1
|
MicroRNA-146a promotes proliferation, migration, and invasion of HepG2 via regulating FLAP. Cancer Cell Int 2022; 22:149. [PMID: 35410355 PMCID: PMC8996575 DOI: 10.1186/s12935-022-02568-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Abnormal expression of 5-Lipoxygenase Activating Protein (FLAP) has been detected in many tumor cells. MicroRNAs (miRNAs) negatively regulate gene expression post-transcriptionally by binding to the 3'–untranslated region (3'–UTR) of the target mRNA sequences and have been shown to be involved in various types of cancers. Herein, we aimed to demonstrate the expression of miR-146a and FLAP in human HCC tissues and liver cancer cell lines. We demonstrated that miR-146a expression is overexpressed, while FLAP protein and mRNA are suppressed in hepatocellular carcinoma tissues and HepG2 cells compared to para-carcinoma tissues and HL–7702 cells. Dual luciferase reporter gene assay showed that miR-146a-5p can directly target FLAP mRNA. Knockdown of miR-146a also resulted in increased FLAP expression of cancer cells. Additionally, miR-146a silencing or restoration of FLAP led to a reduction of HepG2 cell proliferation, cell cycle progression, migration, and invasion. This study showed that miR-146a has a stimulatory role in HepG2 cells and promotes HepG2 cell migration and invasion by targeting FLAP mRNA. Thus, miR-146a may be a tumor promoter and a potential therapeutic target for the treatment of HCC patients.
Collapse
|
2
|
Veerasamy R, Roy A, Karunakaran R, Rajak H. Structure-Activity Relationship Analysis of Benzimidazoles as Emerging Anti-Inflammatory Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:ph14070663. [PMID: 34358089 PMCID: PMC8308831 DOI: 10.3390/ph14070663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
A significant number of the anti-inflammatory drugs currently in use are becoming obsolete. These are exceptionally hazardous for long-term use because of their possible unfavourable impacts. Subsequently, in the ebb-and-flow decade, analysts and researchers are engaged in developing new anti-inflammatory drugs, and many such agents are in the later phases of clinical trials. Molecules with heterocyclic nuclei are similar to various natural antecedents, thus acquiring immense consideration from scientific experts and researchers. The arguably most adaptable heterocyclic cores are benzimidazoles containing nitrogen in a bicyclic scaffold. Numerous benzimidazole drugs are broadly used in the treatment of numerous diseases, showing promising therapeutic potential. Benzimidazole derivatives exert anti-inflammatory effects mainly by interacting with transient receptor potential vanilloid-1, cannabinoid receptors, bradykinin receptors, specific cytokines, 5-lipoxygenase activating protein and cyclooxygenase. Literature on structure–activity relationship (SAR) and investigations of benzimidazoles highlight that the substituent’s tendency and position on the benzimidazole ring significantly contribute to the anti-inflammatory activity. Reported SAR analyses indicate that substitution at the N1, C2, C5 and C6 positions of the benzimidazole scaffold greatly influence the anti-inflammatory activity. For example, benzimidazole substituted with anacardic acid on C2 inhibits COX-2, and 5-carboxamide or sulfamoyl or sulfonyl benzimidazole antagonises the cannabinoid receptor, whereas the C2 diarylamine and C3 carboxamide substitution of the benzimidazole scaffold result in antagonism of the bradykinin receptor. In this review, we examine the insights regarding the SARs of anti-inflammatory benzimidazole compounds, which will be helpful for researchers in designing and developing potential anti-inflammatory drugs to target inflammation-promoting enzymes.
Collapse
Affiliation(s)
- Ravichandran Veerasamy
- Pharmaceutical Chemistry Unit, Faculty of Pharmacy, AIMST University, Semeling 08100, Kedah, Malaysia
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
- Correspondence:
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India;
| | | | - Harish Rajak
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495009, India;
| |
Collapse
|
3
|
Tu G, Qin Z, Huo D, Zhang S, Yan A. Fingerprint-based computational models of 5-lipo-oxygenase activating protein inhibitors: Activity prediction and structure clustering. Chem Biol Drug Des 2020; 96:931-947. [PMID: 33058463 DOI: 10.1111/cbdd.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 01/24/2023]
Abstract
Inflammatory diseases can be treated by inhibiting 5-lipo-oxygenase activating protein (FLAP). In this study, a data set containing 2,112 FLAP inhibitors was collected. A total of 25 classification models were built by five machine learning algorithms with five different types of fingerprints. The best model, which was built by support vector machine algorithm with ECFP_4 fingerprint had an accuracy and a Matthews correlation coefficient of 0.862 and 0.722 on the test set, respectively. The predicted results were further evaluated by the application domain dSTD-PRO (a distance between one compound to models). Each compound had a dSTD-PRO value, which was calculated by the predicted probabilities obtained from all 25 models. The application domain results suggested that the reliability of predicted results depended mainly on the compounds themselves rather than algorithms or fingerprints. A group of customized 10-bit fingerprint was manually defined for clustering the molecular structures of 2,112 FLAP inhibitors into eight subsets by K-Means. According to the clustering results, most of inhibitors in two subsets (subsets 2 and 4) were highly active inhibitors. We found that aryl oxadiazole/oxazole alkanes, biaryl amino-heteroarenes, two aromatic rings (often N-containing) linked by a cyclobutene group, and 1,2,4-triazole group were typical fragments in highly active inhibitors.
Collapse
Affiliation(s)
- Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Donghui Huo
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Hsu KC, HuangFu WC, Lin TE, Chao MW, Sung TY, Chen YY, Pan SL, Lee JC, Tzou SC, Sun CM, Yang JM. A site-moiety map and virtual screening approach for discovery of novel 5-LOX inhibitors. Sci Rep 2020; 10:10510. [PMID: 32601404 PMCID: PMC7324578 DOI: 10.1038/s41598-020-67420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
The immune system works in conjunction with inflammation. Excessive inflammation underlies various human diseases, such as asthma, diabetes and heart disease. Previous studies found that 5-lipoxygenase (5-LOX) plays a crucial role in metabolizing arachidonic acid into inflammatory mediators and is a potential therapeutic target. In this study, we performed an in silico approach to establish a site-moiety map (SiMMap) to screen for new 5-LOX inhibitors. The map is composed of several anchors that contain key residues, moiety preferences, and their interaction types (i.e., electrostatic (E), hydrogen-bonding (H), and van der Waals (V) interactions) within the catalytic site. In total, we identified one EH, one H, and five V anchors, within the 5-LOX catalytic site. Based on the SiMMap, three 5-LOX inhibitors (YS1, YS2, and YS3) were identified. An enzyme-based assay validated inhibitory activity of YS1, YS2, and YS3 against 5-LOX with an IC50 value of 2.7, 4.2, and 5.3 μM, respectively. All three inhibitors significantly decrease LPS-induced TNF-α and IL-6 production, which suggests its potential use an anti-inflammatory agent. In addition, the identified 5-LOX inhibitors contain a novel scaffold. The discovery of these inhibitors presents an opportunity for designing specific anti-inflammatory drugs.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Abstract
Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract - in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and pro-resolving mechanisms.
Collapse
|
7
|
Saroj Devi N, Shanmugam R, Ghorai J, Ramanan M, Anbarasan P, Doble M. Ligand-based Modeling for the Prediction of Pharmacophore Features for Multi-targeted Inhibition of the Arachidonic Acid Cascade. Mol Inform 2017; 37. [PMID: 28991413 DOI: 10.1002/minf.201700073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
The single-target drugs against the arachidonic acid inflammatory pathway are associated with serious side effects, hence, as a first step towards multi-target drugs, we have studied the pharmacophoric features common to the inhibitors of 5-lipoxygenase-activating protein (FLAP), microsomal prostaglandin E-synthase 1 (mPGES-1) and leukotriene A4 hydrolase (LTA4H). FLAP and mPGES-1 shared subfamily-specific positions (SSPs) and four mPGES-1 inhibitors binding to them mapped onto the pharmacophore derived from FLAP inhibitors (Ph-FLAP). The reactions of mPGES-1 and LTA4H had high structural similarity. The pharmacophore derived from two substrate mimic inhibitors of LTA4H (Ph-LTA4H) also mapped onto three mPGES-1 inhibitors. Screening of in-house database for Ph-FLAP and Ph-LTA4H identified one compound, C1. It inhibited the production of the mPGES-1 product, prostaglandin E2 (PGE2) by 97.8±1.6 % at 50 μM in HeLa cells and can be a starting point for designing molecules inhibiting all three targets simultaneously.
Collapse
Affiliation(s)
- Nisha Saroj Devi
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| | - Rajasekar Shanmugam
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Jayanta Ghorai
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Meera Ramanan
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| | - Pazhamalai Anbarasan
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| |
Collapse
|
8
|
Wan M, Tang X, Stsiapanava A, Haeggström JZ. Biosynthesis of leukotriene B 4. Semin Immunol 2017; 33:3-15. [DOI: 10.1016/j.smim.2017.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/29/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
9
|
Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur J Med Chem 2017; 153:34-48. [PMID: 28784429 DOI: 10.1016/j.ejmech.2017.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Leukotrienes are proinflammatory lipid mediators associated with diverse chronic inflammatory diseases such as asthma, COPD, IBD, arthritis, atherosclerosis, dermatitis and cancer. Cellular leukotrienes are produced from arachidonic acid via the 5-lipoxygenase pathway in which the 5-lipoxygenase activating protein, also named as FLAP, plays a critical role by operating as a regulatory protein for efficient transfer of arachidonic acid to 5-lipoxygenase. By blocking leukotriene production, FLAP inhibitors may behave as broad-spectrum leukotriene modulators, which might be of therapeutic use for chronic inflammatory diseases requiring anti-leukotriene therapy. The early development of FLAP inhibitors (i.e. MK-886, MK-591, BAY-X-1005) mostly concentrated on asthma cure, and resulted in promising readouts in preclinical and clinical studies with asthma patients. Following the recent elucidation of the 3D-structure of FLAP, development of new inhibitor chemotypes is highly accelerated, eventually leading to the evolution of many un-drug-like structures into more drug-like entities such as AZD6642 and BI665915 as development candidates. The most clinically advanced FLAP inhibitor to date is GSK2190918 (formerly AM803) that has successfully completed phase II clinical trials in asthmatics. Concluding, although there are no FLAP inhibitors reached to the drug approval phase yet, due to the rising number of indications for anti-LT therapy such as atherosclerosis, FLAP inhibitor development remains a significant research field. FLAP inhibitors reviewed herein are classified into four sub-classes as the first-generation FLAP inhibitors (indole and quinoline derivatives), the second-generation FLAP inhibitors (diaryl-alkanes and biaryl amino-heteroarenes), the benzimidazole-containing FLAP inhibitors and other FLAP inhibitors with polypharmacology for easiness of the reader. Hence, we meticulously summarize how FLAP inhibitors historically developed from scratch to their current advanced state, and leave the reader with a positive view that a FLAP inhibitor might soon reach to the need of patients who may require anti-LT therapy.
Collapse
|
10
|
Levent S, Gerstmeier J, Olgaç A, Nikels F, Garscha U, Carotti A, Macchiarulo A, Werz O, Banoglu E, Çalışkan B. Synthesis and biological evaluation of C(5)-substituted derivatives of leukotriene biosynthesis inhibitor BRP-7. Eur J Med Chem 2016; 122:510-519. [PMID: 27423639 DOI: 10.1016/j.ejmech.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/10/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Pharmacological intervention with 5-lipoxygenase (5-LO) pathway leading to suppression of leukotriene (LT) biosynthesis is a clinically validated strategy for treatment of respiratory and cardiovascular diseases such as asthma and atherosclerosis. Here we describe the synthesis of a series of C(5)-substituted analogues of the previously described 5-LO-activating protein (FLAP) inhibitor BRP-7 (IC50 = 0.31 μM) to explore the effects of substitution at the C(5)-benzimidazole (BI) ring as a strategy to increase the potency against FLAP-mediated 5-LO product formation. Incorporation of polar substituents on the C(5) position of the BI core, exemplified by compound 11 with a C(5)-nitrile substituent, significantly enhances the potency for suppression of 5-LO product synthesis in human neutrophils (IC50 = 0.07 μM) and monocytes (IC50 = 0.026 μM).
Collapse
Affiliation(s)
- Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey
| | - Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Abdurrahman Olgaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey
| | - Felix Nikels
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey.
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey.
| |
Collapse
|
11
|
Pettersen D, Davidsson Ö, Whatling C. Recent advances for FLAP inhibitors. Bioorg Med Chem Lett 2015; 25:2607-12. [PMID: 26004579 DOI: 10.1016/j.bmcl.2015.04.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022]
Abstract
A number of FLAP inhibitors have been progressed to clinical trials for respiratory and other inflammatory indications but so far no drug has reached the market. With this Digest we assess the opportunity to develop FLAP inhibitors for indications beyond respiratory disease, and in particular for atherosclerotic cardiovascular disease. We also show how recently disclosed FLAP inhibitors have structurally evolved from the first generation FLAP inhibitors paving the way for new compound classes.
Collapse
Affiliation(s)
| | | | - Carl Whatling
- CVMD iMed, AstraZeneca R&D Mölndal, S-413 83 Mölndal, Sweden
| |
Collapse
|
12
|
Pergola C, Gerstmeier J, Mönch B, Çalışkan B, Luderer S, Weinigel C, Barz D, Maczewsky J, Pace S, Rossi A, Sautebin L, Banoglu E, Werz O. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP). Br J Pharmacol 2015; 171:3051-64. [PMID: 24641614 DOI: 10.1111/bph.12625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Leukotrienes (LTs) are inflammatory mediators produced via the 5-lipoxygenase (5-LOX) pathway and are linked to diverse disorders, including asthma, allergic rhinitis and cardiovascular diseases. We recently identified the benzimidazole derivative BRP-7 as chemotype for anti-LT agents by virtual screening targeting 5-LOX-activating protein (FLAP). Here, we aimed to reveal the in vitro and in vivo pharmacology of BRP-7 as an inhibitor of LT biosynthesis. EXPERIMENTAL APPROACH We analysed LT formation and performed mechanistic studies in human neutrophils and monocytes, in human whole blood (HWB) and in cell-free assays. The effectiveness of BRP-7 in vivo was evaluated in rat carrageenan-induced pleurisy and mouse zymosan-induced peritonitis. KEY RESULTS BRP-7 potently suppressed LT formation in neutrophils and monocytes and this was accompanied by impaired 5-LOX co-localization with FLAP. Neither the cellular viability nor the activity of 5-LOX in cell-free assays was affected by BRP-7, indicating that a functional FLAP is needed for BRP-7 to inhibit LTs, and FLAP bound to BRP-7 linked to a solid matrix. Compared with the FLAP inhibitor MK-886, BRP-7 did not significantly inhibit COX-1 or microsomal prostaglandin E2 synthase-1, implying the selectivity of BRP-7 for FLAP. Finally, BRP-7 was effective in HWB and impaired inflammation in vivo, in rat pleurisy and mouse peritonitis, along with reducing LT levels. CONCLUSIONS AND IMPLICATIONS BRP-7 potently suppresses LT biosynthesis by interacting with FLAP and exhibits anti-inflammatory effectiveness in vivo, with promising potential for further development.
Collapse
Affiliation(s)
- C Pergola
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zou JF, Huang WS, Li L, Xu Z, Zheng ZJ, Yang KF, Xu LW. DMSO as oxidant and sulfenylating agent for metal-free oxidation and methylthiolation of alcohol-containing indoles. RSC Adv 2015. [DOI: 10.1039/c5ra03606b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new methylthiolation protocol was successfully established for the synthesis of substituted indoles bearing 3-methylthioether moiety, in which new C–S bond and C=O bond were formed using dimethyl sulfoxide as the sulfur source under mild conditions.
Collapse
Affiliation(s)
- Jin-Feng Zou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
14
|
Gaba M, Singh S, Mohan C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur J Med Chem 2014; 76:494-505. [PMID: 24602792 DOI: 10.1016/j.ejmech.2014.01.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 02/02/2023]
Abstract
Within the vast range of heterocycles, benzimidazole and its derivatives are found to be trendy structures employed for discovery of drugs in the field of pharmaceutical and medicinal chemistry. The unique structural features of benzimidazole and a wide range of biological activities of its derivatives made it privileged structure in drug discovery. Recently, benzimidazole scaffold has emerged as a pharmacophore of choice for designing analgesic and anti-inflammatory agents active on different clinically approved targets. To pave the way for future research, there is a need to collect the latest information in this promising area. In the present review we have collated published reports on this versatile core to provide an insight so that its full therapeutic potential can be utilized for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Monika Gaba
- Department of Pharmaceutical Sciences, ASBASJSM College of Pharmacy, Bela, Ropar, Punjab, India.
| | - Sarbjot Singh
- Drug Discovery Research, Panacea Biotec Pvt. Ltd., Mohali, Punjab, India
| | - Chander Mohan
- Rayat-Bahra Institute of Pharmacy, Hoshiarpur, Punjab, India
| |
Collapse
|
15
|
Sardella R, Levent S, Ianni F, Çalişkan B, Gerstmeier J, Pergola C, Werz O, Banoglu E, Natalini B. Chromatographic separation and biological evaluation of benzimidazole derivative enantiomers as inhibitors of leukotriene biosynthesis. J Pharm Biomed Anal 2014; 89:88-92. [DOI: 10.1016/j.jpba.2013.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022]
|
16
|
Bain G, King CD, Schaab K, Rewolinski M, Norris V, Ambery C, Bentley J, Yamada M, Santini AM, van de Wetering de Rooij J, Stock N, Zunic J, Hutchinson JH, Evans JF. Pharmacodynamics, pharmacokinetics and safety of GSK2190915, a novel oral anti-inflammatory 5-lipoxygenase-activating protein inhibitor. Br J Clin Pharmacol 2013; 75:779-90. [PMID: 22803688 DOI: 10.1111/j.1365-2125.2012.04386.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/16/2012] [Indexed: 11/27/2022] Open
Abstract
AIM To assess the pharmacokinetics, pharmacodynamics, safety and tolerability of the 5-lipoxygenase-activating protein inhibitor, GSK2190915, after oral dosing in two independent phase I studies, one in Western European and one in Japanese subjects, utilizing different formulations. METHOD Western European subjects received single (50-1000 mg) or multiple (10-450 mg) oral doses of GSK2190915 or placebo in a dose-escalating manner. Japanese subjects received three of four GSK2190915 doses (10-200 mg) plus placebo once in a four period crossover design. Blood samples were collected for GSK2190915 concentrations and blood and urine were collected to measure leukotriene B₄ and leukotriene E₄, respectively, as pharmacodynamic markers of drug activity. RESULTS There was no clear difference in adverse events between placebo and active drug-treated subjects in either study. Maximum plasma concentrations of GSK2190915 and area under the curve increased in a dose-related manner and mean half-life values ranged from 16-34 h. Dose-dependent inhibition of blood leukotriene B₄ production was observed and near complete inhibition of urinary leukotriene E₄ excretion was shown at all doses except the lowest dose. The EC₅₀ values for inhibition of LTB₄ were 85 nM and 89 nM in the Western European and Japanese studies, respectively. CONCLUSION GSK2190915 is well-tolerated with pharmacokinetics and pharmacodynamics in Western European and Japanese subjects that support once daily dosing for 24 h inhibition of leukotrienes. Doses of ≥50 mg show near complete inhibition of urinary leukotriene E₄ at 24 h post-dose, whereas doses of ≥150 mg are required for 24 h inhibition of blood LTB₄.
Collapse
|
17
|
Hoobler EK, Rai G, Warrilow AGS, Perry SC, Smyrniotis CJ, Jadhav A, Simeonov A, Parker JE, Kelly DE, Maloney DJ, Kelly SL, Holman TR. Discovery of a novel dual fungal CYP51/human 5-lipoxygenase inhibitor: implications for anti-fungal therapy. PLoS One 2013; 8:e65928. [PMID: 23826084 PMCID: PMC3691235 DOI: 10.1371/journal.pone.0065928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/02/2013] [Indexed: 12/26/2022] Open
Abstract
We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11) and human 5-lipoxygenase (5-LOX) with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM) and CYP51 (IC50 = 43 nM) in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component.
Collapse
Affiliation(s)
- Eric K. Hoobler
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Andrew G. S. Warrilow
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Steven C. Perry
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher J. Smyrniotis
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Josie E. Parker
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Diane E. Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - David J. Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
- * E-mail: (DJM); (SLK); (TRH)
| | - S. L. Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
- * E-mail: (DJM); (SLK); (TRH)
| | - Theodore R. Holman
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (DJM); (SLK); (TRH)
| |
Collapse
|
18
|
Structure–activity relationship and in vitro pharmacological evaluation of imidazo[1,2-a]pyridine-based inhibitors of 5-LO. Future Med Chem 2013; 5:865-80. [DOI: 10.4155/fmc.13.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: 5-LO is an important enzyme involved in the biosynthesis of leukotrienes, which are lipid mediators of immune and inflammation responses, with important roles in respiratory disease, cardiovascular disease, immune responses and certain types of cancer. Therefore, this enzyme has been investigated as a potential target for the treatment of these pathophysiological conditions. Results: 5-LO inhibitory potential was investigated in intact polymorphonuclear leukocytes, a cell-free assay, in human whole blood and rodent cells to both elucidate structure–activity relationships and in vitro pharmacological evaluation. Chemical modifications for lead optimization via straight forward synthesis was used to combine small polar groups, which led to a suitable candidate (IC50 [polymorphonuclear leukocytes] = 1.15 µM, IC50 [S100] = 0.29 µM) with desired in vitro biopharmaceutical profiles in terms of solubility (451.9 µg/ml) and intrinsic clearance without demonstrating any cytotoxicity. Conclusion: Compound 9l is a novel, potent and selective 5-LO inhibitor with favorable preclinical drug-like properties.
Collapse
|
19
|
Di Gennaro A, Haeggström JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol 2013; 116:51-92. [PMID: 23063073 DOI: 10.1016/b978-0-12-394300-2.00002-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The leukotrienes are important lipid mediators with immune modulatory and proinflammatory properties. Classical bioactions of leukotrienes include chemotaxis, endothelial adherence, and activation of leukocytes, chemokine production, as well as contraction of smooth muscles in the microcirculation and respiratory tract. When formed in excess, these compounds play a pathogenic role in several acute and chronic inflammatory diseases, such as asthma, rheumatoid arthritis, and inflammatory bowel disease. An increasing number of diseases have been linked to inflammation implicating the leukotrienes as potential mediators. For example, recent investigations using genetic, morphological, and biochemical approaches have pointed to the involvement of leukotrienes in cardiovascular diseases including atherosclerosis, myocardial infarction, stroke, and abdominal aortic aneurysm. Moreover, new insights have changed our previous notion of leukotrienes as mediators of inflammatory reactions to molecules that can fine-tune the innate and adaptive immune response. Here, we review the most recent understanding of the leukotriene cascade with emphasis on recently identified roles in immune reactions and pathophysiology.
Collapse
Affiliation(s)
- Antonio Di Gennaro
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
20
|
Çalışkan B, Banoglu E. Overview of recent drug discovery approaches for new generation leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov 2012; 8:49-63. [DOI: 10.1517/17460441.2013.735228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Burcu Çalışkan
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,
Taç Sok. No:3 Yenimahalle, 06330 Ankara, Turkey
| | - Erden Banoglu
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,
Taç Sok. No:3 Yenimahalle, 06330 Ankara, Turkey ; ;
| |
Collapse
|
21
|
Banoglu E, Çalışkan B, Luderer S, Eren G, Özkan Y, Altenhofen W, Weinigel C, Barz D, Gerstmeier J, Pergola C, Werz O. Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP). Bioorg Med Chem 2012; 20:3728-41. [DOI: 10.1016/j.bmc.2012.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
22
|
Liedtke AJ, Crews BC, Daniel CM, Blobaum AL, Kingsley PJ, Ghebreselasie K, Marnett LJ. Cyclooxygenase-1-selective inhibitors based on the (E)-2'-des-methyl-sulindac sulfide scaffold. J Med Chem 2012; 55:2287-300. [PMID: 22263894 PMCID: PMC3297362 DOI: 10.1021/jm201528b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prostaglandins (PGs) are powerful lipid mediators in many physiological and pathophysiological responses. They are produced by oxidation of arachidonic acid (AA) by cyclooxygenases (COX-1 and COX-2) followed by metabolism of endoperoxide intermediates by terminal PG synthases. PG biosynthesis is inhibited by nonsteroidal anti-inflammatory drugs (NSAIDs). Specific inhibition of COX-2 has been extensively investigated, but relatively few COX-1-selective inhibitors have been described. Recent reports of a possible contribution of COX-1 in analgesia, neuroinflammation, or carcinogenesis suggest that COX-1 is a potential therapeutic target. We designed, synthesized, and evaluated a series of (E)-2'-des-methyl-sulindac sulfide (E-DMSS) analogues for inhibition of COX-1. Several potent and selective inhibitors were discovered, and the most promising compounds were active against COX-1 in intact ovarian carcinoma cells (OVCAR-3). The compounds inhibited tumor cell proliferation but only at concentrations >100-fold higher than the concentrations that inhibit COX-1 activity. E-DMSS analogues may be useful probes of COX-1 biology in vivo and promising leads for COX-1-targeted therapeutic agents.
Collapse
Affiliation(s)
- Andy J Liedtke
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ferguson AD. Structure-based drug design on membrane protein targets: human integral membrane protein 5-lipoxygenase-activating protein. Methods Mol Biol 2012; 841:267-290. [PMID: 22222457 DOI: 10.1007/978-1-61779-520-6_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Leukotrienes are biologically active lipid metabolites of arachidonic acid that are involved in inflammation and play a significant role in respiratory and cardiovascular disease. The integral nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) is essential for leukotriene biosynthesis in response to cellular activation. The crystal structures of human FLAP with two inhibitors were recently determined. Inhibitors are bound within the lipid-exposed portion of FLAP, and the unexpected location of the inhibitor-binding site suggests a transport mechanism for arachidonic acid and provides functional insights into leukotriene biosynthesis. This chapter describes how this human integral membrane crystal structure was solved by pushing the limits of low-resolution structure determination and refinement, demonstrating how a low-resolution structure can impact biology and chemistry, and discusses future opportunities for structure-based drug design for this therapeutic target.
Collapse
|
24
|
Molecular characterization of EP6—A novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. Biochem Pharmacol 2012; 83:228-40. [DOI: 10.1016/j.bcp.2011.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 01/18/2023]
|
25
|
Stock NS, Bain G, Zunic J, Li Y, Ziff J, Roppe J, Santini A, Darlington J, Prodanovich P, King CD, Baccei C, Lee C, Rong H, Chapman C, Broadhead A, Lorrain D, Correa L, Hutchinson JH, Evans JF, Prasit P. 5-Lipoxygenase-Activating Protein (FLAP) Inhibitors. Part 4: Development of 3-[3-tert-Butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic Acid (AM803), a Potent, Oral, Once Daily FLAP Inhibitor. J Med Chem 2011; 54:8013-29. [DOI: 10.1021/jm2008369] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas S. Stock
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Gretchen Bain
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jasmine Zunic
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Yiwei Li
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jeannie Ziff
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jeffrey Roppe
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Angelina Santini
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Janice Darlington
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Pat Prodanovich
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Christopher D. King
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Christopher Baccei
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Catherine Lee
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Haojing Rong
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Charles Chapman
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Alex Broadhead
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Dan Lorrain
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Lucia Correa
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - John H. Hutchinson
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jilly F. Evans
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Peppi Prasit
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| |
Collapse
|
26
|
Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils. Eur J Med Chem 2011; 46:5021-33. [DOI: 10.1016/j.ejmech.2011.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/02/2011] [Accepted: 08/05/2011] [Indexed: 11/20/2022]
|
27
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 636] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
28
|
A facile and efficient method for the selective deacylation of N-arylacetamides and 2-chloro-N-arylacetamides catalyzed by SOCl2. RESEARCH ON CHEMICAL INTERMEDIATES 2011. [DOI: 10.1007/s11164-011-0327-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Chen KC, Chang KW, Chen HY, Chen CYC. Traditional Chinese medicine, a solution for reducing dual stroke risk factors at once? MOLECULAR BIOSYSTEMS 2011; 7:2711-9. [DOI: 10.1039/c1mb05164d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Stock N, Baccei C, Bain G, Chapman C, Correa L, Darlington J, King C, Lee C, Lorrain DS, Prodanovich P, Santini A, Schaab K, Evans JF, Hutchinson JH, Prasit P. 5-Lipoxygenase-activating protein inhibitors. Part 3: 3-{3-tert-Butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM643)—A potent FLAP inhibitor suitable for topical administration. Bioorg Med Chem Lett 2010; 20:4598-601. [DOI: 10.1016/j.bmcl.2010.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
31
|
Pharmacodynamics and pharmacokinetics of AM103, a novel inhibitor of 5-lipoxygenase-activating protein (FLAP). Clin Pharmacol Ther 2010; 87:437-44. [PMID: 20182424 DOI: 10.1038/clpt.2009.301] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 5-lipoxygenase-activating protein (FLAP) gene and an increase in leukotriene (LT) production are linked to the risk of asthma, myocardial infarction, and stroke. We evaluated the pharmacodynamics, pharmacokinetics, and tolerability of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103), a novel FLAP inhibitor, in healthy subjects. Single and multiple doses of AM103 demonstrated dose-dependent inhibition of blood LTB(4) production and dose-related inhibition of urinary LTE(4). After a single oral dose (50-1,000 mg) of AM103, the maximum concentration (C(max)) and area under the curve (AUC) in plasma increased in a dose-dependent manner. After multiple-dose administration (50-1,000 mg once daily for 11 days), there were no significant differences in the pharmacokinetic parameters between the first and last days of treatment. AM103 was well tolerated at all doses in both the single- and multiple-dose cohorts. Further clinical trials with AM103 in inflammatory diseases are warranted.
Collapse
|
32
|
Stock N, Baccei C, Bain G, Broadhead A, Chapman C, Darlington J, King C, Lee C, Li Y, Lorrain DS, Prodanovich P, Rong H, Santini A, Zunic J, Evans JF, Hutchinson JH, Prasit P. 5-Lipoxygenase-activating protein inhibitors. Part 2: 3-{5-((S)-1-Acetyl-2,3-dihydro-1H-indol-2-ylmethoxy)-3-tert-butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-1H-indol-2-yl}-2,2-dimethyl-propionic acid (AM679)—A potent FLAP inhibitor. Bioorg Med Chem Lett 2010; 20:213-7. [DOI: 10.1016/j.bmcl.2009.10.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
|
33
|
A novel 5-lipoxygenase-activating protein inhibitor, AM679, reduces inflammation in the respiratory syncytial virus-infected mouse eye. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1654-9. [PMID: 19759251 DOI: 10.1128/cvi.00220-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory syncytial virus (RSV) is an important cause of viral respiratory disease in children, and RSV bronchiolitis has been associated with the development of asthma in childhood. RSV spreads from the eye and nose to the human respiratory tract. Correlative studies of humans and direct infection studies of BALB/c mice have established the eye as a significant pathway of entry of RSV to the lung. At the same time, RSV infection of the eye produces symptoms resembling allergic conjunctivitis. Cysteinyl leukotrienes (CysLTs) are known promoters of allergy and inflammation, and the first step in their biogenesis from arachidonic acid is catalyzed by 5-lipoxygenase (5-LO) in concert with the 5-LO-activating protein (FLAP). We have recently developed a novel compound, AM679, which is a topically applied and potent inhibitor of FLAP. Here we show with the BALB/c mouse eye RSV infection model that AM679 markedly reduced the RSV-driven ocular pathology as well as the synthesis of CysLTs in the eye. In addition, AM679 decreased the production of the Th2 cell cytokine interleukin-4 but did not increase the viral load in the eye or the lung. These results suggest that FLAP inhibitors may be therapeutic for RSV-driven eye disease and possibly other inflammatory eye indications.
Collapse
|