1
|
Sharma M, Pandey V, Poli G, Tuccinardi T, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 1: triazolopyrimidine, isoxazolopyrimidine and pyrrole-based (DSM) compounds. Bioorg Chem 2024; 146:107249. [PMID: 38493638 DOI: 10.1016/j.bioorg.2024.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Vinita Pandey
- MIT College of Pharmacy, Ramganga Vihar, Phase-II, Moradabad, UP-244001, India
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 - Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
2
|
Mlakić M, Barić D, Ratković A, Šagud I, Čipor I, Piantanida I, Odak I, Škorić I. New Charged Cholinesterase Inhibitors: Design, Synthesis, and Characterization. Molecules 2024; 29:1622. [PMID: 38611900 PMCID: PMC11013433 DOI: 10.3390/molecules29071622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia;
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia;
| | - Ana Ratković
- Chemistry, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10 000 Zagreb, Croatia;
| | - Ivana Šagud
- Croatian Agency for Medicinal Products and Medical Devices, Ksaverska Cesta 4, HR-10 000 Zagreb, Croatia;
| | - Ivona Čipor
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia; (I.Č.); (I.P.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia; (I.Č.); (I.P.)
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia;
| |
Collapse
|
3
|
Jones J, Clark RD, Lawless MS, Miller DW, Waldman M. The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations. J Comput Aided Mol Des 2024; 38:14. [PMID: 38499823 DOI: 10.1007/s10822-024-00552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Computer-aided drug design has advanced rapidly in recent years, and multiple instances of in silico designed molecules advancing to the clinic have demonstrated the contribution of this field to medicine. Properly designed and implemented platforms can drastically reduce drug development timelines and costs. While such efforts were initially focused primarily on target affinity/activity, it is now appreciated that other parameters are equally important in the successful development of a drug and its progression to the clinic, including pharmacokinetic properties as well as absorption, distribution, metabolic, excretion and toxicological (ADMET) properties. In the last decade, several programs have been developed that incorporate these properties into the drug design and optimization process and to varying degrees, allowing for multi-parameter optimization. Here, we introduce the Artificial Intelligence-driven Drug Design (AIDD) platform, which automates the drug design process by integrating high-throughput physiologically-based pharmacokinetic simulations (powered by GastroPlus) and ADMET predictions (powered by ADMET Predictor) with an advanced evolutionary algorithm that is quite different than current generative models. AIDD uses these and other estimates in iteratively performing multi-objective optimizations to produce novel molecules that are active and lead-like. Here we describe the AIDD workflow and details of the methodologies involved therein. We use a dataset of triazolopyrimidine inhibitors of the dihydroorotate dehydrogenase from Plasmodium falciparum to illustrate how AIDD generates novel sets of molecules.
Collapse
Affiliation(s)
- Jeremy Jones
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA.
| | - Robert D Clark
- The Indiana University Luddy School of Informatics, Computing and Engineering, 700 N. Woodlawn Avenue, Bloomington, IN, 47408, USA
| | - Michael S Lawless
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA
| | - David W Miller
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA
| | - Marvin Waldman
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA
| |
Collapse
|
4
|
Pal S, Das D, Bhunia S. p-Toluenesulfonic acid-promoted organic transformations for the generation of molecular complexity. Org Biomol Chem 2024; 22:1527-1579. [PMID: 38275082 DOI: 10.1039/d3ob01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Since the beginning of this century, p-toluenesulfonic acid (p-TSA) catalysed organic transformations have been an active area of research for developing efficient synthetic methodologies. Often, catalysis using p-TSA is associated with many advantages, such as operational simplicity, high selectivity, excellent yields, and ease of product isolation, which make organic synthesis convenient and versatile. Notably, p-TSA is a non-toxic, commercially available, inexpensive solid organic compound that is soluble in water, alcohols, and other polar organic solvents. p-TSA is a strong acid compared to many protic or mineral acids and its high acidity helps activate different organic functional groups. p-TSA-promoted conversions are fast, have a high atom and pot economy, and feature a multiple bond-forming index. Therefore, the utilization of p-TSA enables the synthesis of many important structural scaffolds without any hazardous metals, making it desirable in numerous applications of sustainable and green chemistry. Recently, this emerging area of research has become one of the pillars of synthetic organic chemistry to synthesise biologically relevant, complex carbocycles and heterocycles. This study provides a comprehensive summary of methods, applications, and mechanistic insights into p-TSA-catalysed organic transformations, covering the literature reports that have appeared since 2012.
Collapse
Affiliation(s)
- Sanchari Pal
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Debjit Das
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi, Jharkhand, India.
| |
Collapse
|
5
|
Le TD, Nguyen TC, Hoang TKD, Huynh MK, Phan QT, Van Meervelt L. Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)meth-yl]-4-phenyl-4 H-1,2,4-triazol-3-yl}sulfan-yl)-1-(4-nitro-phen-yl)ethanone. Acta Crystallogr E Crystallogr Commun 2024; 80:218-222. [PMID: 38333127 PMCID: PMC10848969 DOI: 10.1107/s2056989024000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the mol-ecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitro-phenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O inter-actions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved.
Collapse
Affiliation(s)
- Trong Duc Le
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Vietnam
| | - Tien Cong Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Thi Kim Dung Hoang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Vietnam
| | - Minh Khoi Huynh
- Hau Nghia High School, 825 Street Section A, Duc Hoa District, Long An Province, Vietnam
| | - Quang Thang Phan
- Hau Nghia High School, 825 Street Section A, Duc Hoa District, Long An Province, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
6
|
Abdelkhalek AS, Attia MS, Kamal MA. Triazolopyrimidine Derivatives: An Updated Review on Recent Advances in Synthesis, Biological Activities and Drug Delivery Aspects. Curr Med Chem 2024; 31:1896-1919. [PMID: 36852819 DOI: 10.2174/0929867330666230228120416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 03/01/2023]
Abstract
Molecules containing triazolopyrimidine core showed diverse biological activities, including anti-Alzheimer's, anti-diabetes, anti-cancer, anti-microbial, anti-tuberculosis, anti-viral, anti-malarial, anti-inflammatory, anti-parkinsonism, and anti-glaucoma activities. Triazolopyrimidines have 8 isomeric structures, including the most stable 1,2,4-triazolo[1,5- a] pyrimidine ones. Triazolopyrimidines were obtained by using various chemical reactions, including a) 1,2,4-triazole nucleus annulation to pyrimidine, b) pyrimidines annulation to 1,2,4-triazole structure, c) 1,2,4-triazolo[l,5-a] pyrimidines rearrangement, and d) pyrimidotetrazine rearrangement. This review discusses synthetic methods, recent pharmacological actions and drug delivery perspectives of triazolopyrimidines.
Collapse
Affiliation(s)
- Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Novel Global Community Educational Foundation, Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| |
Collapse
|
7
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
8
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
9
|
Le TD, Nguyen TC, Bui TMN, Hoang TKD, Vu QT, Pham CT, Dinh CP, Alhaji JA, Van Meervelt L. SYNTHESIS, STRUCTURE AND α-GLUCOSIDASE INHIBITOR ACTIVITY EVALUATION OF SOME ACETAMIDE DERIVATIVES STARTING FROM 2-(NAPHTHALEN-1-YL) ACETIC ACID, CONTAINING A 1,2,4-TRIAZOLE. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
10
|
Wang C, Shi L, Yang S, Chang J, Liu W, Zeng J, Meng J, Zhang R, Xing D. Research progress on antitumor activity of XRP44X and analogues as microtubule targeting agents. Front Chem 2023; 11:1096666. [PMID: 36936533 PMCID: PMC10014799 DOI: 10.3389/fchem.2023.1096666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer threatens human health and life. Therefore, it is particularly important to develop safe and effective antitumor drugs. Microtubules, the main component of cytoskeleton, play an important role in maintaining cell morphology, mitosis, and signal transduction, which are one of important targets of antitumor drug research and development. Colchicine binding site inhibitors have dual effects of inhibiting proliferation and destroying blood vessels. In recent years, a series of inhibitors targeting this target have been studied and some progress has been made. XRP44X has a novel structure and overcomes some disadvantages of traditional inhibitors. It is also a multifunctional molecule that regulates not only the function of tubulin but also a variety of biological pathways. Therefore, the structure, synthesis, structure-activity relationship, and biological activity of XRP44X analogues reported in recent years were summarized in this paper, to provide a useful reference for the rational design of efficient colchicine binding site inhibitors.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| |
Collapse
|
11
|
Application of click chemistry in the synthesis of bidentate ligands and their metal complexes. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Russo TA, Umland TC, Deng X, El Mazouni F, Kokkonda S, Olson R, Carlino-MacDonald U, Beanan J, Alvarado CL, Tomchick DR, Hutson A, Chen H, Posner B, Rathod PK, Charman SA, Phillips MA. Repurposed dihydroorotate dehydrogenase inhibitors with efficacy against drug-resistant Acinetobacter baumannii. Proc Natl Acad Sci U S A 2022; 119:e2213116119. [PMID: 36512492 PMCID: PMC9907071 DOI: 10.1073/pnas.2213116119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.
Collapse
Affiliation(s)
- Thomas A. Russo
- Department of Medicine, Veterans Administration Western New York Healthcare System, Buffalo, NY14215
- The Department of Medicine, University at Buffalo-State University of New York, Buffalo, NY14203
- Department of Microbiology and Immunology, University at Buffalo-State University of New York, Buffalo, NY14203
- The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, NY14203
| | - Timothy C. Umland
- Department of Structural Biology, University at Buffalo State University of New York, Buffalo, NY14203
- Hauptman Woodward Medical Research Institute, Buffalo, NY14203
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390
| | - Farah El Mazouni
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390
| | - Sreekanth Kokkonda
- Department of Chemistry, University of Washington, Seattle, WA98195
- Department of Global Health, University of Washington, Seattle, WA98195
| | - Ruth Olson
- Department of Medicine, Veterans Administration Western New York Healthcare System, Buffalo, NY14215
- The Department of Medicine, University at Buffalo-State University of New York, Buffalo, NY14203
| | - Ulrike Carlino-MacDonald
- Department of Medicine, Veterans Administration Western New York Healthcare System, Buffalo, NY14215
- The Department of Medicine, University at Buffalo-State University of New York, Buffalo, NY14203
| | - Janet Beanan
- Department of Medicine, Veterans Administration Western New York Healthcare System, Buffalo, NY14215
- The Department of Medicine, University at Buffalo-State University of New York, Buffalo, NY14203
| | - Cassandra L. Alvarado
- Department of Medicine, Veterans Administration Western New York Healthcare System, Buffalo, NY14215
- The Department of Medicine, University at Buffalo-State University of New York, Buffalo, NY14203
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14203
| | - Hong Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390
| | - Pradipsinh K. Rathod
- Department of Chemistry, University of Washington, Seattle, WA98195
- Department of Global Health, University of Washington, Seattle, WA98195
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052Australia
| | - Margaret A. Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390
| |
Collapse
|
13
|
Mokariya JA, Rajani DP, Patel MP. 1,2,4‐Triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities. Arch Pharm (Weinheim) 2022; 356:e2200545. [PMID: 36534897 DOI: 10.1002/ardp.202200545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
This study reports the design and synthesis of novel 1,2,4-triazolo/benzimidazolo-pyrimidine linked 1-benzyl-4-[(p-tolyloxy)methyl]-1,2,3-triazole derivatives as potent antimicrobial agents according to their in vitro antibacterial, antifungal, antitubercular as well as antimalarial activities. An efficient, ecologically benign, and facile multicomponent synthesis was employed to synthesize these derivatives. The synthesis is accelerated with the mild and eco-friendly organocatalyst tetrabutylammonium bromide, providing a yield of 82%-96% within the short reaction time of 0.5-1.5 h. Compared with the MIC values of ciprofloxacin and ampicillin on the respective strains, compound d2 showed better activity against Escherichia coli and Streptococcus pyogenes and compound d8 showed better MIC against Staphylococcus aureus. Additionally, compounds d3, d4, and d5 showed potent MIC values against Pseudomonas aeruginosa. All triazolo-pyrimidine derivatives d1-d8 showed potent inhibitory action against Gram-positive strains. Compound e3 showed good potency against Mycobacterium tuberculosis H37Rv. The IC50 values of d3 and e2 indicated better activity against Plasmodium falciparum. Collectively, these derivatives depict potent multifaceted activity and provide promising access for further antimicrobial and antimalarial investigations.
Collapse
Affiliation(s)
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Centre, Haripura Surat Gujarat India
| | - Manish P. Patel
- Department of Chemistry Sardar Patel University Anand Gujarat India
| |
Collapse
|
14
|
Shahzadi I, Zahoor AF, Tüzün B, Mansha A, Anjum MN, Rasul A, Irfan A, Kotwica-Mojzych K, Mojzych M. Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1,2,4-triazole. PLoS One 2022; 17:e0278027. [PMID: 36520942 PMCID: PMC9754256 DOI: 10.1371/journal.pone.0278027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Novel azomethines derived from acefylline tethered triazole hybrids (7a-k) have been synthesized and evaluated against human liver cancer cell line (Hep G2) using MTT assay. The synthesized series of azomethines exhibited promising efficacy against liver cancer cell line. Screening of the synthesized series identified compound 7d with the least cell viability value (11.71 ± 0.39%) as the most potent anticancer agent in contrast to the reference drug acefylline (cell viability = 80 ± 3.87%). In this study, the potentials of the novel agents (7a-k) to inhibit liver cancer proteins were assessed. Subsequently, the structure-activity relationship of the potential drug candidates was assessed via ADME/T molecular screening. The cytotoxic potential of these derivatives was also investigated by hemolysis and thrombolysis. Their hemolytic and thrombolytic studies showed that all of these drugs had very low cytotoxicity and moderate clot lysis activity. Compound 7g (0.26% hemolysis) and 7k (52.1% clot lysis) were the least toxic and moderate thrombolytic agents respectively.
Collapse
Affiliation(s)
- Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
15
|
Valenciano AL, Gomez-Lorenzo MG, Vega-Rodríguez J, Adams JH, Roth A. In vitro models for human malaria: targeting the liver stage. Trends Parasitol 2022; 38:758-774. [PMID: 35780012 PMCID: PMC9378454 DOI: 10.1016/j.pt.2022.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
The Plasmodium liver stage represents a vulnerable therapeutic target to prevent disease progression as the parasite resides in the liver before clinical representation caused by intraerythrocytic development. However, most antimalarial drugs target the blood stage of the parasite's life cycle, and the few drugs that target the liver stage are lethal to patients with a glucose-6-phosphate dehydrogenase deficiency. Furthermore, implementation of in vitro liver models to study and develop novel therapeutics against the liver stage of human Plasmodium species remains challenging. In this review, we focus on the progression of in vitro liver models developed for human Plasmodium spp. parasites, provide a brief review on important assay requirements, and lastly present recommendations to improve models to enhance the discovery process of novel preclinical therapeutics.
Collapse
Affiliation(s)
- Ana Lisa Valenciano
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Maria G Gomez-Lorenzo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
16
|
Shakila, Abbasi MA, Aziz-ur-Rehman, Siddiqui SZ, Nazir M, Raza H, Zafar A, Shah SA, Shahid M, Seo SY. Multi-step synthesis of indole-N-ethyltriazole hybrids amalgamated with N-arylated ethanamides: structure-activity relationship and mechanistic explorations through tyrosinase inhibition, kinetics and computational ascriptions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Vah L, Medved T, Grošelj U, Klemenčič M, Podlipnik Č, Štefane B, Wagger J, Novinec M, Svete J. Regioselective Synthesis of 5- and 3-Hydroxy- N-Aryl-1 H-Pyrazole-4-Carboxylates and Their Evaluation as Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Molecules 2022; 27:4764. [PMID: 35897941 PMCID: PMC9332393 DOI: 10.3390/molecules27154764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
In silico evaluation of various regioisomeric 5- and 3-hydroxy-substituted alkyl 1-aryl-1H-pyrazole-4-carboxylates and their acyclic precursors yielded promising results with respect to their binding in the active site of dihydroorotate dehydrogenase of Plasmodium falciparum (PfDHODH). Consequently, four ethyl 1-aryl-5-hydroxy-1H-pyrazole-4-carboxylates and their 3-hydroxy regioisomers were prepared by two-step syntheses via enaminone-type reagents or key intermediates. The synthesis of 5-hydroxy-1H-pyrazoles was carried out using the literature protocol comprising acid-catalyzed transamination of diethyl [(dimethylamino)methylene]malonate with arylhydrazines followed by base-catalyzed cyclization of the intermediate hydrazones. For the synthesis of isomeric methyl 1-aryl-3-hydroxy-1H-pyrazole-4-carboxylates, a novel two-step synthesis was developed. It comprises acylation of hydrazines with methyl malonyl chloride followed by cyclization of the hydrazines with tert-butoxy-bis(dimethylamino)methane. Testing the pyrazole derivatives for the inhibition of PfDHODH showed that 1-(naphthalene-2-yl)-5-hydroxy-1H-pyrazole-4-carboxylate and 1-(naphthalene-2-yl)-, 1-(2,4,6-trichlorophenyl)-, and 1-[4-(trifluoromethyl)phenyl]-3-hydroxy-1H-pyrazole-4-carboxylates (~30% inhibition) were slightly more potent than a known inhibitor, diethyl α-{[(1H-indazol-5-yl)amino]methylidene}malonate (19% inhibition).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; (L.V.); (T.M.); (U.G.); (M.K.); (Č.P.); (B.Š.); (J.W.)
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; (L.V.); (T.M.); (U.G.); (M.K.); (Č.P.); (B.Š.); (J.W.)
| |
Collapse
|
18
|
Chowdhary S, Shalini, Mosnier J, Fonta I, Pradines B, Cele N, Seboletswe P, Singh P, Kumar V. Synthesis, Anti-Plasmodial Activities, and Mechanistic Insights of 4-Aminoquinoline-Triazolopyrimidine Hybrids. ACS Med Chem Lett 2022; 13:1068-1076. [DOI: 10.1021/acsmedchemlett.2c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
19
|
Murithi JM, Deni I, Pasaje CFA, Okombo J, Bridgford JL, Gnädig NF, Edwards RL, Yeo T, Mok S, Burkhard AY, Coburn-Flynn O, Istvan ES, Sakata-Kato T, Gomez-Lorenzo MG, Cowell AN, Wicht KJ, Le Manach C, Kalantarov GF, Dey S, Duffey M, Laleu B, Lukens AK, Ottilie S, Vanaerschot M, Trakht IN, Gamo FJ, Wirth DF, Goldberg DE, Odom John AR, Chibale K, Winzeler EA, Niles JC, Fidock DA. The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chem Biol 2022; 29:824-839.e6. [PMID: 34233174 PMCID: PMC8727639 DOI: 10.1016/j.chembiol.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.
Collapse
Affiliation(s)
- James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel L. Edwards
- Division of Infectious Diseases, Allergy and Immunology, Center for Vaccine Development, St. Louis University, St. Louis, MO 63104, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eva S. Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - Annie N. Cowell
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kathryn J. Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gavreel F. Kalantarov
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maëlle Duffey
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ilya N. Trakht
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francisco-Javier Gamo
- Global Health Pharma Research Unit, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kelly Chibale
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth A. Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author
| |
Collapse
|
20
|
Das A, Greco G, Kumar S, Catanzaro E, Morigi R, Locatelli A, Schols D, Alici H, Tahtaci H, Ravindran F, Fimognari C, Karki SS. Synthesis, in vitro cytotoxicity, molecular docking and ADME study of some indolin-2-one linked 1,2,3-triazole derivatives. Comput Biol Chem 2022; 97:107641. [DOI: 10.1016/j.compbiolchem.2022.107641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 01/16/2023]
|
21
|
Prasanna CAL, Sharma A. Pharmacological exploration of triazole based therapeutics for Alzheimer disease: An overview. Curr Drug Targets 2022; 23:933-953. [DOI: 10.2174/1389450123666220328153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer`s disease (AD) is an irreversible progressive neurodegenerative disorder which may account for approximately 60-70% cases of dementia worldwide. AD is characterized by impaired behavioural and cognitive functions including memory, language, conception, attentiveness, judgment, and reasoning problems. The two important hallmarks of AD are the appearance of plaques and tangles of amyloid beta (Aβ) and tau proteins, respectively, in the brain based on the etiology of the disease including cholinergic impairment, metal dyshomeostasis, oxidative stress, and degradation of neurotransmitters. Currently, the used medication only provides alleviation of symptoms but not effective in curing the disease that is creating by an urge to develop new molecules to treat AD. Heterocyclic compounds have proven their ability to be developed as drugs for the treatment of various diseases. The five-membered heterocyclic compound triazole has received foremost fascination for the discovery of new drugs due to the possibility of structural variation and proved its significance in various drug categories. Therefore, this review summarizes mainly the recent advancements in the development of novel 1,2,3-triazole and 1,2,4-triazole based molecules in the drug discovery process for targeting various AD targets such as phosphodiesterase 1 (PDE1) Inhibitors, Apoptosis signal-regulating kinase 1 (ASK1) inhibitors, Somatostatin receptor subtype-4 (SSTR4) agonist, many other druggable targets, molecular modelling studies as well as various methodology for the synthesis of triazoles containing molecules such as Click reaction, Pellizzari and Einhorn-Brunner Reaction.
Collapse
Affiliation(s)
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
22
|
Fe3O4@SiO2@Methotrexate as efficient and nanomagnetic catalyst for the synthesis of 9-(aryl)thiazolo [4,5-d] [1,2,4]triazolo [1,5-a]pyrimidin-2(3H)-ones via a cooperative anomeric based oxidation: A joint experimental and computational mechanistic study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Ratković A, Mlakić M, Dehaen W, Opsomer T, Barić D, Škorić I. Synthesis and photochemistry of novel 1,2,3-triazole di-heterostilbenes. An experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120056. [PMID: 34146829 DOI: 10.1016/j.saa.2021.120056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The synthesis, photoreactivity, and spectroscopic characterization of novel 1,2,3-triazole di-heterostilbenes bearing various aliphatic and aromatic substituents on the triazole rings were thoroughly explored. By introducing triazole rings into the o-divinylbenzene moiety, compared with the 2-furyl and 2-thienyl heteroanalogues, these compounds did not show any photochemical reactivity toward intramolecular cycloaddition reactions or electrocyclization processes. The research is further extended to the more in-depth examination of photochemical and photophysical characteristics of the investigated triazolo-stilbenes to explain the lack of reactivity in intramolecular photochemical cyclizations by configuration and substituent effects. Conformations of synthetically obtained novel triazoles are examined by Density Functional Theory (DFT). The time dependent-DFT approach was employed to obtain additional insight into the properties observed with UV/Vis spectroscopy. The frontier orbital energy was computationally investigated to determine the influence of cis-trans isomerism and the nature of substituents on the spectroscopic properties of the triazoles. Along with our previous studies of similar compounds containing furan and thiophene, respectively, this study shows that introducing various heteroaromatic rings induces diverse photochemistry and photophysics due to the conformational changes and change in electronic distribution within the molecular system.
Collapse
Affiliation(s)
- Ana Ratković
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia.
| |
Collapse
|
24
|
Karami S, Bayat M, Nasri S, Mirzaei F. A three-component cyclocondensation reaction for the synthesis of new triazolo[1,5-a]pyrimidine scaffolds using 3-aminotriazole, aldehydes and ketene N,S-acetal. Mol Divers 2021; 25:2053-2062. [PMID: 32388702 DOI: 10.1007/s11030-020-10096-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/23/2020] [Indexed: 01/16/2023]
Abstract
This study describes the use of 3-aminotriazole, different aldehydes and N-methyl-1-(methylthio)-2-nitroethenamine as a ketene N,S-acetal in a three-component condensation for the synthesis of a novel library of triazolo[1,5-a]pyrimidine scaffolds. The presence of trichloroacetic acid as a Brønsted-Lowry acidic promoter in acetonitrile or water solvent and room temperature condition resulting novel triazolo[1,5-a]pyrimidine systems named N-methyl-6-nitro-5-aryl-3,5-dihydro-[1, 2, 4]triazolo[1,5-a]pyrimidine-7-amine. The structure of products and direction of the N-cyclization could be confirmed using spectral data. The effect of various solvents on the progress of process was investigated in the paper. The presence of five nitrogen heteroatoms, the use of various aldehydes affording a range of skeletally distinct triazolo[1,5-a]pyrimidine-based heterocycles, the potency to create numerous hydrogen bonds in the product structure, and direction of cyclization are attractive features of this reaction.
Collapse
Affiliation(s)
- Solmaz Karami
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Faezeh Mirzaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
25
|
van Esveld SL, Meerstein‐Kessel L, Boshoven C, Baaij JF, Barylyuk K, Coolen JPM, van Strien J, Duim RAJ, Dutilh BE, Garza DR, Letterie M, Proellochs NI, de Ridder MN, Venkatasubramanian PB, de Vries LE, Waller RF, Kooij TWA, Huynen MA. A Prioritized and Validated Resource of Mitochondrial Proteins in Plasmodium Identifies Unique Biology. mSphere 2021; 6:e0061421. [PMID: 34494883 PMCID: PMC8550323 DOI: 10.1128/msphere.00614-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium species have a single mitochondrion that is essential for their survival and has been successfully targeted by antimalarial drugs. Most mitochondrial proteins are imported into this organelle, and our picture of the Plasmodium mitochondrial proteome remains incomplete. Many data sources contain information about mitochondrial localization, including proteome and gene expression profiles, orthology to mitochondrial proteins from other species, coevolutionary relationships, and amino acid sequences, each with different coverage and reliability. To obtain a comprehensive, prioritized list of Plasmodium falciparum mitochondrial proteins, we rigorously analyzed and integrated eight data sets using Bayesian statistics into a predictive score per protein for mitochondrial localization. At a corrected false discovery rate of 25%, we identified 445 proteins with a sensitivity of 87% and a specificity of 97%. They include proteins that have not been identified as mitochondrial in other eukaryotes but have characterized homologs in bacteria that are involved in metabolism or translation. Mitochondrial localization of seven Plasmodium berghei orthologs was confirmed by epitope labeling and colocalization with a mitochondrial marker protein. One of these belongs to a newly identified apicomplexan mitochondrial protein family that in P. falciparum has four members. With the experimentally validated mitochondrial proteins and the complete ranked P. falciparum proteome, which we have named PlasmoMitoCarta, we present a resource to study unique proteins of Plasmodium mitochondria. IMPORTANCE The unique biology and medical relevance of the mitochondrion of the malaria parasite Plasmodium falciparum have made it the subject of many studies. However, we actually do not have a comprehensive assessment of which proteins reside in this organelle. Many omics data are available that are predictive of mitochondrial localization, such as proteomics data and expression data. Individual data sets are, however, rarely complete and can provide conflicting evidence. We integrated a wide variety of available omics data in a manner that exploits the relative strengths of the data sets. Our analysis gave a predictive score for the mitochondrial localization to each nuclear encoded P. falciparum protein and identified 445 likely mitochondrial proteins. We experimentally validated the mitochondrial localization of seven of the new mitochondrial proteins, confirming the quality of the complete list. These include proteins that have not been observed mitochondria before, adding unique mitochondrial functions to P. falciparum.
Collapse
Affiliation(s)
- Selma L. van Esveld
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Lisette Meerstein‐Kessel
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Jochem F. Baaij
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Joeri van Strien
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ronald A. J. Duim
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Bas E. Dutilh
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Daniel R. Garza
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marijn Letterie
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Nicholas I. Proellochs
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michelle N. de Ridder
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | | | - Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
26
|
Application of polyionic magnetic nanoparticles as a catalyst for the synthesis of carbonitriles with both indole and triazole moieties via a cooperative geminal-vinylogous anomeric-based oxidation. Mol Divers 2021; 26:2407-2426. [PMID: 34694532 DOI: 10.1007/s11030-021-10339-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Three-component reaction of aldehydes with 3-(1H-indol-3-yl)-3-oxopropanenitrile and 1H-1,2,4-triazol-5-amine under the solvent-free condition at 70 °C was effectively performed in the presence of 2 mg of polyionic magnetic nanoparticles with pyrazine bridge [Fe3O4@SiO2@(CH2)3]2-Pyrazinium-[TCM]2 as a catalyst for the synthesis of 7-aryl-5-(1H-indol-3-yl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles via a cooperative anomeric-based oxidation. The polyionic magnetic nanoparticles catalyst was simply recovered and reused four successive runs. The morphology and structure of MNPs catalyst were investigated by numerous techniques such as XRD, FT-IR, EDX, WDX, FE-SEM, TEM, TGA, DTA, and VSM. The obtained products are reported for the first time that were identified by various analyses techniques such as melting point, FT-IR, 1H NMR, 13C NMR, and elemental analysis (CHN). A term entitled a cooperative geminal-vinylogous anomeric-based oxidation was introduced for the latter step of the reaction mechanism for the first time. Synthesis of 7-aryl-5-(1H-indol-3-yl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles by using [Fe3O4@SiO2@(CH2)3]2-Pyrazinium-[TCM]2 MNPs as a catalyst.
Collapse
|
27
|
Green synthesis of bis pyrazole-triazole and azo-linked triazole hybrids using an efficient and novel cobalt nanocatalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Khattab RR, Hassan AA, A Osman DA, Abdel-Megeid FM, Awad HM, Nossier ES, El-Sayed WA. Synthesis, anticancer activity and molecular docking of new triazolo[4,5- d]pyrimidines based thienopyrimidine system and their derived N-glycosides and thioglycosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:1090-1113. [PMID: 34496727 DOI: 10.1080/15257770.2021.1975297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A series of new substituted triazolo[4,5-d]pyrimidine derivatives linked to thienopyrimidine ring system were prepared as a hybrid heterocyclic systems, as possible nucleobases analogs, starting from the key carboxamide derivative 2 and its azide precursor via heterocyclization reactions and their structures were characterized. Glycosylation of the prepared triazolopyrimidine derivatives was performed and afforded, regioselctively, the corresponding thienopyrimidine-triazolopyrimidine hybrid N1-glycosides and their thioglycoside analogues in good yields. The synthesized glycosyl heterocycles were studied for their cytotoxic activity against HepG-2 and MCF-7 human cancer cells and significant results were obtained. Compounds 7a, 8 b, 9 b, 9a and 7 b demonstrated promising activities comparable to the activity of the doxorubicin for (HepG-2) cell line. Furthermore, a number of the afforded triazolopyrimidine glycosides were found potent against cancer cells (MCF-7). Furthermore, docking simulation the promising thienopyrimidine analogues 7-13 was done against EGFR kinase to provide a binding model that could serve in discovery of further anticancer agents.
Collapse
Affiliation(s)
- Reham R Khattab
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
| | - Allam A Hassan
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt.,Medical Laboratories Department, Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Dalia A A Osman
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
| | | | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Wael A El-Sayed
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
29
|
Ibrahim ZY, Uzairu A, Shallangwa GA, Abechi SE. Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The sixteen (16) designed data set of substituted aryl amine-based triazolopyrimidine were docked against Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) employing Molegro Virtual Docker (MVD) software and their pharmacokinetic property determined through SwissADME predictor.
Results
The docking studies shows compound D16, 5-((6-methoxy-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)amino)benzo[b]thiophen-4-ol to be the most interactive and stable derivative (re-rank score = − 114.205 kcal/mol) resulting from the hydrophobic as well as hydrogen interactions. The hydrogen interaction produced one hydrogen bond with the active residues LEU359 (H∙∙H∙∙O) at a bond distances of 2.2874 Å. All the designed derivatives were found to pass the Lipinski rule of five tests, supporting the drug-likeliness of the designed compounds.
Conclusion
The ADME analysis revealed a perfect concurrence with the Lipinski Ro5, where the derivatives were found to possess good pharmacokinetic properties such as molar refractivity (MR), number of rotatable bonds (nRotb), log of skin permeability (log Kp), blood-brain barrier (BBB). These results could a deciding factor for the optimization of novel antimalarial compounds.
Collapse
|
30
|
Muhammad ZA, Farghaly TA, Althagafi I, Al‐Hussain SA, Zaki MEA, Harras MF. Synthesis of antimicrobial azoloazines and molecular docking for inhibiting COVID-19. J Heterocycl Chem 2021; 58:1286-1301. [PMID: 34230687 PMCID: PMC8250121 DOI: 10.1002/jhet.4257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
Diverse new azoloazines were synthesized from the reaction of fluorinated hydrazonoyl chlorides with heterocyclic thiones, 1,8-diaminonaphthalene, ketene aminal derivatives, and 4-amino-5-triflouromethyl-1,2,4-triazole-2-thiol. The mechanistic pathways and the structures of all synthesized derivatives were discussed and assured based on the available spectral data. The synthesized azoloazine derivatives were evaluated for their antifungal and antibacterial activities through zone of inhibition measurement. The results revealed promising antifungal activities for compounds 4, 5, 17a,b, 19, and 25 against the pathogenic fungal strains used; Aspergillus flavus and Candida albicans compared to ketoconazole. In addition, compounds 4, 5, 19, and 25 showed moderate antibacterial activities against most tested bacterial strains. Molecular docking studies of the promising compounds were carried out on leucyl-tRNA synthetase active site of Candida albicans, suggesting good binding in the active site forming stable complexes. Moreover, docking of the synthesized compounds was performed on the active site of SARS-CoV-2 3CLpro to predict their potential as a hopeful anti-COVID and to investigate their binding pattern.
Collapse
Affiliation(s)
- Zeinab A. Muhammad
- Department of Organic ChemistryNational Organization for Drug Control and Research (NODCAR)GizaEgypt
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of ScienceCairo UniversityGizaEgypt
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Ismail Althagafi
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Sami A. Al‐Hussain
- Department of Chemistry, Faculty of ScienceAl‐Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of ScienceAl‐Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Marwa F. Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls)Al‐Azhar UniversityCairoEgypt
| |
Collapse
|
31
|
Mohamed AM, El-Sayed WA, Ibrahim AA, Abdel-Hafez NA, Ali KAK, Mohamed SF. Recent Trends in the Chemistry of [1,2,4]Triazole[1,5-a]pyrimidines. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2020.1871310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ashraf M. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Wael A. El-Sayed
- Photochemistry Department, National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, College of Science, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Alhussein A. Ibrahim
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Korany A. K. Ali
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
- Center of Excellence, Advanced Materials and Nanotechnology Group, National Research Centre, Dokki, Giza, Egypt
| | - Salwa F. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
32
|
Shahzadi I, Zahoor AF, Rasul A, Mansha A, Ahmad S, Raza Z. Synthesis, Hemolytic Studies, and In Silico Modeling of Novel Acefylline-1,2,4-Triazole Hybrids as Potential Anti-cancer Agents against MCF-7 and A549. ACS OMEGA 2021; 6:11943-11953. [PMID: 34056349 PMCID: PMC8154016 DOI: 10.1021/acsomega.1c00424] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
A series of novel theophylline-7-acetic acid (acefylline)-derived 1,2,4-triazole hybrids with N-phenyl acetamide moieties (11a-j) have been synthesized and tested for their inhibitory (in vitro) potential against two cancer cell lines, A549 (lung) and MCF-7 (breast), using MTT assay. Among these derivatives, 11a, 11c, 11d, 11g, and 11h displayed remarkable activity against both cancer cell lines having cell viability values in the 21.74 ± 1.60-55.37 ± 4.60% range compared to acefylline (86.32 ± 1.75%) using 100 μg/μL concentration of compounds. These compounds were further screened against the A549 cancer cell line (lung) to find their half-maximal inhibitory concentration (IC50) by applying various concentrations of these compounds. Compound 11g (2-(5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-4-phenyl-4H-1,2,4-triazol-3-ylthio)-N-p-tolylacetamide) with the least IC50 value (1.25 ± 1.36 μM) was discerned as a strong inhibitor of cancer cell multiplication in both cell lines (A549 and MCF-7). Their hemolytic studies revealed that all of them had very low cytotoxicity. Finally, in silico modeling was carried out to find the mode of binding of the highly active compound (11g), which was according to the results of anti-cancer activity.
Collapse
Affiliation(s)
- Irum Shahzadi
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department
of Zoology, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Asim Mansha
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department
of Chemistry, University of Engineering
and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Zohaib Raza
- Department
of Pharmacology, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
33
|
Al-Wabli RI, Alsulami MA, Bukhari SI, Moubayed NMS, Al-Mutairi MS, Attia MI. Design, Synthesis, and Antimicrobial Activity of Certain New Indole-1,2,4 Triazole Conjugates. Molecules 2021; 26:2292. [PMID: 33920952 PMCID: PMC8071222 DOI: 10.3390/molecules26082292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing prevalence of microbial infections and the emergence of resistance to the currently available antimicrobial drugs urged the development of potent new chemical entities with eminent pharmacokinetic and/or pharmacodynamic profiles. Thus, a series of new indole-triazole conjugates 6a-u was designed and synthesized to be assessed as new antimicrobial candidates using the diameter of the inhibition zone and minimum inhibitory concentration assays against certain microbial strains. Their in vitro antibacterial evaluation revealed good to moderate activity against most of the tested Gram-negative strains with diameter of the inhibition zone (DIZ) values in the range of 11-15 mm and minimum inhibition concentration (MIC) values around 250 µg/mL. Meanwhile, their in vitro antifungal evaluation demonstrated a potent activity against Candida tropicalis with MIC value as low as 2 µg/mL for most of the tested compounds. Moreover, compound 6f is the most potent congener with an MIC value of 2 µg/mL against Candida albicans.
Collapse
Affiliation(s)
- Reem I. Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.S.A.-M.)
| | - Mona A. Alsulami
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.S.A.-M.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Nadine M. S. Moubayed
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maha S. Al-Mutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.S.A.-M.)
| | - Mohamed I. Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.S.A.-M.)
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), El Bohooth Street, Dokki, Giza 12622, Egypt
| |
Collapse
|
34
|
Priebbenow DL, Mathiew M, Shi DH, Harjani JR, Beveridge JG, Chavchich M, Edstein MD, Duffy S, Avery VM, Jacobs RT, Brand S, Shackleford DM, Wang W, Zhong L, Lee G, Tay E, Barker H, Crighton E, White KL, Charman SA, De Paoli A, Creek DJ, Baell JB. Discovery of Potent and Fast-Acting Antimalarial Bis-1,2,4-triazines. J Med Chem 2021; 64:4150-4162. [PMID: 33759519 DOI: 10.1021/acs.jmedchem.1c00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel 3,3'-disubstituted-5,5'-bi(1,2,4-triazine) compounds with potent in vitro activity against Plasmodium falciparum parasites were recently discovered. To improve the pharmacokinetic properties of the triazine derivatives, a new structure-activity relationship (SAR) investigation was initiated with a focus on enhancing the metabolic stability of lead compounds. These efforts led to the identification of second-generation highly potent antimalarial bis-triazines, exemplified by triazine 23, which exhibited significantly improved in vitro metabolic stability (8 and 42 μL/min/mg protein in human and mouse liver microsomes). The disubstituted triazine dimer 23 was also observed to suppress parasitemia in the Peters 4-day test with a mean ED50 value of 1.85 mg/kg/day and exhibited a fast-killing profile, revealing a new class of orally available antimalarial compounds of considerable interest.
Collapse
Affiliation(s)
- Daniel L Priebbenow
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mitch Mathiew
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Da-Hua Shi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jitendra R Harjani
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Julia G Beveridge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marina Chavchich
- The Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, QLD 4051, Australia
| | - Michael D Edstein
- The Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, QLD 4051, Australia
| | | | | | - Robert T Jacobs
- Medicines for Malaria Venture (MMV), P.O. Box 1826, Route de Pré-Bois 20, CH-1215 Geneva, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture (MMV), P.O. Box 1826, Route de Pré-Bois 20, CH-1215 Geneva, Switzerland
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Wen Wang
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Longjin Zhong
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Given Lee
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Erin Tay
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Helena Barker
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Darren J Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
35
|
Synthesis of tetrazolo[1,5-a]pyrimidine-6-carbonitriles using HMTA-BAIL@MIL-101(Cr) as a superior heterogeneous catalyst. Sci Rep 2021; 11:5109. [PMID: 33658548 PMCID: PMC7930133 DOI: 10.1038/s41598-021-84379-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 11/08/2022] Open
Abstract
A one-pot three component reaction of benzaldehydes, 1H-tetrazole-5-amine, and 3-cyanoacetyl indole in the presence of a new hexamethylenetetramine-based ionic liquid/MIL-101(Cr) metal–organic framework as a recyclable catalyst was explored. This novel catalyst, which was fully characterized by XRD, FE-SEM, EDX, FT-IR, TGA, BET, and TEM exhibited outstanding catalytic activity for the preparation of a range of pharmaceutically important tetrazolo[1,5-a]pyrimidine-6-carbonitriles with good to excellent yields in short reaction time.
Collapse
|
36
|
Relitti N, Federico S, Pozzetti L, Butini S, Lamponi S, Taramelli D, D'Alessandro S, Martin RE, Shafik SH, Summers RL, Babij SK, Habluetzel A, Tapanelli S, Caldelari R, Gemma S, Campiani G. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. Eur J Med Chem 2021; 215:113227. [PMID: 33601312 DOI: 10.1016/j.ejmech.2021.113227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
Due to the surge in resistance to common therapies, malaria remains a significant concern to human health worldwide. In chloroquine (CQ)-resistant (CQ-R) strains of Plasmodium falciparum, CQ and related drugs are effluxed from the parasite's digestive vacuole (DV). This process is mediated by mutant isoforms of a protein called CQ resistance transporter (PfCRT). CQ-R strains can be partially re-sensitized to CQ by verapamil (VP), primaquine (PQ) and other compounds, and this has been shown to be due to the ability of these molecules to inhibit drug transport via PfCRT. We have previously developed a series of clotrimazole (CLT)-based antimalarial agents that possess inhibitory activity against PfCRT (4a,b). In our endeavor to develop novel PfCRT inhibitors, and to perform a structure-activity relationship analysis, we synthesized a new library of analogues. When the benzhydryl system was linked to a 4-aminoquinoline group (5a-f) the resulting compounds exhibited good cytotoxicity against both CQ-R and CQ-S strains of P. falciparum. The most potent inhibitory activity against the PfCRT-mediated transport of CQ was obtained with compound 5k. When compared to the reference compound, benzhydryl analogues of PQ (5i,j) showed a similar activity against blood-stage parasites, and a stronger in vitro potency against liver-stage parasites. Unfortunately, in the in vivo transmission blocking assays, 5i,j were inactive against gametocytes.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Robert L Summers
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Simone K Babij
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sofia Tapanelli
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy.
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| |
Collapse
|
37
|
Shaik A, Rao AT, Venkatarao DV, Rao SVMM, Kishore PVVN. Novel Etodolac-Based 1,2,4-Triazole Derivatives as Antimicrobial
Agents: Synthesis, Biological Evaluation, and Molecular Docking Study. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Boraei AT, Soliman SM, Haukka M, Barakat A. X-Ray structure, Hirshfeld analysis and DFT studies of two new hits of triazolyl-indole bearing alkylsulfanyl moieties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Cui M, Su C, Wang R, Yang Q, Kuang C. Synthesis of vinyl-1,2,3-triazole derivatives under transition metal-free conditions. RSC Adv 2021; 11:38933-38937. [PMID: 35493263 PMCID: PMC9044274 DOI: 10.1039/d1ra08322h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Synthesis of vinyl triazole derivatives with alkynes and triazoles promoted by an inorganic base under transition metal-free conditions is reported.
Collapse
Affiliation(s)
- Menghan Cui
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Changhui Su
- School of Chemistry and Life Science, Nanjing University, Jinling College, Nanjing 210089, China
| | - Rong Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Adeniji SE, Arthur DE, Abdullahi M, Abdullahi A, Ugbe FA. Computer-aided modeling of triazole analogues, docking studies of the compounds on DNA gyrase enzyme and design of new hypothetical compounds with efficient activities. J Biomol Struct Dyn 2020; 40:4004-4020. [PMID: 33317403 DOI: 10.1080/07391102.2020.1852963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The increasing problem of multi-drug resistant-tuberculosis has focused attention on developing new drugs that are not only active against drug-resistant tuberculosis, but also shorten the lengthy therapy. Therefore, this work employs the application of modeling technique to predict the inhibition activities of some prominent compounds which been reported to be efficient against Mycobacterium tuberculosis. To accomplish the purpose of this work, multiple regression and genetic function approximation were adopted to create the model. The established model was swayed with topological descriptors; MATS7s, SpMin4_Bhv, TDB3v and RDF70v. More also, interactions between the compounds and the target protein 'DNA gyrase' were evaluated via molecular docking approach utilizing the PyRx and discovery studio simulation software. Based on the docking analysis, compound 20 has the most noticeable binding affinity of -16.5 kcal/mol. Therefore, compound 20 served as a reference structural template and insight to design fourteen novel hypothetical agents with more prominent anti-tubercular activities. More also, compound 20j was observed with the highest activity among the designed compounds with a prominent binding affinity of -24.3 kcal/mol. Therefore, this research recommends in-vivo, in-vitro screening and pharmacokinetic properties to be carried out in order to determine the toxicity of the designed compounds.Communicated by Ramaswamy H. Sarma.
Collapse
|
41
|
Elattar KM, El‐Mekabaty A. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Khaled M. Elattar
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Ahmed El‐Mekabaty
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
42
|
Driving antimalarial design through understanding of target mechanism. Biochem Soc Trans 2020; 48:2067-2078. [PMID: 32869828 PMCID: PMC7609028 DOI: 10.1042/bst20200224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
Malaria continues to be a global health threat, affecting approximately 219 million people in 2018 alone. The recurrent development of resistance to existing antimalarials means that the design of new drug candidates must be carefully considered. Understanding of drug target mechanism can dramatically accelerate early-stage target-based development of novel antimalarials and allows for structural modifications even during late-stage preclinical development. Here, we have provided an overview of three promising antimalarial molecular targets, PfDHFR, PfDHODH and PfA-M1, and their associated inhibitors which demonstrate how mechanism can inform drug design and be effectively utilised to generate compounds with potent inhibitory activity.
Collapse
|
43
|
Adeniji SE, Adalumo OB, Ekoja FO. Anti-tubercular modelling, molecular docking simulation and insight toward computational design of novel compounds as potent antagonist against DNA gyrase receptor. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
44
|
Clark RD, Morris DN, Chinigo G, Lawless MS, Prudhomme J, Le Roch KG, Lafuente MJ, Ferrer S, Gamo FJ, Gadwood R, Woltosz WS. Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones. J Comput Aided Mol Des 2020; 34:1117-1132. [PMID: 32833084 PMCID: PMC7533260 DOI: 10.1007/s10822-020-00333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/21/2020] [Indexed: 10/31/2022]
Abstract
There is a pressing need to improve the efficiency of drug development, and nowhere is that need more clear than in the case of neglected diseases like malaria. The peculiarities of pyrimidine metabolism in Plasmodium species make inhibition of dihydroorotate dehydrogenase (DHODH) an attractive target for antimalarial drug design. By applying a pair of complementary quantitative structure-activity relationships derived for inhibition of a truncated, soluble form of the enzyme from Plasmodium falciparum (s-PfDHODH) to data from a large-scale phenotypic screen against cultured parasites, we were able to identify a class of antimalarial leads that inhibit the enzyme and abolish parasite growth in blood culture. Novel analogs extending that class were designed and synthesized with a goal of improving potency as well as the general pharmacokinetic and toxicological profiles. Their synthesis also represented an opportunity to prospectively validate our in silico property predictions. The seven analogs synthesized exhibited physicochemical properties in good agreement with prediction, and five of them were more active against P. falciparum growing in blood culture than any of the compounds in the published lead series. The particular analogs prepared did not inhibit s-PfDHODH in vitro, but advanced biological assays indicated that other examples from the class did inhibit intact PfDHODH bound to the mitochondrial membrane. The new analogs, however, killed the parasites by acting through some other, unidentified mechanism 24-48 h before PfDHODH inhibition would be expected to do so.
Collapse
Affiliation(s)
- Robert D Clark
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534-7059, USA.
| | - Denise N Morris
- Cognigen Corporation, a Simulations Plus Company, Buffalo, NY, USA
| | - Gary Chinigo
- Kalexsyn, Inc., Kalamazoo, MI, USA.,Pfizer Inc., Groton, CT, USA
| | - Michael S Lawless
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534-7059, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Maria José Lafuente
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Santiago Ferrer
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Walter S Woltosz
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534-7059, USA
| |
Collapse
|
45
|
Pinheiro S, Pinheiro EMC, Muri EMF, Pessôa JC, Cadorini MA, Greco SJ. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Rahimpour K, Teimuri‐Mofrad R. Star‐Shaped Ferrocene‐Based 1,4‐Disubstituted‐1,2,3‐Triazole Derivatives: Synthesis, Characterization, and Investigation of Linear Optical and Electrochemical Properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
47
|
Pramisandi A, Dobashi K, Mori M, Nonaka K, Matsumoto A, Tokiwa T, Higo M, Kristiningrum, Amalia E, Nurkanto A, Inaoka DK, Waluyo D, Kita K, Nozaki T, Ōmura S, Shiomi K. Microbial inhibitors active against Plasmodium falciparum dihydroorotate dehydrogenase derived from an Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979. J GEN APPL MICROBIOL 2020; 66:273-278. [PMID: 32669511 DOI: 10.2323/jgam.2019.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979 was cultured to find novel scaffolds of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. We obtained altenusin (1), which inhibits PfDHODH, with an IC50 value of 5.9 μM, along with other metabolites: mitorubrinol (2) and mitorubrinic acid (3). Compounds 1 and 2 inhibited PfDHODH but displayed no activity against the human orthologue. They also inhibited P. falciparum 3D7 cell growth in vitro. Compound 3 showed little PfDHODH inhibitory activity or cell growth inhibitory activity.
Collapse
Affiliation(s)
- Amila Pramisandi
- Graduate School of Infection Control Sciences, Kitasato University.,Laboratory for Biotechnology, Agency for the Assessment and Application of Technology (BPPT)
| | - Kazuyuki Dobashi
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Mihoko Mori
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Atsuko Matsumoto
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Toshiyuki Tokiwa
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Mayuka Higo
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Kristiningrum
- Laboratory for Biotechnology, Agency for the Assessment and Application of Technology (BPPT)
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Arif Nurkanto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo.,Research Center for Biology, Indonesia Institute of Sciences (LIPI)
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo.,School of Tropical Medicine and Global Health, Nagasaki University.,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| | - Danang Waluyo
- Laboratory for Biotechnology, Agency for the Assessment and Application of Technology (BPPT)
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo.,School of Tropical Medicine and Global Health, Nagasaki University.,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Satoshi Ōmura
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| |
Collapse
|
48
|
Faeza Abdul Kareem Almashal, Al-Hujaj HH, Jassem AM, Al-Masoudi NA. A Click Synthesis, Molecular Docking, Cytotoxicity on Breast Cancer (MDA-MB 231) and Anti-HIV Activities of New 1,4-Disubstituted-1,2,3-Triazole Thymine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Wang C, Li Y, Liu T, Wang Z, Zhang Y, Bao K, Wu Y, Guan Q, Zuo D, Zhang W. Design, synthesis and evaluation of antiproliferative and antitubulin activities of 5-methyl-4-aryl-3-(4-arylpiperazine-1-carbonyl)-4H-1,2,4-triazoles. Bioorg Chem 2020; 104:103909. [PMID: 33142419 DOI: 10.1016/j.bioorg.2020.103909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023]
Abstract
A series of novel 5-methyl-4-aryl-3-(4-arylpiperazine-1-carbonyl)-4H-1,2,4-triazoles possessing 1,2,4-triazole as the hydrogen-bond acceptor were designed, synthesized and evaluated for their antiproliferative and tubulin polymerization inhibitory activities. Some of them exhibited moderate activities in vitro against the three cancer cell lines including SGC-7901, A549 and HeLa. Compound 6e exhibited the highest potency against the three cancer cell lines. Moreover, the tubulin polymerization experiments indicated that compound 6e could inhibit the tubulin polymerization. Immunofluorescence study and cell cycle analysis clearly revealed compound 6e could disrupt intracellular microtubule organization, arrest cell cycle at the G2/M phase. In addition, molecular docking analysis demonstrated the interaction of compound 6e at the colchicine-binding site of tubulin. These preliminary results suggested that compound 6e is a new colchicine binding site inhibitor and worthy of further investigation.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuelin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Tong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zeyu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yujing Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Kai Bao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
50
|
Badeliya SN, Panchal II, Panigrahi B, Patel CN. In Silico Analysis, Synthesis, and Biological Evaluation of Triazole Derivatives as H1 Receptor Antagonist. Curr Drug Discov Technol 2020; 18:492-502. [PMID: 32316895 DOI: 10.2174/1568009620666200421082221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Histamine, a biological amine, is considered as a principal mediator of many pathological processes regulating several essential events in allergies and autoimmune diseases. Numerous derivatives have been developed that strive with histamine at the H1 receptor and prevent binding of histamine at the H1 receptor, thereby preventing allergic reactions. Molecules containing a triazole ring fused with six-membered ring systems are found to possess broad applications in the field of medicine and industry. The present study is an attempt to characterize the impact of the nature of the substituent introduced at 5 positions of the-4H-1,2,4-triazole-3-thiol on their capacities to bind with the H1 receptor. METHODS Molecular docking (PDB ID: 3RZE) revealed that synthesized derivatives and target proteins were actively involved in binding with Tyr-108, Thr-112, Ala-216, and Phe-432 subunits. A pharmacophore model, new 5-(4-substituted phenyl)-4-(phenylamino)-4-H-1,2,4-triazole-3- thiols (5a-5h) were designed and evaluated for H1-blocking activity using isolated segments from the guinea pig ileum. RESULTS According to in silico analysis, all the compounds have a topological polar surface area (TPSA) less than 140 Å squared, so they tend to easily penetrate cell membranes. The results show that most of the compounds are non-inhibitors of CYP450 substrates that play a fundamental role in drug metabolism. Compounds 5d (50.53±12.03), 5h (50.62±12.33) and 7a (55.07±12.41) are more active than others. CONCLUSION Finally, these derivatives were screened for H1 receptor antagonist activity using guinea pig ileum, taking chlorpheniramine maleate as a standard. Most of the compounds were found to possess better antihistamine activity.
Collapse
Affiliation(s)
- Sandip N Badeliya
- Department of Pharmaceutical Chemistry, Saraswathi Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Ishan I Panchal
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | | | - C N Patel
- Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Mehasana, Gujarat, India
| |
Collapse
|