1
|
Zhang H, Im W. Ligand Binding Affinity Prediction for Membrane Proteins with Alchemical Free Energy Calculation Methods. J Chem Inf Model 2024; 64:5671-5679. [PMID: 38959405 PMCID: PMC11267607 DOI: 10.1021/acs.jcim.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Alchemical relative binding free energy (ΔΔG) calculations have shown high accuracy in predicting ligand binding affinity and have been used as important tools in computer-aided drug discovery and design. However, there has been limited research on the application of ΔΔG methods to membrane proteins despite the fact that these proteins represent a significant proportion of drug targets, play crucial roles in biological processes, and are implicated in numerous diseases. In this study, to predict the binding affinity of ligands to G protein-coupled receptors (GPCRs), we employed two ΔΔG calculation methods: thermodynamic integration (TI) with AMBER and the alchemical transfer method (AToM) with OpenMM. We calculated ΔΔG values for 53 transformations involving four class A GPCRs and evaluated the performance of AMBER-TI and AToM-OpenMM. In addition, we conducted tests using different numbers of windows and varying simulation times to achieve reliable ΔΔG results and to optimize resource utilization. Overall, both AMBER-TI and AToM-OpenMM show good agreement with the experimental data. Our results validate the applicability of AMBER-TI and AToM-OpenMM for optimization of lead compounds targeting membrane proteins.
Collapse
Affiliation(s)
- Han Zhang
- Departments of Biological
Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological
Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Adamska JM, Leftheriotis S, Bosma R, Vischer HF, Leurs R. Multiplex Detection of Fluorescent Chemokine Binding to CXC Chemokine Receptors by NanoBRET. Int J Mol Sci 2024; 25:5018. [PMID: 38732237 PMCID: PMC11084278 DOI: 10.3390/ijms25095018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
NanoLuc-mediated bioluminescence resonance energy transfer (NanoBRET) has gained popularity for its ability to homogenously measure ligand binding to G protein-coupled receptors (GPCRs), including the subfamily of chemokine receptors. These receptors, such as ACKR3, CXCR4, CXCR3, play a crucial role in the regulation of the immune system, are associated with inflammatory diseases and cancer, and are seen as promising drug targets. The aim of this study was to optimize NanoBRET-based ligand binding to NLuc-ACKR3 and NLuc-CXCR4 using different fluorescently labeled chemokine CXCL12 analogs and their use in a multiplex NanoBRET binding assay of two chemokine receptors at the same time. The four fluorescent CXCL12 analogs (CXCL12-AZD488, -AZD546, -AZD594, -AZD647) showed high-affinity saturable binding to both NLuc-ACKR3 and NLuc-CXCR4, with relatively low levels of non-specific binding. Additionally, the binding of all AZDye-labeled CXCL12s to Nluc receptors was inhibited by pharmacologically relevant unlabeled chemokines and small molecules. The NanoBRET binding assay for CXCL10-AZD488 binding to Nluc-CXCR3 was also successfully established and successfully employed for the simultaneous measurement of the binding of unlabeled small molecules to NLuc-CXCR3 and NLuc-CXCR4. In conclusion, multiplexing the NanoBRET-based competition binding assay is a promising tool for testing unlabeled (small) molecules against multiple GPCRs simultaneously.
Collapse
Affiliation(s)
| | | | | | | | - Rob Leurs
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands (S.L.); (H.F.V.)
| |
Collapse
|
3
|
Zarca AM, Adlere I, Viciano CP, Arimont-Segura M, Meyrath M, Simon IA, Bebelman JP, Laan D, Custers HGJ, Janssen E, Versteegh KL, Buzink MCML, Nesheva DN, Bosma R, de Esch IJP, Vischer HF, Wijtmans M, Szpakowska M, Chevigné A, Hoffmann C, de Graaf C, Zarzycka BA, Windhorst AD, Smit MJ, Leurs R. Pharmacological Characterization and Radiolabeling of VUF15485, a High-Affinity Small-Molecule Agonist for the Atypical Chemokine Receptor ACKR3. Mol Pharmacol 2024; 105:301-312. [PMID: 38346795 DOI: 10.1124/molpharm.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 03/16/2024] Open
Abstract
Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this β-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based β-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.
Collapse
Affiliation(s)
- Aurelien M Zarca
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Ilze Adlere
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Cristina P Viciano
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Max Meyrath
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Icaro A Simon
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Jan Paul Bebelman
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Dennis Laan
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Hans G J Custers
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Elwin Janssen
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Kobus L Versteegh
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Maurice C M L Buzink
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Desislava N Nesheva
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Reggie Bosma
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Iwan J P de Esch
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Henry F Vischer
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Maikel Wijtmans
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Martyna Szpakowska
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Andy Chevigné
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Carsten Hoffmann
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Chris de Graaf
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Barbara A Zarzycka
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Albert D Windhorst
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Martine J Smit
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Rob Leurs
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| |
Collapse
|
4
|
Meng Q, Zhu R, Mao Y, Zhu S, Wu Y, Huang L, Ciechanover A, An J, Xu Y, Huang Z. Biological and mutational analyses of CXCR4-antagonist interactions and design of new antagonistic analogs. Biosci Rep 2023; 43:BSR20230981. [PMID: 38131305 PMCID: PMC10987480 DOI: 10.1042/bsr20230981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The chemokine receptor CXCR4 has become an attractive therapeutic target for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. A wide variety of synthetic antagonists of CXCR4 have been developed and studied for a growing list of clinical applications. To compare the biological effects of different antagonists on CXCR4 functions and their common and/or distinctive molecular interactions with the receptor, we conducted head-to-head comparative cell-based biological and mutational analyses of the interactions with CXCR4 of eleven reported antagonists, including HC4319, DV3, DV1, DV1 dimer, V1, vMIP-II, CVX15, LY2510924, IT1t, AMD3100, and AMD11070 that were representative of different structural classes of D-peptides, L-peptide, natural chemokine, cyclic peptides, and small molecules. The results were rationalized by molecular modeling of CXCR4-antagonist interactions from which the common as well as different receptor binding sites of these antagonists were derived, revealing a number of important residues such as W94, D97, H113, D171, D262, and E288, mostly of negative charge. To further examine this finding, we designed and synthesized new antagonistic analogs by adding positively charged residues Arg to a D-peptide template to enhance the postulated charge-charge interactions. The newly designed analogs displayed significantly increased binding to CXCR4, which supports the notion that negatively charged residues of CXCR4 can engage in interactions with moieties of positive charge of the antagonistic ligands. The results from these mutational, modeling and new analog design studies shed new insight into the molecular mechanisms of different types of antagonists in recognizing CXCR4 and guide the development of new therapeutic agents.
Collapse
Affiliation(s)
- Qian Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruohan Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Siyu Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lina S.M. Huang
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Aaron Ciechanover
- The Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jing An
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Yan Xu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
5
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. Mol Pharmacol 2023; 104:174-186. [PMID: 37474305 PMCID: PMC11033958 DOI: 10.1124/molpharm.123.000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Qiuyan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - John J G Tesmer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| |
Collapse
|
6
|
Al-Omary FM, Alvarez N, Al-Rasheed LS, Veiga N, Hassan HM, El-Emam AA. Novel Adamantane-Linked Isothiourea Derivatives as Potential Chemotherapeutic Agents: Synthesis, Structural Insights, and Antimicrobial/Anti-Proliferative Profiles. ACS OMEGA 2023; 8:13465-13477. [PMID: 37065023 PMCID: PMC10099428 DOI: 10.1021/acsomega.3c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
In this study, two adamantane-linked isothiourea derivatives containing a common 4-chlorophenyl substituent coupled with 4-nitrobenzyl or 4-bromobenzyl moieties were synthesized. Both derivatives were characterized, in the solid state and in solution, through a synergistic combination of experimental and in silico techniques, and the results are of great value for the chemical and structural characterization of related compounds. The crystal structures of both derivatives were analyzed in depth, including Hirshfeld surface analysis and lattice energy calculations, revealing a predominant dispersive component of the total energy that stabilizes crystal packing. Both compounds showed potent broad-spectrum antibacterial activity and moderate activity against the pathogenic fungus Candida albicans. In addition, in vitro anti-proliferative activity assays showed that the 4-bromobenzyl analogue displays higher activity than the 4-nitrobenzyl one, with IC50 values under 30 μM against five human cancer cell lines. Our results give evidence of the potential of the adamantane/isothiourea combination to render auspicious scaffolds for new potential chemotherapeutic agents.
Collapse
Affiliation(s)
- Fatmah
A. M. Al-Omary
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Natalia Alvarez
- Química
Inorgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo 11800, Uruguay
| | - Lamees S. Al-Rasheed
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nicolás Veiga
- Química
Inorgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo 11800, Uruguay
| | - Hanan M. Hassan
- Department
of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Costal Road, Gamasa
City, Mansoura 11152, Egypt
| | - Ali A. El-Emam
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Dekkers S, Caspar B, Goulding J, Kindon ND, Kilpatrick LE, Stoddart LA, Briddon SJ, Kellam B, Hill SJ, Stocks MJ. Small-Molecule Fluorescent Ligands for the CXCR4 Chemokine Receptor. J Med Chem 2023; 66:5208-5222. [PMID: 36944083 PMCID: PMC10108349 DOI: 10.1021/acs.jmedchem.3c00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The C-X-C chemokine receptor type 4, or CXCR4, is a chemokine receptor found to promote cancer progression and metastasis of various cancer cell types. To investigate the pharmacology of this receptor, and to further elucidate its role in cancer, novel chemical tools are a necessity. In the present study, using classic medicinal chemistry approaches, small-molecule-based fluorescent probes were designed and synthesized based on previously reported small-molecule antagonists. Here, we report the development of three distinct chemical classes of fluorescent probes that show specific binding to the CXCR4 receptor in a novel fluorescence-based NanoBRET binding assay (pKD ranging 6.6-7.1). Due to their retained affinity at CXCR4, we furthermore report their use in competition binding experiments and confocal microscopy to investigate the pharmacology and cellular distribution of this receptor.
Collapse
Affiliation(s)
- Sebastian Dekkers
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Birgit Caspar
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Nicholas D Kindon
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Laura E Kilpatrick
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Leigh A Stoddart
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Stephen J Briddon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Barrie Kellam
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Michael J Stocks
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
8
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 'Senses' CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530029. [PMID: 36865154 PMCID: PMC9980177 DOI: 10.1101/2023.02.25.530029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging action mediates the availability of the chemokine CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we mapped the phosphorylation patterns and determined that GRK5 phosphorylation of ACKR3 dominates β-arrestin recruitment and chemokine scavenging over GRK2. Co-activation of CXCR4 significantly enhanced phosphorylation by GRK2 through the liberation of Gβγ. These results suggest that ACKR3 'senses' CXCR4 activation through a GRK2-dependent crosstalk mechanism. Surprisingly, we also found that despite the requirement for phosphorylation, and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet to be determined function for these adapter proteins.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Present address: Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| |
Collapse
|
9
|
Discovery of Bis-Imidazoline Derivatives as New CXCR4 Ligands. Molecules 2023; 28:molecules28031156. [PMID: 36770826 PMCID: PMC9920567 DOI: 10.3390/molecules28031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.
Collapse
|
10
|
Liu S, Jiang L. Copper-Catalyzed Multicomponent Reactions of Intramolecular and Intermolecular Thiotrifluoromethylation of Alkenes: Access to CF 3-Containing 2-Iminothiazolidines and Isothioureas. Org Lett 2022; 24:7157-7162. [PMID: 36166662 DOI: 10.1021/acs.orglett.2c02854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed multicomponent reaction of secondary amines bearing allyl substitution, isothiocyanates, and Togni reagent II has been developed under Cs2CO3 in DCE at 75 °C. An intermolecular multicomponent reaction of thioureas, activated and unactivated alkenes, and Togni reagent II has also been developed under DMAP in acetonitrile at room temperature. These two alkene difunctionalization reactions provide CF3-containing 2-iminothiazolindines and isothioureas in moderate to excellent yields with broad substrate scope and good functional group tolerance, respectively.
Collapse
Affiliation(s)
- Sainan Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Liqin Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Caspar B, Cocchiara P, Melet A, Van Emelen K, Van der Aa A, Milligan G, Herbeuval JP. CXCR4 as a novel target in immunology: moving away from typical antagonists. FUTURE DRUG DISCOVERY 2022; 4:FDD77. [PMID: 35875591 PMCID: PMC9298491 DOI: 10.4155/fdd-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
CXCR4 has been a target of interest in drug discovery for numerous years. However, so far, most if not all studies focused on finding antagonists of CXCR4 function. Recent studies demonstrate that targeting a minor allosteric pocket of CXCR4 induces an immunomodulating effect in immune cells expressing CXCR4, connected to the TLR pathway. Compounds binding in this minor pocket seem to be functionally selective with inverse agonistic properties in selected GPCR signaling pathways (Gi activation), but additional signaling pathways are likely to be involved in the immunomodulating effects. In depth research into these CXCR4-targeted immunomodulators could lead to novel treatment options for (auto)-immune diseases.
Collapse
Affiliation(s)
- Birgit Caspar
- CNRS UMR-8601, 45 Rue des Saints-Pères, Paris, F-75006, France
- Team Chemistry & Biology, Modelling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Pietro Cocchiara
- Centre for Translational Pharmacology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Armelle Melet
- CNRS UMR-8601, 45 Rue des Saints-Pères, Paris, F-75006, France
- Team Chemistry & Biology, Modelling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Kristof Van Emelen
- Ermium Therapeutics, Pépinière Paris Santé Cochin, 29 Rue du Faubourg Saint-Jacques, Paris, F-75014, France
| | - Annegret Van der Aa
- Ermium Therapeutics, Pépinière Paris Santé Cochin, 29 Rue du Faubourg Saint-Jacques, Paris, F-75014, France
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, 45 Rue des Saints-Pères, Paris, F-75006, France
- Team Chemistry & Biology, Modelling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| |
Collapse
|
12
|
Ruiz Puentes P, Rueda-Gensini L, Valderrama N, Hernández I, González C, Daza L, Muñoz-Camargo C, Cruz JC, Arbeláez P. Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery. Sci Rep 2022; 12:8434. [PMID: 35589824 PMCID: PMC9119967 DOI: 10.1038/s41598-022-12180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
Drug Discovery is an active research area that demands great investments and generates low returns due to its inherent complexity and great costs. To identify potential therapeutic candidates more effectively, we propose protein–ligand with adversarial augmentations network (PLA-Net), a deep learning-based approach to predict target–ligand interactions. PLA-Net consists of a two-module deep graph convolutional network that considers ligands’ and targets’ most relevant chemical information, successfully combining them to find their binding capability. Moreover, we generate adversarial data augmentations that preserve relevant biological backgrounds and improve the interpretability of our model, highlighting the relevant substructures of the ligands reported to interact with the protein targets. Our experiments demonstrate that the joint ligand–target information and the adversarial augmentations significantly increase the interaction prediction performance. PLA-Net achieves 86.52% in mean average precision for 102 target proteins with perfect performance for 30 of them, in a curated version of actives as decoys dataset. Lastly, we accurately predict pharmacologically-relevant molecules when screening the ligands of ChEMBL and drug repurposing Hub datasets with the perfect-scoring targets.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Laura Rueda-Gensini
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Natalia Valderrama
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Isabela Hernández
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Cristina González
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Laura Daza
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia. .,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
13
|
Jecs E, Tahirovic YA, Wilson RJ, Miller EJ, Kim M, Truax V, Nguyen HH, Akins NS, Saindane M, Wang T, Sum CS, Cvijic ME, Schroeder GM, Burton SL, Derdeyn CA, Xu L, Jiang Y, Wilson LJ, Liotta DC. Synthesis and Evaluation of Novel Tetrahydronaphthyridine CXCR4 Antagonists with Improved Drug-like Profiles. J Med Chem 2022; 65:4058-4084. [PMID: 35179893 DOI: 10.1021/acs.jmedchem.1c01564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our first-generation CXCR4 antagonist TIQ15 was rationally modified to improve drug-like properties. Introducing a nitrogen atom into the aromatic portion of the tetrahydroisoquinoline ring led to several heterocyclic variants including the 5,6,7,8-tetrahydro-1,6-naphthyridine series, greatly reducing the inhibition of the CYP 2D6 enzyme. Compound 12a demonstrated the best overall properties after profiling a series of isomeric tetrahydronaphthyridine analogues in a battery of biochemical assays including CXCR4 antagonism, CYP 2D6 inhibition, metabolic stability, and permeability. The butyl amine side chain of 12a was substituted with various lipophilic groups to improve the permeability. These efforts culminated in the discovery of compound 30 as a potent CXCR4 antagonist (IC50 = 24 nM) with diminished CYP 2D6 activity, improved PAMPA permeability (309 nm/s), potent inhibition of human immunodeficiency virus entry (IC50 = 7 nM), a cleaner off-target in vitro safety profile, lower human ether a-go-go-related gene channel activity, and higher oral bioavailability in mice (% FPO = 27) compared to AMD11070 and TIQ15.
Collapse
Affiliation(s)
- Edgars Jecs
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yesim A Tahirovic
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Robert J Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Eric J Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Michelle Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Valarie Truax
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Huy H Nguyen
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Nicholas S Akins
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Manohar Saindane
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Chi S Sum
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Mary E Cvijic
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Gretchen M Schroeder
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Samantha L Burton
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, United States
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30322, United States
| | - Cynthia A Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, United States
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30322, United States
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Lingjie Xu
- Hangzhou Junrui Biotechnology, Hangzhou, Zhejiang 310000, China
| | - Yi Jiang
- Hangzhou Junrui Biotechnology, Hangzhou, Zhejiang 310000, China
| | - Lawrence J Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Ma H, Li M, Pagare PP, Wang H, Nassehi N, Santos EJ, Negus SS, Selley DE, Zhang Y. Novel bivalent ligands carrying potential antinociceptive effects by targeting putative mu opioid receptor and chemokine receptor CXCR4 heterodimers. Bioorg Chem 2022; 120:105641. [PMID: 35093692 PMCID: PMC9187593 DOI: 10.1016/j.bioorg.2022.105641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 01/26/2023]
Abstract
The functional interactions between opioid and chemokine receptors have been implicated in the pathological process of chronic pain. Mounting studies have indicated the possibility that a MOR-CXCR4 heterodimer may be involved in nociception and related pharmacologic effects. Herein we have synthesized a series of bivalent ligands containing both MOR agonist and CXCR4 antagonist pharmacophores with an aim to investigate the functional interactions between these two receptors. In vitro studies demonstrated reasonable recognition of designed ligands at both respective receptors. Further antinociceptive testing in mice revealed compound 1a to be the most promising member of this series. Additional molecular modeling studies corroborated the findings observed. Taken together, we identified the first bivalent ligand 1a showing promising antinociceptive effect by targeting putative MOR-CXCR4 heterodimers, which may serve as a novel chemical probe to further develop more potent bivalent ligands with potential application in analgesic therapies for chronic pain management.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Piyusha P. Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Edna J. Santos
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States.
| |
Collapse
|
15
|
Mishra D, Phukan P. A Unified Approach for the Synthesis of Isourea and Isothiourea from Isonitrile and N,N-Dibromoarylsulfonamides. J Org Chem 2021; 86:17581-17593. [PMID: 34855412 DOI: 10.1021/acs.joc.1c01578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unified approach has been developed for the synthesis of both isourea and isothiourea in a three-component coupling reaction by treating alcohols or thiols respectively with N,N-dibromoarylsulfonamides and isonitrile and in the presence of K2CO3. This metal-free process proceeds via carbodiimide intermediate at room temperature within a very short reaction time. A library of sulfonylisoureas and isothioureas has been made using this synthetic protocol with wide substrate scope in good to high yields.
Collapse
Affiliation(s)
- Debashish Mishra
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Prodeep Phukan
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| |
Collapse
|
16
|
Nguyen HH, Tahirovic YA, Truax VM, Wilson RJ, Jecs E, Miller EJ, Kim MB, Akins NS, Xu L, Jiang Y, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Amino-Heterocycle Tetrahydroisoquinoline CXCR4 Antagonists with Improved ADME Profiles via Late-Stage Buchwald Couplings. ACS Med Chem Lett 2021; 12:1605-1612. [PMID: 34676043 DOI: 10.1021/acsmedchemlett.1c00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
This work surveys a variety of diamino-heterocycles as an isosteric replacement for the piperazine substructure of our previously disclosed piperarinyl-tetrahydroisoquinoline containing CXCR4 antagonists. A late-stage Buchwald coupling route was developed for rapid access to final compounds from commercial building blocks. Among 13 analogs in this study, compound 31 embodying an aza-piperazine linkage was found to have the best overall profile with potent CXCR4 inhibitory activity and favorable in vitro absorption, distribution, metabolism, and excretion (ADME) properties. An analysis of the calculated physiochemical parameters (ROF, cLogD) and the experimental ADME attributes of the analogs lead to the selection of 31 for pharmacokinetic studies in mice. Compared with the clinical compound AMD11070, compound 31 has no CYP450 3A4 or 2D6 inhibition, higher metabolic stability and PAMPA permeability, greatly improved physiochemical parameters, and superior oral bioavailability (%F = 24). A binding rationale for 31 within CXCR4 was elucidated from docking and molecular simulation studies.
Collapse
Affiliation(s)
- Huy H. Nguyen
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yesim A. Tahirovic
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Robert J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Nicholas S. Akins
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lingjie Xu
- Hangzhou Junrui Biotechnology, Hangzhou, Zhejiang 310000, China
| | - Yi Jiang
- Hangzhou Junrui Biotechnology, Hangzhou, Zhejiang 310000, China
| | - Tao Wang
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Chi S. Sum
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Mary E. Cvijic
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Gretchen M. Schroeder
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Hassan HM, Al-Wahaibi LH, Shehatou GS, El-Emam AA. Adamantane-linked isothiourea derivatives suppress the growth of experimental hepatocellular carcinoma via inhibition of TLR4-MyD88-NF-κB signaling. Am J Cancer Res 2021; 11:350-369. [PMID: 33575076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, in vitro cytotoxic effects of seven adamantyl isothiourea derivatives were evaluated against five human tumor cell lines using the MTT assay. Compounds 5 and 6 were found to be the most active derivatives particularly against hepatocellular carcinoma (HCC). To decipher the potential mechanisms involved, in vivo studies were conducted in rats by inducing HCC via chronic thioacetamide (TAA) administration (200 mg/kg, i.p., twice weekly) for 16 weeks. Compounds 5 and 6 were administered to HCC rats, at a dose of 10 mg/kg/day, for further 2 weeks. In vitro and in vivo antitumor activities of compounds 5 and 6 were compared to those of the anticancer drug doxorubicin (DOXO). In the HCC rat model, compounds 5 and 6 significantly reduced serum levels of ALT, AST with ALP and α-fetoprotein. H & E and Masson trichrome staining revealed that both compounds suppressed hepatocyte tumorigenesis and diminished fibrosis, inflammation and other histopathological alterations. Mechanistically, compounds 5 and 6 markedly decreased protein expression levels of α-SMA, sEH, p-NF-κB p65, TLR4, MyD88, TRAF-6, TNF-α, IL-1β and TGF-β1, whereas they increased caspase-3 expression in liver tissues of HCC rats. In most analyses, the effects of compound 6 were more comparable to DOXO than compound 5. These findings suggested that the compounds 5 and 6 displayed in vitro and in vivo cytotoxic potential against HCC, probably via inhibition of TLR4-MyD88-NF-κB signaling.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology International Costal Road, Gamasa 11152, Mansoura, Egypt
| | - Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University Riyadh 11671, Saudi Arabia
| | - George Sg Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology International Costal Road, Gamasa 11152, Mansoura, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University Mansoura 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516, Egypt
| |
Collapse
|
18
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Microtiter plate-based antibody-competition assay to determine binding affinities and plasma/blood stability of CXCR4 ligands. Sci Rep 2020; 10:16036. [PMID: 32994431 PMCID: PMC7525492 DOI: 10.1038/s41598-020-73012-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is involved in several intractable disease processes, including HIV infection, cancer cell metastasis, leukemia cell progression, rheumatoid arthritis, asthma and pulmonary fibrosis. Thus, CXCR4 represents a promising drug target and several CXCR4 antagonizing agents are in preclinical or clinical development. Important parameters in drug lead evaluation are determination of binding affinities to the receptor and assessment of their stability and activity in plasma or blood of animals and humans. Here, we designed a microtiter plate-based CXCR4 antibody competition assay that enables to measure inhibitory concentrations (IC50 values) and affinity constants (Ki values) of CXCR4 targeting drugs. The assay is based on the observation that most if not all CXCR4 antagonists compete with binding of the fluorescence-tagged CXCR4 antibody 12G5 to the receptor. We demonstrate that this antibody-competition assay allows a convenient and cheap determination of binding affinities of various CXCR4 antagonists in living cells within just 3 h. Moreover, the assay can be performed in the presence of high concentrations of physiologically relevant body fluids, and thus is a useful readout to evaluate stability (i.e. half-life) of CXCR4 ligands in serum/plasma, and even whole human and mouse blood ex vivo. Thus, this optimized 12G5 antibody-competition assay allows a robust and convenient determination and calculation of various important pharmacological parameters of CXCR4 receptor-drug interaction and may not only foster future drug development but also animal welfare by reducing the number of experimental animals.
Collapse
|
20
|
Li Z, Wang X, Lin Y, Wang Y, Wu S, Xia K, Xu C, Ma H, Zheng J, Luo L, Zhu F, He S, Zhang X. Design, synthesis, and evaluation of pyrrolidine based CXCR4 antagonists with in vivo anti-tumor metastatic activity. Eur J Med Chem 2020; 205:112537. [PMID: 32768738 DOI: 10.1016/j.ejmech.2020.112537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022]
Abstract
The chemokine receptor CXCR4 has been proposed as a drug target based on its important functions in HIV infection, inflammation/autoimmune diseases and cancer metastasis. Herein we report the design, synthesis and evaluation of novel CXCR4 antagonists based on a pyrrolidine scaffold. The structural exploration/optimization identified numerous potent CXCR4 antagonists, represented by compound 46, which displayed potent binding affinity to CXCR4 receptor (IC50 = 79 nM competitively displacing fluorescent 12G5 antibody) and inhibited CXCL12 induced cytosolic calcium flux (IC50 = 0.25 nM). Moreover, in a transwell invasion assay, compound 46 significantly mitigated CXCL12/CXCR4 mediated cell migration. Compound 46 exhibited good physicochemical properties (MW 367, logD7.4 1.12, pKa 8.2) and excellent in vitro safety profiles (e.g., hERG patch clamp IC50 > 30 μM and minimal CYP isozyme inhibition). Importantly, 46 displayed much improved metabolic stability in human and rat liver microsomes. Lastly, 46 demonstrated marked efficacy in a cancer metastasis model in mice. These results strongly support 46 as a prototypical lead for the development of promising CXCR4 antagonists as clinical candidates.
Collapse
Affiliation(s)
- Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xu Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yu Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yujie Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Kaijiang Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Chen Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jiyue Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Lusong Luo
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, PR China.
| | - Fang Zhu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, PR China; Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, PR China
| | - Sudan He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, PR China; Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
21
|
Discovery of novel aminopiperidinyl amide CXCR4 modulators through virtual screening and rational drug design. Eur J Med Chem 2020; 201:112479. [PMID: 32534343 DOI: 10.1016/j.ejmech.2020.112479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/29/2022]
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) is a potential therapeutic target for HIV infection, metastatic cancer, and inflammatory autoimmune diseases. In this study, we screened the ZINC chemical database for novel CXCR4 modulators through a series of in silico guided processes. After evaluating the screened compounds for their binding affinities to CXCR4 and inhibitory activities against the chemoattractant CXCL12, we identified a hit compound (ZINC 72372983) showing 100 nM affinity and 69% chemotaxis inhibition at the same concentration (100 nM). To increase the potency of our hit compound, we explored the protein-ligand interactions at an atomic level using molecular dynamics simulation which enabled us to design and synthesize a novel compound (Z7R) with nanomolar affinity (IC50 = 1.25 nM) and improved chemotaxis inhibition (78.5%). Z7R displays promising anti-inflammatory activity (50%) in a mouse edema model by blocking CXCR4-expressed leukocytes, being supported by our immunohistochemistry study.
Collapse
|
22
|
Design, synthesis, and evaluation of novel CXCR4 antagonists based on an aminoquinoline template. Bioorg Chem 2020; 99:103824. [PMID: 32334192 DOI: 10.1016/j.bioorg.2020.103824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022]
Abstract
The chemokine receptor CXCR4 has been explored as a drug target due to its involvement in pathological conditions such as HIV infection and cancer metastasis. Here we report the structure-activity relationship study of novel CXCR4 antagonists based on an aminoquinoline template. This template is devoid of the chiral center in the classical tetrahydroquinoline (THQ) ring moiety and therefore can be easily synthesized. A number of potent CXCR4 antagonists were identified, exemplified by compound 3, which demonstrated excellent binding affinity with CXCR4 receptor (IC50 = 57 nM) and inhibited CXCL12 induced cytosolic calcium increase (IC50 = 0.24 nM). Furthermore, compound 3 potently inhibited CXLC12/CXCR4 mediated cell migration in a transwell invasion assay. The simplified synthetic approach combined with good physicochemical properties (e.g. MW 362, clogP 2.1, PSA 48, pKa 7.0 for compound 3) demonstrate the potential of this aminoquinoline template as a novel scaffold to develop CXCR4 antagonists.
Collapse
|
23
|
Ávila-Sánchez M, Ferro-Flores G, Jiménez-Mancilla N, Ocampo-García B, Bravo-Villegas G, Luna-Gutiérrez M, Santos-Cuevas C, Azorín-Vega E, Aranda-Lara L, Isaac-Olivé K, Melendez-Alafort L. Synthesis and preclinical evaluation of the 99mTc-/177Lu-CXCR4-L theranostic pair for in vivo chemokine-4 receptor-specific targeting. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07043-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Structural optimization of aminopyrimidine-based CXCR4 antagonists. Eur J Med Chem 2020; 187:111914. [DOI: 10.1016/j.ejmech.2019.111914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
|
25
|
Renard I, Archibald SJ. CXCR4-targeted metal complexes for molecular imaging. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Reinecke BA, Kang G, Zheng Y, Obeng S, Zhang H, Selley DE, An J, Zhang Y. Design and synthesis of a bivalent probe targeting the putative mu opioid receptor and chemokine receptor CXCR4 heterodimer. RSC Med Chem 2020; 11:125-131. [PMID: 33479612 PMCID: PMC7451026 DOI: 10.1039/c9md00433e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Opioid abuse and HIV/AIDS have been defined as synergistic epidemics. Opioids can accelerate HIV replication in the immune system by up-regulating the expression of HIV co-receptor CXCR4. Several hypotheses have been suggested as the mechanism of CXCR4 modulation by opioids through their activation on the mu opioid receptor (MOR). One hypothesis is the putative heterodimerization of the MOR and CXCR4 as a mechanism of cross-talk and subsequent exacerbation of HIV replication. Bivalent chemical probes can be powerful molecular tools to characterize protein-protein interactions, and modulate the function related to such interactions. Herein we report the design and synthesis of a novel bivalent probe to explore the putative MOR-CXCR4 dimerization and its potential pharmacological role in enhancing HIV progression. The developed bivalent probe was designed with two distinct pharmacophores linked through a spacer. One pharmacophore (naltrexone) will interact with the MOR and the other (IT1t) with the CXCR4. The overall synthetic routes to prepare the bivalent probe and its corresponding monovalent controls were comprised of 18-22 steps with acceptable yields. Preliminary biological evaluation showed that the bivalent probe preserved binding affinity and functional activity at both respective receptors, supporting the initial molecular design.
Collapse
Affiliation(s)
- Bethany A Reinecke
- Department of Medicinal Chemistry , Virginia Commonwealth University , 800 East Leigh Street , Richmond , VA 23298 , USA . ; ; Tel: +1 804 828 0021
| | - Guifeng Kang
- Department of Medicinal Chemistry , Virginia Commonwealth University , 800 East Leigh Street , Richmond , VA 23298 , USA . ; ; Tel: +1 804 828 0021
| | - Yi Zheng
- Department of Medicinal Chemistry , Virginia Commonwealth University , 800 East Leigh Street , Richmond , VA 23298 , USA . ; ; Tel: +1 804 828 0021
| | - Samuel Obeng
- Department of Medicinal Chemistry , Virginia Commonwealth University , 800 East Leigh Street , Richmond , VA 23298 , USA . ; ; Tel: +1 804 828 0021
| | - Huijun Zhang
- Department of Medicine , Division of Infectious Diseases , School of Medicine , University of California San Diego , 9500 Gilman Drive, Stein Clinical Research Building, Suite 410 , La Jolla , CA 92093 , USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , VA 23298 , USA
| | - Jing An
- Department of Medicine , Division of Infectious Diseases , School of Medicine , University of California San Diego , 9500 Gilman Drive, Stein Clinical Research Building, Suite 410 , La Jolla , CA 92093 , USA
| | - Yan Zhang
- Department of Medicinal Chemistry , Virginia Commonwealth University , 800 East Leigh Street , Richmond , VA 23298 , USA . ; ; Tel: +1 804 828 0021
| |
Collapse
|
27
|
Suttisintong K, Kaewchangwat N, Thanayupong E, Nerungsi C, Srikun O, Pungpo P. Recent Progress in the Development of HIV-1 Entry Inhibitors: From Small Molecules to Potent Anti-HIV Agents. Curr Top Med Chem 2019; 19:1599-1620. [DOI: 10.2174/1568026619666190712204050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/21/2023]
Abstract
Viral entry, the first process in the reproduction of viruses, primarily involves attachment of the viral envelope proteins to membranes of the host cell. The crucial components that play an important role in viral entry include viral surface glycoprotein gp120, viral transmembrane glycoprotein gp41, host cell glycoprotein (CD4), and host cell chemokine receptors (CCR5 and CXCR4). Inhibition of the multiple molecular interactions of these components can restrain viruses, such as HIV-1, from fusion with the host cell, blocking them from reproducing. This review article specifically focuses on the recent progress in the development of small-molecule HIV-1 entry inhibitors and incorporates important aspects of their structural modification that lead to the discovery of new molecular scaffolds with more potency.
Collapse
Affiliation(s)
- Khomson Suttisintong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Narongpol Kaewchangwat
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Eknarin Thanayupong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chakkrapan Nerungsi
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Onsiri Srikun
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, 85 Sathonlamark Road, Warinchamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
28
|
Bruns D, Merk D, Santhana Kumar K, Baumgartner M, Schneider G. Synthetic Activators of Cell Migration Designed by Constructive Machine Learning. ChemistryOpen 2019; 8:1303-1308. [PMID: 31660283 PMCID: PMC6807213 DOI: 10.1002/open.201900222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/11/2019] [Indexed: 11/26/2022] Open
Abstract
Constructive machine learning aims to create examples from its learned domain which are likely to exhibit similar properties. Here, a recurrent neural network was trained with the chemical structures of known cell-migration modulators. This machine learning model was used to generate new molecules that mimic the training compounds. Two top-scoring designs were synthesized, and tested for functional activity in a phenotypic spheroid cell migration assay. These computationally generated small molecules significantly increased the migration of medulloblastoma cells. The results further corroborate the applicability of constructive machine learning to the de novo design of druglike molecules with desired properties.
Collapse
Affiliation(s)
- Dominique Bruns
- ETH Zurich, Department ofChemistry and Applied BiosciencesVladimir-Prelog-Weg 4CH-8093ZurichSwitzerland
| | - Daniel Merk
- ETH Zurich, Department ofChemistry and Applied BiosciencesVladimir-Prelog-Weg 4CH-8093ZurichSwitzerland
| | - Karthiga Santhana Kumar
- Pediatric Neuro-OncologyResearch Group, Department of Oncology, Children's Research Center, University Children's Hospital ZurichLengghalde 5CH-8008ZurichSwitzerland
| | - Martin Baumgartner
- Pediatric Neuro-OncologyResearch Group, Department of Oncology, Children's Research Center, University Children's Hospital ZurichLengghalde 5CH-8008ZurichSwitzerland
| | - Gisbert Schneider
- ETH Zurich, Department ofChemistry and Applied BiosciencesVladimir-Prelog-Weg 4CH-8093ZurichSwitzerland
| |
Collapse
|
29
|
Negro S, Zanetti G, Mattarei A, Valentini A, Megighian A, Tombesi G, Zugno A, Dianin V, Pirazzini M, Fillo S, Lista F, Rigoni M, Montecucco C. An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells 2019; 8:E1183. [PMID: 31575088 PMCID: PMC6829515 DOI: 10.3390/cells8101183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
The activation of the G-protein coupled receptor CXCR4 by its ligand CXCL12α is involved in a large variety of physiological and pathological processes, including the growth of B cells precursors and of motor axons, autoimmune diseases, stem cell migration, inflammation, and several neurodegenerative conditions. Recently, we demonstrated that CXCL12α potently stimulates the functional recovery of damaged neuromuscular junctions via interaction with CXCR4. This result prompted us to test the neuroregeneration activity of small molecules acting as CXCR4 agonists, endowed with better pharmacokinetics with respect to the natural ligand. We focused on NUCC-390, recently shown to activate CXCR4 in a cellular system. We designed a novel and convenient chemical synthesis of NUCC-390, which is reported here. NUCC-390 was tested for its capability to induce the regeneration of motor axon terminals completely degenerated by the presynaptic neurotoxin α-Latrotoxin. NUCC-390 was found to strongly promote the functional recovery of the neuromuscular junction, as assayed by electrophysiology and imaging. This action is CXCR4 dependent, as it is completely prevented by AMD3100, a well-characterized CXCR4 antagonist. These data make NUCC-390 a strong candidate to be tested in human therapy to promote nerve recovery of function after different forms of neurodegeneration.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Alice Valentini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
- Padua Neuroscience Institute, Padua 35131, Italy.
| | - Giulia Tombesi
- Department of Biology, University of Padua, Padua 35131, Italy.
| | - Alessandro Zugno
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Valentina Dianin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Silvia Fillo
- Center of Medical and Veterinary Research of the Ministry of Defence, Rome 00184, Italy.
| | - Florigio Lista
- Center of Medical and Veterinary Research of the Ministry of Defence, Rome 00184, Italy.
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
- CNR Institute of Neuroscience, Padua 35131, Italy.
| |
Collapse
|
30
|
Al-Ghulikah HA, Ghabbour HA, Tiekink ER, El-Emam AA. Crystal structure of 4-bromobenzyl ( Z)- N-(adamantan-1-yl)morpholine-4-carbothioimidate, C 22H 29BrN 2OS. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H29BrN2OS, triclinic, P1̄ (no. 2), a = 7.1722(3) Å, b = 10.2350(4) Å, c = 14.8756(6) Å, α = 73.607(2)°, β = 84.7020(10)°, γ = 88.7210(10)°, V = 1043.11(7) Å3, Z = 2, R
gt(F) = 0.0467, wR
ref(F
2) = 0.0870, T = 296(2) K.
Collapse
Affiliation(s)
- Hanan A. Al-Ghulikah
- Department of Chemistry , College of Sciences, Princess Nourah Bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| | - Edward R.T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University , 47500 Bandar Sunway, Selangor Darul Ehsan , Malaysia
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| |
Collapse
|
31
|
Al-Wahaibi LH, Al-Shaalan NH, Ghabbour HA, Tiekink ER, El-Emam AA. Crystal structure of 3,5-bis(trifluoromethyl)benzyl ( Z)- N′-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidate, C 30H 33F 6N 3S. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C30H33F6N3S, triclinic, P1̄ (no. 2), a = 9.3012(5) Å, b = 10.2734(5) Å, c = 15.1850(8) Å, α = 81.982(2)°, β = 78.696(2)°, γ = 83.882(2)°, V = 1404.25(13) Å3, Z = 2, R
gt(F) = 0.0779, wR
ref(F
2) = 0.2499, T = 293(2) K.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry , College of Sciences, Princess Nourah Bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Nora H. Al-Shaalan
- Department of Chemistry , College of Sciences, Princess Nourah Bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| | - Edward R.T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University , 47500 Bandar Sunway, Selangor Darul Ehsan , Malaysia
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| |
Collapse
|
32
|
Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, Wijtmans M, de Esch I, Hill S, Leurs R. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharmacol 2019; 96:737-752. [DOI: 10.1124/mol.119.117663] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
|
33
|
Smith N, Rodero MP, Bekaddour N, Bondet V, Ruiz-Blanco YB, Harms M, Mayer B, Bader-Meunier B, Quartier P, Bodemer C, Baudouin V, Dieudonné Y, Kirchhoff F, Sanchez Garcia E, Charbit B, Leboulanger N, Jahrsdörfer B, Richard Y, Korganow AS, Münch J, Nisole S, Duffy D, Herbeuval JP. Control of TLR7-mediated type I IFN signaling in pDCs through CXCR4 engagement-A new target for lupus treatment. SCIENCE ADVANCES 2019; 5:eaav9019. [PMID: 31309143 PMCID: PMC6620093 DOI: 10.1126/sciadv.aav9019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Type I interferons are highly potent cytokines essential for self-protection against tumors and infections. Deregulations of type I interferon signaling are associated with multiple diseases that require novel therapeutic options. Here, we identified the small molecule, IT1t, a previously described CXCR4 ligand, as a highly potent inhibitor of Toll-like receptor 7 (TLR7)-mediated inflammation. IT1t inhibits chemical (R848) and natural (HIV) TLR7-mediated inflammation in purified human plasmacytoid dendritic cells from blood and human tonsils. In a TLR7-dependent lupus-like model, in vivo treatment of mice with IT1t drives drastic reduction of both systemic inflammation and anti-double-stranded DNA autoantibodies and prevents glomerulonephritis. Furthermore, IT1t controls inflammation, including interferon α secretion, in resting and stimulated cells from patients with systemic lupus erythematosus. Our findings highlight a groundbreaking immunoregulatory property of CXCR4 signaling that opens new therapeutic perspectives in inflammatory settings and autoimmune diseases.
Collapse
Affiliation(s)
- Nikaïa Smith
- CNRS UMR-8601, CICB, 45 rue des Saints-Pères, 75006 Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Mathieu P. Rodero
- CNRS UMR-8601, CICB, 45 rue des Saints-Pères, 75006 Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nassima Bekaddour
- CNRS UMR-8601, CICB, 45 rue des Saints-Pères, 75006 Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Yasser B. Ruiz-Blanco
- Computational Biochemistry and Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Brigitte Bader-Meunier
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Imagine Institute, Paris, France
- Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Universitaire Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMR 1163, Laboratory of Immunogenetics of Paediatric Autoimmunity, Paris, France
| | - Pierre Quartier
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Imagine Institute, Paris, France
- Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Universitaire Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christine Bodemer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Imagine Institute, Paris, France
- Department of Paediatric Dermatology, Reference Centre for Rare Skin Disorders (MAGEC), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Véronique Baudouin
- Hôpital Universitaire Robert Debré, Néphrologie pédiatrique, Paris, France
| | - Yannick Dieudonné
- CNRS UPR 3572 “Immunopathology and Therapeutic Chemistry”/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
- UFR Medicine, University of Strasbourg, Strasbourg, France
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Elsa Sanchez Garcia
- Computational Biochemistry and Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Bruno Charbit
- Centre for Translational Research, Institut Pasteur, Paris, France
| | - Nicolas Leboulanger
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Pediatric Otolaryngology Department, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Bernd Jahrsdörfer
- Institute of Transfusion Medicine and Immunogenetics (IKT) Ulm, Helmholtzstr. 10, 89081 Ulm, Germany
| | - Yolande Richard
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
| | - Anne-Sophie Korganow
- CNRS UPR 3572 “Immunopathology and Therapeutic Chemistry”/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
- UFR Medicine, University of Strasbourg, Strasbourg, France
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Sébastien Nisole
- IRIM, Université de Montpellier, CNRS UMR, 9004 Montpellier, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Centre for Translational Research, Institut Pasteur, Paris, France
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, CICB, 45 rue des Saints-Pères, 75006 Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
34
|
Cassis P, Zoja C, Perico L, Remuzzi G. A preclinical overview of emerging therapeutic targets for glomerular diseases. Expert Opin Ther Targets 2019; 23:593-606. [PMID: 31150308 DOI: 10.1080/14728222.2019.1626827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Animal models have provided significant insights into the mechanisms responsible for the development of glomerular lesions and proteinuria; they have also helped to identify molecules that control the podocyte function as suitable target-specific therapeutics. Areas covered: We discuss putative therapeutic targets for proteinuric glomerular diseases. An exhaustive search for eligible studies was performed in PubMed/MEDLINE. Most of the selected reports were published in the last decade, but we did not exclude older relevant milestone publications. We consider the molecules that regulate podocyte cytoskeletal dynamics and the transcription factors that regulate the expression of slit-diaphragm proteins. There is a focus on SGLT2 and sirtuins which have recently emerged as mediators of podocyte injury and repair. We also examine paracrine signallings involved in the cross-talk of injured podocytes with the neighbouring glomerular endothelial cells and parietal epithelial cells. Expert opinion: There is a need to discover novel therapeutic moleecules with renoprotective effects for those patients with glomerular diseases who do not respond completely to standard therapy. Emerging strategies targeting components of the podocyte cytoskeleton or signallings that regulate cellular communication within the glomerulus are promising avenues for treating glomerular diseases.
Collapse
Affiliation(s)
- Paola Cassis
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Carlamaria Zoja
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Luca Perico
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Giuseppe Remuzzi
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy.,b 'L. Sacco' Department of Biomedical and Clinical Sciences , University of Milan , Milan , Italy
| |
Collapse
|
35
|
Rosenberg EM, Harrison RES, Tsou LK, Drucker N, Humphries B, Rajasekaran D, Luker KE, Wu CH, Song JS, Wang CJ, Murphy JW, Cheng YC, Shia KS, Luker GD, Morikis D, Lolis EJ. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chem Biol 2019; 26:662-673.e7. [PMID: 30827936 PMCID: PMC6736600 DOI: 10.1016/j.chembiol.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) CXCR4 is a co-receptor for HIV and is involved in cancers and autoimmune diseases. We characterized five purine or quinazoline core polyamine pharmacophores used for targeting CXCR4 dysregulation in diseases. All were neutral antagonists for wild-type CXCR4 and two were biased antagonists with effects on β-arrestin-2 only at high concentrations. These compounds displayed various activities for a constitutively active mutant (CAM). We use the IT1t-CXCR4 crystal structure and molecular dynamics (MD) simulations to develop two hypotheses for the activation of the N1193.35A CAM. The N1193.35A mutation facilitates increased coupling of TM helices III and VI. IT1t deactivates the CAM by disrupting the coupling between TM helices III and VI, mediated primarily by residue F872.53. Mutants of F872.53 in N1193.35A CXCR4 precluded constitutive signaling and prevented inverse agonism. This work characterizes CXCR4 ligands and provides a mechanism for N1193.35A constitutive activation.
Collapse
Affiliation(s)
- Eric M Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reed E S Harrison
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Natalie Drucker
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brock Humphries
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kathryn E Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Chuan-Jen Wang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - James W Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Gary D Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Dimitrios Morikis
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
36
|
Lei X, Wang Y, Fan E, Sun Z. In Situ Activation of Disulfides for Multicomponent Reactions with Isocyanides and a Broad Range of Nucleophiles. Org Lett 2019; 21:1484-1487. [DOI: 10.1021/acs.orglett.9b00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofang Lei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 333 Longteng Road, Shanghai 201620, China
| | - Yuanyuan Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 333 Longteng Road, Shanghai 201620, China
| | - Erkang Fan
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195, United States
| | - Zhihua Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 333 Longteng Road, Shanghai 201620, China
| |
Collapse
|
37
|
Katzman BM, Cox BD, Prosser AR, Alcaraz AA, Murat B, Héroux M, Tebben A, Zhang Y, Schroeder GM, Snyder JP, Wilson LJ, Liotta DC. Tetrahydroisoquinoline CXCR4 Antagonists Adopt a Hybrid Binding Mode within the Peptide Subpocket of the CXCR4 Receptor. ACS Med Chem Lett 2019; 10:67-73. [PMID: 30655949 DOI: 10.1021/acsmedchemlett.8b00441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
The rationale for the structural and mechanistic basis of a tetrahydroisoquinoline (THIQ) based series of CXCR4 antagonists is presented. Using the previously reported crystal structures which reveal two distinct binding sites of CXCR4 defined as the small molecule (IT1t or minor) binding pocket and peptide (CVX15 or major) binding pocket, we hypothesized our THIQ small molecule series could bind like either molecule in these respective receptor configurations (IT1t versus CVX15 based poses). To this end, a thorough investigation was performed through a combination of receptor mutation studies, medicinal chemistry, biological testing, conformational analysis, and flexible docking. Our findings showed that the CVX15 peptide-based CXCR4 receptor complexes (red pose) were consistently favored over the small molecule IT1t based CXCR4 receptor configurations (blue pose) to correctly explain the computational and mutational studies as well as key structural components of activity for these small molecules.
Collapse
Affiliation(s)
- Brooke M. Katzman
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Bryan D. Cox
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Anthony R. Prosser
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ana A. Alcaraz
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Brigitte Murat
- Medicinal Chemistry platform, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Madeleine Héroux
- Medicinal Chemistry platform, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Andrew Tebben
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Yong Zhang
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Gretchen M. Schroeder
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - James P. Snyder
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
38
|
Adlere I, Sun S, Zarca A, Roumen L, Gozelle M, Viciano CP, Caspar B, Arimont M, Bebelman JP, Briddon SJ, Hoffmann C, Hill SJ, Smit MJ, Vischer HF, Wijtmans M, de Graaf C, de Esch IJP, Leurs R. Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. Eur J Med Chem 2018; 162:631-649. [PMID: 30476826 DOI: 10.1016/j.ejmech.2018.10.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 01/20/2023]
Abstract
Using the available structural information of the chemokine receptor CXCR4, we present hit finding and hit exploration studies that make use of virtual fragment screening, design, synthesis and structure-activity relationship (SAR) studies. Fragment 2 was identified as virtual screening hit and used as a starting point for the exploration of 31 N-substituted piperidin-4-yl-methanamine derivatives to investigate and improve the interactions with the CXCR4 binding site. Additionally, subtle structural ligand changes lead to distinct interactions with CXCR4 resulting in a full to partial displacement of CXCL12 binding and competitive and/or non-competitive antagonism. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and binding model studies were used to identify important hydrophobic interactions that determine binding affinity and indicate key ligand-receptor interactions.
Collapse
Affiliation(s)
- I Adlere
- Griffin Discoveries BV, Amsterdam, the Netherlands
| | - S Sun
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - A Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - L Roumen
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - M Gozelle
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, Turkey
| | - C Perpiñá Viciano
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - B Caspar
- Division of Pharmacology, Physiology and Neuroscience and Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - M Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - J P Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - S J Briddon
- Division of Pharmacology, Physiology and Neuroscience and Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - C Hoffmann
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - S J Hill
- Division of Pharmacology, Physiology and Neuroscience and Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - M J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - H F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - M Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - C de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - I J P de Esch
- Griffin Discoveries BV, Amsterdam, the Netherlands; Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - R Leurs
- Griffin Discoveries BV, Amsterdam, the Netherlands; Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
39
|
Nguyen HH, Kim MB, Wilson RJ, Butch CJ, Kuo KM, Miller EJ, Tahirovic YA, Jecs E, Truax VM, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Design, Synthesis, and Pharmacological Evaluation of Second-Generation Tetrahydroisoquinoline-Based CXCR4 Antagonists with Favorable ADME Properties. J Med Chem 2018; 61:7168-7188. [DOI: 10.1021/acs.jmedchem.8b00450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huy H. Nguyen
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Robert J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Christopher J. Butch
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Katie M. Kuo
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yesim A. Tahirovic
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Chi S. Sum
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Mary E. Cvijic
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Gretchen M. Schroeder
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
40
|
Al-Wahaibi LH, Hassan HM, Ghabbour HA, El-Emam AA. Crystal structure of 3,5-bis(trifluoromethyl)benzyl( Z)- N-(adamantan-1-yl)morpholine-4-carbothioimidate, C 24H 28F 6N 2OS. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C24H28F6N2OS, monoclinic, P21/n (no. 14), a = 17.4112(7) Å, b = 8.3694(3) Å, c = 17.6728(7) Å, β = 104.612(2)°, V = 2492.01(17) Å3, Z = 4, R
gt(F) = 0.0603, wR(F
2) = 0.1704, T = 293(2) K.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences , Princess Nourah Bint Abdulrahman University , Riyadh 11671, Saudi Arabia
| | - Hanan M. Hassan
- Department of Pharmaceutical Sciences , College of Pharmacy, Princess Nourah Bint Abdulrahman University , Riyadh 11671, Saudi Arabia
- Department of Pharmacology and Biochemistry , College of Pharmacy, Delta University for Science and Technology , Mansoura , Egypt
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516, Egypt
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516, Egypt
- Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , P.O. Box 2457 , Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Insight into structural requirements for selective and/or dual CXCR3 and CXCR4 allosteric modulators. Eur J Med Chem 2018; 154:68-90. [PMID: 29777988 DOI: 10.1016/j.ejmech.2018.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/18/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022]
Abstract
Based on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation. Para-methoxy substitution leads to functional antagonism, while para-chloro triggers agonism. Additionally, we discovered that chemotaxis is not completely correlated with G protein pathways. This is the first work in which we have on a series of compounds successfully demonstrated that it is possible to produce selective as well as dual-acting modulators of chemokine receptors, which is very promising for future research in the field of discovery of selective or dual modulators of chemokine receptors.
Collapse
|
42
|
Tahirovic YA, Truax VM, Wilson RJ, Jecs E, Nguyen HH, Miller EJ, Kim MB, Kuo KM, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Discovery of N-Alkyl Piperazine Side Chain Based CXCR4 Antagonists with Improved Drug-like Properties. ACS Med Chem Lett 2018; 9:446-451. [PMID: 29795757 DOI: 10.1021/acsmedchemlett.8b00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
A novel series of CXCR4 antagonists with piperidinyl and piperazinyl alkylamine side chains designed as butyl amine replacements are described. Several of these compounds showed similar activity to the parent compound TIQ-15 (5) in a SDF-1 induced calcium flux assay. Preliminary structure-activity relationship investigations led us to identify a series containing N-propyl piperazine side chain analogs exemplified by 16 with improved off-target effects as measured in a muscarinic acetylcholine receptor (mAChR) calcium flux assay and in a limited drug safety panel screen. Further efforts to explore SAR and optimize drug properties led to the identification of the N'-ethyl-N-propyl-piperazine tetrahydroisoquinoline derivative 44 and the N-propyl-piperazine benzimidazole compound 37, which gave the best overall profiles with no mAChR or CYP450 inhibition, good permeability in PAMPA assays, and metabolic stability in human liver microsomes.
Collapse
Affiliation(s)
- Yesim A. Tahirovic
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Robert J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huy H. Nguyen
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Katie M. Kuo
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Chi S. Sum
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Mary E. Cvijic
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Gretchen M. Schroeder
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
43
|
Huang MB, Giesler KE, Katzman BM, Prosser AR, Truax V, Liotta DC, Wilson LJ, Bond VC. Small molecule CXCR4 antagonists block the HIV-1 Nef/CXCR4 axis and selectively initiate the apoptotic program in breast cancer cells. Oncotarget 2018; 9:16996-17013. [PMID: 29682200 PMCID: PMC5908301 DOI: 10.18632/oncotarget.24580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
The chemokine receptor CXCR4 plays an integral role in the development of highly metastatic breast cancer and in the pathogenesis of chronic HIV infection. In this study, we compared the effects of CXCR4 antagonists on apoptosis induction in hematopoietic cells and in tumor cells. We incubated cells expressing CXCR4 with a series of CXCR4 antagonists and subsequently exposed the cultures to a pro-apoptotic peptide derived from the HIV-1 Nef protein (NefM1). The NefM1 peptide contains residues 50-60 of Nef and was previously shown to be the sequence necessary for Nef to initiate the apoptotic program through CXCR4 signaling. We found that several of the compounds studied potently blocked Nef-induced apoptosis in Jurkat T-lymphocyte cells. Interestingly, many of the same compounds selectively triggered apoptosis in MDA-MB-231 breast cancer cells, in some cases at sub-nanomolar concentrations. None of the compounds were toxic to lymphocyte, monocyte or macrophage cells, suggesting that aggressive breast cancer carcinomas may be selectively targeted and eliminated using CXCR4-based therapies without additional cytotoxic agents. Our results also demonstrate that not all CXCR4 antagonists are alike and that the observed anti-Nef and pro-apoptotic effects are chemically tunable. Collectively, these findings suggest our CXCR4 antagonists have promising clinical utility for HIV or breast cancer therapies as well as being useful probes to examine the link between CXCR4 and apoptosis.
Collapse
Affiliation(s)
- Ming-Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310, United States
| | - Kyle E. Giesler
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Brooke M. Katzman
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anthony R. Prosser
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Valarie Truax
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310, United States
| |
Collapse
|
44
|
Peng D, Cao B, Zhou YJ, Long YQ. The chemical diversity and structure-based evolution of non-peptide CXCR4 antagonists with diverse therapeutic potential. Eur J Med Chem 2018; 149:148-169. [PMID: 29500940 DOI: 10.1016/j.ejmech.2018.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
The CXC chemokine receptor 4 (CXCR4) is a highly reserved G-protein coupled 7-transmembrane (TM) chemokine receptor which consists of 352 amino acids. CXCR4 has only one endogenous chemokine ligand of CXCL12, besides several other natural nonchemokine ligands such as extracellular ubiquitin and noncognate ligand of MIF. CXCR4 strongly binds to CXCL12 and the resulting CXCLl2/CXCR4 axis is the molecular basis of their various biological functions, which include: (1) mediating immune and inflammatory response; (2) regulation of hematopoietic stem cell migration and homing; (3) an essential co-receptor for HIV entry into host cells; (4) participation in the process of embryonic development; (5) malignant tumor invasion and metastasis; (6) myocardial infarction, ischemic stroke and acute kidney injury. Correspondingly, CXCR4 antagonists find potential therapeutic applications in HIV infection, as well as hematopoietic stem cell migration, inflammation, immune-related diseases, tumor and ischemic diseases. Recently, great achievements have been made and a number of non-peptide CXCR4 antagonists with diversity scaffolds have been discovered. In this review, the discovery of small molecule CXCR4 antagonists focused on the structures, activities, evolution and development of representative CXCR4 antagonists is comprehensively described. The central role of CXCR4 in diverse cellular signaling pathways and its involvement in several diseases progressions are discussed as well.
Collapse
Affiliation(s)
- Dian Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bin Cao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying-Jun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ya-Qiu Long
- College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou 215123, China.
| |
Collapse
|
45
|
Li Z, Wang Y, Fu C, Wang X, Wang JJ, Zhang Y, Zhou D, Zhao Y, Luo L, Ma H, Lu W, Zheng J, Zhang X. Design, synthesis, and structure-activity-relationship of a novel series of CXCR4 antagonists. Eur J Med Chem 2018; 149:30-44. [PMID: 29494843 DOI: 10.1016/j.ejmech.2018.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 01/25/2023]
Abstract
The important roles of the CXCL12/CXCR4 axis in numerous pathogenic pathways involving HIV infection and cancer metastasis make the CXCR4 receptor an attractive target for the development of therapeutic agents. Through scaffold hybridization of a few known CXCR4 antagonists, a series of novel aminopyrimidine derivatives was developed. Compound 3 from this new scaffold demonstrates excellent binding affinity with CXCR4 receptor (IC50 = 54 nM) and inhibits CXCL12 induced cytosolic calcium increase (IC50 = 2.3 nM). Furthermore, compound 3 possesses good physicochemical properties (MW 353, clogP 2.0, PSA 48, pKa 6.7) and exhibits minimal hERG and CYP isozyme (e.g. 3A4, 2D6) inhibition. Collectively, these results strongly support further optimization of this novel scaffold to develop better CXCR4 antagonists.
Collapse
Affiliation(s)
- Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yujie Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Chunyan Fu
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China
| | - Xu Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jun Jun Wang
- Department of Oncology, The Third Affiliated Hospital, Soochow University, PR China
| | - Yi Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dongping Zhou
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China
| | - Yuan Zhao
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China
| | - Lusong Luo
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China.
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wenfeng Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiyue Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
46
|
Miller EJ, Jecs E, Truax VM, Katzman BM, Tahirovic YA, Wilson RJ, Kuo KM, Kim MB, Nguyen HH, Saindane MT, Zhao H, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Discovery of Tetrahydroisoquinoline-Containing CXCR4 Antagonists with Improved in Vitro ADMET Properties. J Med Chem 2018; 61:946-979. [PMID: 29350534 DOI: 10.1021/acs.jmedchem.7b01420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CXCR4 is a seven-transmembrane receptor expressed by hematopoietic stem cells and progeny, as well as by ≥48 different cancers types. CXCL12, the only chemokine ligand of CXCR4, is secreted within the tumor microenvironment, providing sanctuary for CXCR4+ tumor cells from immune surveillance and chemotherapeutic elimination by (1) stimulating prosurvival signaling and (2) recruiting CXCR4+ immunosuppressive leukocytes. Additionally, distant CXCL12-rich niches attract and support CXCR4+ metastatic growths. Accordingly, CXCR4 antagonists can potentially obstruct CXCR4-mediated prosurvival signaling, recondition the CXCR4+ leukocyte infiltrate from immunosuppressive to immunoreactive, and inhibit CXCR4+ cancer cell metastasis. Current small molecule CXCR4 antagonists suffer from poor oral bioavailability and off-target liabilities. Herein, we report a series of novel tetrahydroisoquinoline-containing CXCR4 antagonists designed to improve intestinal absorption and off-target profiles. Structure-activity relationships regarding CXCR4 potency, intestinal permeability, metabolic stability, and cytochrome P450 inhibition are presented.
Collapse
Affiliation(s)
- Eric J Miller
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Valarie M Truax
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Brooke M Katzman
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yesim A Tahirovic
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Robert J Wilson
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Katie M Kuo
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Michelle B Kim
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huy H Nguyen
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Manohar T Saindane
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huanyu Zhao
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Chi S Sum
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Mary E Cvijic
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Gretchen M Schroeder
- Bristol-Myers Squibb Research & Development , Princeton, New Jersey 08543, United States
| | - Lawrence J Wilson
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
47
|
Wu CH, Song JS, Kuan HH, Wu SH, Chou MC, Jan JJ, Tsou LK, Ke YY, Chen CT, Yeh KC, Wang SY, Yeh TK, Tseng CT, Huang CL, Wu MH, Kuo PC, Lee CJ, Shia KS. Development of Stem-Cell-Mobilizing Agents Targeting CXCR4 Receptor for Peripheral Blood Stem Cell Transplantation and Beyond. J Med Chem 2018; 61:818-833. [PMID: 29314840 DOI: 10.1021/acs.jmedchem.7b01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of the CXCR4/CXCL12 axis accounts for many disease indications, including tissue/nerve regeneration, cancer metastasis, and inflammation. Blocking CXCR4 signaling with its antagonists may lead to moving out CXCR4+ cell types from bone marrow to peripheral circulation. We have discovered a novel series of pyrimidine-based CXCR4 antagonists, a representative (i.e., 16) of which was tolerated at a higher dose and showed better HSC-mobilizing ability at the maximal response dose relative to the approved drug 1 (AMD3100), and thus considered a potential drug candidate for PBSCT indication. Docking compound 16 into the X-ray crystal structure of CXCR4 receptor revealed that it adopted a spider-like conformation striding over both major and minor subpockets. This putative binding mode provides a new insight into CXCR4 receptor-ligand interactions for further structural modifications.
Collapse
Affiliation(s)
- Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Hsuan-Hao Kuan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Ming-Chen Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Jiing-Jyh Jan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Sing-Yi Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chen-Tso Tseng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Po-Chu Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chia-Jui Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| |
Collapse
|
48
|
Wang Z, Shang H, Jiang Y. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency. Front Immunol 2017; 8:1274. [PMID: 29085362 PMCID: PMC5650658 DOI: 10.3389/fimmu.2017.01274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Chemokines are small chemotactic cytokines that are involved in the regulation of immune cell migration. Multiple functional properties of chemokines, such as pro-inflammation, immune regulation, and promotion of cell growth, angiogenesis, and apoptosis, have been identified in many pathological and physiological contexts. Human immunodeficiency virus (HIV) infection is characterized by persistent inflammation and immune activation during both acute and chronic phases, and the "cytokine storm" is one of the hallmarks of HIV infection. Along with immune activation after HIV infection, an extensive range of chemokines and other cytokines are elevated, thereby generating the so-called "cytokine storm." In this review, the effects of the upregulated chemokines and chemokine receptors on the processes of HIV infection are discussed. The objective of this review was to focus on the main chemokines and chemokine receptors that have been found to be associated with HIV infection and latency. Elevated chemokines and chemokine receptors have been shown to play important roles in the HIV life cycle, disease progression, and HIV reservoir establishment. Thus, targeting these chemokines and receptors and the other proteins of related signaling pathways might provide novel therapeutic strategies, and the evidence indicates a promising future regarding the development of a functional cure for HIV.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Grande F, Giancotti G, Ioele G, Occhiuzzi MA, Garofalo A. An update on small molecules targeting CXCR4 as starting points for the development of anti-cancer therapeutics. Eur J Med Chem 2017; 139:519-530. [PMID: 28826086 DOI: 10.1016/j.ejmech.2017.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
Abstract
CXCR4 (C-X-C Chemokine Receptor type 4) and its natural ligand SDF-1α (Stromal-Derived-Factor-1α) are involved in a number of physiological and pathological processes including cancer spread and progression. Over the past few years, numerous CXCR4 antagonists have been identified and currently are in different development stages as potential agents for the treatment of several diseases involving the CXCR4/SDF-1α axis. Herein, we focus on small molecules reported in literature between 2013 and 2017, claimed as CXCR4 antagonists and potentially useful in the treatment of cancer and other diseases where this receptor is involved. Most of the compounds resulted from a chemical optimization of previously identified molecules and some of them could represent suitable candidates for the development of advanced anticancer agents.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gilda Giancotti
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Maria A Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| |
Collapse
|
50
|
Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2017; 38:1188-1234. [PMID: 28768055 DOI: 10.1002/med.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists (e.g., PlerixaforTM ) have been successfully validated as stem cell mobilizers for peripheral blood stem cell transplantation. Applications of the CXCR4 antagonists have heralded the era of cell-based therapy and opened a potential therapeutic horizon for many unmet medical needs such as kidney injury, ischemic stroke, cancer, and myocardial infarction. In this review, we first introduce the central role of CXCR4 in diverse cellular signaling pathways and discuss its involvement in several disease progressions. We then highlight the molecular design and optimization strategies for targeting CXCR4 from a large number of case studies, concluding that polyamines are the preferred CXCR4-binding ligands compared to other structural options, presumably by mimicking the highly positively charged natural ligand CXCL12. These results could be further justified with computer-aided docking into the CXCR4 crystal structure wherein both major and minor subpockets of the binding cavity are considered functionally important. Finally, from the clinical point of view, CXCR4 antagonists could mobilize hematopoietic stem/progenitor cells with long-term repopulating capacity to the peripheral blood, promising to replace surgically obtained bone marrow cells as a preferred source for stem cell transplantation.
Collapse
Affiliation(s)
- Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | | | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| |
Collapse
|