1
|
Ihnatenko I, Müller MJ, Orban OCF, Lindhof JC, Benítez D, Ortíz C, Dibello E, Seidl LL, Comini MA, Kunick C. The indole motif is essential for the antitrypanosomal activity of N5-substituted paullones. PLoS One 2023; 18:e0292946. [PMID: 38032881 PMCID: PMC10688702 DOI: 10.1371/journal.pone.0292946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
Severe infections with potentially fatal outcomes are caused by parasites from the genera Trypanosoma and Leishmania (class Kinetoplastea). The diseases affect people of remote areas in the tropics and subtropics with limited access to adequate health care. Besides insufficient diagnostics, treatment options are limited, with tenuous developments in recent years. Therefore, new antitrypanosomal antiinfectives are required to fight these maladies. In the presented approach, new compounds were developed and tested on the target trypanothione synthetase (TryS). This enzyme is crucial to the kinetoplastids' unique trypanothione-based thiol redox metabolism and thus for pathogen survival. Preceding studies have shown that N5-substituted paullones display antitrypanosomal activity as well as TryS inhibition. Herein, this compound class was further examined regarding the structure-activity relationships (SAR). Diverse benzazepinone derivatives were designed and tested in cell-based assays on bloodstream Trypanosoma brucei brucei (T. b. brucei) and intracellular amastigotes of Leishmania infantum (L. infantum) as well as in enzyme-based assays on L. infantum TryS (LiTryS) and T. b. brucei TryS (TbTryS). While an exchange of just the substituent in the 9-position of paullones led to potent inhibitors on LiTryS and T. b. brucei parasites, new compounds lacking the indole moiety showed a total loss of activity in both assays. Conclusively, the indole as part of the paullone structure is pivotal for keeping the TryS inhibitory and antitrypanosomal activity of this substance class.
Collapse
Affiliation(s)
- Irina Ihnatenko
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Marco J Müller
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Oliver C F Orban
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Jens C Lindhof
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Ortíz
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Estefanía Dibello
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leonardo L Seidl
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Conrad Kunick
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
An Effective Synthesis of Previously Unknown 7-Aryl Substituted Paullones. Molecules 2023; 28:molecules28052324. [PMID: 36903571 PMCID: PMC10005103 DOI: 10.3390/molecules28052324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
A straightforward three-step procedure affording a wide range of novel 7-aryl substituted paullone derivatives was developed. This scaffold is structurally similar to 2-(1H-indol-3-yl)acetamides-promising antitumor agents-hence, could be useful for the development of a new class of anticancer drugs.
Collapse
|
3
|
Akunuri R, Vadakattu M, Kaul G, Akhir A, Saxena D, Ahmad MN, Bujji S, Joshi SV, Dasgupta A, Yaddanapudi VM, Chopra S, Nanduri S. Synthesis and Antibacterial Evaluation of 3,4‐Dihydro‐1
H
‐benzo[
b
]azepine‐2,5‐dione Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Swanand Vinayak Joshi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| |
Collapse
|
4
|
Kadagathur M, Sujat Shaikh A, Panda B, George J, Phanindranath R, Kumar Sigalapalli D, Bhale NA, Godugu C, Nagesh N, Shankaraiah N, Tangellamudi ND. Synthesis of indolo/pyrroloazepinone-oxindoles as potential cytotoxic, DNA-intercalating and Topo I inhibitors. Bioorg Chem 2022; 122:105706. [DOI: 10.1016/j.bioorg.2022.105706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
5
|
Lande DH, Nasereddin A, Alder A, Gilberger TW, Dzikowski R, Grünefeld J, Kunick C. Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Molecules 2021; 26:4739. [PMID: 34443327 PMCID: PMC8402075 DOI: 10.3390/molecules26164739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria is one of the most dangerous infectious diseases. Because the causative Plasmodium parasites have developed resistances against virtually all established antimalarial drugs, novel antiplasmodial agents are required. In order to target plasmodial kinases, novel N-unsubstituted bisindolylcyclobutenediones were designed as analogs to the kinase inhibitory bisindolylmaleimides. Molecular docking experiments produced favorable poses of the unsubstituted bisindolylcyclobutenedione in the ATP binding pocket of various plasmodial protein kinases. The synthesis of the title compounds was accomplished by sequential Friedel-Crafts acylation procedures. In vitro screening of the new compounds against transgenic NF54-luc P. falciparum parasites revealed a set of derivatives with submicromolar activity, of which some displayed a reasonable selectivity profile against a human cell line. Although the molecular docking studies suggested the plasmodial protein kinase PfGSK-3 as the putative biological target, the title compounds failed to inhibit the isolated enzyme in vitro. As selective submicromolar antiplasmodial agents, the N-unsubstituted bisindolylcyclobutenediones are promising starting structures in the search for antimalarial drugs, albeit for a rational development, the biological target addressed by these compounds has yet to be identified.
Collapse
Affiliation(s)
- Duc Hoàng Lande
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tim W. Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
| | - Johann Grünefeld
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Kadagathur M, Patra S, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Syntheses and medicinal chemistry of azepinoindolones: a look back to leap forward. Org Biomol Chem 2021; 19:738-764. [PMID: 33459333 DOI: 10.1039/d0ob02181d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds constitute nearly 75% of small molecules which favorably act as drug candidates. For the past few decades, numerous natural and synthetic indole-based scaffolds have been reported for their diverse pharmacological profiles. In particular, indole-fused azepines, termed azepinoindolones, have come under the radar of medicinal chemists owing to their synthetic and pharmacological importance. A plethora of literature reports has been generated thereof, which calls for the need for the compilation of information to understand their current status in drug discovery. Accumulating reports of evidence suggest that compounds containing this privileged scaffold display their cytotoxic effects via inhibition of kinase, topoisomerase I, mitochondrial malate dehydrogenase (mMDH), and tubulin polymerization and as DNA minor groove binding agents. Herein, we endeavor to present a closer look at the advancements of various synthetic and derivatization methods of azepinoindolone-based compounds. We have further extended our efforts to discuss the pharmacological effects of azepinoindolones in the whole range of medicinal chemistry as anti-Alzheimer, anticancer, anti-inflammatory, antidiabetic, antileishmanial, and antipyranosomal agents and as drug delivery vectors. Our analysis of recent advances reveals that azepinoindolones will continue to serve as potential pharmaceutical modalities in the years to come and their substantial pool of synthetic methods will be ever expanding.
Collapse
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Sandip Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Neelima D Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
7
|
Qin HL, Zhang ZW, Lekkala R, Alsulami H, Rakesh K. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur J Med Chem 2020; 193:112215. [DOI: 10.1016/j.ejmech.2020.112215] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/20/2023]
|
8
|
Bacher F, Wittmann C, Nové M, Spengler G, Marć MA, Enyedy EA, Darvasiová D, Rapta P, Reiner T, Arion VB. Novel latonduine derived proligands and their copper(ii) complexes show cytotoxicity in the nanomolar range in human colon adenocarcinoma cells and in vitro cancer selectivity. Dalton Trans 2020; 48:10464-10478. [PMID: 31125040 DOI: 10.1039/c9dt01238a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four Schiff bases derived from 7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin-(6H)-one and its bromo-substituted analogue (HL1-HL4) and four copper(ii) complexes 1-4 have been synthesised and fully characterised by standard spectroscopic methods (1H and 13C NMR, UV-vis), ESI mass spectrometry, single crystal X-ray diffraction and spectroelectrochemistry. In addition, two previously reported complexes with paullone ligands 5 and 6 were prepared and studied for comparison reasons. The CuII ion in 1-4 is five-coordinate and adopts a square-pyramidal or slightly distorted square-pyramidal coordination geometry. The ligands HL1-4 act as tridentate, the other two coordination places are occupied by two chlorido co-ligands. The organic ligands in 2 and 3 are bound tighter to copper(ii) when compared to related paullone ligands in 5 and 6. The new compounds show very strong cytotoxic activity against human colon adenocarcinoma doxorubicin-sensitive Colo 205 and multidrug resistant Colo 320 cancer cell lines with IC50 values in the low micromolar to nanomolar concentration range.
Collapse
Affiliation(s)
- Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Christopher Wittmann
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Małgorzata A Marć
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Thomas Reiner
- Department of Radiology, Weill Cornell Medical College, New York City, NY 10065, USA and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA and Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
9
|
Xu M, Wu P, Shen F, Ji J, Rakesh KP. Chalcone derivatives and their antibacterial activities: Current development. Bioorg Chem 2019; 91:103133. [PMID: 31374524 DOI: 10.1016/j.bioorg.2019.103133] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The increase in antibiotic resistance due to various factors has encouraged the look for novel compounds which are active against multidrug-resistant pathogens. In this framework, chalcone-based compounds showed a diversity of pharmacological properties, and its derivatives possess a high degree of structural diversity, and it is helpful for the discovery of new therapeutic agents. The growing resistance to antibiotics worldwide has endangered their efficacy. This has led to a surging interest in the discovery of new antibacterial agents. Thus, there is an urgent need for new antibacterial drug candidates with increased strength, new targets, low cost, superior pharmacokinetic properties, and minimum side effects. The present review concluded and focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent antibacterial agents and also describes its structure-activity relationships studies. The various synthetic structures leading to this class of neutral protective compound is common and additional structural optimization is promising for potential drug discovery and development.
Collapse
Affiliation(s)
- Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Piye Wu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Fan Shen
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiayou Ji
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - K P Rakesh
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
10
|
Herrera Acevedo C, Scotti L, Alves MF, de F.F.M. Diniz M, Tullius Scotti M. Hybrid Compounds in the Search for Alternative Chemotherapeutic Agents against Neglected Tropical Diseases. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180402123057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) affect more than a billion people worldwide, mainly
populations living in poverty conditions. More than 56% of annual NTD deaths are caused by
Leishmaniasis, Sleeping sickness, and Chagas disease. For these three diseases, many problems have
been observed with the chemotherapeutic drugs commonly used, these being mainly resistance, high
toxicity, and low efficacy. In the search for alternative treatments, hybridization is an interesting approach,
which generates new molecules by merging two pharmacophores and then looking for improvements
in biological activity or reduced compound toxicity. Here, we review various studies that
present such hybrid molecules with promising in vitro and in vivo activities against Leishmania and
Trypanosoma parasites.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Mateus F. Alves
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Margareth de F.F.M. Diniz
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| |
Collapse
|
11
|
Ayotte Y, Bilodeau F, Descoteaux A, LaPlante SR. Fragment-Based Phenotypic Lead Discovery: Cell-Based Assay to Target Leishmaniasis. ChemMedChem 2018; 13:1377-1386. [PMID: 29722149 DOI: 10.1002/cmdc.201800161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/20/2018] [Indexed: 12/24/2022]
Abstract
A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment-based phenotypic lead discovery (FPLD) combines aspects of traditional fragment-based lead discovery (FBLD), which involves the screening of small-molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug-like compounds in cell-based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low-molecular-weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone-marrow-derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - François Bilodeau
- NMX Research and Solutions Inc., 500 boulevard Cartier, Laval, Québec, H7V 5B7, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Steven R LaPlante
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
12
|
Tajuddeen N, Isah MB, Suleiman MA, van Heerden FR, Ibrahim MA. The chemotherapeutic potential of chalcones against leishmaniases: a review. Int J Antimicrob Agents 2017; 51:311-318. [PMID: 28668673 DOI: 10.1016/j.ijantimicag.2017.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/06/2017] [Accepted: 06/17/2017] [Indexed: 02/07/2023]
Abstract
Leishmaniases are endemic diseases in tropical and sub-tropical regions of the world and are considered by the World Health Organization (WHO) to be among the six most important neglected tropical diseases. The current therapeutic arsenal against the disease is associated with a series of chemotherapeutic setbacks. However, since the early 1990s, naturally occurring chalcones with promising antileishmanial effects have been reported, and several other synthetic chalcones and chalcone-hybrid molecules have been confirmed to possess potent activity against various Leishmania species. This paper is a comprehensive review covering the antileishmanial activity of 34 naturally occurring chalcones, 224 synthetic/semisynthetic chalcones and 54 chalcone-hybrid molecules. Several chalcones in the synthetic/semisynthetic category had IC50 values < 5 µM, with very good selectivity against parasites, and the structure-activity relationships as well as the proposed mechanism of action are discussed. We identified knowledge-gaps with the hope of providing future direction for the discovery of novel antileishmanial drugs from chalcones.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Fanie R van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa
| | | |
Collapse
|
13
|
Weidner T, Lucantoni L, Nasereddin A, Preu L, Jones PG, Dzikowski R, Avery VM, Kunick C. Antiplasmodial dihetarylthioethers target the coenzyme A synthesis pathway in Plasmodium falciparum erythrocytic stages. Malar J 2017; 16:192. [PMID: 28502250 PMCID: PMC5430599 DOI: 10.1186/s12936-017-1839-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 03/28/2023] Open
Abstract
Background Malaria is a widespread infectious disease that threatens a large proportion of the population in tropical and subtropical areas. Given the emerging resistance against the current standard anti-malaria chemotherapeutics, the development of alternative drugs is urgently needed. New anti-malarials representing chemotypes unrelated to currently used drugs have an increased potential for displaying novel mechanisms of action and thus exhibit low risk of cross-resistance against established drugs. Results Phenotypic screening of a small library (32 kinase-inhibitor analogs) against Plasmodium falciparum NF54-luc asexual erythrocytic stage parasites identified a diarylthioether structurally unrelated to registered drugs. Hit expansion led to a series in which the most potent congener displayed nanomolar antiparasitic activity (IC50 = 39 nM, 3D7 strain). Structure–activity relationship analysis revealed a thieno[2,3-d]pyrimidine on one side of the thioether linkage as a prerequisite for antiplasmodial activity. Within the series, the oxazole derivative KuWei173 showed high potency (IC50 = 75 nM; 3D7 strain), good solubility in aqueous solvents (1.33 mM), and >100-fold selectivity toward human cell lines. Rescue experiments identified inhibition of the plasmodial coenzyme A synthesis as a possible mode of action for this compound class. Conclusions The class of antiplasmodial bishetarylthioethers reported here has been shown to interfere with plasmodial coenzyme A synthesis, a mechanism of action not yet exploited for registered anti-malarial drugs. The oxazole congener KuWei173 displays double-digit nanomolar antiplasmodial activity, selectivity against human cell lines, high drug likeness, and thus represents a promising chemical starting point for further drug development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1839-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Weidner
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, QLD, Australia
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, QLD, Australia
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany. .,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106, Braunschweig, Germany.
| |
Collapse
|
14
|
Anand D, Yadav PK, Patel OPS, Parmar N, Maurya RK, Vishwakarma P, Raju KSR, Taneja I, Wahajuddin M, Kar S, Yadav PP. Antileishmanial Activity of Pyrazolopyridine Derivatives and Their Potential as an Adjunct Therapy with Miltefosine. J Med Chem 2017; 60:1041-1059. [DOI: 10.1021/acs.jmedchem.6b01447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Pawan Kumar Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Naveen Parmar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Preeti Vishwakarma
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Kanumuri S. R. Raju
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Isha Taneja
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - M. Wahajuddin
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Susanta Kar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Prem P. Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| |
Collapse
|
15
|
Psarra V, Fousteris MA, Hennig L, Bantzi M, Giannis A, Nikolaropoulos SS. Identification of azepinone fused tetracyclic heterocycles as new chemotypes with protein kinase inhibitory activities. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Duncan SM, Myburgh E, Philipon C, Brown E, Meissner M, Brewer J, Mottram JC. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol Microbiol 2016; 100:931-44. [PMID: 26991545 PMCID: PMC4913733 DOI: 10.1111/mmi.13375] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
Leishmania mexicana has a large family of cyclin‐dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2‐related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co‐expression of a CRK3 transgene during rapamycin‐induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3T178E mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Cintia Philipon
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elaine Brown
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Brewer
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
17
|
Pirttimaa M, Nasereddin A, Kopelyanskiy D, Kaiser M, Yli-Kauhaluoma J, Oksman-Caldentey KM, Brun R, Jaffe CL, Moreira VM, Alakurtti S. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi. JOURNAL OF NATURAL PRODUCTS 2016; 79:362-368. [PMID: 26849852 DOI: 10.1021/acs.jnatprod.5b00990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.
Collapse
Affiliation(s)
- Minni Pirttimaa
- VTT Technical Research Centre of Finland Ltd, VTT , P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Abedelmajeed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, P.O. Box 12272, Hebrew University-Hadassah Medical School , 9112102 Jerusalem, Israel
| | - Dmitry Kopelyanskiy
- Department of Microbiology and Molecular Genetics, IMRIC, P.O. Box 12272, Hebrew University-Hadassah Medical School , 9112102 Jerusalem, Israel
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute , Socinstrasse 57, 4051 Basel, Switzerland
| | - Jari Yli-Kauhaluoma
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5 E (P.O. Box 56), FI-00014, Helsinki, Finland
| | | | - Reto Brun
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute , Socinstrasse 57, 4051 Basel, Switzerland
| | - Charles L Jaffe
- Department of Microbiology and Molecular Genetics, IMRIC, P.O. Box 12272, Hebrew University-Hadassah Medical School , 9112102 Jerusalem, Israel
| | - Vânia M Moreira
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5 E (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Sami Alakurtti
- VTT Technical Research Centre of Finland Ltd, VTT , P.O. Box 1000, FI-02044 VTT Espoo, Finland
| |
Collapse
|
18
|
Kant R, Kumar D, Agarwal D, Gupta RD, Tilak R, Awasthi SK, Agarwal A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur J Med Chem 2016; 113:34-49. [PMID: 26922227 DOI: 10.1016/j.ejmech.2016.02.041] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/25/2022]
Abstract
The present study was carried out in an attempt to synthesize a new class of antimicrobial and antiplasmodial agents by copper catalyzed click chemistry to afford 25 compounds 10-14(a-e) of 1,4-disubstituted-1,2,3-triazole derivatives of chalcones and flavones. The structures of the newly synthesized compounds were established by elemental analysis, IR, (1)H NMR, (13)C NMR and Mass spectral data. The newly synthesized compounds were evaluated for their antibacterial activity against Gram positive bacteria (Staphylococcus aureus, Enterococcus faecalis), Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella boydii, Klebsiella pneumoniae) and antifungal activity against (Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Dermatophyte) as well as molds (Aspergillus niger, Aspergillus fumigatus). The antiplasmodial and cytotoxic activities of these compounds were also evaluated against human malaria parasite Plasmodium falciparum strain 3D7 and human hepato-cellular carcinoma cells (Huh-7), respectively. Compounds 10a, 10c, 10d, 12c and 14e showed promising antibacterial activity while compounds 10e, 11d, 11e, 12c, 13a, 13b, 13e, 14a and 14d showed good antifungal activity as compared to the corresponding standard drugs. Compound 10b was found to be the most active against Plasmodium falciparum while the remaining compounds showed moderate to weak antiplasmodial activity. However, cytotoxic activities of all compounds were found ineffective against Huh-7 cells.
Collapse
Affiliation(s)
- Rama Kant
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| | - Dharmendra Kumar
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| | - Drishti Agarwal
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi 110021, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi 110021, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| | - Satish Kumar Awasthi
- Chemical Biology Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
19
|
Vahermo M, Krogerus S, Nasereddin A, Kaiser M, Brun R, Jaffe CL, Yli-Kauhaluoma J, Moreira VM. Antiprotozoal activity of dehydroabietic acid derivatives against Leishmania donovani and Trypanosoma cruzi. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00498e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dehydroabietic acid derivatives have potent antiprotozoal activity and selectivity against L. donovani and T. cruzi.
Collapse
Affiliation(s)
- Mikko Vahermo
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| | - Sara Krogerus
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| | - Abdelmajeed Nasereddin
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- 9112102 Jerusalem
- Israel
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology
- Swiss Tropical and Public Health Institute
- 4051 Basel
- Switzerland
| | - Reto Brun
- Department of Medical Parasitology and Infection Biology
- Swiss Tropical and Public Health Institute
- 4051 Basel
- Switzerland
| | - Charles L. Jaffe
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- 9112102 Jerusalem
- Israel
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| | - Vânia M. Moreira
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- Viikinkaari 5 E
- Finland
| |
Collapse
|
20
|
|
21
|
2,6,9-Trisubstituted purines as CRK3 kinase inhibitors with antileishmanial activity in vitro. Bioorg Med Chem Lett 2015; 25:2298-301. [PMID: 25937014 DOI: 10.1016/j.bmcl.2015.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022]
Abstract
Here we describe the leishmanicidal activities of a library of 2,6,9-trisubstituted purines that were screened for interaction with Cdc2-related protein kinase 3 (CRK3) and subsequently for activity against parasitic Leishmania species. The most active compound inhibited recombinant CRK3 with an IC50 value of 162 nM and was active against Leishmania major and Leishmania donovani at low micromolar concentrations in vitro. Its mode of binding to CRK3 was investigated by molecular docking using a homology model.
Collapse
|
22
|
Selective inhibitors of Plasmodium falciparum glycogen synthase-3 (PfGSK-3): New antimalarial agents? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1644-9. [PMID: 25861860 DOI: 10.1016/j.bbapap.2015.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) is one of the eukaryotic protein kinases that were identified as essential for the parasite causing malaria tropica. Although the physiological functions of PfGSK-3 are still unknown, it had been suggested as a putative target for novel antimalarial drugs. The high structural similarity of PfGSK-3 and its human orthologue HsGSK-3 makes the development of selective PfGSK-3 inhibitors a challenging task. Actually, established GSK-3 inhibitors are either unselective or are more potent for inhibition of the mammalian GSK-3. A high throughput screening campaign identified thieno[2,3-b]pyridines as a new class of PfGSK-3 inhibitors. Systematic variation of the substitution pattern at the parent scaffold led to compounds which selectively inhibited the plasmodial enzyme. These compounds also exhibited activity against erythrocyte stages of the parasites. A hypothetical explanation for the selectivity of the new antimalarial compounds was enunciated based on the results of docking a selective inhibitor into a PfGSK-3 homology model and by comparison of the results with an X-ray structure of HsGSK-3 co-crystallized with a similar but unselective compound. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
|
23
|
Insuasty B, Ramírez J, Becerra D, Echeverry C, Quiroga J, Abonia R, Robledo SM, Vélez ID, Upegui Y, Muñoz JA, Ospina V, Nogueras M, Cobo J. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Med Chem 2015; 93:401-13. [PMID: 25725376 DOI: 10.1016/j.ejmech.2015.02.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
A new series of chalcones 5a-f were synthesized from caffeine-based aldehyde 3 and substituted acetophenones 4a-f. Treatment of compounds 5a-f with hydrazine hydrate led to pyrazolines 6a-f, and their subsequent reaction with acetic anhydride or formic acid afforded the corresponding N-substituted pyrazolines 7a-f and 8a-f respectively. Additionally, the regioselective cyclocondensation reaction of chalcones 5a-f with 4,5-diaminopyrazole 9 afforded the diazepine derivatives 10a-f. Synthesis of the above novel compounds was carried out through a simple procedure involving an easy work-up and mild reaction conditions. In vitro antimalarial activity against Plasmodium falciparum was evaluated for the obtained compounds. Among of them, just pirazoline 6a showed an outstanding growth inhibition percentage 85.2 ± 5.4%, while diazepines 10a-f showed remarkable growth inhibitions in the range of 80.3 ± 13.5 to 94.2 ± 0.2% when were tested at 20 μg/mL. Compounds 5b, 5e, 7c and 7f showed remarkable activities against Leishmania panamensis with growth inhibition of 88.3 ± 1.5, 82.6 ± 2.2, 82.8 ± 1.7 and 87.6 ± 0.5% respectively, at 20 μg/mL. In vitro assays against Trypanozoma cruzi showed that pyrazoline 6d displayed a growth inhibition of 61.9 ± 7.8% at 20 μg/mL while chalcone 5f was considered especially active with a growth inhibition of 9.7 ± 1.5% for a very low concentration of 1.0 μg/mL.
Collapse
Affiliation(s)
- Braulio Insuasty
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia.
| | - Juan Ramírez
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Diana Becerra
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Carlos Echeverry
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Jairo Quiroga
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Rodrigo Abonia
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Sara M Robledo
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Iván Darío Vélez
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Yulieth Upegui
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - July A Muñoz
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Victoria Ospina
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Manuel Nogueras
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
| |
Collapse
|
24
|
Denis JG, Franci G, Altucci L, Aurrecoechea JM, de Lera ÁR, Álvarez R. Synthesis of 7-alkylidene-7,12-dihydroindolo[3,2-d]benzazepine-6-(5H)-ones (7-alkylidene-paullones) by N-cyclization–oxidative Heck cascade and characterization as sirtuin modulators. Org Biomol Chem 2015; 13:2800-10. [DOI: 10.1039/c4ob02493a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-induced cascade of N-cyclization and oxidative Heck reaction of o-alkynylanilines produced 7-alkylidene-indolobenzazepinones (paullones) that have sirtuin modulation activities.
Collapse
Affiliation(s)
- J. G. Denis
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - G. Franci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - L. Altucci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - J. M. Aurrecoechea
- Departamento de Química Orgánica II
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco
- 48080 Bilbao
- Spain
| | - Á. R. de Lera
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - R. Álvarez
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| |
Collapse
|
25
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
26
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
27
|
Guiguemde WA, Hunt NH, Guo J, Marciano A, Haynes RK, Clark J, Guy RK, Golenser J. Treatment of murine cerebral malaria by artemisone in combination with conventional antimalarial drugs: antiplasmodial effects and immune responses. Antimicrob Agents Chemother 2014; 58:4745-54. [PMID: 24913162 PMCID: PMC4135990 DOI: 10.1128/aac.01553-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 05/27/2014] [Indexed: 01/10/2023] Open
Abstract
The decreasing effectiveness of antimalarial therapy due to drug resistance necessitates constant efforts to develop new drugs. Artemisinin derivatives are the most recent drugs that have been introduced and are considered the first line of treatment, but there are already indications of Plasmodium falciparum resistance to artemisinins. Consequently, drug combinations are recommended for prevention of the induction of resistance. The research here demonstrates the effects of novel combinations of the new artemisinin derivative, artemisone, a recently described 10-alkylamino artemisinin derivative with improved antimalarial activity and reduced neurotoxicity. We here investigate its ability to kill P. falciparum in a high-throughput in vitro assay and to protect mice against lethal cerebral malaria caused by Plasmodium berghei ANKA when used alone or in combination with established antimalarial drugs. Artemisone effects against P. falciparum in vitro were synergistic with halofantrine and mefloquine, and additive with 25 other drugs, including chloroquine and doxycycline. The concentrations of artemisone combinations that were toxic against THP-1 cells in vitro were much higher than their effective antimalarial concentration. Artemisone, mefloquine, chloroquine, or piperaquine given individually mostly protected mice against cerebral malaria caused by P. berghei ANKA but did not prevent parasite recrudescence. Combinations of artemisone with any of the other three drugs did completely cure most mice of malaria. The combination of artemisone and chloroquine decreased the ratio of proinflammatory (gamma interferon, tumor necrosis factor) to anti-inflammatory (interleukin 10 [IL-10], IL-4) cytokines in the plasma of P. berghei-infected mice. Thus, artemisone in combinations with other antimalarial drugs might have a dual action, both killing parasites and limiting the potentially deleterious host inflammatory response.
Collapse
Affiliation(s)
- W Armand Guiguemde
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicholas H Hunt
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Jintao Guo
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Annael Marciano
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Julie Clark
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jacob Golenser
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Sousa AF, Gomes-Alves AG, Benítez D, Comini MA, Flohé L, Jaeger T, Passos J, Stuhlmann F, Tomás AM, Castro H. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. Free Radic Biol Med 2014; 73:229-38. [PMID: 24853758 DOI: 10.1016/j.freeradbiomed.2014.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/23/2022]
Abstract
Trypanothione is a unique and essential redox metabolite of trypanosomatid parasites, the biosynthetic pathway of which is regarded as a promising target for antiparasitic drugs. Synthesis of trypanothione occurs by the consecutive conjugation of two glutathione molecules to spermidine. Both reaction steps are catalyzed by trypanothione synthetase (TRYS), a molecule known to be essential in Trypanosoma brucei. However, other trypanosomatids (including some Leishmania species and Trypanosoma cruzi) potentially express one additional enzyme, glutathionylspermidine synthetase (GSPS), capable of driving the first step of trypanothione synthesis yielding glutathionylspermidine. Because this monothiol can substitute for trypanothione in some reactions, the possibility existed that TRYS was redundant in parasites harboring GSPS. To clarify this issue, the functional relevance of both GSPS and TRYS was investigated in Leishmania infantum (Li). Employing a gene-targeting approach, we generated a gsps(-/-) knockout line, which was viable and capable of replicating in both life cycle stages of the parasite, thus demonstrating the superfluous role of LiGSPS. In contrast, elimination of both LiTRYS alleles was not possible unless parasites were previously complemented with an episomal copy of the gene. Retention of extrachromosomal LiTRYS in the trys(-/-)/+TRYS line after several passages in culture further supported the essentiality of this gene for survival of L. infantum (including its clinically relevant stage), hence ruling out the hypothesis of functional complementation by LiGSPS. Chemical targeting of LiTRYS with a drug-like compound was shown to also lead to parasite death. Overall, this study disqualifies GSPS as a target for drug development campaigns and, by genetic and chemical evidence, validates TRYS as a chemotherapeutic target in a parasite endowed with GSPS and, thus, probably along the entire trypanosomatid lineage.
Collapse
Affiliation(s)
- André F Sousa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Ana G Gomes-Alves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Diego Benítez
- Laboratory of Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, CP 11400 Montevideo, Uruguay
| | - Marcelo A Comini
- Laboratory of Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, CP 11400 Montevideo, Uruguay
| | - Leopold Flohé
- Departamento de Bioquímica, Universidad de la República, CP 11800 Montevideo, Uruguay, and Department of Molecular Medicine, Università degli Studi di Padova, 35131 Padova, Italy
| | - Timo Jaeger
- German Center for Infection Research, 38124 Braunschweig, Germany
| | - Joana Passos
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | - Ana M Tomás
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| | - Helena Castro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.
| |
Collapse
|
29
|
Maiwald F, Benítez D, Charquero D, Dar MA, Erdmann H, Preu L, Koch O, Hölscher C, Loaëc N, Meijer L, Comini MA, Kunick C. 9- and 11-Substituted 4-azapaullones are potent and selective inhibitors of African trypanosoma. Eur J Med Chem 2014; 83:274-83. [PMID: 24973661 DOI: 10.1016/j.ejmech.2014.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Trypanosomes from the "brucei" complex are pathogenic parasites endemic in sub-Saharan Africa and causative agents of severe diseases in humans and livestock. In order to identify new antitrypanosomal chemotypes against African trypanosomes, 4-azapaullones carrying α,β-unsaturated carbonyl chains in 9- or 11-position were synthesized employing a procedure with a Heck reaction as key step. Among the so prepared compounds, 5a and 5e proved to be potent antiparasitic agents with antitrypanosomal activity in the submicromolar range.
Collapse
Affiliation(s)
- Franziska Maiwald
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Diego Charquero
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Mahin Abad Dar
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Hanna Erdmann
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Lutz Preu
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Oliver Koch
- Technische Universität Dortmund, Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Christoph Hölscher
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany.
| |
Collapse
|
30
|
Tsyshchuk IE, Vorobyeva DV, Peregudov AS, Osipov SN. Cu-Catalyzed Carbenoid Functionalization of Indoles by Methyl 3,3,3-Trifluoro-2-diazopropionate. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301734] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Haavikko R, Nasereddin A, Sacerdoti-Sierra N, Kopelyanskiy D, Alakurtti S, Tikka M, Jaffe CL, Yli-Kauhaluoma J. Heterocycle-fused lupane triterpenoids inhibit Leishmania donovani amastigotes. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00282a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of heterocyclic betulin derivatives and their activity against Leishmania donovani are reported.
Collapse
Affiliation(s)
- Raisa Haavikko
- Faculty of Pharmacy
- Division of Pharmaceutical Chemistry
- University of Helsinki
- Helsinki, Finland
| | - Abedelmajeed Nasereddin
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- Jerusalem 91120, Israel
| | - Nina Sacerdoti-Sierra
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- Jerusalem 91120, Israel
| | - Dmitry Kopelyanskiy
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- Jerusalem 91120, Israel
| | | | - Mari Tikka
- Faculty of Pharmacy
- Division of Pharmaceutical Chemistry
- University of Helsinki
- Helsinki, Finland
| | - Charles L. Jaffe
- Department of Microbiology and Molecular Genetics
- IMRIC
- Hebrew University-Hadassah Medical School
- Jerusalem 91120, Israel
| | - Jari Yli-Kauhaluoma
- Faculty of Pharmacy
- Division of Pharmaceutical Chemistry
- University of Helsinki
- Helsinki, Finland
| |
Collapse
|
32
|
Domino Products from Select Mannich Salts and β-Keto Esters/β-Keto Nitriles. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2013. [DOI: 10.1007/s40010-013-0076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Ryczak J, Papini M, Lader A, Nasereddin A, Kopelyanskiy D, Preu L, Jaffe CL, Kunick C. 2-Arylpaullones are selective antitrypanosomal agents. Eur J Med Chem 2013; 64:396-400. [PMID: 23648975 DOI: 10.1016/j.ejmech.2013.03.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Antileishmanial paullone-chalcone hybrid molecules display antiparasitic activity against Trypanosoma brucei rhodesiense blood stream forms, albeit with low selectivity against human THP-1 cells. In order to develop less toxic analogues, paullones with acrylamide or aryl substituents in 2-position were synthesized, of which the latter exhibited potent antiparasitic activity with excellent selectivity profiles. The most potent compound identified in this study was 9-tert-butyl-2-(4-morpholinophenyl)paullone (3i) which inhibited the parasites at submicromolar concentrations (GI50 = 510 nM) with a selectivity index of 157.
Collapse
Affiliation(s)
- Jasmin Ryczak
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Aulner N, Danckaert A, Rouault-Hardoin E, Desrivot J, Helynck O, Commere PH, Munier-Lehmann H, Späth GF, Shorte SL, Milon G, Prina E. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to anti-leishmanial drug discovery. PLoS Negl Trop Dis 2013; 7:e2154. [PMID: 23593521 PMCID: PMC3617141 DOI: 10.1371/journal.pntd.0002154] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/25/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/OBJECTIVES Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline. CONCLUSIONS/SIGNIFICANCE Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential.
Collapse
Affiliation(s)
| | | | - Eline Rouault-Hardoin
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Julie Desrivot
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
| | | | - Hélène Munier-Lehmann
- Institut Pasteur, Unité Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3523, Paris, France
| | - Gerald F. Späth
- Institut Pasteur, Unité Parasitologie Moléculaire et Signalisation, Département de Parasitologie et Mycologie, Paris, France
- CNRS URA 2581, Paris, France
| | | | - Geneviève Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Eric Prina
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
- Institut Pasteur, Unité Parasitologie Moléculaire et Signalisation, Département de Parasitologie et Mycologie, Paris, France
- CNRS URA 2581, Paris, France
| |
Collapse
|
35
|
Kupetz E, Preu L, Kunick C, Bunjes H. Parenteral formulation of an antileishmanial drug candidate--tackling poor solubility, chemical instability, and polymorphism. Eur J Pharm Biopharm 2013; 85:511-20. [PMID: 23454203 DOI: 10.1016/j.ejpb.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
Abstract
The paullon chalcone derivative KuRei300 is active against Leishmania donovani, the protozoans causing visceral leishmaniasis. The aim of this study was the development of a parenteral formulation of the virtually water insoluble compound in order to enable future studies in mice. Mixed lecithin/bile salt micelles, liposomes, supercooled smectic cholesterol myristate nanoparticles, cubic phase nanoparticles and a triglyceride emulsion were screened for their solubilizing properties. Due to the limited available amount of KuRei300 a passive loading approach with pre-formulated carriers that were incubated with drug substance deposited onto the walls of glass vials was used. The loading capacities of the nanocarriers, the influence of the solid state properties of the drug and its deposits on the loading results and chemical stability aspects of KuRei300 were investigated. Employed methods included HPLC, UV spectroscopy, (1)H NMR, XRPD, and DSC. All nanocarriers substantially improved the solubility of KuRei300; the mixed micelles exhibited the highest drug load. Related to the lipid matrix, however, the smectic nanoparticles solubilized the significantly highest amount of drug. Loading from physically altered drug deposits improved the obtainable concentration to the threefold compared with untreated drug powder. Formulations with KuRei300 must be stored excluded from light under a nitrogen atmosphere as the substance is susceptible to photoisomerization and decomposition.
Collapse
Affiliation(s)
- Eva Kupetz
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | |
Collapse
|
36
|
Fugel W, Oberholzer AE, Gschloessl B, Dzikowski R, Pressburger N, Preu L, Pearl LH, Baratte B, Ratin M, Okun I, Doerig C, Kruggel S, Lemcke T, Meijer L, Kunick C. 3,6-Diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles are selective inhibitors of Plasmodium falciparum glycogen synthase kinase-3. J Med Chem 2013; 56:264-75. [PMID: 23214499 DOI: 10.1021/jm301575n] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plasmodium falciparum is the infective agent responsible for malaria tropica. The glycogen synthase kinase-3 of the parasite (PfGSK-3) was suggested as a potential biological target for novel antimalarial drugs. Starting from hit structures identified in a high-throughput screening campaign, 3,6-diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles were discovered as a new class of PfGSK-3 inhibitors. Being less active on GSK-3 homologues of other species, the title compounds showed selectivity in favor of PfGSK-3. Taking into account the X-ray structure of a related molecule in complex with human GSK-3 (HsGSK-3), a model was computed for the comparison of inhibitor complexes with the plasmodial and human enzymes. It was found that subtle differences in the ATP-binding pockets are responsible for the observed PfGSK-3 vs HsGSK-3 selectivity. Representatives of the title compound class exhibited micromolar IC₅₀ values against P. falciparum erythrocyte stage parasites. These results suggest that inhibitors of PfGSK-3 could be developed as potential antimalarial drugs.
Collapse
Affiliation(s)
- Wiebke Fugel
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Determann R, Dreher J, Baumann K, Preu L, Jones PG, Totzke F, Schächtele C, Kubbutat MHG, Kunick C. 2-Anilino-4-(benzimidazol-2-yl)pyrimidines--a multikinase inhibitor scaffold with antiproliferative activity toward cancer cell lines. Eur J Med Chem 2012; 53:254-63. [PMID: 22560627 DOI: 10.1016/j.ejmech.2012.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/31/2022]
Abstract
2-Anilino-4-(benzimidazol-2-yl)-pyrimidines, synthesized by reaction of a readily available benzimidazole-substituted enaminone with suitable arylguanidines, were shown to inhibit four cancer-related protein kinases (Aurora B, PLK1, FAK, and VEGF-R2). The most potent derivative exhibited antiproliferative activity for several cancer cell lines of the NCI in vitro cell line panel in submicromolar concentrations. Both the anilinopyrimidine structure and the substitution pattern at the aniline ring appear to be important for the protein kinase inhibitory activity.
Collapse
Affiliation(s)
- Renate Determann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhu C, Wang R, Falck JR. Amide-directed tandem C-C/C-N bond formation through C-H activation. Chem Asian J 2012; 7:1502-14. [PMID: 22492555 DOI: 10.1002/asia.201200035] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Indexed: 11/08/2022]
Abstract
The transformation of C-H bonds into other chemical bonds is of great significance in synthetic chemistry. C-H bond-activation processes provide a straightforward and atom-economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C-H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C-N bond precursor. As a consequence, a variety of nitrogen-containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide-directed tandem C-C/C-N bond-formation process through C-H activation. The large body of research in this field over the past three years has established it as one of the most-important topics in organic chemistry.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| | | | | |
Collapse
|
40
|
Lounnas V, Vriend G. AsteriX: A Web Server To Automatically Extract Ligand Coordinates from Figures in PDF Articles. J Chem Inf Model 2012; 52:568-76. [DOI: 10.1021/ci2004303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. Lounnas
- CMBI NCMLS Radboud University, Nijmegen Medical
Centre,
Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - G. Vriend
- CMBI NCMLS Radboud University, Nijmegen Medical
Centre,
Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
41
|
Soto S, Vaz E, Dell'Aversana C, Álvarez R, Altucci L, de Lera ÁR. New synthetic approach to paullones and characterization of their SIRT1 inhibitory activity. Org Biomol Chem 2012; 10:2101-12. [PMID: 22286328 DOI: 10.1039/c2ob06695e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of 7,12-dihydroindolo[3,2-d][1]benzazepine-6(5H)-ones (paullones) substituted at C9/C10 (Br) and C2 (Me, CF(3), CO(2)Me) have been synthesized by a one-pot Suzuki-Miyaura cross-coupling of an o-aminoarylboronic acid and methyl 2-iodoindoleacetate followed by intramolecular amide formation. Other approaches to the paullone scaffold based on Pd-catalyzed C-H activation were unsuccessful. In vitro enzymatic assay with recombinant human SIRT-1 indicated a strong inhibitory profile for the series, in particular the analogue with a methoxycarbonyl group at C2 and a bromine at C9. These compounds are, in general, inducers of granulocyte differentiation of the U937 acute leukemia cell line and cause a marked increase in pre-G1 of the cell cycle.
Collapse
Affiliation(s)
- Sara Soto
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Unusual reactivity of β-(3-indolyl)-α,β-unsaturated ketones. 2-Acetylvinyl group removal by phenylhydrazine hydrochloride. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
|
44
|
Jorda R, Sacerdoti-Sierra N, Voller J, Havlíček L, Kráčalíková K, Nowicki MW, Nasereddin A, Kryštof V, Strnad M, Walkinshaw MD, Jaffe CL. Anti-leishmanial activity of disubstituted purines and related pyrazolo[4,3-d]pyrimidines. Bioorg Med Chem Lett 2011; 21:4233-7. [DOI: 10.1016/j.bmcl.2011.05.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 12/25/2022]
|
45
|
Tobisu M, Fujihara H, Koh K, Chatani N. Synthesis of 2-boryl- and silylindoles by copper-catalyzed borylative and silylative cyclization of 2-alkenylaryl isocyanides. J Org Chem 2010; 75:4841-7. [PMID: 20557065 DOI: 10.1021/jo101024f] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed a method for the synthesis of 2-borylindoles via the copper(I)-catalyzed borylative cyclization of 2-alkenylphenyl isocyanides using diboronate. The reaction proceeds at room temperature under neutral conditions and exhibits high tolerance to functional groups, such as Br, CO(2)R, COR, CONMe(2), and CN. The 2-borylindoles synthesized in the present study can be elaborated into an array of indole-based derivatives, for example, through the Suzuki-Miyaura reaction. The utility of this method is demonstrated in the rapid synthesis of a kinase inhibitor, paullone. The reaction can be extended to the synthesis of 2-hydride indole and 2-silylindole by using hydroboronate (or hydrosilane) and silylboronate, respectively. Under these copper-catalyzed conditions, a quinoxaline ring system can also be constructed by using 1,2-isocyanobenzene as a substrate.
Collapse
Affiliation(s)
- Mamoru Tobisu
- Frontier Research Base for Global YoungResearchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
46
|
Stuart DR, Alsabeh P, Kuhn M, Fagnou K. Rhodium(III)-Catalyzed Arene and Alkene C−H Bond Functionalization Leading to Indoles and Pyrroles. J Am Chem Soc 2010; 132:18326-39. [DOI: 10.1021/ja1082624] [Citation(s) in RCA: 595] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- David R. Stuart
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, (Canada) K1N 6N5
| | - Pamela Alsabeh
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, (Canada) K1N 6N5
| | - Michelle Kuhn
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, (Canada) K1N 6N5
| | - Keith Fagnou
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, (Canada) K1N 6N5
| |
Collapse
|
47
|
Mondal S, Bhattacharya P, Ali N. Current diagnosis and treatment of visceral leishmaniasis. Expert Rev Anti Infect Ther 2010; 8:919-44. [PMID: 20695748 DOI: 10.1586/eri.10.78] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human visceral leishmaniasis (VL), a potentially fatal disease, is most prevalent in the Indian subcontinent, East Africa and South America. Definite diagnosis and effective treatment are the primary needs for the control of VL. Diagnosis of VL has typically relied on microscopic examination of bone marrow/splenic aspirate, but serology and molecular methods are now better alternatives. The conventional drugs for treatment of VL have limitations including unresponsiveness, relapse, specific toxicities and parenteral administration lasting for long durations. Moreover, they are less effective in HIV-VL-coinfected patients. Registration of miltefosine and paromomycin, and preferential pricing of AmBisome has offered more choices for monotherapy and combination therapy for VL. Combination therapy will increase treatment efficacy and prevent the development of resistance. In addition, active case finding and vector control strategies will also have a positive impact in the control of VL. This article critically addresses the currently available diagnostic and treatment regimens for the control of VL.
Collapse
Affiliation(s)
- Smriti Mondal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
48
|
Maheta JG, Barot VM, Jotani MM, Tiekink ERT. (2E)-1-[2-Hydr-oxy-4-(2-methyl-prop-oxy)phen-yl]-3-(4-methyl-phen-yl)prop-2-en-1-one. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o942-3. [PMID: 21580748 PMCID: PMC2983789 DOI: 10.1107/s1600536810010809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 11/11/2022]
Abstract
The benzene rings in the title compound, C20H22O3, form a dihedral angle of 10.39 (8)°. Overall, the molecule is approximately planar with the exception of one of the terminal methyl groups; excluding this group, the r.m.s. deviation for the remaining 22 non-H atoms is 0.0968 Å. The conformation about the C=C bond is E, and an intramolecular O—H⋯O hydrogen bond leads to the formation of an S(6) motif. In the crystal, linear supramolecular chains are formed along the a axis via C—H⋯O contacts, and these are connected into double chains via C—H⋯π interactions.
Collapse
|
49
|
Becker A, Kohfeld S, Lader A, Preu L, Pies T, Wieking K, Ferandin Y, Knockaert M, Meijer L, Kunick C. Development of 5-benzylpaullones and paullone-9-carboxylic acid alkyl esters as selective inhibitors of mitochondrial malate dehydrogenase (mMDH). Eur J Med Chem 2009; 45:335-42. [PMID: 19906467 DOI: 10.1016/j.ejmech.2009.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022]
Abstract
A collection of paullones was tested for inhibitory activity against mitochondrial malate dehydrogenase (mMDH) as a biological target for antiproliferative activity. Based on the results of this screening, 5-benzylpaullones and paullone-9-carboxylic acid alkyl esters were developed as selective mMDH inhibitors. The new derivatives did not show noteworthy antiproliferative activity when tested on a panel of cancer cell lines, suggesting that mMDH inhibition is of minor relevance for the growth inhibition caused by paullones.
Collapse
Affiliation(s)
- Anja Becker
- Technische Universität Braunschweig, Institut für Pharmazeutische Chemie, Beethovenstrasse 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Porwal S, Chauhan SS, Chauhan PMS, Shakya N, Verma A, Gupta S. Discovery of Novel Antileishmanial Agents in an Attempt to Synthesize Pentamidine−Aplysinopsin Hybrid Molecule. J Med Chem 2009; 52:5793-802. [DOI: 10.1021/jm900564x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sharad Porwal
- Division of Medicinal & Process Chemistry, Central Drug Research Institute, Lucknow 226001, India
| | - Shikha S. Chauhan
- Division of Medicinal & Process Chemistry, Central Drug Research Institute, Lucknow 226001, India
| | - Prem M. S. Chauhan
- Division of Medicinal & Process Chemistry, Central Drug Research Institute, Lucknow 226001, India
| | - Nishi Shakya
- Division of Parasitology, Central Drug Research Institute, Lucknow 226001, India
| | - Aditya Verma
- Division of Parasitology, Central Drug Research Institute, Lucknow 226001, India
| | - Suman Gupta
- Division of Parasitology, Central Drug Research Institute, Lucknow 226001, India
| |
Collapse
|