1
|
Albers-Warlé KI, Helder LS, Groh LA, Polat F, Panhuizen IF, Snoeck MMJ, Kox M, van Eijk L, Joosten LAB, Netea MG, Negishi Y, Mhlanga M, Keijzer C, Scheffer GJ, Warlé MC. Postoperative Innate Immune Dysregulation, Proteomic, and Monocyte Epigenomic Changes After Colorectal Surgery: A Substudy of a Randomized Controlled Trial. Anesth Analg 2025; 140:185-196. [PMID: 39453841 PMCID: PMC11620323 DOI: 10.1213/ane.0000000000007297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/27/2024]
Abstract
BACKGROUND Colorectal surgery is associated with moderate-to-severe postoperative complications in over 25% of patients, predominantly infections. Monocyte epigenetic alterations leading to immune tolerance could explain postoperative increased susceptibility to infections. This research explores whether changes in monocyte DNA accessibility contribute to postoperative innate immune dysregulation. METHODS Damage-associated molecular patterns (DAMPs) and ex vivo cytokine production capacity were measured in a randomized controlled trial (n = 100) in colorectal surgery patients, with additional exploratory subgroup proteomic (proximity extension assay; Olink) and epigenomic analyses (Assay for Transposase-Accessible Chromatin [ATAC sequencing]). Monocytes of healthy volunteers were used to study the effect of high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70) on cytokine production capacity in vitro. RESULTS Plasma DAMPs were increased after surgery. HMGB1 showed a mean 235% increase from before- (preop) to the end of surgery (95% confidence interval [CI] [166 - 305], P < .0001) and 90% increase (95% CI [63-118], P = .0004) preop to postoperative day 1 (POD1). HSP70 increased by a mean 12% from preop to the end of surgery (95% CI [3-21], not significant) and 30% to POD1 (95% CI [18-41], P < .0001). Nuclear deoxyribonucleic acid (nDNA) increases by 66% (95% CI [40-92], P < .0001) at the end of surgery and 94% on POD1 (95% CI [60-127], P < .0001). Mitochondrial DNA (mtDNA) increases by 370% at the end of surgery (95% CI [225-515], P < .0001) and by 503% on POD1 (95% CI [332-673], P < .0001). In vitro incubation of monocytes with HSP70 decreased cytokine production capacity of tumor necrosis factor (TNF) by 46% (95% CI [29-64], P < .0001), IL-6 by 22% (95% CI [12-32], P = .0004) and IL-10 by 19% (95% CI [12-26], P = .0015). In vitro incubation with HMGB1 decreased cytokine production capacity of TNF by 34% (95% CI [3-65], P = .0003), interleukin 1β (IL-1β) by 24% (95% CI [16-32], P < .0001), and IL-10 by 40% (95% CI [21-58], P = .0009). Analysis of the inflammatory proteome alongside epigenetic shifts in monocytes indicated significant changes in gene accessibility, particularly in inflammatory markers such as CXCL8 (IL-8), IL-6, and interferon-gamma (IFN-γ). A significant enrichment of interferon regulatory factors (IRFs) was found in loci exhibiting decreased accessibility, whereas enrichment of activating protein-1 (AP-1) family motifs was found in loci with increased accessibility. CONCLUSIONS These findings illuminate the complex epigenetic modulation influencing monocytes' response to surgical stress, shedding light on potential biomarkers for immune dysregulation. Our results advocate for further research into the role of anesthesia in these molecular pathways and the development of personalized interventions to mitigate immune dysfunction after surgery.
Collapse
Affiliation(s)
- Kim I. Albers-Warlé
- From the Department of Anesthesiology, Radboudumc, Nijmegen, the Netherlands
| | - Leonie S. Helder
- From the Department of Anesthesiology, Radboudumc, Nijmegen, the Netherlands
| | - Laszlo A. Groh
- Department of Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Fatih Polat
- Department of Surgery, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Ivo F. Panhuizen
- Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Marc M. J. Snoeck
- Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Lucas van Eijk
- From the Department of Anesthesiology, Radboudumc, Nijmegen, the Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Yutaka Negishi
- Department of Biology, Radboudumc, Nijmegen, the Netherlands
| | - Musa Mhlanga
- Department of Biology, Radboudumc, Nijmegen, the Netherlands
| | - Christiaan Keijzer
- From the Department of Anesthesiology, Radboudumc, Nijmegen, the Netherlands
| | - Gert-Jan Scheffer
- From the Department of Anesthesiology, Radboudumc, Nijmegen, the Netherlands
| | | |
Collapse
|
2
|
Ke X, van Soldt B, Vlahos L, Zhou Y, Qian J, George J, Capdevila C, Glass I, Yan K, Califano A, Cardoso WV. Morphogenesis and regeneration share a conserved core transition cell state program that controls lung epithelial cell fate. Dev Cell 2024:S1534-5807(24)00699-3. [PMID: 39667932 DOI: 10.1016/j.devcel.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
Transitional cell states are at the crossroads of crucial developmental and regenerative events, yet little is known about how these states emerge and influence outcomes. The alveolar and airway epithelia arise from distal lung multipotent progenitors, which undergo cell fate transitions to form these distinct compartments. The identification and impact of cell states in the developing lung are poorly understood. Here, we identified a population of Icam1/Nkx2-1 epithelial progenitors harboring a transitional state program remarkably conserved in humans and mice during lung morphogenesis and regeneration. Lineage-tracing and functional analyses reveal their role as progenitors to both airways and alveolar cells and the requirement of this transitional program to make distal lung progenitors competent to undergo airway cell fate specification. The identification of a common progenitor cell state in vastly distinct processes suggests a unified program reiteratively regulating outcomes in development and regeneration.
Collapse
Affiliation(s)
- Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin van Soldt
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joel George
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Claudia Capdevila
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ian Glass
- Birth Defects Research Laboratory (BDRL), University of Washington, Seattle, WA 98105, USA
| | - Kelley Yan
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Ma B, Wu H, Gou S, Lian M, Xia C, Yang K, Jin L, Liu J, Wu Y, Shu Y, Yan H, Li Z, Lai L, Fan Y. A-to-G/C/T and C-to-T/G/A dual-function base editor for creating multi-nucleotide variants. J Genet Genomics 2024; 51:1494-1504. [PMID: 39490920 DOI: 10.1016/j.jgg.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Multi-nucleotide variants (MNVs) are critical genetic variants associated with various genetic diseases. However, tools for precisely installing MNVs are limited. In this study, we present the development of a dual-base editor, BDBE, by integrating TadA-dual and engineered human N-methylpurine DNA glycosylase (eMPG) into nCas9 (D10A). Our results demonstrate that BDBE effectively converts A-to-G/C/T (referred to as A-to-B) and C-to-T/G/A (referred to as C-to-D) simultaneously, yielding nine types of dinucleotides from adjacent CA nucleotides while maintaining minimal off-target effects. Notably, BDBE4 exhibits exceptional performance across multiple human cell lines and successfully simulated all nine dinucleotide MNVs from the gnomAD database. These findings indicate that BDBE significantly expands the product range of base editors and offers a valuable resource for advancing MNV research.
Collapse
Affiliation(s)
- Bingxiu Ma
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China
| | - Shixue Gou
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Meng Lian
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
| | - Cong Xia
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kaiming Yang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Long Jin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junyuan Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yunlin Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yahai Shu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Haizhao Yan
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
4
|
Hopke A, Viens AL, Alexander NJ, Mun SJ, Mansour MK, Irimia D. Spleen tyrosine kinase inhibitors disrupt human neutrophil swarming and antifungal functions. Microbiol Spectr 2024:e0254921. [PMID: 39601545 DOI: 10.1128/spectrum.02549-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Neutrophils communicate with one another and amplify their destructive power through swarming, a collective process that synchronizes the activities of multiple neutrophils against one target. The sequence of activities contributing to swarming against clusters of fungi has been recently uncovered. However, the molecular signals controlling the neutrophils' activities during the swarming process are just emerging. Here, we report that spleen tyrosine kinase (SYK) inhibitors severely impair neutrophil swarming responses, resulting in the complete loss of fungal restriction. These findings are enabled by a microscale platform to probe the biology of human neutrophils swarming against uniformly sized clusters of growing Candida albicans, a representative opportunistic fungal pathogen. We take advantage of the ability to monitor large arrays of swarms and quantify the effect of multiple chemical inhibitors on different phases of human neutrophil swarming. We show that inhibitors that interfere with PI3Ky signaling disrupt the regulation of the initiation of swarming, while the activation of JNK signaling is essential for the activation of biochemical antifungal functions. Furthermore, we reveal that granulocyte colony-stimulating factors (GCSF and GM-CSF) can partially rescue the antifungal functions of neutrophils exposed to SYK inhibitors. These findings advance our understanding of neutrophil swarming biology in humans and lay the foundation for novel therapeutics that may restore neutrophil function during immunosuppression. IMPORTANCE Neutrophils can amplify their destructive power through swarming, a crucial process against large targets that individual neutrophils cannot destroy. However, the molecular mechanisms controlling this process are just emerging. Here, we leveraged microscale tools to probe the biology of swarming against fungi. We used multiple chemical inhibitors and mapped SYK, PI3Ky, and JNK signaling roles during human neutrophil swarming against fungal clusters of Candida albicans. We also found that treating human neutrophils with GCSF and GM-CSF rescues some neutrophil antifungal function during SYK inhibition. These findings advance our understanding of swarming biology in humans while laying the foundation for developing therapeutics that enhance neutrophil function during immunosuppression.
Collapse
Affiliation(s)
- Alex Hopke
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Adam L Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seok Joon Mun
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K Mansour
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Sun R, Wang Z, Li M, Du T, Jia S, Yang W, Yang L. Regulatory Effects of Copper on Ghrelin Secretion in Rat Fundic Glands. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39545633 DOI: 10.1111/jpn.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Copper (Cu) is an effective additive in feed for promoting growth. Growth dan axis comprising growth hormone (GH), somatostatin (SS) and GH-releasing hormone (GHRH), with ghrelin regulating their release. The growth-promoting effects of Cu are closely related to ghrelin, but the specific mechanism behind the relationship remains unknown. We investigated the adjustment of ghrelin synthesis and secretion by Cu. Sprague-Dawley rats were fed basal diets with an addition of 0, 120 or 240 mg/kg Cu sulfate for 28 day to establish a growth-promoting model. Signalling molecules relevant to ghrelin synthesis and secretion were detected and mechanistically explored using enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction and Western blot analysis. The 120 mg/kg supplement improved growth performance; significantly increased the serum levels of ghrelin, ghrelin O-acyltransferase (GOAT), acylated ghrelin (AG), GH, and reactive oxygen species (ROS) and decreased those of SS; significantly increased the mRNA and protein expression of ghrelin, GOAT, ghrelin receptor (GHS-R1α), and activator protein 1 (AP-1); increased the phosphorylation ratio of JNK and p38 MAPK; and inhibited the mRNA and protein expression of SS and SS receptor subtype 2 (SSTR2) in gastric fundic gland tissues. Thus, Cu may affect gastric ghrelin synthesis at the transcriptional level by activating the JNK/p38 MAPK pathway through increased ROS levels and regulating the activation of the downstream redox-sensitive transcription factor AP-1. SS plays a crucial determinant role in ghrelin regulation via intragastric Cu. Cu promotes GOAT activity and ghrelin secretion by inhibiting SS secretion, affecting AG levels, and promoting ghrelin acylation through ghrelin/GOAT/GHS-R1α system, modulating ghrelin secretion.
Collapse
Affiliation(s)
- Rui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Zhongshen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Meng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Tianyang Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Shuang Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| |
Collapse
|
6
|
Wu B, Koehler AN, Westcott PMK. New opportunities to overcome T cell dysfunction: the role of transcription factors and how to target them. Trends Biochem Sci 2024; 49:1014-1029. [PMID: 39277450 DOI: 10.1016/j.tibs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.
Collapse
Affiliation(s)
- Bocheng Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
7
|
An JY, Kim SY, Kim HJ, Bae HJ, Lee HD, Choi YY, Cho YE, Cho SY, Lee SJ, Lee S, Park SJ. Geraniin from the methanol extract of Pilea mongolica suppresses LPS-induced inflammatory responses by inhibiting IRAK4/MAPKs/NF-κB/AP-1 pathway in HaCaT cells. Int Immunopharmacol 2024; 140:112767. [PMID: 39083922 DOI: 10.1016/j.intimp.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The skin acts as a vital barrier, shielding the body from external threats that can trigger dryness, itching, and inflammation. Pilea mongolica, a traditional Chinese medicinal herb, holds promise for various ailments, yet its anti-inflammatory properties remain understudied. This study aimed to explore the potential anti-inflammatory effects of the methanol extract of P. mongolica (MEPM) and its underlying molecular mechanisms and active compounds in LPS-stimulated human keratinocytes. MEPM treatment, at concentrations without cytotoxicity, significantly decreased NO productions and the iNOS, IL-6, IL-1β, and TNF-α levels in LPS-induced HaCaT cells. Moreover, MEPM suppressed IRAK4 expression and phosphorylation of JNK, ERK, p38, p65, and c-Jun, suggesting that the anti-inflammatory effects of MEPM result from the inhibition of IRAK4/MAPK/NF-κB/AP-1 signaling pathway. Through LC/MS/MS analysis, 30 compounds and 24 compounds were estimated in negative and positive modes, respectively, including various anti-inflammatory compounds, such as corilagin and geraniin. Through HPLC analysis, geraniin was found to be present in MEPM at a concentration of 18.87 mg/g. Similar to MEPM, geraniin reduced iNOS mRNA expression and inhibited NO synthesis. It also decreased mRNA and protein levels of inflammatory cytokines, including IL-6 and TNF-α, and inhibited IRAK4 expression and the phosphorylation of MAPKs, NF-κB, and AP-1 pathways. Therefore, it can be inferred that the anti-inflammatory effects of MEPM are attributable to geraniin. Thus, MEPM and its active compound geraniin are potential candidates for use in natural functional cosmetics.
Collapse
Affiliation(s)
- Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hak-Dong Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Su-Jung Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
Kew C, Prieto-Garcia C, Bhattacharya A, Tietgen M, MacNair CR, Carfrae LA, Mello-Vieira J, Klatt S, Cheng YL, Rathore R, Gradhand E, Fleming I, Tan MW, Göttig S, Kempf VAJ, Dikic I. The aryl hydrocarbon receptor and FOS mediate cytotoxicity induced by Acinetobacter baumannii. Nat Commun 2024; 15:7939. [PMID: 39261458 PMCID: PMC11390868 DOI: 10.1038/s41467-024-52118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Acinetobacter baumannii is a pathogenic and multidrug-resistant Gram-negative bacterium that causes severe nosocomial infections. To better understand the mechanism of pathogenesis, we compare the proteomes of uninfected and infected human cells, revealing that transcription factor FOS is the host protein most strongly induced by A. baumannii infection. Pharmacological inhibition of FOS reduces the cytotoxicity of A. baumannii in cell-based models, and similar results are also observed in a mouse infection model. A. baumannii outer membrane vesicles (OMVs) are shown to activate the aryl hydrocarbon receptor (AHR) of host cells by inducing the host enzyme tryptophan-2,3-dioxygenase (TDO), producing the ligand kynurenine, which binds AHR. Following ligand binding, AHR is a direct transcriptional activator of the FOS gene. We propose that A. baumannii infection impacts the host tryptophan metabolism and promotes AHR- and FOS-mediated cytotoxicity of infected cells.
Collapse
Affiliation(s)
- Chun Kew
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Anshu Bhattacharya
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Manuela Tietgen
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Lindsey A Carfrae
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - João Mello-Vieira
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stephan Klatt
- Institute for Vascular Signalling, Department of Molecular Medicine, CPI, Goethe University, Frankfurt, Germany
| | - Yi-Lin Cheng
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rajeshwari Rathore
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Elise Gradhand
- Department of Pathology, Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Department of Molecular Medicine, CPI, Goethe University, Frankfurt, Germany
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmacology, Frankfurt, Germany.
- Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
9
|
Chen R, Liu H, Meng W, Sun J. Analysis of action of 1,4-naphthoquinone scaffold-derived compounds against acute myeloid leukemia based on network pharmacology, molecular docking and molecular dynamics simulation. Sci Rep 2024; 14:21043. [PMID: 39251712 PMCID: PMC11385794 DOI: 10.1038/s41598-024-70937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
1,4-Naphthoquinone scaffold-derived compounds has shown considerable pharmacological properties against cancer, including acute myeloid leukemia (AML) However, its impact and mechanisms in AML are uncertain. In this study, the mechanisms of 1,4-naphthoquinone scaffold-derived compounds against AML were investigated via network pharmacology, molecular docking and molecular dynamics simulation. ASINEX database was used to collect the 1,4-naphthoquinone scaffold-derived compounds, and compounds were extracted from the software to evaluate their drug similarity and toxicity. The potential targets of compounds were retrieved from the SwissTargetPrediction Database and the Similarity Ensemble Approach Database, while the potential targets of AML were obtained from the GeneCards databases and Gene Expression Omnibus. The STRING database was used to construct a protein-protein interaction (PPI) network, topologically and Cyto Hubb plugin of Cytoscape screen the central targets. After selecting the potential key targets, the gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the intersection targets, and a network map of "compounds-potential targets-pathway-disease" were constructed. Molecular docking of the compounds with the core target was performed, and core target with the strongest binding force and 1,4-naphthoquinone scaffold-derived compounds was selected for further molecular dynamics simulation and further molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) approach verification. In addition, the Bloodspot database was applied to perform the overall survival of core targets. A total of 19 1,4-naphthoquinone scaffold-derived compounds were chosen out, and then 836 targets of compounds, 96 intersection targets of AML were screened. Core targets include STAT3, TLR4, HSP90AA1, JUN, MMP9, PTPRC, JAK2, PTGS2, KIT and CSF1R. GO functional enrichment analysis revealed that 90 biological processes, 10 cell components and 12 molecular functions were enriched while KEGG pathway enrichment analysis revealed 34 enriched signaling pathways. Analysis of KEGG enrichment hinted that these 10 core genes were located in the pathways in cancer, suggesting that 1,4-naphthoquinone scaffold-derived compounds had potential activity against AML. Molecular docking analysis revealed that the binding energies between 1,4-naphthoquinone scaffold-derived compounds and the core proteins were all higher than - 6 kcal/mol, indicating that the 10 core targets all had strong binding ability with compounds. Moreover, a good binding capacity was inferred from molecular dynamics simulations between compound 7 and MMP9. The total binding free energy calculated using the MM/GBSA approach revealed values of - 6356.865 kcal/mol for the MMP9-7 complex. In addition, Bloodspot database results exhibited that HSP90AA1, MMP9 and PTPRC were associated with overall survival. The findings provide foundations for future studies into the interaction underlying the anti-AML potential of compounds with 1,4-naphthoquinone-based scaffold structures. Compounds with 1,4-naphthoquinone-based scaffold structures exhibits considerable potential in mitigating and treating AML through multiple targets and pathways.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Lishui People's Hospital, Lishui, 323000, China
| | - Hengfang Liu
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Weikang Meng
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Jingyu Sun
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China.
| |
Collapse
|
10
|
Khan AW, Aziz M, Sourris KC, Lee MKS, Dai A, Watson AMD, Maxwell S, Sharma A, Zhou Y, Cooper ME, Calkin AC, Murphy AJ, Baratchi S, Jandeleit-Dahm KAM. The Role of Activator Protein-1 Complex in Diabetes-Associated Atherosclerosis: Insights From Single-Cell RNA Sequencing. Diabetes 2024; 73:1495-1512. [PMID: 38905153 DOI: 10.2337/db23-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Despite advances in treatment, atherosclerotic cardiovascular disease remains the leading cause of death in patients with diabetes. Even when risk factors are mitigated, the disease progresses, and thus, newer targets need to be identified that directly inhibit the underlying pathobiology of atherosclerosis in diabetes. A single-cell sequencing approach was used to distinguish the proatherogenic transcriptional profile in aortic cells in diabetes using a streptozotocin-induced diabetic Apoe-/- mouse model. Human carotid endarterectomy specimens from individuals with and without diabetes were also evaluated via immunohistochemical analysis. Further mechanistic studies were performed in human aortic endothelial cells (HAECs) and human THP-1-derived macrophages. We then performed a preclinical study using an activator protein-1 (AP-1) inhibitor in a diabetic Apoe-/- mouse model. Single-cell RNA sequencing analysis identified the AP-1 complex as a novel target in diabetes-associated atherosclerosis. AP-1 levels were elevated in carotid endarterectomy specimens from individuals with diabetes compared with those without diabetes. AP-1 was validated as a mechanosensitive transcription factor via immunofluorescence staining for regional heterogeneity of endothelial cells of the aortic region exposed to turbulent blood flow and by performing microfluidics experiments in HAECs. AP-1 inhibition with T-5224 blunted endothelial cell activation as assessed by a monocyte adhesion assay and expression of genes relevant to endothelial function. Furthermore, AP-1 inhibition attenuated foam cell formation. Critically, treatment with T-5224 attenuated atherosclerosis development in diabetic Apoe-/- mice. This study has identified the AP-1 complex as a novel target, the inhibition of which treats the underlying pathobiology of atherosclerosis in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Misbah Aziz
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Anna M D Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Scott Maxwell
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Arpeeta Sharma
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Ying Zhou
- Baker Heart and Diabetes Institute, Melbourne, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- School of Health & Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Australia
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Leibniz Institute for Diabetes Research, Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
11
|
Vasudevan MT, Rangaraj K, Ramesh R, Muthusami S, Govindasamy C, Khan MI, Arulselvan P, Muruganantham B. Inhibitory effects of Gracilaria edulis and Gracilaria salicornia against the MGMT and VEGFA biomarkers involved in the onset and advancement of glioblastoma using in silico and in vitro approaches. Biotechnol Appl Biochem 2024. [PMID: 39168850 DOI: 10.1002/bab.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma (GBM), an aggressive primary brain tumor originating from glial cells, poses significant treatment challenges due to its rapid growth and invasiveness. The exact mechanisms of GBM's brain damage remain unclear. This study examines primary molecular markers commonly assessed in GBM patients, including brain-derived neurotrophic factor (BDNF), platelet-derived growth factor receptor A (PDGFRA), O6-methylguanine DNA methyltransferase (MGMT), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor A (VEGFA) using computational approaches. The study revealed significant differences (p ≤ 0.05) in PDGFRA, EGFR, and VEGFA expression rates, which are particularly interesting. Additionally, MGMT and VEGFA showed higher hazard ratios. Expression levels of MGMT and VEGFA were visualized in immune and malignant cells using single-cell RNA datasets GSE103224 and GSE148842. From a total of 48 compounds in Gracilaria edulis and 86 in Gracilaria salicornia, we identified 15 compounds capable of crossing the blood-brain barrier. Notably, 2-tridecanone (binding affinity [BA] = -4.2 kcal/mol; root mean square deviation [RMSD] = 1.479 Å) and decanoic acid, ethyl ester (BA = -4.2 kcal/mol; RMSD = 1.702 Å) from G. edulis interacted with MGMT via hydrogen bonds. The compound alpha-terpineol interacted with MGMT (BA = -5.7 kcal/mol; RMSD = 0.501 Å) and VEGFA (BA = -4.7 kcal/mol; RMSD = 2.483 Å). Ethanolic and methanolic extracts from G. edulis and G. salicornia demonstrated mild anti-cell proliferation properties in the GBM LN-229 cell line, suggesting potential therapeutic benefits. This study highlights the significance of molecular markers and natural compounds in understanding and potentially treating GBM.
Collapse
Affiliation(s)
- Miji Thandaserry Vasudevan
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Kaviyaprabha Rangaraj
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ragupathi Ramesh
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Ibrar Khan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Bharathi Muruganantham
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
12
|
Han H, Zhang JM, Ji S, Zeng XB, Jin XC, Shen ZQ, Xie B, Luo XN, Li K, Liu LP. Histology and transcriptomic analysis reveal the inflammation and affected pathways under 2-methylisoborneol (2-MIB) exposure on grass carp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173233. [PMID: 38763196 DOI: 10.1016/j.scitotenv.2024.173233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 μg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 μg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.
Collapse
Affiliation(s)
- Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Ji
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Biao Zeng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xi-Chen Jin
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Zi-Qian Shen
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xie
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xue-Neng Luo
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
Khanal P, Patil VS, Bhattacharya K, Shrivastava AK, Bhandare VV. Exploring the globoid cell leukodystrophy protein network and therapeutic interventions. Sci Rep 2024; 14:18067. [PMID: 39103379 PMCID: PMC11300594 DOI: 10.1038/s41598-024-66437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Globoid cell leukodystrophy is a severe rare disorder characterized by white matter degradation, resulting in a progressive loss of physical and mental abilities and has extremely limited therapeutic interventions. Therefore, this study aimed to delve into the Globoid cell leukodystrophy associated intricate network of differentially expressed genes (p < 0.05, |Fc|> 1) to identify potential druggable targets and possible therapeutic interventions using small molecules. The disease-associated neuronal protein circuit was constructed and analyzed, identifying 53 nodes (minimum edge cutoff 1), among which five (FOS, FOSB, GDNF, GFRA1, and JUN) were discerned as potential core protein nodes. Although our research enumerates the potential small molecules to target various protein nodes in the proposed disease network, we particularly underscore T-5224 to inhibit c-Jun activity as JUN was identified as one of the pivotal elements within the disease-associated neuronal protein circuit. The evaluation of T-5224 binding energy (- 11.0 kcal/mol) from docking study revealed that the compound to exhibit a notable affinity towards Jun/CRE complex. Moreover, the structural integrity of complex was affirmed through comprehensive molecular dynamics simulations, indicating a stable hydrophilic interaction between T-5224 and the Jun/CRE complex, thereby enhancing protein compactness and reducing solvent accessibility. This binding energy was further substantiated by free binding analysis, revealing a substantial thermodynamics complex state (- 448.00 ± 41.73 kJ/mol). Given that this investigation is confined to a computational framework, we additionally propose a hypothetical framework to ascertain the feasibility of inhibiting the Jun/CRE complex with T-5224 against Globoid cell leukodystrophy, employing a combination of in vitro and in vivo methodologies as a prospective avenue of this study.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India.
- Silicon Script Sciences Private Limited, Bharatpur, Ghorahi, Dang, Nepal.
| | - Vishal S Patil
- Department of Pharmacology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Amit Kumar Shrivastava
- Department of Pharmacology, Universal College of Medical Sciences, Ranigaon, Bhairahawa, Rupandehi, Nepal
| | | |
Collapse
|
14
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. Involvement of multiple epigenetic mechanisms by altered DNA methylation from the early stage of renal carcinogenesis before proliferative lesion formation upon repeated administration of ochratoxin A. Toxicology 2024; 506:153875. [PMID: 38945198 DOI: 10.1016/j.tox.2024.153875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ochratoxin A (OTA) is a rat renal carcinogen that induces karyomegaly and micronuclei in proximal tubular epithelial cells (PTECs). We previously performed comprehensive gene profiling of alterations in promoter-region methylation and gene expression in PTECs of rats treated with OTA for 13 weeks. The OTA-specific gene profile was obtained by excluding genes showing expression changes similar to those upon treatment with 3-chloro-1,2-propanediol, a renal carcinogen not inducing karyomegaly. In this study, we validated the candidate genes using methylated DNA enrichment PCR and real-time RT-PCR, and identified Gen1, Anxa3, Cdkn1a, and Osm as genes showing OTA-specific epigenetic changes. These genes and related molecules were subjected to gene expression and immunohistochemical analyses in the PTECs of rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. Cdkn1a upregulation and increase of p21WAF1/CIP1+ karyomegalic PTECs were observed with OTA, matching the findings associated with micronucleus-inducing carcinogens. This suggested that the increase of p21WAF1/CIP1+ karyomegalic PTECs is linked to micronucleus formation, which in turn accelerates chromosomal instability. The upregulation of Cdkn1a-related genes with OTA suggests the acquisition of a senescence-associated secretory phenotype, which promotes the establishment of a carcinogenic environment. Meanwhile, OTA specifically caused a decrease of GEN1+ PTECs reflecting Gen1 downregulation and an increase of ANXA3+ PTECs reflecting Anxa3 upregulation, as well as Osm upregulation. OTA may efficiently disrupt pathways for repairing the DNA double-strand breaks that it itself causes, via Gen1 downregulation, and enhance cell proliferation through the upregulation of Anxa3 and Osm. This may exacerbate the chromosomal instability from the early stage of OTA-induced renal carcinogenesis before proliferative lesions form. OTA may cause renal carcinogenesis involving multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
15
|
Li X, Di Q, Li X, Zhao X, Wu H, Xiao Y, Tang H, Huang X, Chen J, Chen S, Gao Y, Gao J, Xiao W, Chen W. Kumujan B suppresses TNF-α-induced inflammatory response and alleviates experimental colitis in mice. Front Pharmacol 2024; 15:1427340. [PMID: 39148547 PMCID: PMC11324439 DOI: 10.3389/fphar.2024.1427340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Treatments of inflammatory bowel disease (IBD) are diverse, but their efficacy is limited, and it is therefore urgent to find better therapies. Controlling mucosal inflammation is a must in IBD drug treatment. The occurrence of anti-tumor necrosis factor α (TNF-α) monoclonal antibodies has provided a safer and more efficacious therapy. However, this kind of treatment still faces failure in the form of loss of response. β-Carboline alkaloids own an anti-inflammatory pharmacological activity. While Kumujan B contains β-carboline, its biological activity remains unknown. In this study, we attempted to determine the anti-inflammatory effects of Kumujan B using both the TNF-α- induced in vitro inflammation and DSS-induced in vivo murine IBD models. Our data show that Kumujan B attenuated the expression of interleukin 1β (IL-1β) and interleukin 6 (IL-6) induced by TNF-α in mouse peritoneal macrophages. Kumujan B suppressed c-Jun N-terminal protein kinases (JNK) signaling, especially c-Jun, for anti-inflammatory response. Furthermore, Kumujan B promoted K11-linked ubiquitination and degradation of c-Jun through the proteasome pathway. In an in vivo study, Kumujan B inhibited the expression of IL-1β, IL-6, and TNF-α and improved the colon barrier function in dextran sulfate sodium salt (DSS)-induced experimental mice colitis. Kumujan B exhibited in vivo and in vitro anti-inflammatory effects, making it a potential therapeutic candidate for treating IBD.
Collapse
Affiliation(s)
- Xunwei Li
- School of Pharmaceutical Sciences, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xucan Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Jin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Shaoying Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yuli Gao
- School of Pharmaceutical Sciences, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Junbo Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Weilin Chen
- School of Pharmaceutical Sciences, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Nabiyi S, Sajedi F, Zamani A, Behzad M. Effect of sitagliptin therapy on IL-29 and its associated signaling molecules in patients with type 2 diabetes mellitus. Hum Immunol 2024; 85:110833. [PMID: 38897073 DOI: 10.1016/j.humimm.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE The potential immunoregulatory capacity of sitagliptin on interleukin-29 (IL-29) and genes involved in its intracellular pathway were explored in type 2 diabetes mellitus (T2D). MATERIALS AND METHODS T2D patients treated with six months of sitagliptin (Sita+), patients not treated with sitagliptin (Sita-), and healthy controls (HCs) were included. IL-29 levels in the supernatant of stimulated mononuclear immune cells was determined with ELISA. The mRNA expression levels of IL-29, FOS, JUN, NF-AT2, NF-KB1, STAT1-2, IRF1, IRF3, IRF7, and IRF9 was assessed with real-time qPCR. RESULTS Increased protein and gene levels of IL-29 were observed in Sita- group compared to HCs (p < 0.001 and p = 0.026), while those levels were diminished in Sita+ group in comparison with Sita- group (p < 0.001 and p = 0.008). Expression of FOS, NF-AT2 and NF-KB1 in Sita- patients was higher than HCs (p = 0.018, p = 0.021, and p = 0.001). A significant decrease in expression of FOS, NF-AT2, and NF-KB1 was found in Sita+ group versus Sita- parients (p = 0.027, p = 0.003, and p = 0.002). In Sita- patients, IL-29 levels were correlated to glucose metabolism parameters including FPG and HbA1c (p < 0.05 for all). CONCLUSION Sitagliptin administration has a regulatory effect on the aggressive expression of IL-29 and its signaling molecules including FOS, NF-AT2 and NF-KB1 in T2D.
Collapse
Affiliation(s)
- Sina Nabiyi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Firozeh Sajedi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Vesey DA, Iyer A, Owen E, Kamato D, Johnson DW, Gobe GC, Fairlie DP, Nikolic-Paterson DJ. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu. Front Pharmacol 2024; 15:1382094. [PMID: 39005931 PMCID: PMC11239397 DOI: 10.3389/fphar.2024.1382094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-β receptor-1 (TGF-βRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-βRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-βRII (TGF-β1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Evan Owen
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Danielle Kamato
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
18
|
Iida K, Okada M. Identifying Key Regulatory Genes in Drug Resistance Acquisition: Modeling Pseudotime Trajectories of Breast Cancer Single-Cell Transcriptome. Cancers (Basel) 2024; 16:1884. [PMID: 38791962 PMCID: PMC11119661 DOI: 10.3390/cancers16101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) technology has provided significant insights into cancer drug resistance at the single-cell level. However, understanding dynamic cell transitions at the molecular systems level remains limited, requiring a systems biology approach. We present an approach that combines mathematical modeling with a pseudotime analysis using time-series scRNA-seq data obtained from the breast cancer cell line MCF-7 treated with tamoxifen. Our single-cell analysis identified five distinct subpopulations, including tamoxifen-sensitive and -resistant groups. Using a single-gene mathematical model, we discovered approximately 560-680 genes out of 6000 exhibiting multistable expression states in each subpopulation, including key estrogen-receptor-positive breast cancer cell survival genes, such as RPS6KB1. A bifurcation analysis elucidated their regulatory mechanisms, and we mapped these genes into a molecular network associated with cell survival and metastasis-related pathways. Our modeling approach comprehensively identifies key regulatory genes for drug resistance acquisition, enhancing our understanding of potential drug targets in breast cancer.
Collapse
Affiliation(s)
- Keita Iida
- Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan;
| | | |
Collapse
|
19
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
20
|
Bian J, Zhu Y, Tian P, Yang Q, Li Z. Adaptor protein HIP-55 promotes macrophage M1 polarization through promoting AP-1 complex activation. Cell Signal 2024; 117:111124. [PMID: 38417633 DOI: 10.1016/j.cellsig.2024.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Overwhelming macrophage M1 polarization induced by malfunction of the renin-angiotensin-aldosterone system (RAAS) initiates inflammatory responses, which play a crucial role in various cardiovascular diseases. However, the underlying regulatory mechanism remains elusive. Here, we identified adaptor protein HIP-55 as a critical regulator of macrophage M1 polarization. The expression of HIP-55 was upregulated in M1 macrophage induced by Ang II. Overexpression of HIP-55 significantly promoted Ang II-induced macrophage M1 polarization, whereas genetic deletion of HIP-55 inhibited the Ang II-induced macrophage M1 polarization. Mechanistically, HIP-55 facilitated activator protein-1 (AP-1) complex activation induced by Ang II via promoting ERK1/2 and JNK phosphorylation. Moreover, blocking AP-1 complex activation can attenuate the function of HIP-55 in macrophage polarization. Collectively, our results reveal the role of HIP-55 in macrophage polarization and provide potential therapeutic insights for cardiovascular diseases associated with RAAS dysfunction.
Collapse
Affiliation(s)
- Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yuzhong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Panhui Tian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Qiqi Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
21
|
Liang Q, Yang S, Mai M, Chen X, Zhu X. Mining phase separation-related diagnostic biomarkers for endometriosis through WGCNA and multiple machine learning techniques: a retrospective and nomogram study. J Assist Reprod Genet 2024; 41:1433-1447. [PMID: 38456992 PMCID: PMC11143086 DOI: 10.1007/s10815-024-03079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition. METHODS We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers. RESULTS Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement. CONCLUSIONS This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.
Collapse
Affiliation(s)
- Qiuyi Liang
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Shengmei Yang
- Obstetrical Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiyi Mai
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiurong Chen
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
22
|
Xi J, Snieckute G, Martínez JF, Arendrup FSW, Asthana A, Gaughan C, Lund AH, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent ribotoxic stress response by the innate immunity endoribonuclease RNase L. Cell Rep 2024; 43:113998. [PMID: 38551960 PMCID: PMC11090160 DOI: 10.1016/j.celrep.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
24
|
Fan Y, Huang S, Wu D, Chu M, Zhao J, Zhang J, Wang Y, Gui Y, Ye X, Wang G, Geng Y, Wang Y, Zhang Z. Immune features revealed by single-cell RNA and single-cell TCR/BCR sequencing in patients with rheumatoid arthritis receiving COVID-19 booster vaccination. J Med Virol 2024; 96:e29573. [PMID: 38566569 DOI: 10.1002/jmv.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, have profoundly affected human health. Booster COVID-19 vaccines have demonstrated significant efficacy in reducing infection and severe cases. However, the effects of booster COVID-19 vaccines on key immune cell subsets and their responses in rheumatoid arthritis (RA) are not well understood. By using single-cell RNA sequencing (scRNA-seq) combined with scTCR/BCR-seq analysis, a total of 8 major and 27 minor cell clusters were identified from paired peripheral blood mononuclear cells (PBMCs) which were collected 1 week before and 4 weeks after booster vaccination in stable RA patients. Booster vaccination only had limited impact on the composition and proportions of PBMCs cell clusters. CD8+ cytotoxic T cells (CD8+T_CTL) showed a trend toward an increase after vaccination, while naive B cells and conventional dendritic cells (cDCs) showed a trend toward a decrease. Transcriptomic changes were observed after booster vaccination, primarily involving T/B cell receptor signaling pathways, phagosome, antigen processing and presenting, and viral myocarditis pathways. Interferon (IFN) and pro-inflammatory response gene sets were slightly upregulated across most major cell subpopulations in COVID-19 booster-vaccinated RA individuals. Plasma neutralizing antibody titers significantly increased after booster COVID-19 vaccination (p = 0.037). Single-cell TCR/BCR analysis revealed increased B cell clone expansion and repertoire diversity postvaccination, with no consistent alterations in T cells. Several clonotypes of BCRs and TCRs were identified to be significantly over-represented after vaccination, such as IGHV3-15 and TRBV28. Our study provided a comprehensive single-cell atlas of the peripheral immune response and TCR/BCR immune repertoire profiles to inactivated SARS-CoV-2 booster vaccination in RA patients, which helps us to understand vaccine-induced immune responses better.
Collapse
Affiliation(s)
- Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Siyuan Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Duo Wu
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Ming Chu
- NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Zhao
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Jiaying Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yu Wang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yanni Gui
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Xiaofei Ye
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Guiqiang Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Yan Geng
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yuedan Wang
- NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| |
Collapse
|
25
|
Sasakura M, Urakami H, Tachibana K, Ikeda K, Hasui KI, Matsuda Y, Sunagawa K, Ennishi D, Tomida S, Morizane S. Topical application of activator protein-1 inhibitor T-5224 suppresses inflammation and improves skin barrier function in a murine atopic dermatitis-like dermatitis. Allergol Int 2024; 73:323-331. [PMID: 38350816 DOI: 10.1016/j.alit.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Selective activator protein (AP)-1 inhibitors are potentially promising therapeutic agents for atopic dermatitis (AD) because AP-1 is an important regulator of skin inflammation. However, few studies have investigated the effect of topical application of AP-1 inhibitors in treating inflammatory skin disorders. METHODS Immunohistochemistry was conducted to detect phosphorylated AP-1/c-Jun expression of skin lesions in AD patients. In the in vivo study, 1 % T-5224 ointment was topically applied for 8 days to the ears of 2,4 dinitrofluorobenzene challenged AD-like dermatitis model mice. Baricitinib, a conventional therapeutic agent Janus kinase (JAK) inhibitor, was also topically applied. In the in vitro study, human epidermal keratinocytes were treated with T-5224 and stimulated with AD-related cytokines. RESULTS AP-1/c-Jun was phosphorylated at skin lesions in AD patients. In vivo, topical T-5224 application inhibited ear swelling (P < 0.001), restored filaggrin (Flg) expression (P < 0.01), and generally suppressed immune-related pathways. T-5224 significantly suppressed Il17a and l17f expression, whereas baricitinib did not. Baricitinib suppressed Il4, Il19, Il33 and Ifnb expression, whereas T-5224 did not. Il1a, Il1b, Il23a, Ifna, S100a8, and S100a9 expression was cooperatively downregulated following the combined use of T-5224 and baricitinib. In vitro, T-5224 restored the expression of FLG and loricrin (LOR) (P < 0.05) and suppressed IL33 expression (P < 0.05) without affecting cell viability and cytotoxicity. CONCLUSIONS Topical T-5224 ameliorates clinical manifestations of AD-like dermatitis in mice. The effect of this inhibitor is amplified via combined use with JAK inhibitors.
Collapse
Affiliation(s)
- Minori Sasakura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Urakami
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Tachibana
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenta Ikeda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ichi Hasui
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ko Sunagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
26
|
Yi L, Ma H, Yang X, Zheng Q, Zhong J, Ye S, Li X, Chen D, Li H, Li C. Cotransplantation of NSCs and ethyl stearate promotes synaptic plasticity in PD rats by Drd1/ERK/AP-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117292. [PMID: 37806537 DOI: 10.1016/j.jep.2023.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine views kidney shortage as a significant contributor to the aetiology of Parkinson's disease (PD), a neurodegenerative condition that is closely linked to aging. In clinical, patients with Parkinson's disease are often treated with Testudinis Carapax et Plastrum (Plastrum Testudinis, PT), a traditional Chinese medication that tonifies the kidney. Previous research has demonstrated that ethyl stearate (PubChem CID: 8122), an active component of Plastrum Testudinis Extracted with ethyl acetate (PTE), may encourage neural stem cells (NSCs) development into dopaminergic (DAergic) neurons. However, the effectiveness and mechanism of cotransplantation of ethyl stearate and NSCs in treating PD model rats still require further investigation. AIM OF THE STUDY PD is a neurodegenerative condition marked by the loss and degradation of dopaminergic neurons in the substantia nigra of the midbrain. Synaptic damage is also a critical pathology in PD. Because of their self-renewal, minimal immunogenicity, and capacity to differentiate into dopaminergic (DAergic) neurons, NSCs are a prospective treatment option for Parkinson's disease cell transplantation therapy. However, encouraging transplanted NSCs to differentiate into dopaminergic neurons and enhancing synaptic plasticity in vivo remains a significant challenge in improving the efficacy of NSCs transplantation for PD. This investigation seeks to examine the efficacy of cotransplantation of NSCs and ethyl stearate in PD model rats and its mechanism related to synaptic plasticity. MATERIALS AND METHODS On 6-hydroxydopamine-induced PD model rats, we performed NSCs transplantation therapy and cotransplantation therapy involving ethyl stearate and NSCs. Rotating behavior induced by apomorphine (APO) and pole climbing tests were used to evaluate behavioral changes. Using a variety of methods, including Western blotting (WB), immunofluorescence analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qRT-PCR), we examined the function and potential molecular mechanisms of ethyl stearate in combined NSCs transplantation therapy. RESULTS In the rat PD model, cotransplantation of ethyl stearate with NSCs dramatically reduced motor dysfunction, restored TH protein levels, and boosted dopamine levels in the striatum, according to our findings. Furthermore, the expression levels of SYN1 and PSD95, markers of synaptic plasticity, and BDNF, closely related to synaptic plasticity, were significantly increased. Cotransplantation with ethyl stearate and NSCs also increased the expression levels of Dopamine Receptor D1 (Drd1), an important receptor in the dopamine neural circuit, accompanied by an increase in MMP9 levels, ERK1/2 phosphorylation levels, and c-fos protein levels. CONCLUSIONS According to the results of our investigation, cotransplantation of ethyl stearate and NSCs significantly improves the condition of PD model rats. We found that cotransplantation of ethyl stearate and NSCs may promote the expression of MMP9 by regulating the Drd1-ERK-AP-1 pathway, thus improving synaptic plasticity after NSCs transplantation. These findings provide new experimental support for the treatment of PD with the kidney tonifying Chinese medicine Plastrum Testudinis and suggest a potential therapeutic strategy for PD based on cotransplantation therapy.
Collapse
Affiliation(s)
- Lan Yi
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Guangzhou Huaxia Vocational College, Guangzhou, Guangdong Province, 510935, PR China
| | - Haisheng Ma
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xiaoxiao Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Qi Zheng
- School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, Guangdong Province, 510006, PR China
| | - Jun Zhong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xican Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| | - Caixia Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|
27
|
Jones CA, Wang J, Evans JR, Sisk HR, Womack CB, Liu Q, Tansey WP, Weissmiller AM. Super-Enhancer Dysregulation in Rhabdoid Tumor Cells Is Regulated by the SWI/SNF ATPase BRG1. Cancers (Basel) 2024; 16:916. [PMID: 38473277 PMCID: PMC10931202 DOI: 10.3390/cancers16050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Mutations in the SWI/SNF chromatin remodeling complex occur in ~20% of cancers. In rhabdoid tumors defined by loss of the SWI/SNF subunit SMARCB1, dysregulation of enhancer-mediated gene expression is pivotal in driving oncogenesis. Enhancer dysregulation in this setting is tied to retention of the SWI/SNF ATPase BRG1-which becomes essential in the absence of SMARCB1-but precisely how BRG1 contributes to this process remains unknown. To characterize how BRG1 participates in chromatin remodeling and gene expression in SMARCB1-deficient cells, we performed a genome-wide characterization of the impact of BRG1 depletion in multiple rhabdoid tumor cell lines. We find that although BRG1-regulated open chromatin sites are distinct at the locus level, the biological characteristics of the loci are very similar, converging on a set of thematically related genes and pointing to the involvement of the AP-1 transcription factor. The open chromatin sites regulated by BRG1 colocalize with histone-marked enhancers and intriguingly include almost all super-enhancers, revealing that BRG1 plays a critical role in maintaining super-enhancer function in this setting. These studies can explain the essentiality of BRG1 to rhabdoid tumor cell identity and survival and implicate the involvement of AP-1 as a critical downstream effector of rhabdoid tumor cell transcriptional programs.
Collapse
Affiliation(s)
- Cheyenne A. Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA; (C.A.J.); (J.R.E.); (H.R.S.); (C.B.W.)
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (Q.L.)
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - James R. Evans
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA; (C.A.J.); (J.R.E.); (H.R.S.); (C.B.W.)
| | - Hannah R. Sisk
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA; (C.A.J.); (J.R.E.); (H.R.S.); (C.B.W.)
| | - Carl B. Womack
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA; (C.A.J.); (J.R.E.); (H.R.S.); (C.B.W.)
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (Q.L.)
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA;
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA; (C.A.J.); (J.R.E.); (H.R.S.); (C.B.W.)
| |
Collapse
|
28
|
Comarița IK, Tanko G, Anghelache IL, Georgescu A. The siRNA-mediated knockdown of AP-1 restores the function of the pulmonary artery and the right ventricle by reducing perivascular and interstitial fibrosis and key molecular players in cardiopulmonary disease. J Transl Med 2024; 22:137. [PMID: 38317144 PMCID: PMC10845748 DOI: 10.1186/s12967-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH. METHODS Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks. All animal groups received water and standard chow ad libitum for 12 weeks. RESULTS In comparison with the MCT group, siRNA AP-1 treatment had significant beneficial effects on investigated tissues contributing to: (1) a reduction in TGF-β1/ET-1/IL-1β/TNF-α plasma concentrations; (2) a reduced level of cytosolic ROS production in PA, RV and lung and notable improvements regarding the ultrastructure of these tissues; a decrease of inflammatory and fibrotic marker expressions in PA (COL1A/Fibronectin/Vimentin/α-SMA/CTGF/Calponin/MMP-9), RV and lung (COL1A/CTGF/Fibronectin/α-SMA/F-actin/OB-cadherin) and an increase of endothelial marker expressions (CD31/VE-cadherin) in PA; (4) structural and functional recoveries of the PA [reduced Vel, restored vascular reactivity (NA contraction, ACh relaxation)] and RV (enlarged internal cavity diameter in diastole, increased TAPSE and PRVOFs) associated with a decrease in systolic and diastolic blood pressure, and heart rate; (5) a reduced protein expression profile of AP-1S3/ pFAK/FAK/pERK/ERK and a significant decrease in the expression levels of miRNA-145, miRNA-210, miRNA-21, and miRNA-214 along with an increase of miRNA-124 and miRNA-204. CONCLUSIONS The siRNA AP-1-based therapy led to an improvement of pulmonary arterial and right ventricular function accompanied by a regression of perivascular and interstitial fibrosis in PA, RV and lung and a down-regulation of key inflammatory and fibrotic markers in MCT-treated hamsters.
Collapse
Affiliation(s)
- Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | | | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
29
|
Song R, Baker TL, Watters JJ, Kumar S. Obstructive Sleep Apnea-Associated Intermittent Hypoxia-Induced Immune Responses in Males, Pregnancies, and Offspring. Int J Mol Sci 2024; 25:1852. [PMID: 38339130 PMCID: PMC10856042 DOI: 10.3390/ijms25031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Obstructive sleep apnea (OSA), a respiratory sleep disorder associated with cardiovascular diseases, is more prevalent in men. However, OSA occurrence in pregnant women rises to a level comparable to men during late gestation, creating persistent effects on both maternal and offspring health. The exact mechanisms behind OSA-induced cardiovascular diseases remain unclear, but inflammation and oxidative stress play a key role. Animal models using intermittent hypoxia (IH), a hallmark of OSA, reveal several pro-inflammatory signaling pathways at play in males, such as TLR4/MyD88/NF-κB/MAPK, miRNA/NLRP3, and COX signaling, along with shifts in immune cell populations and function. Limited evidence suggests similarities in pregnancies and offspring. In addition, suppressing these inflammatory molecules ameliorates IH-induced inflammation and tissue injury, providing new potential targets to treat OSA-associated cardiovascular diseases. This review will focus on the inflammatory mechanisms linking IH to cardiovascular dysfunction in males, pregnancies, and their offspring. The goal is to inspire further investigations into the understudied populations of pregnant females and their offspring, which ultimately uncover underlying mechanisms and therapeutic interventions for OSA-associated diseases.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Tracy L. Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
30
|
Zhao H, Cai Z, Rao J, Wu D, Ji L, Ye R, Wang D, Chen J, Cao C, Hu N, Shu T, Zhu P, Wang J, Zhou X, Xue Y. SARS-CoV-2 RNA stabilizes host mRNAs to elicit immunopathogenesis. Mol Cell 2024; 84:490-505.e9. [PMID: 38128540 DOI: 10.1016/j.molcel.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
SARS-CoV-2 RNA interacts with host factors to suppress interferon responses and simultaneously induces cytokine release to drive the development of severe coronavirus disease 2019 (COVID-19). However, how SARS-CoV-2 hijacks host RNAs to elicit such imbalanced immune responses remains elusive. Here, we analyzed SARS-CoV-2 RNA in situ structures and interactions in infected cells and patient lung samples using RIC-seq. We discovered that SARS-CoV-2 RNA forms 2,095 potential duplexes with the 3' UTRs of 205 host mRNAs to increase their stability by recruiting RNA-binding protein YBX3 in A549 cells. Disrupting the SARS-CoV-2-to-host RNA duplex or knocking down YBX3 decreased host mRNA stability and reduced viral replication. Among SARS-CoV-2-stabilized host targets, NFKBIZ was crucial for promoting cytokine production and reducing interferon responses, probably contributing to cytokine storm induction. Our study uncovers the crucial roles of RNA-RNA interactions in the immunopathogenesis of RNA viruses such as SARS-CoV-2 and provides valuable host targets for drug development.
Collapse
Affiliation(s)
- Hailian Zhao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Rao
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Ji
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou 510100, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
32
|
Miteva K. On target inhibition of vascular smooth muscle cell phenotypic transition underpins TNF-OXPHOS-AP-1 as a promising avenue for anti-remodelling interventions in aortic dissection and rupture. Eur Heart J 2024; 45:306-308. [PMID: 37997934 DOI: 10.1093/eurheartj/ehad679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Affiliation(s)
- Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland
| |
Collapse
|
33
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2023:1-23. [PMID: 38100543 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
34
|
Guo Z, Zhu Y, Xiao H, Dai R, Yang W, Xue W, Zhang X, Hao B, Liao S. Integration of ATAC-seq and RNA-seq identifies MX1-mediated AP-1 transcriptional regulation as a therapeutic target for Down syndrome. Biol Res 2023; 56:67. [PMID: 38066591 PMCID: PMC10709892 DOI: 10.1186/s40659-023-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Growing evidence has suggested that Type I Interferon (I-IFN) plays a potential role in the pathogenesis of Down Syndrome (DS). This work investigates the underlying function of MX1, an effector gene of I-IFN, in DS-associated transcriptional regulation and phenotypic modulation. METHODS We performed assay for transposase-accessible chromatin with high-throughout sequencing (ATAC-seq) to explore the difference of chromatin accessibility between DS derived amniocytes (DSACs) and controls. We then combined the annotated differentially expressed genes (DEGs) and enriched transcriptional factors (TFs) targeting the promoter region from ATAC-seq results with the DEGs in RNA-seq, to identify key genes and pathways involved in alterations of biological processes and pathways in DS. RESULTS Binding motif analysis showed a significant increase in chromatin accessibility of genes related to neural cell function, among others, in DSACs, which is primarily regulated by members of the activator protein-1 (AP-1) transcriptional factor family. Further studies indicated that MX Dynamin Like GTPase 1 (MX1), defined as one of the key effector genes of I-IFN, is a critical upstream regulator. Its overexpression induced expression of AP-1 TFs and mediated inflammatory response, thus leading to decreased cellular viability of DS cells. Moreover, treatment with specific AP-1 inhibitor T-5224 improved DS-associated phenotypes in DSACs. CONCLUSIONS This study demonstrates that MX1-mediated AP-1 activation is partially responsible for cellular dysfunction of DS. T-5224 effectively ameliorated DS-associated phenotypes in DSACs, suggesting it as a potential treatment option for DS patients.
Collapse
Affiliation(s)
- Zhenglong Guo
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
- School of Medicine, People's Hospital of Henan University, Henan University, Zhengzhou, China
| | - Yongchang Zhu
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai Xiao
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
- School of Medicine, People's Hospital of Henan University, Henan University, Zhengzhou, China
| | - Ranran Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenke Yang
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
- School of Medicine, People's Hospital of Henan University, Henan University, Zhengzhou, China
| | - Wei Xue
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xueying Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Bingtao Hao
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
- School of Medicine, People's Hospital of Henan University, Henan University, Zhengzhou, China.
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Shixiu Liao
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China.
- School of Medicine, People's Hospital of Henan University, Henan University, Zhengzhou, China.
| |
Collapse
|
35
|
Whitehead AJ, Atcha H, Hocker JD, Ren B, Engler AJ. AP-1 signaling modulates cardiac fibroblast stress responses. J Cell Sci 2023; 136:jcs261152. [PMID: 37994565 PMCID: PMC10753496 DOI: 10.1242/jcs.261152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Matrix remodeling outcomes largely dictate patient survival post myocardial infarction. Moreover, human-restricted noncoding regulatory elements have been shown to worsen fibrosis, but their mechanism of action remains elusive. Here, we demonstrate, using induced pluripotent stem cell-derived cardiac fibroblasts (iCFs), that inflammatory ligands abundant in the remodeling heart after infarction activate AP-1 transcription factor signaling pathways resulting in fibrotic responses. This observed signaling induces deposition of fibronectin matrix and is further capable of supporting immune cell adhesion; pathway inhibition blocks iCF matrix production and cell adhesion. Polymorphisms in the noncoding regulatory elements within the 9p21 locus (also referred to as ANRIL) redirect stress programs, and in iCFs, they transcriptionally silence the AP-1 inducible transcription factor GATA5. The presence of these polymorphisms modulate iCF matrix production and assembly and reduce cell-cell signaling. These data suggest that this signaling axis is a critical modulator of cardiac disease models and might be influenced by noncoding regulatory elements.
Collapse
Affiliation(s)
- Alexander J. Whitehead
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - James D. Hocker
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
| | - Bing Ren
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Kuznetsova MV, Tonoyan NM, Trubnikova EV, Zelensky DV, Svirepova KA, Adamyan LV, Trofimov DY, Sukhikh GT. Novel Approaches to Possible Targeted Therapies and Prophylaxis of Uterine Fibroids. Diseases 2023; 11:156. [PMID: 37987267 PMCID: PMC10660464 DOI: 10.3390/diseases11040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Uterine leiomyomas are the most common benign tumors in women of childbearing age. They may lead to problems of conception or complications during the gestational period. The methods of treatment include surgical (myomectomy and hysterectomy, embolization of arteries) and therapeutic treatment (ulipristal acetate, leuprolide acetate, cetrorelix, goserelin, mifepristone). Both approaches are efficient but incompatible with pregnancy planning. Therefore, there is a call for medical practice to develop therapeutical means of preventing leiomyoma onset in patients planning on becoming pregnant. Based on the analysis of GWAS data on the search for mononucleotide polymorphisms associated with the risk of leiomyoma, in meta-transcriptomic and meta-methylomic studies, target proteins have been proposed. Prospective therapeutic treatments of leiomyoma may be based on chemical compounds, humanized recombinant antibodies, vaccines based on markers of the uterine leiomyoma cells that are absent in the adult organism, or DNA and RNA preparations. Three different nosological forms of the disease associated with driver mutations in the MED12, HMGA2, and FH genes should be considered when developing or prescribing drugs. For example, synthetic inhibitors and vaccines based on matrix metalloproteinases MMP11 and MMP16 are expected to be effective only for the prevention of the occurrence of MED12-dependent nodules.
Collapse
Affiliation(s)
- Maria V. Kuznetsova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Narine M. Tonoyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | | | | | - Ksenia A. Svirepova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Leila V. Adamyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Dmitry Y. Trofimov
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| |
Collapse
|
37
|
Xi J, Snieckute G, Asthana A, Gaughan C, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent Ribotoxic Stress Response by the Innate Immunity Endoribonuclease RNase L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562082. [PMID: 37873202 PMCID: PMC10592832 DOI: 10.1101/2023.10.12.562082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
RNase L is a regulated endoribonuclease in higher vertebrates that functions in antiviral innate immunity. Interferons induce OAS enzymes that sense double-stranded RNA of viral origin leading to synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L inhibits viral infections. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A was directly introduced into cells. Here we report that RNase L activation by 2-5A causes a ribotoxic stress response that requires the ribosome-associated MAP3K, ZAKα. Subsequently, the stress-activated protein kinases (SAPK) JNK and p38α are phosphorylated. RNase L activation profoundly altered the transcriptome by widespread depletion of mRNAs associated with different cellular functions, but also by SAPK-dependent induction of inflammatory genes. Our findings show that 2-5A is a ribotoxic stressor that causes RNA damage through RNase L triggering a ZAKα kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
38
|
Ozawa S, Ojiro R, Tang Q, Zou X, Woo GH, Yoshida T, Shibutani M. Identification of genes showing altered DNA methylation and gene expression in the renal proximal tubular cells of rats treated with ochratoxin A for 13 weeks. J Appl Toxicol 2023; 43:1533-1548. [PMID: 37162024 DOI: 10.1002/jat.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that causes renal carcinogenicity following the induction of karyomegaly in proximal tubular cells after repeated administration to rats. Here, we performed gene profiling regarding altered DNA methylation and gene expression in the renal tubules focusing on the mechanism of OTA-induced carcinogenesis. For this purpose, OTA or 3-chloro-1,2-propanediol (3-MCPD), a renal carcinogen not inducing karyomegaly, was administered to rats for 13 weeks, and DNA methylation array and RNA sequencing analyses were performed on proximal tubular cells. Genes for which OTA altered the methylation status and gene expression level, after excluding genes showing similar expression changes by 3-MCPD, were subjected to confirmation analysis of the transcript level by real-time reverse-transcription PCR. Gene Ontology (GO)-based functional annotation analysis of validated genes revealed a cluster of hypermethylated and downregulated genes enriched under the GO term "mitochondrion," such as those associated with metabolic reprogramming in carcinogenic process (Clpx, Mrpl54, Mrps34, and Slc25a23). GO terms enriched for hypomethylated and upregulated genes included "response to arsenic-containing substance," represented by Cdkn1a involved in cell cycle arrest, and "positive regulation of IL-17 production," represented by Osm potentiating cell proliferation promotion. Other genes that did not cluster under any GO term included Lrrc14 involved in NF-κB-mediated inflammation, Gen1 linked to DNA repair, Has1 related to chromosomal aberration, and Anxa3 involved in tumor development and progression. In conclusion, a variety of genes engaged in carcinogenic processes were obtained by epigenetic gene profiling in rat renal tubular cells specific to OTA treatment for 13 weeks.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
39
|
Xie L, Lv J, Saimaier K, Han S, Han M, Wang C, Liu G, Zhuang W, Jiang X, Du C. The novel small molecule TPN10518 alleviates EAE pathogenesis by inhibiting AP1 to depress Th1/Th17 cell differentiation. Int Immunopharmacol 2023; 123:110787. [PMID: 37591119 DOI: 10.1016/j.intimp.2023.110787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Multiple sclerosis (MS) is one of the most common autoimmune diseases of central nervous system (CNS) demyelination. Experimental autoimmune encephalomyelitis (EAE) is the most classic animal model for simulating the onset of clinical symptoms in MS. Previous research has reported the anti-inflammatory effects of artemisinin on autoimmune diseases. In our study, we identified a novel small molecule, TPN10518, an artemisinin derivative, which plays a protective role on the EAE model. We found that TPN10518 reduced CNS inflammatory cell infiltration and alleviated clinical symptoms of EAE. In addition, TPN10518 downregulated the production of Th1 and Th17 cells in vivo and in vitro, and decrease the levels of related chemokines. RNA-seq assay combined with the experimental results demonstrated that TPN10518 lowered the mRNA and protein levels of the AP1 subunits c-Fos and c-Jun in EAE mice. It was further confirmed that TPN10518 was dependent on AP1 to inhibit the differentiation of Th1 and Th17 cells. The results suggest that TPN10518 reduces the production of Th1 and Th17 cells through inhibition of AP1 to alleviate the severity of EAE disease. It is expected to be a potential drug for the treatment of MS.
Collapse
Affiliation(s)
- Ling Xie
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Lv
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaidireya Saimaier
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sanxing Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengyao Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chun Wang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guangyu Liu
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei Zhuang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiangrui Jiang
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Du
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
40
|
Hu Y, Liu J, Zhuang R, Zhang C, Lin F, Wang J, Peng S, Zhang W. Progress in Pathological and Therapeutic Research of HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2023; 43:3343-3373. [PMID: 37470889 DOI: 10.1007/s10571-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
HIV-related neuropathic pain (HRNP) is a neurodegeneration that gradually develops during the long-term course of acquired immune deficiency syndrome (AIDS) and manifests as abnormal sock/sleeve-like symmetrical pain and nociceptive hyperalgesia in the extremities, which seriously reduces patient quality of life. To date, the pathogenesis of HRNP is not completely clear. There is a lack of effective clinical treatment for HRNP and it is becoming a challenge and hot spot for medical research. In this study, we conducted a systematic review of the progress of HRNP research in recent years including (1) the etiology, classification and clinical symptoms of HRNP, (2) the establishment of HRNP pathological models, (3) the pathological mechanisms underlying HRNP from three aspects: molecules, signaling pathways and cells, (4) the therapeutic strategies for HRNP, and (5) the limitations of recent HRNP research and the future research directions and prospects of HRNP. This detailed review provides new and systematic insight into the pathological mechanism of HRNP, which establishes a theoretical basis for the future exploitation of novel target drugs. HIV infection, antiretroviral therapy and opioid abuse contribute to the etiology of HRNP with symmetrical pain in both hands and feet, allodynia and hyperalgesia. The pathogenesis involves changes in cytokine expression, activation of signaling pathways and neuronal cell states. The therapy for HRNP should be patient-centered, integrating pharmacologic and nonpharmacologic treatments into multimodal intervention.
Collapse
Affiliation(s)
- YanLing Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - JinHong Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Renjie Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jun Wang
- Department of Orthopedics, Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Sha Peng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Tang S, Zhang F, Li J, Dong H, Yang Q, Liu J, Fu Y. The selective activator protein-1 inhibitor T-5224 regulates the IRF4/MYC axis and exerts cooperative antimyeloma activity with bortezomib. Chem Biol Interact 2023; 384:110687. [PMID: 37657595 DOI: 10.1016/j.cbi.2023.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The activating protein-1 (AP-1) transcription factors (TFs) have been associated with many different cancer types and are promising therapeutic targets in logical malignancies. However, the mechanisms of their role in multiple myeloma (MM) remain elusive. The present study determined and compared the mRNA and protein expression levels of the AP-1 family member JunB in CD138+ mononuclear cells from MM patients and healthy donors. Herein, we investigated the effect of T-5224, an inhibitor of JUN/AP-1, on MM. We found that the cytotoxicity of T-5224 toward myeloma is due to its ability to induce cell apoptosis, inhibit proliferation, and induce cell cycle arrest by increasing the levels of cleaved caspase3/7 and concomitantly inhibiting the IRF4/MYC axis. We also noticed that siJunB-mediated deletion of JunB/AP-1 enhanced MM cell apoptosis and affected cell proliferation. The software PROMO was used in the present study to predict the AP-1 TF that may bind the promoter region of IRF4. We confirmed the correlation between JunB/AP-1 and IRF4. Given that bortezomib (BTZ) facilitates IRF4 degradation in MM cells, we applied combination treatment of BTZ with T-5224. T-5224 and BTZ exerted synergistic effects, and T-5224 reversed the effect of BTZ on CD138+ primary resistance in MM cells, in part due to suppression of the IRF4/MYC axis. Our results suggest that targeting AP-1 TFs is a promising therapeutic strategy for MM. Additionally, targeting both AP-1 and IRF4 with T-5224 may be a synergistic therapeutic strategy for this clinically challenging subset of MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qin Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
42
|
Lin YJ, Yang CC, Lee IT, Wu WB, Lin CC, Hsiao LD, Yang CM. Reactive Oxygen Species-Dependent Activation of EGFR/Akt/p38 Mitogen-Activated Protein Kinase and JNK1/2/FoxO1 and AP-1 Pathways in Human Pulmonary Alveolar Epithelial Cells Leads to Up-Regulation of COX-2/PGE 2 Induced by Silica Nanoparticles. Biomedicines 2023; 11:2628. [PMID: 37893002 PMCID: PMC10604097 DOI: 10.3390/biomedicines11102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The risk of lung exposure to silica nanoparticles (SiNPs) and related lung inflammatory injury is increasing with the wide application of SiNPs in a variety of industries. A growing body of research has revealed that cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) up-regulated by SiNP toxicity has a role during pulmonary inflammation. The detailed mechanisms underlying SiNP-induced COX-2 expression and PGE2 synthesis remain unknown. The present study aims to dissect the molecular components involved in COX-2/PGE2 up-regulated by SiNPs in human pulmonary alveolar epithelial cells (HPAEpiCs) which are one of the major targets while SiNPs are inhaled. In the present study, we demonstrated that SiNPs induced COX-2 expression and PGE2 release, which were inhibited by pretreatment with a reactive oxygen species (ROS) scavenger (edaravone) or the inhibitors of proline-rich tyrosine kinase 2 (Pyk2, PF-431396), epidermal growth factor receptor (EGFR, AG1478), phosphatidylinositol 3-kinase (PI3K, LY294002), protein kinase B (Akt, Akt inhibitor VIII), p38 mitogen-activated protein kinase (MAPK) (p38 MAPK inhibitor VIII), c-Jun N-terminal kinases (JNK)1/2 (SP600125), Forkhead Box O1 (FoxO1, AS1842856), and activator protein 1 (AP-1, Tanshinone IIA). In addition, we also found that SiNPs induced ROS-dependent Pyk2, EGFR, Akt, p38 MAPK, and JNK1/2 activation in these cells. These signaling pathways induced by SiNPs could further cause c-Jun and FoxO1 activation and translocation from the cytosol to the nucleus. AP-1 and FoxO1 activation could increase COX-2 and PGE2 levels induced by SiNPs. Finally, the COX-2/PGE2 axis might promote the inflammatory responses in HPAEpiCs. In conclusion, we suggested that SiNPs induced COX-2 expression accompanied by PGE2 synthesis mediated via ROS/Pyk2/EGFR/PI3K/Akt/p38 MAPK- and JNK1/2-dependent FoxO1 and AP-1 activation in HPAEpiCs.
Collapse
Affiliation(s)
- Yan-Jyun Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo Branch, Kwei-San, Tao-Yuan 33305, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
43
|
Osada N, Kikuchi J, Iha H, Yasui H, Ikeda S, Takahashi N, Furukawa Y. c-FOS is an integral component of the IKZF1 transactivator complex and mediates lenalidomide resistance in multiple myeloma. Clin Transl Med 2023; 13:e1364. [PMID: 37581569 PMCID: PMC10426395 DOI: 10.1002/ctm2.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin-dependent degradation of IKZF1 and subsequent down-regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co-factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation. METHODS To identify unknown components of the IKZF1 complex, we analyzed the genome-wide binding of IKZF1 in MM cells using chromatin immunoprecipitation-sequencing (ChIP-seq) and screened for the co-occupancy of IKZF1 with other DNA-binding factors on the myeloma genome using the ChIP-Atlas platform. RESULTS We found that c-FOS, a member of the activator protein-1 (AP-1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome-wide screening revealed the co-occupancy of c-FOS with IKZF1 on the regulatory regions of IKZF1-target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre-B cells or mature T-lymphocytes. c-FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein-protein interactions. The complex also includes c-JUN and IKZF3 but not IRF4. Treatment of MM cells with short-hairpin RNA against FOS or a selective AP-1 inhibitor significantly enhanced the anti-MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP-1 inhibitor mitigated the lenalidomide resistance of MM cells. CONCLUSIONS C-FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co-factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.
Collapse
Affiliation(s)
- Naoki Osada
- Division of Stem Cell RegulationCenter for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - Jiro Kikuchi
- Division of Stem Cell RegulationCenter for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - Hidekatsu Iha
- Division of PathophysiologyThe Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID)Oita UniversityOitaJapan
| | - Hiroshi Yasui
- Division of Hematology and Oncology, Department of Internal MedicineSt. Marianna University School of MedicineKanagawaJapan
- Project Division of Innovative Diagnostics Technology Platform, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Sho Ikeda
- Department of HematologyNephrology and RheumatologyAkita University Graduate School of MedicineAkitaJapan
| | - Naoto Takahashi
- Department of HematologyNephrology and RheumatologyAkita University Graduate School of MedicineAkitaJapan
| | - Yusuke Furukawa
- Division of Stem Cell RegulationCenter for Molecular MedicineJichi Medical UniversityTochigiJapan
- Center for Medical EducationTeikyo University of ScienceTokyoJapan
| |
Collapse
|
44
|
Yu X, Wang Y, Song Y, Gao X, Deng H. AP-1 is a regulatory transcription factor of inflammaging in the murine kidney and liver. Aging Cell 2023; 22:e13858. [PMID: 37154113 PMCID: PMC10352569 DOI: 10.1111/acel.13858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Aging is characterized by chronic low-grade inflammation in multiple tissues, also termed "inflammaging", which represents a significant risk factor for many aging-related chronic diseases. However, the mechanisms and regulatory networks underlying inflammaging across different tissues have not yet been fully elucidated. Here, we profiled the transcriptomes and epigenomes of the kidney and liver from young and aged mice and found that activation of the inflammatory response is a conserved signature in both tissues. Moreover, we revealed links between transcriptome changes and chromatin dynamics through integrative analysis and identified AP-1 and ETS family transcription factors (TFs) as potential regulators of inflammaging. Further in situ validation showed that c-JUN (a member of the AP-1 family) was mainly activated in aged renal and hepatic cells, while increased SPI1 (a member of the ETS family) was mostly induced by elevated infiltration of macrophages, indicating that these TFs have different mechanisms in inflammaging. Functional data demonstrated that genetic knockdown of Fos, a major member of the AP-1 family, significantly attenuated the inflammatory response in aged kidneys and livers. Taken together, our results revealed conserved signatures and regulatory TFs of inflammaging in the kidney and liver, providing novel targets for the development of anti-aging interventions.
Collapse
Affiliation(s)
- Xiaojie Yu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yuting Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yifan Song
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Xianda Gao
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| | - Hongkui Deng
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| |
Collapse
|
45
|
Tienda-Vázquez MA, Hanel JM, Márquez-Arteaga EM, Salgado-Álvarez AP, Scheckhuber CQ, Alanis-Gómez JR, Espinoza-Silva JI, Ramos-Kuri M, Hernández-Rosas F, Melchor-Martínez EM, Parra-Saldívar R. Exosomes: A Promising Strategy for Repair, Regeneration and Treatment of Skin Disorders. Cells 2023; 12:1625. [PMID: 37371095 PMCID: PMC10296902 DOI: 10.3390/cells12121625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The skin is the organ that serves as the outermost layer of protection against injury, pathogens, and homeostasis with external factors; in turn, it can be damaged by factors such as burns, trauma, exposure to ultraviolet light (UV), infrared radiation (IR), activating signaling pathways such as Toll-like receptors (TLR) and Nuclear factor erythroid 2-related factor 2 (NRF2), among others, causing a need to subsequently repair and regenerate the skin. However, pathologies such as diabetes lengthen the inflammatory stage, complicating the healing process and, in some cases, completely inhibiting it, generating susceptibility to infections. Exosomes are nano-sized extracellular vesicles that can be isolated and purified from different sources such as blood, urine, breast milk, saliva, urine, umbilical cord bile cells, and mesenchymal stem cells. They have bioactive compounds that, thanks to their paracrine activity, have proven to be effective as anti-inflammatory agents, inducers of macrophage polarization and accelerators of skin repair and regeneration, reducing the possible complications relating to poor wound repair, and prolonged inflammation. This review provides information on the use of exosomes as a promising therapy against damage from UV light, infrared radiation, burns, and skin disorders.
Collapse
Affiliation(s)
- Mario Adrián Tienda-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Juan Manuel Hanel
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Elsa Margarita Márquez-Arteaga
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Ana Paola Salgado-Álvarez
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Christian Quintus Scheckhuber
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Mexico City 14380, Mexico
| | - José Rafael Alanis-Gómez
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
- Division Research and Postgraduate Division, Faculty of Engineering, Autonomous University of Querétaro, Querétaro 76010, Mexico
| | | | - Manuel Ramos-Kuri
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey 64710, Mexico;
| | - Fabiola Hernández-Rosas
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
- Research Center, Anahuac Queretaro University, Querétaro 76246, Mexico
| | - Elda M. Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
46
|
Miklós Z, Horváth I. The Role of Oxidative Stress and Antioxidants in Cardiovascular Comorbidities in COPD. Antioxidants (Basel) 2023; 12:1196. [PMID: 37371927 DOI: 10.3390/antiox12061196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress driven by several environmental and local airway factors associated with chronic obstructive bronchiolitis, a hallmark feature of COPD, plays a crucial role in disease pathomechanisms. Unbalance between oxidants and antioxidant defense mechanisms amplifies the local inflammatory processes, worsens cardiovascular health, and contributes to COPD-related cardiovascular dysfunctions and mortality. The current review summarizes recent developments in our understanding of different mechanisms contributing to oxidative stress and its countermeasures, with special attention to those that link local and systemic processes. Major regulatory mechanisms orchestrating these pathways are also introduced, with some suggestions for further research in the field.
Collapse
Affiliation(s)
- Zsuzsanna Miklós
- National Korányi Institute for Pulmonology, Korányi F. Street 1, H-1121 Budapest, Hungary
| | - Ildikó Horváth
- National Korányi Institute for Pulmonology, Korányi F. Street 1, H-1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| |
Collapse
|
47
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
48
|
Wang K, Sun X, Sun Y, Jiao B, Yao J, Hu Y, Deng Q, Dong J, Wang W, Wang Y, Li C. Transcriptional regulation of macrophages in heart failure. Front Cardiovasc Med 2023; 10:1148041. [PMID: 37063966 PMCID: PMC10097991 DOI: 10.3389/fcvm.2023.1148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Adverse cardiac remodeling after acute myocardial infarction is the most important pathological mechanism of heart failure and remains a major problem in clinical practice. Cardiac macrophages, derived from tissue resident macrophages and circulating monocyte, undergo significant phenotypic and functional changes following cardiac injury and play crucial roles in inflammatory response and tissue repair response. Currently, numerous studies indicate that epigenetic regulatory factors and transcription factors can regulate the transcription of inflammatory and reparative genes and timely conversion of inflammatory macrophages into reparative macrophages and then alleviate cardiac remodeling. Accordingly, targeting transcriptional regulation of macrophages may be a promising option for heart failure treatment. In this review, we not only summarize the origin and function of cardiac macrophages, but more importantly, describe the transcriptional regulation of macrophages in heart failure, aiming to provide a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- Keyan Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Jiao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| |
Collapse
|
49
|
Sukhanov S, Higashi Y, Yoshida T, Danchuk S, Alfortish M, Goodchild T, Scarborough A, Sharp T, Jenkins JS, Garcia D, Ivey J, Tharp DL, Schumacher J, Rozenbaum Z, Kolls JK, Bowles D, Lefer D, Delafontaine P. Insulin-like growth factor 1 reduces coronary atherosclerosis in pigs with familial hypercholesterolemia. JCI Insight 2023; 8:e165713. [PMID: 36602878 PMCID: PMC9990768 DOI: 10.1172/jci.insight.165713] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque's fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis, consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress, and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis showed that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1's effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.
Collapse
Affiliation(s)
- Sergiy Sukhanov
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yusuke Higashi
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tadashi Yoshida
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Svitlana Danchuk
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Mitzi Alfortish
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Traci Goodchild
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | - Amy Scarborough
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | - Thomas Sharp
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | | | | | - Jan Ivey
- Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Darla L. Tharp
- Department of Biomedical Sciences, University of Missouri-Columbia, Missouri, USA
| | - Jeffrey Schumacher
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | - Zach Rozenbaum
- Tulane University School of Medicine, New Orleans, Louisiana, USA
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jay K. Kolls
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Douglas Bowles
- Department of Biomedical Sciences, University of Missouri-Columbia, Missouri, USA
| | - David Lefer
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | | |
Collapse
|
50
|
Pi Z, Qiu X, Liu J, Shi Y, Zeng Z, Xiao R. Activating Protein-1 (AP-1): A Promising Target for the Treatment of Fibrotic Diseases. Curr Med Chem 2023; 31:CMC-EPUB-129375. [PMID: 36757030 DOI: 10.2174/0929867330666230209100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
The fibrosis of tissues and organs occurs via an aberrant tissue remodeling process characterized by an excessive deposition of extracellular matrix, which can lead to organ dysfunction, organ failure, and death. Because the pathogenesis of fibrosis remains unclear and elusive, there is currently no medication to reverse it; hence, this process deserves further study. Activating protein-1 (AP-1)-comprising Jun (c-Jun, JunB, JunD), Fos (c-fos, FosB, Fra1, and Fra2), and activating transcription factor-is a versatile dimeric transcription factor. Numerous studies have demonstrated that AP-1 plays a crucial role in advancing tissue and organ fibrosis via induction of the expression of fibrotic molecules and activating fibroblasts. This review focuses on the role of AP-1 in a range of fibrotic disorders as well as on the antifibrotic effects of AP-1 inhibitors. It also discusses the potential of AP-1 as a new therapeutic target in conditions involving tissue and organ fibrosis.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Medical Genetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Second Xiangya Hospital of Central South University Department of Dermatology Changsha China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|