Methods: An ELF was isolated from the host lichen Bryoria fuscescens (Gyelnik) Brodo and D. Hawksw and identified the species as Nemania sp. EL006872. The fungus was cultured on agar medium and acetonic extracts were obtained. Secondary metabolites radianspenes C and D, and dahliane D, were isolated from the crude extract. The biological effects of both the crude extract and the isolated secondary metabolites were evaluated in cell viability, qRT-PCR assays, flow cytometry analysis and western blotting. Results: The cell viability assay revealed that extracts from Nemania sp. EL006872 and the isolated secondary compounds had low cytotoxicity. The crude extract, radianspenes C and D, and dahliane D, suppressed expression of mRNA encoding PD-L1 and aromatic hydrocarbon receptor (AhR), and surface expression of PD-L1 protein by cells exposed to benzo[a] pyrene. Radianspenes C and D, and dahliane D, reduced expression of AhR, PD-L1, ICOSL, and GITRL proteins by H1975 lung cancer cells, as well as exerting anti-proliferative effects. Conclusion: Radianspenes C and D, and dahliane D, bioactive compounds isolated from Nemania sp. EL006872 ELF, have the potential for use as immunotherapy and immunoncology treatments.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Huong T. Pham
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Seong-Min Kim
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - İsa Taş
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | | | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, South Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
- *Correspondence: Hangun Kim,
| |
Collapse
|
15
|
Chai F, Wang J, Zhou KX, Wang SK, Liu YH, Jin Z, Tang YZ. Design, synthesis and biological evaluation of novel pleuromutilin derivatives possessing 4-aminothiophenol linker as promising antibacterial agents. Bioorg Chem 2022; 126:105859. [PMID: 35605553 DOI: 10.1016/j.bioorg.2022.105859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
A series of novel pleuromutilin derivatives containing 4-aminothiophenol moieties have been designed and synthesized as promising antibacterial agents against Methicillin-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these semisynthetic derivatives against 4 strains of S. aureus (MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144 and S. aureus AD3) was evaluated by the broth dilution method. Most of the synthesized derivatives displayed prominent in vitro activity (MIC ≤ 0.5 µg/mL). 12 Compounds possessed superior antibacterial activity against MRSA compared with valnemulin and retapamulin (MIC = 0.0625 µg/mL). Compounds 12, 16a, 16c and 19 exhibited the most effective antibacterial effect against MRSA (MIC = 0.015 µg/mL). Furthermore, the time-kill curves showed compounds 12 and 19 had a certain inhibitory effect against MRSA in vitro. Compounds 12 and 19 possessed longer PAE time (2.74 h and 3.11 h, respectively) than tiamulin (PAE = 2.04 h) against MRSA after exposure at 4 × MIC concentration for 2 h. Compounds 12 and 19 also displayed superior in vivo antibacterial efficacy (-1.20 log10 CFU/mL and -1.21 log10 CFU/mL, respectively) than tiamulin (-0.75 log10 CFU/mL) in reducing MRSA load in the mice thigh infection model. In addition, compound 19 had barely inhibitory effect on RAW 264.7 and 16HBE cells at 8 µg/mL. In molecular docking study, upon docking into the 50S ribosomal subunit, the binding free energy (ΔGb) of compound 12 and 19 was calculated to be -9.02 kcal/mol and -9.89 kcal/mol, respectively.
Collapse
Affiliation(s)
- Fei Chai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
16
|
Hu Y, Chen F, Zhou K, Zhang Z, Li F, Zhang J, Tang Y, Jin Z. In Vitro and In Vivo Antibacterial Activity, Toxicity and Resistance Analysis of Pleuromutilin Derivative Z33 against Methicillin-Resistant Staphylococcus aureus. Molecules 2022; 27:molecules27154939. [PMID: 35956888 PMCID: PMC9370166 DOI: 10.3390/molecules27154939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/10/2022] Open
Abstract
The novel pleuromutilin derivative, which showed excellent in vitro antibacterial activity against MRSA, 22-(2-(2-(4-((4-(4-nitrophenyl)piperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetamido)phenyl)thioacety-l-yl-22-deoxypleuromutilin (Z33), was synthesized and characterized in our previous work. In this study, the preliminary pharmacodynamics and safety of Z33 were further evaluated. In in vitro antibacterial activity assays, Z33 was found to be a potent bactericidal antibiotic against MRSA that induced dose-dependent growth inhibition and long-term post-antibiotic effect (PAE). The drug-resistance test demonstrated that Z33 possessed a narrow mutant selection window and lower propensities to select resistance than that of tiamulin. Cytochrome P450 (CYP450) inhibition assay determined that the inhibitory effect of Z33 was similar to that of tiamulin against the activity of CYP3A4, and was lower than that of tiamulin on the activity of CYP2E1. Toxicity determination showed that both Z33 and tiamulin displayed low cytotoxicity of RAW264.7 cells. Furthermore, Z33 was found to be a high-security compound with a 50% lethal dose (LD50) above 5000 mg/kg in the acute oral toxicity test in mice. In an in vivo antibacterial activity test, Z33 displayed better therapeutic effectiveness than tiamulin in the neutropenic mouse thigh infection model. In summary, Z33 was worthy of further development as a highly effective and safe antibiotic agent against MRSA infection.
Collapse
Affiliation(s)
- Yuhan Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Kexin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Fei Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Jianfeng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Youzhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.T.); (Z.J.); Fax: +86-20-85280665 (Y.T.)
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.T.); (Z.J.); Fax: +86-20-85280665 (Y.T.)
| |
Collapse
|
17
|
Zhou Y, Yi Y, Wang J, Yang Z, Liu Q, Pu W, Shang R. Discovery of novel pleuromutilin derivatives as potent antibacterial agents. Eur J Med Chem 2022; 237:114403. [PMID: 35472849 DOI: 10.1016/j.ejmech.2022.114403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022]
Abstract
Novel pleuromutilin derivatives with 3,4-dihydropyrimidin and pyrimidine moieties were designed, synthesized, and evaluated for their antibacterial activities. Most of the synthesized derivatives, especially the compounds bearing the pyrimidine moieties, exhibited potent antibacterial activities against methicillin-resistant Staphylococcus aureus BNCC 337371 (MRSA-337371), Staphylococcus aureus ATCC 25923 (S. aureus-25923) and methicillin-resistant Staphylococcus epidermidis ATCC 51625 (MRSE-51625). Compounds 5a, 5g and 5h exerted the excellent antibacterial activities and selected to evaluate their bacterial killing kinetics. Compound 5h displayed the highest antibacterial activities with bacteriostatic activities against MRSA and further evaluated its efficacy in mouse systemic infection. The results showed that compound 5h exhibited potent in vivo antibacterial effects to significantly improve the survival rate of mice (ED50 = 16.14 mg/kg), reduce the bacterial load and alleviate the pathological changes in the lungs of the affected mice. Furthermore, molecular docking studies revealed that the selected compounds successfully localized in the pocket of 50S ribosomal subunit and the formed hydrogen bonds were the main interaction.
Collapse
Affiliation(s)
- Yuhang Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, 202 Gongyebeilu Jinan, 250023, Shandong, China.
| | - Jiangkun Wang
- School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zheng Yang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
18
|
Zhang FL, Feng T. Diterpenes Specially Produced by Fungi: Structures, Biological Activities, and Biosynthesis (2010–2020). J Fungi (Basel) 2022; 8:jof8030244. [PMID: 35330246 PMCID: PMC8951520 DOI: 10.3390/jof8030244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Fungi have traditionally been a very rewarding source of biologically active natural products, while diterpenoids from fungi, such as the cyathane-type diterpenoids from Cyathus and Hericium sp., the fusicoccane-type diterpenoids from Fusicoccum and Alternaria sp., the guanacastane-type diterpenoids from Coprinus and Cercospora sp., and the harziene-type diterpenoids from Trichoderma sp., often represent unique carbon skeletons as well as diverse biological functions. The abundances of novel skeletons, biological activities, and biosynthetic pathways present new opportunities for drug discovery, genome mining, and enzymology. In addition, diterpenoids peculiar to fungi also reveal the possibility of differing biological evolution, although they have similar biosynthetic pathways. In this review, we provide an overview about the structures, biological activities, evolution, organic synthesis, and biosynthesis of diterpenoids that have been specially produced by fungi from 2010 to 2020. We hope this review provides timely illumination and beneficial guidance for future research works of scholars who are interested in this area.
Collapse
|
19
|
Fang HQ, Zeng J, Wang SK, Wang X, Chen F, Li B, Liu J, Jin Z, Liu YH, Tang YZ. Discovery of Novel Pleuromutilin Derivatives as Potent Antibacterial Agents for the Treatment of MRSA Infection. Molecules 2022; 27:931. [PMID: 35164203 PMCID: PMC8838415 DOI: 10.3390/molecules27030931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel pleuromutilin derivatives containing nitrogen groups on the side chain of C14 were synthesized under mild conditions. Most of the synthesized derivatives displayed potent antibacterial activities. Compound 9 was found to be the most active antibacterial derivative against MRSA (MIC = 0.06 μg/mL). Furthermore, the result of time-kill curves showed that compound 9 had a certain inhibitory effect against MRSA in vitro. Moreover, according to a surface plasmon resonance (SPR) study, compound 9 (KD = 1.77 × 10-8 M) showed stronger affinity to the 50S ribosome than tiamulin (KD = 2.50 × 10-8 M). The antibacterial activity of compound 9 was further evaluated in an MRSA-infected murine thigh model. Compared to the negative control group, tiamulin reduced MRSA load (~0.7 log10 CFU/mL), and compound 9 performed a treatment effect (~1.3 log10 CFU/mL). In addition, compound 9 was evaluated in CYP450 inhibition assay and showed only moderate in vitro CYP3A4 inhibition (IC50 = 2.92 μg/mL).
Collapse
Affiliation(s)
- Han-Qing Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
| | - Jie Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.-Q.F.); (J.Z.); (S.-K.W.); (X.W.); (F.C.); (B.L.); (J.L.); (Z.J.); (Y.-H.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
20
|
Peng F, Liu T, Cao X, Wang Q, Liu F, Liu L, He M, Xue W. Antiviral Activities of Novel Myricetin Derivatives Containing 1,3,4‐Oxadiazole Bisthioether. Chem Biodivers 2022; 19:e202100939. [DOI: 10.1002/cbdv.202100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Peng
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Tingting Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Xiao Cao
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Qifan Wang
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Fang Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Liwei Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Ming He
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Wei Xue
- Ministry of Education State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Guizhou University 550025 Guiyang CHINA
| |
Collapse
|
21
|
Ma F, Li J, Zhang S, Gu Y, Tan T, Chen W, Wang S, Xu H, Yang G, Lerner RA. Metal-Catalyzed One-Pot On-DNA Syntheses of Diarylmethane and Thioether Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05338] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Zhang Z, Zhang ZS, Wang X, Xi GL, Jin Z, Tang YZ. A click chemistry approach to pleuromutilin derivatives, evaluation of anti-MRSA activity and elucidation of binding mode by surface plasmon resonance and molecular docking. J Enzyme Inhib Med Chem 2021; 36:2087-2103. [PMID: 34823417 PMCID: PMC8635623 DOI: 10.1080/14756366.2021.1977931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/29/2022] Open
Abstract
Novel series of pleuromutilin analogs containing substituted 1,2,3-triazole moieties were designed, synthesised and assessed for their in vitro antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Initially, the in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD3, and 144) were tested by the broth dilution method. Most of the synthesised pleuromutilin analogs displayed potent activities. Among them, compounds 50, 62, and 64 (MIC = 0.5∼1 µg/mL) showed the most effective antibacterial activity and their anti-MRSA activity were further studied by the time-killing kinetics approach. Binding mode investigations by surface plasmon resonance (SPR) with 50S ribosome revealed that the selected compounds all showed obvious affinity for 50S ribosome (KD = 2.32 × 10-8∼5.10 × 10-5 M). Subsequently, the binding of compounds 50 and 64 to the 50S ribosome was further investigated by molecular modelling. Compound 50 had a superior docking mode with 50S ribosome, and the binding free energy of compound 50 was calculated to be -12.0 kcal/mol.
Collapse
Affiliation(s)
- Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhao-Sheng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gao-Lei Xi
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
23
|
Zhang Y, Xie C, Liu Y, Shang F, Shao R, Yu J, Wu C, Yao X, Liu D, Wang Z. Synthesis, biological activities and docking studies of pleuromutilin derivatives with piperazinyl urea linkage. J Enzyme Inhib Med Chem 2021; 36:764-775. [PMID: 33733986 PMCID: PMC7993385 DOI: 10.1080/14756366.2021.1900163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
Antibiotics resistance is becoming increasingly common, involving almost all antibiotics on the market. Diseases caused by drug resistant bacteria, such as MRSA, have high mortality and negatively affect public health. The development of new drugs would be an effective means of solving this problem. Modifications based on bioactive natural products could greatly shorten drug development time and improve success rate. Pleuromutilin, a natural product from the basidiomycete bacterial species, is a promising antibiotic candidate. In this study, a series of novel pleuromutilin derivatives possessing piperazinyl urea linkage were efficiently synthesised, and their antibacterial activities and bactericidal properties were evaluated via MIC, MBC and Time-kill kinetics assays. The results showed that all compounds exhibited potent activities against tested strains, especially MRSA strains with MIC values as low as 0.125 μg/mL; 8 times lower than that of marketed antibiotic Tiamulin. Docking studies indicate substituted piperazinyl urea derivatives could provide hydrogen bonds and initiate π-π stacking between molecules and surrounding residues.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
- Yibin Key Laboratory of Research and Application of Small Organic Chiral Molecules, Yibin Research Institute of Xihua University, Yibin, China
| | - Chuan Xie
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Yang Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Feng Shang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Rushiya Shao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Jing Yu
- Kampo Medicine Pharmacology Research Laboratory, Graduate School of Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama-shi, Japan
| | - Chunxia Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Xinghui Yao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Dongfang Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Zhouyu Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
- Yibin Key Laboratory of Research and Application of Small Organic Chiral Molecules, Yibin Research Institute of Xihua University, Yibin, China
| |
Collapse
|
24
|
Zuo XY, Gao H, Gao ML, Jin Z, Tang YZ. Antibacterial Activity of a Promising Antibacterial Agent: 22-(4-(2-(4-Nitrophenyl-piperazin-1-yl)-acetyl)-piperazin-1-yl)-22-deoxypleuromutilin. Molecules 2021; 26:3502. [PMID: 34201372 PMCID: PMC8227856 DOI: 10.3390/molecules26123502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 12/02/2022] Open
Abstract
A novel pleuromutilin derivative, 22-(4-(2-(4-nitrophenyl-piperazin-1-yl)-acetyl)-piperazin-1-yl)-22-deoxypleuromutilin (NPDM), was synthesized in our laboratory and proved excellent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). In this study, more methods were used to further study its preliminary pharmacological effect. The antibacterial efficacy and toxicity of NPDM were evaluated using tiamulin as the reference drug. The in vitro antibacterial activity study showed that NPDM is a potent bactericidal agent against MRSA that induced time-dependent growth inhibition and a concentration-dependent post-antibiotic effect (PAE). Toxicity determination showed that the cytotoxicity of NPDM was slightly higher than that of tiamulin, but the acute oral toxicity study proved that NPDM was a low-toxic compound. In an in vivo antibacterial effect study, NPDM exhibited a better therapeutic effect than tiamulin against MRSA in a mouse thigh infection model as well as a mouse systemic infection model with neutropenia. The 50% effective dose (ED50) of NPDM in a Galleria mellonella infection model was 50.53 mg/kg. The pharmacokinetic properties of NPDM were also measured, which showed that NPDM was a rapid elimination drug in mice.
Collapse
Affiliation(s)
- Xiang-Yi Zuo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.-Y.Z.); (H.G.); (M.-L.G.); (Z.J.)
| | - Hong Gao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.-Y.Z.); (H.G.); (M.-L.G.); (Z.J.)
| | - Mei-Ling Gao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.-Y.Z.); (H.G.); (M.-L.G.); (Z.J.)
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.-Y.Z.); (H.G.); (M.-L.G.); (Z.J.)
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.-Y.Z.); (H.G.); (M.-L.G.); (Z.J.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
25
|
Zhang GY, Zhang Z, Li K, Liu J, Li B, Jin Z, Liu YH, Tang YZ. Design, synthesis and biological evaluation of novel pleuromutilin derivatives containing piperazine and 1,2,3-triazole linker. Bioorg Chem 2020; 105:104398. [PMID: 33137559 DOI: 10.1016/j.bioorg.2020.104398] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023]
Abstract
A series of novel pleuromutilin derivatives containing piperazine ring, 1, 2, 3-triazoles and secondary amines on the side chain of C14 were synthesized under mild conditions via click reaction. The in vitro antibacterial activities of the synthesized derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, ATCC 29213 ,144 and AD3) and one strain of Escherichia coli (ATCC 25922) were evaluated by the broth dilution method. Among these derivatives, 22-[2-(4-((4-nitrophenyl piperazine)methyl)-1,2,3-triazol-1-yl)-1-(piperazine-1-yl) ethyl-1-one] deoxy pleuromutilin (compound 59) showed the most prominent in vitro antibacterial effect against MRSA (MIC = 1 μg/mL). Furthermore, compound 59 displayed more rapid bactericidal kinetic than tiamulin time-kill studies and possessed a longer PAE than tiamulin against MRSA in vitro. In addition, in vivo antibacterial activities of compound 59 against MRSA were further evaluated employing thigh infection model. And compound 59 (-8.89 log10 CFU/mL) displayed superior activities than tiamulin. Compound 59 was further evaluated in CYP450 inhibition assay and the results showed that it exhibited low to moderate inhibitory effects on CYP1A2, CYP2E1, CYP2D6 and CYP3A4 enzymes. The PK properties of compound 59 were then measured. The half-life (t1/2), clearance rate (Cl) and the area under the plasma concentration time curve (AUC0→∞) of compound 59 were 0.74 h, 0.29 L/h/kg and 46.28 μg·h/mL, respectively.
Collapse
Affiliation(s)
- Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
26
|
Zhang Z, Li K, Zhang GY, Tang YZ, Jin Z. Design, synthesis and biological activities of novel pleuromutilin derivatives with a substituted triazole moiety as potent antibacterial agents. Eur J Med Chem 2020; 204:112604. [PMID: 32731187 DOI: 10.1016/j.ejmech.2020.112604] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022]
Abstract
A series of novel pleuromutilin derivatives possessing 1,2,3-triazole moieties were synthesized via click reactions under mild conditions. The in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD 3, and 144) and 1 strain of E. coli (ATCC 25922) were tested by the broth dilution method. The majority of the synthesized derivatives displayed potent antibacterial activities against MRSA (MIC = 0.125-2 μg/mL). It was also found that most compounds had no significant inhibitory effect on the proliferation of RAW264.7 cells at the concentration of 8 μg/mL. Among these derivatives, compound 32 (∼1.71 log10 CFU/g) containing dimethylamine group side chain displayed more effective than tiamulin (∼0.77 log10 CFU/g) at the dose of 20 mg/kg in reducing MRSA load in thigh infected mice. Additionally, compound 32 (the survival rate was 50%) also displayed superior in vivo efficacy to that of tiamulin (the survival rate was 20%) in the mouse systemic model. Structure-activity relationship (SAR) studies resulted in compound 32 with the most potent in vitro and in vivo antibacterial activity among the series. Moreover, compound 32 was evaluated in CYP450 inhibition assay and showed moderate in vitro inhibition of CYP3A4 (IC50 = 6.148 μM).
Collapse
Affiliation(s)
- Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Fu Y, Yi Y, Fan Y, Shang R. Cytochrome P450 inhibition potential and initial genotoxic evaluation of 14-O-[(4,6-diaminopyrimidine-2-yl)thioacetyl] mutilin. Sci Rep 2020; 10:13474. [PMID: 32778735 PMCID: PMC7417534 DOI: 10.1038/s41598-020-70400-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/03/2020] [Indexed: 01/05/2023] Open
Abstract
14-O-[(4,6-Diaminopyrimidine-2-yl)thioacetyl] mutilin (DPTM) is a promising drug candidate with excellent antibacterial activity against Gram-positive bacteria. The present study was designed to characterize its Cytochrome P450 (CYP) enzymes inhibition activities and the genotoxicity with the standard Ames test. We determined the inhibitory effects of DPTM on CYP1A2, CYP2D1/6, CYP2E1, CYP2C11/9 and CYP3A/4 in rat liver microsomes (RLMs) and in human liver microsomes (HLMs). The mRNA expressions of the above CYP isoforms and their transcriptional regulators were also evaluated using the Hep G2 cell model. The results showed DPTM exhibited a moderate inhibitory potential against CYP3A/4 (IC50 values of 10 ± 2 and 8 ± 2 μM, respectively) and weak against the other CYP enzymes based on their IC50 values. Compared to the control, CYP isoforms and their transcriptional regulators mRNA expressions significantly increased when the Hep G2 cells were treated with DPTM for a certain period of time. In the Ames test, Salmonella strains TA97, TA98, TA100, TA102 and TA1535 were treated with or without the metabolic activation (S9). Analysis showed the average number of revertant colonies per plate was less in double in the groups treated with DPTM than that in the negative control plate and showed no dose-related increase.
Collapse
Affiliation(s)
- Yunxing Fu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Qilihe District, No. 335, Lanzhou, 730050, People's Republic of China.,Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, People's Republic of China
| | - Yunpeng Yi
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Qilihe District, No. 335, Lanzhou, 730050, People's Republic of China
| | - Yuan Fan
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Qilihe District, No. 335, Lanzhou, 730050, People's Republic of China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Qilihe District, No. 335, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
28
|
Sanad SMH, Ahmed AAM, Mekky AEM. Synthesis, in-vitro and in-silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch Pharm (Weinheim) 2020; 353:e1900309. [PMID: 31967349 DOI: 10.1002/ardp.201900309] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 11/07/2022]
Abstract
Efficient procedures are herein reported for the synthesis of novel hybrid thiazoles via a one-pot three-component protocol. The protocol involves the reaction of novel aldehyde, thiosemicarbazide and halogen-containing reagents in solvent- and catalyst-free conditions. The structures of the new thiazoles were elucidated by elemental analyses and spectroscopic data. The in-vitro antibacterial screening and MurB enzyme inhibition assays were performed for the novel thiazoles. The thiazol-4(5H)-one derivative 6d, with p-MeO, exhibits the best antibacterial activities with minimum inhibitory concentration values of 3.9, 3.9, 7.8, and 15.6 μg/ml against Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus mutans, and Escherichia coli, respectively, as compared to the reference antibiotic drugs. It also exhibits the highest inhibition of the MurB enzyme with an IC50 of 8.1 μM. The structure-activity relationship was studied to determine the effect of the structures of the newly prepared molecules on the strength of the antibacterial activities. Molecular docking was also performed to predict the binding modes of the new thiazoles in the active sites of the E. coli MurB enzyme.
Collapse
Affiliation(s)
- Sherif M H Sanad
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A M Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.,Basic Science Department, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Ahmed E M Mekky
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
29
|
Jin Z, Wang L, Gao H, Zhou YH, Liu YH, Tang YZ. Design, synthesis and biological evaluation of novel pleuromutilin derivatives possessing acetamine phenyl linker. Eur J Med Chem 2019; 181:111594. [PMID: 31419741 DOI: 10.1016/j.ejmech.2019.111594] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 01/30/2023]
Abstract
A series of novel acetamine phenyl pleuromutilin derivatives incorporating 2-aminothiophenol moieties into the C14 side chain were synthesized via acylation reactions under mild conditions. The in vitro antibacterial activities of the synthesized derivatives against three Staphylococcus aureus (MRSA ATCC 43300, ATCC 29213 and AD 3) and two Escherichia coli (ATCC 25922 and 9-1) were evaluated by the broth dilution method. Most of the synthesized derivatives displayed potent activities. Compound 27 was found to be the most active antibacterial derivative against MRSA (minimal inhibitory concentration = 0.015 μg/mL) which may lead to a promising antibacterial drug. Furthermore, compound 27 displayed more rapid bactericidal kinetic than tiamulin in in vitro time-kill studies and possessed a longer PAE than tiamulin against MRSA. The PK properties of compound 27 were then measured. The half life (t1/2), clearance rate (Cl) and the area under the plasma concentration-time curve (AUC0→∞) of compound 27 were 6.88 h, 21.64 L/h/kg and 0.48 μg h/mL, respectively. The in vivo antibacterial activities of compound 27 against MRSA were further evaluated using thigh infection model and systemic infection model. Compound 27 possessed superior antibacterial efficacy to tiamulin against MRSA infection in both model.
Collapse
Affiliation(s)
- Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Le Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Gao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying-Hui Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Gatadi S, Madhavi YV, Chopra S, Nanduri S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem 2019; 92:103252. [PMID: 31518761 DOI: 10.1016/j.bioorg.2019.103252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
31
|
Gatadi S, Gour J, Nanduri S. Natural product derived promising anti-MRSA drug leads: A review. Bioorg Med Chem 2019; 27:3760-3774. [DOI: 10.1016/j.bmc.2019.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
32
|
Shi C, Zhang Y, Wang T, Lu W, Zhang S, Guo B, Chen Q, Luo C, Zhou X, Yang Y. Design, Synthesis, and Biological Evaluation of Novel DNA Gyrase-Inhibiting Spiropyrimidinetriones as Potent Antibiotics for Treatment of Infections Caused by Multidrug-Resistant Gram-Positive Bacteria. J Med Chem 2019; 62:2950-2973. [PMID: 30698430 DOI: 10.1021/acs.jmedchem.8b01750] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spiropyrimidinetriones are a novel class of antibacterial agents that target the bacterial type II topoisomerase via a new mode of action. Compound ETX0914 is thus far the only drug from this class that is being evaluated in clinical trials. To improve the antibacterial activity and pharmacokinetic properties of ETX0914, we carried out systematic structural modification of this compound, and a number of compounds with increased potency were obtained. The most promising compound 33e, with incorporation of a spirocyclopropane at the oxazolidinone 5 position reduced metabolism, exhibited excellent antibacterial activity against Gram-positive pathogens and a good pharmacokinetic profile combined with high aqueous solubility. In addition, compound 33e exhibited good selectivity for Staphylococcus aureus gyrase over human Topo IIα. In a murine model of systemic methicillin-resistant S. aureus infection, 33e exhibited superior in vivo efficacy (ED50 = 3.87 mg/kg) compared to ETX0914 (ED50 = 11.51 mg/kg).
Collapse
Affiliation(s)
- Chenghui Shi
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yinyong Zhang
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan Province 610031 , China
| | - Ting Wang
- Department of Microbiology , Sichuan Primed Bio-Tech Group Co., Ltd. , Chengdu , Sichuan Province 610041 , China
| | - Wenchao Lu
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuhua Zhang
- Department of Microbiology , Sichuan Primed Bio-Tech Group Co., Ltd. , Chengdu , Sichuan Province 610041 , China
| | - Bin Guo
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qian Chen
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Cheng Luo
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xianli Zhou
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan Province 610031 , China
| | - Yushe Yang
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
33
|
Goethe O, Heuer A, Ma X, Wang Z, Herzon SB. Antibacterial properties and clinical potential of pleuromutilins. Nat Prod Rep 2019; 36:220-247. [PMID: 29979463 DOI: 10.1039/c8np00042e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2018Pleuromutilins are a clinically validated class of antibiotics derived from the fungal diterpene (+)-pleuromutilin (1). Pleuromutilins inhibit bacterial protein synthesis by binding to the peptidyl transferase center (PTC) of the ribosome. In this review we summarize the biosynthesis and recent total syntheses of (+)-pleuromutilin (1). We review the mode of interaction of pleuromutilins with the bacterial ribosome, which involves binding of the C14 extension and the tricyclic core to the P and A sites of the PTC, respectively. We provide an overview of existing clinical agents, and discuss the three primary modes of bacterial resistance (mutations in ribosomal protein L3, Cfr methylation, and efflux). Finally we collect structure-activity relationships from publicly available reports, and close with some forward looking statements regarding future development.
Collapse
Affiliation(s)
- Olivia Goethe
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Abigail Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Xiaoshen Ma
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
34
|
Deng Y, Tang D, Wang QR, Huang S, Fu LZ, Li CH. Semi-synthesis, antibacterial activity, and molecular docking study of novel pleuromutilin derivatives bearing cinnamic acids moieties. Arch Pharm (Weinheim) 2019; 352:e1800266. [PMID: 30536467 DOI: 10.1002/ardp.201800266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 11/12/2022]
Abstract
To develop new antibiotics owning a special mechanism, we used the molecular assembly method to synthesize a series of novel pleuromutilin derivatives containing a cinnamic acid scaffold at the C-14 side chain. We evaluated their antibacterial activity and used in silico molecular docking to study their binding mode with the target. The structure-activity relationship (SAR) study suggested that compounds with NO2 (13e), OH (13u), and NH2 (13y) appeared more active (0.0625-2 µg/mL) in vitro against several penicillin-resistant Gram-positive bacteria and the position of the substituent on the benzene ring would affect the activity. The in vivo efficacy investigation of 13e, 13u, and 13y with once daily intragastric (i.g.) administration at 40 mg/kg for 3 consecutive days in a mouse systemic infection model showed that 13u had equal activity as valnemulin providing the mice with 60% survival, while 13e and 13y gave 30 and 40% survival, respectively. The molecular docking studies indicated that π-π stacking and hydrogen bond formation played important roles in improving the antibacterial activity.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences and Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Da Tang
- Institute of Veterinary Sciences and Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Qiu-Ru Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Sheng Huang
- Institute of Veterinary Sciences and Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Li-Zhi Fu
- Institute of Veterinary Sciences and Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences and Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
| |
Collapse
|
35
|
Zhang ZS, Huang YZ, Luo J, Jin Z, Liu YH, Tang YZ. Synthesis and antibacterial activities of novel pleuromutilin derivatives bearing an aminothiophenol moiety. Chem Biol Drug Des 2018; 92:1627-1637. [PMID: 29722184 DOI: 10.1111/cbdd.13328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022]
Abstract
We synthesized a series of novel thioether pleuromutilin derivatives incorporating 2-aminothiophenol moieties into the C14 side chain via acylation reactions under mild conditions. We evaluated the in-vitro antibacterial activities of the derivatives against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300), Staphylococcus aureus (ATCC 29213) and Escherichia coli (ATCC 25922). The majority of the synthesized derivatives possessed moderate antibacterial activities. Compound 8 was found to be the most active antibacterial derivative against MRSA. We conducted docking experiments to understand the possible mode of interactions between compounds 8, 9b, 11a and 50S ribosomal subunit. The docking results proved that there is a reasonable correlation between the binding free energy and the antibacterial activity. Compound 8 was evaluated for its in-vivo antibacterial activity and showed higher efficacy than tiamulin against MRSA in mouse infection model.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yun-Zhen Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Lee CF, Basha RS, Badsara SS. Engineered C-S Bond Construction. Top Curr Chem (Cham) 2018; 376:25. [PMID: 29869031 DOI: 10.1007/s41061-018-0203-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 11/29/2022]
Abstract
Due to the versatile applications of thioethers and thioesters in organic synthesis, medicinal chemistry, the pharmaceutical industry, and materials science, recently the construction of C-S bonds has emerged as the forefront in the field of cross-coupling reactions. Enough progress has been made in this direction by using both metal catalysis and other alternative processes. A brief review of the recent developments in the area of C-S coupling reaction is described.
Collapse
Affiliation(s)
- Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan. .,Research Center for Sustainable Energy and Nanotechnology (NCHU), Taichung, Taiwan. .,Innovation and Development Center of Sustainable Agriculture (NCHU), Taichung, Taiwan.
| | - R Sidick Basha
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Satpal Singh Badsara
- Centre of Advance Study, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| |
Collapse
|
37
|
Li P, Tian P, Chen Y, Song X, Xue W, Jin L, Hu D, Yang S, Song B. Novel bisthioether derivatives containing a 1,3,4-oxadiazole moiety: design, synthesis, antibacterial and nematocidal activities. PEST MANAGEMENT SCIENCE 2018; 74:844-852. [PMID: 29024290 DOI: 10.1002/ps.4762] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/15/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The literature shows that bisthioether and 1,3,4-oxadiazole derivatives exhibit a wide variety of biological activities. In this study, a series of novel bisthioether derivatives containing a 1,3,4-oxadiazole moiety were synthesized and their antibacterial and nematocidal activities investigated. RESULTS Among the title compounds evaluated, compound 4f demonstrated the best antibacterial activities against rice bacterial leaf blight, rice bacterial leaf streak and citrus canker caused by Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas axonopodis pv. citri (Xac), with EC50 values of 4.82, 11.15 and 16.57 µg mL-1 , respectively, which were even better than those of thiodiazole copper and bismerthiazol. Meanwhile, compound 4f had better in vitro nematocidal activity against Caenorhabditis elegans at 48 h, with an LC50 value of 2.89 µg mL-1 , which was superior to those of ethoprophos and fosthiazate. In addition, greenhouse trials indicated that compound 4f was effective in reducing rice bacterial leaf blight relative to thiodiazole copper and bismerthiazol. CONCLUSION A series of novel bisthioether derivatives containing a 1,3,4-oxadiazole moiety were synthesized and bioassay results showed that compound 4f exhibited the best antibacterial and nematocidal activities. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Pingyi Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Yongzhong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Xianpeng Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Linhong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
38
|
Sun GX, Zhai ZW, Sun ZH, Tan CX, Weng JQ, Liu XH. Synthesis and crystal structure of (2-chloro-4-(phenylthio)phenyl) (3-methyl-1-phenyl-5-(phenylthio)-1H-pyrazol-4-yl)methanone. J STRUCT CHEM+ 2018. [DOI: 10.1134/s002247661708025x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Alberti F, Khairudin K, Venegas ER, Davies JA, Hayes PM, Willis CL, Bailey AM, Foster GD. Heterologous expression reveals the biosynthesis of the antibiotic pleuromutilin and generates bioactive semi-synthetic derivatives. Nat Commun 2017; 8:1831. [PMID: 29184068 PMCID: PMC5705593 DOI: 10.1038/s41467-017-01659-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022] Open
Abstract
The rise in antibiotic resistance is a major threat for human health. Basidiomycete fungi represent an untapped source of underexploited antimicrobials, with pleuromutilin-a diterpene produced by Clitopilus passeckerianus-being the only antibiotic from these fungi leading to commercial derivatives. Here we report genetic characterisation of the steps involved in pleuromutilin biosynthesis, through rational heterologous expression in Aspergillus oryzae coupled with isolation and detailed structural elucidation of the pathway intermediates by spectroscopic methods and comparison with synthetic standards. A. oryzae was further established as a platform for bio-conversion of chemically modified analogues of pleuromutilin intermediates, and was employed to generate a semi-synthetic pleuromutilin derivative with enhanced antibiotic activity. These studies pave the way for future characterisation of biosynthetic pathways of other basidiomycete natural products in ascomycete heterologous hosts, and open up new possibilities of further chemical modification for the growing class of potent pleuromutilin antibiotics.
Collapse
Affiliation(s)
- Fabrizio Alberti
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Khairunisa Khairudin
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | | - Jonathan A Davies
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Patrick M Hayes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Gary D Foster
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
40
|
He L, Li X. C S and C N bond formation via Mn-promoted oxidative cascade reaction: Synthesis of C3-sulfenated indoles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
de Mattos-Shipley KMJ, Foster GD, Bailey AM. Insights into the Classical Genetics of Clitopilus passeckerianus - the Pleuromutilin Producing Mushroom. Front Microbiol 2017. [PMID: 28649239 PMCID: PMC5465285 DOI: 10.3389/fmicb.2017.01056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clitopilus passeckerianus is the fungal species responsible for the production of pleuromutilin, a diterpene antibiotic that is gaining in commercial interest. Production of the antibiotic is constrained by the low titers typically obtained from isolates. We therefore set out to investigate the possibility of using classical breeding techniques coupled with genetic manipulation as a means to develop such fungi. We show that the original production strain of C. passeckerianus is able to fruit under laboratory conditions, giving viable haploid meiotic basidiospores. The derived progeny displayed the typical physiological and genetic characteristics of a tetrapolar mating system. The monokaryon haploids produced pleuromutilin and haploid lines were amenable to genetic manipulation. Together this shows that the basic requirements for a classical breeding approach are present and the tools required to undertake directed genetic engineering on haploid strains are available, demonstrating that strain improvement may be feasible in this fungus.
Collapse
Affiliation(s)
| | - Gary D Foster
- School of Biological Sciences, Life Sciences Building, University of BristolBristol, United Kingdom
| | - Andy M Bailey
- School of Biological Sciences, Life Sciences Building, University of BristolBristol, United Kingdom
| |
Collapse
|
42
|
Ostapyuk YV, Matiichuk VS, Obushak MD. Synthesis of [4-amino-5-(R-benzyl)-1,3-thiazol-2-ylsulfanyl] acetic acids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Liu H, Gopala L, Avula SR, Jeyakkumar P, Peng X, Zhou C, Geng R. Chalcone-Benzotriazole Conjugates as New Potential Antimicrobial Agents: Design, Synthesis, Biological Evaluation and Synergism with Clinical Drugs. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hanbo Liu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Srinivasa Rao Avula
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Xinmei Peng
- School of Chemistry and Chemical Engineering; Qiannan Normal University for Nationalities; Duyun Guizhou 558000 China
| | - Chenghe Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Rongxia Geng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| |
Collapse
|
44
|
Yi Y, Xu X, Liu Y, Xu S, Huang X, Liang J, Shang R. Synthesis and antibacterial activities of novel pleuromutilin derivatives with a substituted pyrimidine moiety. Eur J Med Chem 2017; 126:687-695. [PMID: 27940400 DOI: 10.1016/j.ejmech.2016.11.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/20/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
Abstract
The alarming growth of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) has become a major global health hazard. Therefore, urgent demand for new antibiotics with a unique mechanism of action is very necessary. The present study reports the design, synthesis, and antibacterial studies of a series of novel pleuromutilin derivatives with substituted 6-amino pyrimidine moieties. Most of the tested compounds exhibited highly potent anti-MRSA or Staphylococcus aureus (S. aureus) activities. 14-O-[(4,6-Diamino -pyrimidine-2-yl) thioacetyl] mutilin (3) and 14-O-[(2-((3R)-3-Hydroxymethylpiperidine-1-yl)-acetamido-6-aminopyrimidine-2-yl) thioacetyl] mutilin (5h) were the most active compounds and showed higher antibacterial activities. Compound 3 displayed rapid bactericidal activity and affected bacterial growth with the same manner as tiamulin fumarate. Docking experiments for compounds 3 and 5h carried out on the peptidyl transferase center (PTC) of 23S rRNA provided the information about the binding model. In vivo mouse systemic infection experimental results confirmed the therapeutic efficacy of compound 3, with ED50 of 4.22 mg/kg body weight against MRSA.
Collapse
Affiliation(s)
- Yunpeng Yi
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou, 730050, China
| | - Ximing Xu
- Institut Pasteur, Unité de Pathogenèse des infections vasculaires, Département de Biologie Cellulaire et Infection, Paris, 75015, France
| | - Yu Liu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou, 730050, China
| | - Shuijin Xu
- Yancheng YouHua Pharmaceutical & Chemical Technology Co., Ltd., Yancheng, 224555, China
| | - Xin Huang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou, 730050, China
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou, 730050, China.
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou, 730050, China.
| |
Collapse
|
45
|
Mu S, Liu H, Zhang L, Wang X, Xue F, Zhang Y. Synthesis and Biological Evaluation of Novel Thioether Pleuromutilin Derivatives. Biol Pharm Bull 2017; 40:1165-1173. [PMID: 28768998 DOI: 10.1248/bpb.b16-00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop new pleuromutilin derivatives as veterinary antibiotic medicines, we designed and synthesized a series of new thioether pleuromutilin derivatives possessing acylthiazolyl moiety based on previously designed derivatives. The antibacterial properties of the prepared pleuromutilin derivatives were assessed in vitro by the broth dilution method against five kinds of bacteria and the mycoplasma Mycoplasma gallisepticum (MG). All of the tested compounds displayed moderate to good antibacterial activity to methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-sensitive Staphylococcus epidermidis (MSSE), methicillin-resistant S. aureus (MRSA), Streptococcus agalactiae (S. aga) and MG. However, the activity to Pyogeniccoccus (Pyogens) was generally poor. Compounds 13i and l showed potent antibacterial activity against MSSE and MRSA which are better than that of valnemulin. The structural modification for pleuromutilin affected the antibacterial activity. Amino substituents in the benzene ring can effectively improve activity. Compared with the analogue 13a that possesses unsubstitution benzoyl group, the nitro, methoxy, hydroxy and dichloro substituent contributed little to antibacterial activity. Increasing a methylene between benzene moiety and carbonyl group decreased the bioactivity of derivative. The analogues that obtained by the reaction of amino acids and intermediate 9 showed moderate activity.
Collapse
Affiliation(s)
- Shuhua Mu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Huixian Liu
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Lifang Zhang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Feiqun Xue
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Yue Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology
| |
Collapse
|
46
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Ai X, Pu X, Yi Y, Liu Y, Xu S, Liang J, Shang R. Synthesis and Pharmacological Evaluation of Novel Pleuromutilin Derivatives with Substituted Benzimidazole Moieties. Molecules 2016; 21:E1488. [PMID: 27834819 PMCID: PMC6273978 DOI: 10.3390/molecules21111488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
A series of novel pleuromutilin derivatives with substituted benzimidazole moieties were designed and synthesized from pleuromutilin and 5-amino-2-mercaptobenzimidazole through sequential reactions. All the newly synthesized compounds were characterized by IR, NMR, and HRMS. Each of the derivatives was evaluated in vitro for their antibacterial activity against Escherichia coli (E. coli) and five Gram (+) inoculums. 14-O-((5-amino-benzimidazole-2-yl) thioacetyl) mutilin (3) was the most active compound and showed highest antibacterial activities. Furthermore, we evaluated the inhibition activities of compound 3 on short-term S. aureus and MRSA growth and cytochrome P450 (CYP). The bioassay results indicate that compound 3 could be considered potential antibacterial agents but with intermediate inhibition of CYP3A4.
Collapse
Affiliation(s)
- Xin Ai
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou 730050, China.
| | - Xiuying Pu
- College of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou 730050, China.
| | - Yunpeng Yi
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou 730050, China.
| | - Yu Liu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou 730050, China.
| | - Shuijin Xu
- Yancheng Shunbao Chemical Co., Ltd., Yancheng 224555, China.
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou 730050, China.
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, 335 Jiangouyan, Lanzhou 730050, China.
| |
Collapse
|
48
|
Luo J, Yang QE, Yang YY, Tang YZ, Liu YH. Design, synthesis, and structure-activity relationship studies of novel pleuromutilin derivatives having a piperazine ring. Chem Biol Drug Des 2016; 88:699-709. [PMID: 27273921 DOI: 10.1111/cbdd.12799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Abstract
A series of novel pleuromutilin derivatives possessing piperazine moieties were synthesized under mild conditions. The in vitro antibacterial activities of these derivatives against Staphylococcus aureus and Escherichia coli were tested by the agar dilution method. Structure-activity relationship studies resulted in compounds 11b, 13b, and 14a with the most potent in vitro antibacterial activity among the series (minimal inhibitory concentration = 0.0625-0.125 μg/mL). The binding of compounds 11b, 13b, and 14a to the E. coli ribosome was investigated by molecular modeling, and it was found that there is a reasonable correlation between the binding free energy and the antibacterial activity.
Collapse
Affiliation(s)
- Jian Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiu-E Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuan-Yuan Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
49
|
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G. The good, the bad and the tasty: The many roles of mushrooms. Stud Mycol 2016; 85:125-157. [PMID: 28082758 PMCID: PMC5220184 DOI: 10.1016/j.simyco.2016.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the "Forgotten Kingdom", fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or 'roles', for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category. Although this is in no way an exhaustive discussion of the importance of basidiomycetes, this review aims to give a broad overview of the importance of these organisms, exploring the various ways they can be exploited to the benefit of human society.
Collapse
Affiliation(s)
- K.M.J. de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - K.L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - F. Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - A.M. Banks
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A.M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - G.D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
50
|
Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes P, Griffin A, Lazarus CM, Cox RJ, Willis CL, O’Dwyer K, Spence DW, Foster GD. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci Rep 2016; 6:25202. [PMID: 27143514 PMCID: PMC4855138 DOI: 10.1038/srep25202] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022] Open
Abstract
Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.
Collapse
Affiliation(s)
- Andy M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Fabrizio Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sreedhar Kilaru
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Catherine M. Collins
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Kate de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Amanda J. Hartley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Patrick Hayes
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Alison Griffin
- GSK, Southdownview Way, Worthing, West Sussex, BN14 8QH, UK
| | - Colin M. Lazarus
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Russell J. Cox
- School of Chemistry, University of Bristol, Cantock’s Close Bristol, BS8 1TS, UK
| | - Christine L. Willis
- School of Chemistry, University of Bristol, Cantock’s Close Bristol, BS8 1TS, UK
| | - Karen O’Dwyer
- GSK, 1250 S. Collegeville Road, Collegeville, Pennsylvania, 19426-0989, United States
| | - David W. Spence
- School of Chemistry, University of Bristol, Cantock’s Close Bristol, BS8 1TS, UK
| | - Gary D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|