1
|
Xue J, Luo Z, Huang J, Deng Y, Dong S, Liu S. Enantioselective Construction of C3-Multifunctionalization α-Hydroxy-β-amino Pyridines via α-Pyridyl Diazoacetate, Water, and Imines for Drug Hunting. Org Lett 2022; 24:9502-9507. [PMID: 36537781 DOI: 10.1021/acs.orglett.2c03987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An asymmetric catalytic approach for the construction of C3-multifunctionalization α-hydroxy-β-amino pyridines has been reported. The products can be accessed by the modulation of two chiral catalysts independently in high yield and with good enantioselectivity. The method features mild reaction conditions and an excellent functional group tolerance. Biological activity analysis shows that the resulting products have a selective antiosteosarcoma activity on 143B cells.
Collapse
Affiliation(s)
- Jian Xue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhengli Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Jisheng Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Yaqi Deng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Tangmanussukum P, Kawichai T, Suratanee A, Plaimas K. Heterogeneous network propagation with forward similarity integration to enhance drug-target association prediction. PeerJ Comput Sci 2022; 8:e1124. [PMID: 36262151 PMCID: PMC9575853 DOI: 10.7717/peerj-cs.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Identification of drug-target interaction (DTI) is a crucial step to reduce time and cost in the drug discovery and development process. Since various biological data are publicly available, DTIs have been identified computationally. To predict DTIs, most existing methods focus on a single similarity measure of drugs and target proteins, whereas some recent methods integrate a particular set of drug and target similarity measures by a single integration function. Therefore, many DTIs are still missing. In this study, we propose heterogeneous network propagation with the forward similarity integration (FSI) algorithm, which systematically selects the optimal integration of multiple similarity measures of drugs and target proteins. Seven drug-drug and nine target-target similarity measures are applied with four distinct integration methods to finally create an optimal heterogeneous network model. Consequently, the optimal model uses the target similarity based on protein sequences and the fused drug similarity, which combines the similarity measures based on chemical structures, the Jaccard scores of drug-disease associations, and the cosine scores of drug-drug interactions. With an accuracy of 99.8%, this model significantly outperforms others that utilize different similarity measures of drugs and target proteins. In addition, the validation of the DTI predictions of this model demonstrates the ability of our method to discover missing potential DTIs.
Collapse
Affiliation(s)
- Piyanut Tangmanussukum
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thitipong Kawichai
- Department of Mathematics and Computer Science, Academic Division, Chulachomklao Royal Military Academy, Nakhon Nayok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Li B, Luo B, Yang H, Tang W. Heck Reaction of
N
‐Heteroaryl Halides for the Concise Synthesis of Chiral α‐Heteroaryl‐substituted Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202209087. [DOI: 10.1002/anie.202209087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bowen Li
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Bangke Luo
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wenjun Tang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
4
|
Li B, Luo B, Yang H, Tang W. Heck Reaction of N‐Heteroaryl Halides for the Concise Synthesis of Chiral α‐Heteroaryl‐substituted Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bowen Li
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Bangke Luo
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - He Yang
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wenjun Tang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bio-Organic and Natural Products Chemistry 345 Ling Ling Road 200032 Shanghai CHINA
| |
Collapse
|
5
|
Del Castillo E, Muñiz K. Enantioselective Synthesis of Nicotine via an Iodine-Mediated Hofmann-Löffler Reaction. Org Lett 2019; 21:705-708. [PMID: 30672295 DOI: 10.1021/acs.orglett.8b03909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An iodine-mediated Hofmann-Löffler reaction has been developed that enables the first enantioselective synthesis of nicotine based on this synthetic methodology. The effect of the free pyridine core on the involved electrophilic iodine reagents was explored in detail. The final synthesis proceeds under moderate reaction conditions that tolerate the free pyridine core. The same synthetic sequence is also applicable to a number of derivatives with higher substituted pyridine cores, including bipyridine derivatives.
Collapse
Affiliation(s)
- Estefanía Del Castillo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Av. Països Catalans 16 , 43007 Tarragona , Spain
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Av. Països Catalans 16 , 43007 Tarragona , Spain.,ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
6
|
Brissonnet Y, Araoz R, Sousa R, Percevault L, Brument S, Deniaud D, Servent D, Le Questel JY, Lebreton J, Gouin SG. Di- and heptavalent nicotinic analogues to interfere with α7 nicotinic acetylcholine receptors. Bioorg Med Chem 2019; 27:700-707. [PMID: 30692022 DOI: 10.1016/j.bmc.2019.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022]
Abstract
In the field of nicotinic acetylcholine receptors (nAChRs), recognized as important therapeutic targets, much effort has been dedicated to the development of nicotinic analogues to agonize or antagonize distinct homo- and heteropentamers nAChR subtypes, selectively. In this work we developed di- and heptavalent nicotinic derivatives based on ethylene glycol (EG) and cyclodextrin cores, respectively. The compounds showed a concentration dependent inhibition of acetylcholine-induced currents on α7 nAChR expressed by Xenopus oocytes. Interesting features were observed with the divalent nicotinic derivatives, acting as antagonists with varied inhibitory concentrations (IC50) in function of the spacer arm length. The best divalent compounds showed a 16-fold lowered IC50 compared to the monovalent reference (12 vs 195 µM). Docking investigations provide guidelines to rationalize these experimental findings.
Collapse
Affiliation(s)
- Yoan Brissonnet
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Romulo Araoz
- CNRS, Neuro-PSI, UMR9197, 91191 Gif-Sur-Yvette, France; CEA/DRF/JOLIOT/SIMOPRO/Toxines Récepteur et Canaux Ioniques, F-91191 Gif-Sur-Yvette, France.
| | - Rui Sousa
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Lucie Percevault
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sami Brument
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - David Deniaud
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Denis Servent
- CEA/DRF/JOLIOT/SIMOPRO/Toxines Récepteur et Canaux Ioniques, F-91191 Gif-Sur-Yvette, France
| | - Jean-Yves Le Questel
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Jacques Lebreton
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sébastien G Gouin
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| |
Collapse
|
7
|
Cho J, Jeong JH, Lee MW, Kang YK. Interrogation of fractional crystallization behavior of a newly exploited chiral resolution method for racemic 1-(pyridin-2-yl)ethylamine via DFT-D3 calculations of cohesive energy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00523d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chiral separation method for 1-(pyridin-2-yl)ethylamine is developed and the underlying energetics is investigated by DFT-D3.
Collapse
Affiliation(s)
- Juhyun Cho
- Department of Chemistry and Green-Nano Materials Research Center
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Jong Hwa Jeong
- Department of Chemistry and Green-Nano Materials Research Center
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Myung Won Lee
- Department of Chemistry
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Youn K. Kang
- Department of Chemistry
- Sangmyung University
- Seoul 03016
- Republic of Korea
| |
Collapse
|
8
|
Ishiki HM, Filho JMB, da Silva MS, Scotti MT, Scotti L. Computer-aided Drug Design Applied to Parkinson Targets. Curr Neuropharmacol 2018; 16:865-880. [PMID: 29189169 PMCID: PMC6080092 DOI: 10.2174/1570159x15666171128145423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/24/2017] [Indexed: 12/01/2022] Open
Abstract
Background Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by debilitating motor deficits, as well as autonomic problems, cognitive declines, changes in affect and sleep disturbances. Although the scientific community has performed great efforts in the study of PD, and from the most diverse points of view, the disease remains incurable. The exact mechanism underlying its progression is unclear, but oxidative stress, mitochondrial dysfunction and inflammation are thought to play major roles in the etiology. Objective Current pharmacological therapies for the treatment of Parkinson’s disease are mostly inadequate, and new therapeutic agents are much needed. Methods In this review, recent advances in computer-aided drug design for the rational design of new compounds against Parkinson disease; using methods such as Quantitative Structure-Activity Relationships (QSAR), molecular docking, molecular dynamics and pharmacophore modeling are discussed. Results In this review, four targets were selected: the enzyme monoamine oxidase, dopamine agonists, acetylcholine receptors, and adenosine receptors. Conclusion Computer aided-drug design enables the creation of theoretical models that can be used in a large database to virtually screen for and identify novel candidate molecules.
Collapse
Affiliation(s)
- Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | | | - Marcus T Scotti
- Federal University of Paraiba, Campus I, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Federal University of Paraiba, Campus I, Joao Pessoa-PB, Brazil
| |
Collapse
|
9
|
Sieser JE, Maloney MT, Chisowa E, Brenek SJ, Monfette S, Salisbury JJ, Do NM, Singer RA. Ir-Catalyzed Borylation as an Efficient Route to a Nicotine Hapten. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janice E. Sieser
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark T. Maloney
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Esmort Chisowa
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven J. Brenek
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John J. Salisbury
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nga M. Do
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert A. Singer
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
10
|
Rego Campello H, Gallagher T. C(5) Site-Selective Functionalization of (S)-Cotinine. J Org Chem 2018; 83:516-520. [PMID: 29207240 DOI: 10.1021/acs.joc.7b02704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(S)-(-)-Cotinine 2 undergoes direct and site-selective iridium-catalyzed borylation to provide boronate ester 3 and bromide 4 which offer flexible entry to a range of C(5)-substituted cotinine variants.
Collapse
Affiliation(s)
- Hugo Rego Campello
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Timothy Gallagher
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| |
Collapse
|
11
|
Synthesis of 2-arylpyrrolidine-1-carboxamides via acid-catalyzed reaction of (4,4-diethoxybutyl)ureas with 3-aminophenol. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1934-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Nitrogen-containing acetals and ketals in the synthesis of pyrrolidine derivatives. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1960-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Beng TK, Langevin S, Braunstein H, Khim M. Regiocontrolled synthesis of (hetero)aryl and alkenyl dehydropyrrolidines, dehydropiperidines and azepenes by Ru-catalyzed, heteroatom-directed α-C–H activation/cross-coupling of cyclic enamides with boronic acids. Org Biomol Chem 2016; 14:830-4. [DOI: 10.1039/c5ob02263k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis of α-aryl and alkenyl pyrrolidine-, piperidine-, and azepane derivatives by ruthenium-catalyzed, carbonyl-assisted, site-selective sp2 C–H activation of cyclic enamides and concomitant cross-coupling with boronic acids is described.
Collapse
Affiliation(s)
- Timothy K. Beng
- Department of Chemistry
- Central Washington University
- Ellensburg
- USA
| | - Spencer Langevin
- Department of Chemistry
- Central Washington University
- Ellensburg
- USA
| | | | - Monique Khim
- Department of Chemistry
- Central Washington University
- Ellensburg
- USA
| |
Collapse
|
14
|
Stephens DE, Larionov OV. Recent Advances in the C-H-Functionalization of the Distal Positions in Pyridines and Quinolines. Tetrahedron 2015; 71:8683-8716. [PMID: 26640303 PMCID: PMC4666591 DOI: 10.1016/j.tet.2015.08.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review summarizes recent developments in the C-H-functionalization of the distal positions of pyridines, quinolines and related azaheterocycles. While the functionalization of the C2 position has been known for a long time and is facilitated by the proximity to N1, regioselective reactions in the distal positions are more difficult to achieve and have only emerged in the last decade. Recent advances in the transition metal-catalyzed distal C-H-functionalization of these synthetically-important azaheterocycles are discussed in detail, with the focus on the scope, site-selectivity and mechanistic aspects of the reactions.
Collapse
Affiliation(s)
- David E. Stephens
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| | - Oleg. V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| |
Collapse
|
15
|
|
16
|
Lippiello P, Bencherif M, Hauser T, Jordan K, Letchworth S, Mazurov A. Nicotinic receptors as targets for therapeutic discovery. Expert Opin Drug Discov 2015; 2:1185-203. [PMID: 23496128 DOI: 10.1517/17460441.2.9.1185] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) represent a class of therapeutic targets with the potential to impact numerous diseases and disorders where significant unmet medical needs remain. The latter include cognitive and neurodegenerative diseases; psychotic disorders, such as schizophrenia; acute nociceptive, neuropathic and inflammatory pain; affective disorders, such as depression and inflammation, where nAChR subtypes modulate key cellular pathways involved in anti-inflammatory processes as well as cell survival. Our increased understanding of the heterogeneity of nAChR targets is defining the relationship of biologic effects to specific receptor subtypes, which in turn, will allow further refinement of desired therapeutic activities. Both preclinical and clinical evidence support the notion that novel compounds targeting specific nAChR subtypes will offer increased potency and efficacy, longer lasting effects, fewer side effects and a more rapid onset of action and less dependence, compared with existing therapies. Clinical proof-of-concept is rapidly emerging and will solidify the position of this new therapeutic approach.
Collapse
Affiliation(s)
- Pm Lippiello
- Targacept, Inc., 200 East 1st Street, Suite 300, Winston-Salem, NC 27101, USA +1 336 480 2100 ; +1 336 480 2107 ;
| | | | | | | | | | | |
Collapse
|
17
|
Bolchi C, Valoti E, Gotti C, Fasoli F, Ruggeri P, Fumagalli L, Binda M, Mucchietto V, Sciaccaluga M, Budriesi R, Fucile S, Pallavicini M. Chemistry and Pharmacology of a Series of Unichiral Analogues of 2-(2-Pyrrolidinyl)-1,4-benzodioxane, Prolinol Phenyl Ether, and Prolinol 3-Pyridyl Ether Designed as α4β2-Nicotinic Acetylcholine Receptor Agonists. J Med Chem 2015. [PMID: 26225816 DOI: 10.1021/acs.jmedchem.5b00904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Some unichiral analogues of 2R,2'S-2-(1'-methyl-2'-pyrrolidinyl)-7-hydroxy-1,4-benzodioxane, a potent and selective α4β2-nAChR partial agonist, were designed by opening dioxane and replacing hydroxyl carbon with nitrogen. The resulting 3-pyridyl and m-hydroxyphenyl ethers have high α4β2 affinity and good subtype selectivity, which get lost if OH is removed from phenyl or the position of pyridine nitrogen is changed. High α4β2 affinity and selectivity are also attained by meta hydroxylating the 3-pyridyl and the phenyl ethers of (S)-N-methylprolinol and the phenyl ether of (S)-2-azetidinemethanol, known α4β2 agonists, although the interaction mode of the aryloxymethylene substructure cannot be assimilated to that of benzodioxane. Indeed, the α4β2 and α3β4 functional tests well differentiate behaviors that the binding tests homologize: both the 3-hydroxyphenyl and the 5-hydroxy-3-pyridyl ether of N-methylprolinol are α4β2 full agonists, but only the latter is highly α4β2/α3β4 selective, while potent and selective partial α4β2 agonism characterizes the hydroxybenzodioxane derivative and its two opened semirigid analogues.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Cecilia Gotti
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milano, I-20129, Italy
| | - Francesca Fasoli
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milano, I-20129, Italy
| | - Paola Ruggeri
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Matteo Binda
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| | - Vanessa Mucchietto
- CNR, Istituto di Neuroscienze, and Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milano, I-20129, Italy
| | - Miriam Sciaccaluga
- I.R.C.C.S. Neuromed, Istituto Neurologico Mediterraneo, Via Atinese 18, I-86077, Pozzilli, Isernia, Italy
| | - Roberta Budriesi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna , Via Belmeloro 6, I-40126, Bologna, Italy
| | - Sergio Fucile
- I.R.C.C.S. Neuromed, Istituto Neurologico Mediterraneo, Via Atinese 18, I-86077, Pozzilli, Isernia, Italy.,Dipartimento di Fisiologia e Farmacologia, Università di Roma La Sapienza , Piazzale Moro 5, 00185 Roma, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano , Via Mangiagalli 25, I-20133, Milano, Italy
| |
Collapse
|
18
|
Nicotinic ligands as multifunctional agents for the treatment of neuropsychiatric disorders. Biochem Pharmacol 2015; 97:388-398. [PMID: 26231940 DOI: 10.1016/j.bcp.2015.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 02/08/2023]
Abstract
The challenges associated with developing more effective treatments for neurologic and psychiatric illness such as Alzheimer's disease and schizophrenia are considerable. Both the symptoms and the pathophysiology of these conditions are complex and poorly understood and the clinical presentations across different patients can be very heterogeneous. Moreover, it has become apparent that the reductionist approach to drug discovery for these illnesses that has dominated the field for decades (i.e., the development of highly selective compounds or other treatment modalities focused on a very specific pathophysiologic target) has not been widely successful. Accordingly, a variety of new strategies have emerged including the development of "multitarget-directed ligands" (MTDLs), the development and/or identification of compounds that exhibit "multifunctional" activity (e.g., pro-cognitive plus neuroprotective, pro-cognitive plus antipsychotic activity), "repurposing" strategies for existing compounds that have other clinical indications, and novel "adjunctive" treatment strategies that might enhance the efficacy of the currently available treatments. Interestingly, a variety of ligands at nicotinic acetylcholine receptors (nAChRs) appear to have the potential to fulfill one or more of these desirable properties (i.e., multifunctional, repurposing, or adjunctive treatment potential). The purpose of this review (while not all-inclusive) is to provide an overview of a variety of nAChR ligands that demonstrate potential in these categories, particularly, "multifunctional" properties. Due to their densities in the mammalian brain and the amount of literature available, the review will focus on ligands of the high affinity α4β2 nAChR and the low affinity α7 nAChR.
Collapse
|
19
|
Sharma R, Thakur K, Kumar R, Kumar I, Sharma U. Distant C-H Activation/Functionalization: A New Horizon of Selectivity Beyond Proximity. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2015. [DOI: 10.1080/01614940.2015.1058623] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Gazizov AS, Smolobochkin AV, Voronina JK, Burilov AR, Pudovik MA. Acid-Catalyzed Reaction of (4,4-Diethoxybutyl)ureas with Phenols as a Novel Approach to the Synthesis of α-Arylpyrrolidines. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2015.1011340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Almir S. Gazizov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Andrey V. Smolobochkin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Julia K. Voronina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Alexander R. Burilov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Michail A. Pudovik
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
21
|
Guo C, Sun DW, Yang S, Mao SJ, Xu XH, Zhu SF, Zhou QL. Iridium-Catalyzed Asymmetric Hydrogenation of 2-Pyridyl Cyclic Imines: A Highly Enantioselective Approach to Nicotine Derivatives. J Am Chem Soc 2015; 137:90-3. [DOI: 10.1021/ja511422q] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Cui Guo
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Dong-Wei Sun
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shuang Yang
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shen-Jie Mao
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiao-Hua Xu
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J Med Chem 2014; 57:8204-23. [PMID: 24901260 PMCID: PMC4207546 DOI: 10.1021/jm401937a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Nicotinic acetylcholine receptors
(nAChRs) have been investigated
for developing drugs that can potentially treat various central nervous
system disorders. Considerable evidence supports the hypothesis that
modulation of the cholinergic system through activation and/or desensitization/inactivation
of nAChR holds promise for the development of new antidepressants.
The introductory portion of this Miniperspective discusses the basic
pharmacology that underpins the involvement of α4β2-nAChRs
in depression, along with the structural features that are essential
to ligand recognition by the α4β2-nAChRs. The remainder
of this Miniperspective analyzes reported nicotinic ligands in terms
of drug design considerations and their potency and selectivity, with
a particular focus on compounds exhibiting antidepressant-like effects
in preclinical or clinical studies. This Miniperspective aims to provide
an in-depth analysis of the potential for using nicotinic ligands
in the treatment of depression, which may hold some promise in addressing
an unmet clinical need by providing relief from depressive symptoms
in refractory patients.
Collapse
Affiliation(s)
- Li-Fang Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
23
|
Posadas I, López-Hernández B, Ceña V. Nicotinic receptors in neurodegeneration. Curr Neuropharmacol 2013; 11:298-314. [PMID: 24179465 PMCID: PMC3648781 DOI: 10.2174/1570159x11311030005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023] Open
Abstract
Many studies have focused on expanding our knowledge of the structure and diversity of peripheral and central nicotinic receptors. Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels, which include GABA (A and C), serotonin, and glycine receptors. Currently, 9 alpha (α2-α10) and 3 beta (β2-β4) subunits have been identified in the central nervous system (CNS), and these subunits assemble to form a variety of functional nAChRs. The pentameric combination of several alpha and beta subunits leads to a great number of nicotinic receptors that vary in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitize. In the CNS, nAChRs play crucial roles in modulating presynaptic, postsynaptic, and extrasynaptic signaling, and have been found to be involved in a complex range of CNS disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia, Tourette´s syndrome, anxiety, depression and epilepsy. Therefore, there is growing interest in the development of drugs that modulate nAChR functions with optimal benefits and minimal adverse effects. The present review describes the main characteristics of nAChRs in the CNS and focuses on the various compounds that have been tested and are currently in phase I and phase II trials for the treatment of neurodegenerative diseases including PD, AD and age-associated memory and mild cognitive impairment.
Collapse
Affiliation(s)
- Inmaculada Posadas
- Unidad Asociada Neurodeath. CSIC-Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas. Albacete, Spain and CIBERNED, Instituto de Salud Carlos III, Spain
| | | | | |
Collapse
|
24
|
Wang J, Li X, Yuan Q, Ren J, Huang J, Zeng B. Synthesis and Pharmacological Properties of 5-Alkyl Substituted Nicotine Analogs. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Quik M, Wonnacott S. α6β2* and α4β2* nicotinic acetylcholine receptors as drug targets for Parkinson's disease. Pharmacol Rev 2012; 63:938-66. [PMID: 21969327 DOI: 10.1124/pr.110.003269] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the "gold standard" for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
26
|
Garden JA, Kennedy AR, Mulvey RE, Robertson SD. Ambient temperature zincation of N-Boc pyrrolidine and its solvent dependency. Chem Commun (Camb) 2012; 48:5265-7. [DOI: 10.1039/c2cc31793a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Barker G, McGrath JL, Klapars A, Stead D, Zhou G, Campos KR, O’Brien P. Enantioselective, Palladium-Catalyzed α-Arylation of N-Boc Pyrrolidine: In Situ React IR Spectroscopic Monitoring, Scope, and Synthetic Applications. J Org Chem 2011; 76:5936-53. [DOI: 10.1021/jo2011347] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graeme Barker
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Julia L. McGrath
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Artis Klapars
- Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Darren Stead
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - George Zhou
- Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Kevin R. Campos
- Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Peter O’Brien
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
28
|
Liu J, Eaton JB, Caldarone B, Lukas RJ, Kozikowski AP. Chemistry and pharmacological characterization of novel nitrogen analogues of AMOP-H-OH (Sazetidine-A, 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) as α4β2-nicotinic acetylcholine receptor-selective partial agonists. J Med Chem 2010; 53:6973-85. [PMID: 20822184 DOI: 10.1021/jm100765u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to advance therapeutic applications of nicotinic ligands, continuing research efforts are being directed toward the identification and characterization of novel nicotinic acetylcholine receptor (nAChR) ligands that are both potent and subtype selective. Herein we report the synthesis and pharmacological evaluation of members of a new series of 3-alkoxy-5-aminopyridine derivatives that display good selectivity for the α4β2-nAChR subtype based on ligand binding and functional evaluations. The most potent ligand in this series, compound 64, showed high radioligand binding affinity and selectivity for rat α4β2-nAChR with a K(i) value of 1.2 nM and 4700-fold selectivity for α4β2- over α3β4-nAChR, and ∼100-fold selectivity for functional, high-sensitivity, human α4β2-nAChR over α3β4*-nAChR. In the mouse forced swim test, compound 64 exhibited antidepressant-like effects. Structure-activity relationship (SAR) analyses suggest that the introduction of additional substituents to the amino group present on the pyridine ring of the N-demethylated analogue of compound 17 can provide potent α4β2-nAChR-selective ligands for possible use in treatment of neurological and psychiatric disorders including depression.
Collapse
Affiliation(s)
- Jianhua Liu
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
29
|
Peixoto S, Nguyen TM, Crich D, Delpech B, Marazano C. One-Pot Formation of Piperidine- and Pyrrolidine-Substituted Pyridinium Salts via Addition of 5-Alkylaminopenta-2,4-dienals to N-Acyliminium Ions: Application to the Synthesis of (±)-Nicotine and Analogs. Org Lett 2010; 12:4760-3. [DOI: 10.1021/ol101783c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Peixoto
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Tuan Minh Nguyen
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - David Crich
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Bernard Delpech
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christian Marazano
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
30
|
Ghandi M, Taheri A, Abbasi A. Diastereoselective synthesis of nicotine derivatives via 1,3-dipolar cycloaddition reactions. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Huang K, Ortiz-Marciales M, De Jesús M, Stepanenko V. A New and Efficient Approach to the Synthesis of Nicotine and Anabasine Analogues. J Heterocycl Chem 2009; 46:1252-1258. [PMID: 20161612 DOI: 10.1002/jhet.233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A straightforward and practical approach was established for the synthesis of nicotine and anabasine analogues by the cyclization of mesylated 1-(3-pyridinyl)-1,4, and 1,5-diol derivatives to form the pyrrolidino or piperidino fragments. Nicotine analogue (S)-15 was prepared with good enantioselectivity using the developed azacyclization procedure of nonracemic (R)-1-pyridin-3-yl-butane-1,4-diol, which was obtained by the borane-mediated reduction of ketone 12 in the presence of the spiroborate ester derived from diphenyl prolinol and ethylene glycol.
Collapse
Affiliation(s)
- Kun Huang
- Department of Chemistry, University of Puerto Rico-Humacao, CUH Station, Humacao, Puerto Rico 00791-4300, USA
| | | | | | | |
Collapse
|
32
|
Scates BA, Lashbrook BL, Chastain BC, Tominaga K, Elliott BT, Theising NJ, Baker TA, Fitch RW. Polyethylene glycol-based homologated ligands for nicotinic acetylcholine receptors. Bioorg Med Chem 2008; 16:10295-300. [PMID: 19006672 PMCID: PMC2903455 DOI: 10.1016/j.bmc.2008.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/16/2008] [Accepted: 10/18/2008] [Indexed: 10/21/2022]
Abstract
A homologous series of polyethylene glycol (PEG) monomethyl ethers were conjugated with three ligand series for nicotinic acetylcholine receptors. Conjugates of acetylaminocholine, the cyclic analog 1-acetyl-4,4-dimethylpiperazinium, and pyridyl ether A-84543 were prepared. Each series was found to retain significant affinity at nicotinic receptors in rat cerebral cortex with tethers of up to six PEG units. Such compounds are hydrophilic ligands which may serve as models for fluorescent/affinity probes and multivalent ligands for nAChR.
Collapse
Affiliation(s)
- Bradley A. Scates
- Department of Chemistry, Indiana State University, 600 Chestnut Street, Science S35E, Terre Haute, IN 47809, USA
| | - Bethany L. Lashbrook
- Department of Chemistry, Indiana State University, 600 Chestnut Street, Science S35E, Terre Haute, IN 47809, USA
| | | | | | | | | | | | - Richard W. Fitch
- Department of Chemistry, Indiana State University, 600 Chestnut Street, Science S35E, Terre Haute, IN 47809, USA
| |
Collapse
|
33
|
Rao TS, Adams PB, Correa LD, Santori EM, Sacaan AI, Reid RT, Cosford NDP. Pharmacological characterization of (S)-(2)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine HCl (SIB-1508Y, Altinicline), a novel nicotinic acetylcholine receptor agonist. Brain Res 2008; 1234:16-24. [PMID: 18692487 DOI: 10.1016/j.brainres.2008.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/12/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022]
Abstract
(S)-(2)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine HCl (SIB-1508Y, Altinicline), is a subtype-selective neuronal nicotinic acetylcholine receptor (nAChR) agonist. In rodents, SIB-1508Y exhibited antidepressant activity, reversed age-related decrements in vigilance, and improved motor and cognitive function in primate models of Parkinson's disease. The goal of the study was to explore neurochemical effects of SIB-1508Y and its isomer, SIB-1680WD. In vitro, SIB-1508Y increased dopamine (DA) release from slices of rat striatum, nucleus accumbens (NAc), olfactory tubercles (OT) and prefrontal cortices (PFC) in a concentration-dependent manner. Relative to its robust effects on DA release from various brain regions, SIB-1508Y was minimally effective at increasing NE release from hippocampus or PFC, and 5-HT release from PFC. SIB-1680WD was less potent and efficacious than SIB-1508Y, but did not act as a partial agonist. Subcutaneous injection of SIB-1508Y (10 mg/kg) increased striatal DA release and this release was sensitive to blockade by the non-competitive nAChR antagonist, mecamylamine (Mec). SIB-1508Y also increased hippocampal ACh release selectively without affecting striatal ACh release. Hippocampal ACh release evoked by SIB-1508Y was attenuated by nAChR antagonists Mec and Dihydro-beta-erythroidine (DHbetaE), and also by the DA D1 receptor antagonist, SCH-23390. These results are consistent with previously established pharmacology of nAChR regulation of hippocampal ACh release. Repeated administration of SIB-1508Y did not result in an enhanced striatal DA release or hippocampal ACh release. In summary, the abilities of SIB-1508Y to release multiple neurotransmitters in distinct brain regions may contribute to its behavioral profile.
Collapse
Affiliation(s)
- Tadimeti S Rao
- Merck Research Laboratories, 3535 General Atomics Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Huang K, Merced FG, Ortiz-Marciales M, Meléndez HJ, Correa W, De Jesús M. Highly enantioselective borane reduction of heteroaryl and heterocyclic ketoxime ethers catalyzed by novel spiroborate ester derived from diphenylvalinol: application to the synthesis of nicotine analogues. J Org Chem 2008; 73:4017-26. [PMID: 18447392 PMCID: PMC2701197 DOI: 10.1021/jo800204n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric synthesis for the preparation of nonracemic amines bearing heterocyclic and heteroaromatic rings is described. A variety of important enantiopure thionyl and arylalkyl primary amines were afforded by the borane-mediated enantioselective reduction of O-benzyl ketoximes using 10% of catalyst 10 derived from ( S)-diphenylvalinol and ethylene glycol with excellent enantioselectivity, in up to 99% ee. The optimal condition for the first asymmetric reduction of 3- and 4-pyridyl-derived O-benzyl ketoxime ethers was achieved using 30% of catalytic loading in dioxane at 10 degrees C. ( S)- N-ethylnornicotine ( 3) was also successfully synthesized from the TIPS-protected ( S)-2-amino-2-pyridylethanol in 97% ee.
Collapse
Affiliation(s)
- Kun Huang
- Department of Chemistry, University of Puerto Rico-Humacao, CUH Station, Humacao, PR 00791, USA
| | | | | | | | | | | |
Collapse
|
35
|
Murphy JM, Liao X, Hartwig JF. Meta Halogenation of 1,3-Disubstituted Arenes via Iridium-Catalyzed Arene Borylation. J Am Chem Soc 2007; 129:15434-5. [DOI: 10.1021/ja076498n] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Quik M, Bordia T, O'Leary K. Nicotinic receptors as CNS targets for Parkinson's disease. Biochem Pharmacol 2007; 74:1224-34. [PMID: 17631864 PMCID: PMC2046219 DOI: 10.1016/j.bcp.2007.06.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/09/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Parkinson's disease is a debilitating neurodegenerative movement disorder characterized by damage to the nigrostriatal dopaminergic system. Current therapies are symptomatic only and may be accompanied by serious side effects. There is therefore a continual search for novel compounds for the treatment of Parkinson's disease symptoms, as well as to reduce or halt disease progression. Nicotine administration has been reported to improve motor deficits that arise with nigrostriatal damage in parkinsonian animals and in Parkinson's disease. In addition, nicotine protects against nigrostriatal damage in experimental models, findings that have led to the suggestion that the reduced incidence of Parkinson's disease in smokers may be due to the nicotine in tobacco. Altogether, these observations suggest that nicotine treatment may be beneficial in Parkinson's disease. Nicotine interacts with multiple nicotinic receptor (nAChR) subtypes in the peripheral and central nervous system, as well as in skeletal muscle. Work to identify the subtypes affected in Parkinson's disease is therefore critical for the development of targeted therapies. Results show that striatal alpha6beta2-containing nAChRs are particularly susceptible to nigrostriatal damage, with a decline in receptor levels that closely parallels losses in striatal dopamine. In contrast, alpha4beta2-containing nAChRs are decreased to a much smaller extent under the same conditions. These observations suggest that development of nAChR agonists or antagonists targeted to alpha6beta2-containing nAChRs may represent a particularly relevant target for Parkinson's disease therapeutics.
Collapse
Affiliation(s)
- Maryka Quik
- The Parkinson's Institute, Sunnyvale, CA 94089, USA.
| | | | | |
Collapse
|
37
|
Pogocki D, Ruman T, Danilczuk M, Danilczuk M, Celuch M, Wałajtys-Rode E. Application of nicotine enantiomers, derivatives and analogues in therapy of neurodegenerative disorders. Eur J Pharmacol 2007; 563:18-39. [PMID: 17376429 DOI: 10.1016/j.ejphar.2007.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/04/2007] [Accepted: 02/15/2007] [Indexed: 12/21/2022]
Abstract
This review gives a brief overview over the major aspects of application of the nicotine alkaloid and its close derivatives in the therapy of some neurodegenerative disorders and diseases (e.g. Alzheimer's disease, Parkinson's disease, Tourette's syndrome, schizophrenia etc.). The issues concerning methods of nicotine analysis and isolation, and some molecular aspects of nicotine pharmacology are included. The natural and synthetic analogues of nicotine that are considered for medical practice are also mentioned. The molecular properties of two naturally occurring nicotine enantiomers are compared--the less-common but less-toxic (R)-nicotine is suggested as a natural compound that may find its place in pharmaceutical practice.
Collapse
Affiliation(s)
- Dariusz Pogocki
- Rzeszów University of Technology, Faculty of Chemistry, Department of Biochemistry and Biotechnology, 6 Powstańców Warszawy Ave. 35-959 Rzeszów, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Shults EE, Musina LA, Adekenov SM, Tolstikov GA. Anabasine as a precursor for the synthesis of potential agonists of neuronal acetylcholine receptors. DOKLADY CHEMISTRY 2007. [DOI: 10.1134/s0012500807030019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Yin L, Liebscher J. Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem Rev 2006; 107:133-73. [PMID: 17212474 DOI: 10.1021/cr0505674] [Citation(s) in RCA: 1584] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lunxiang Yin
- Institute für Chemie, Humboldt-Universität Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | | |
Collapse
|
40
|
Chelucci G, Baldino S, Chessa S, Pinna GA, Soccolini F. An easy route to optically active 1-substituted-1-pyridyl-methylamines by diastereoselective reduction of enantiopure N-tert-butanesulfinyl ketimines. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.11.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Février FC, Smith ED, Comins DL. Regioselective C-2 and C-6 substitution of (S)-nicotine and nicotine derivatives. Org Lett 2006; 7:5457-60. [PMID: 16288530 DOI: 10.1021/ol052196j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Regioselective deprotonations of (S)-nicotine and derivatives at the C-2 and C-6 positions of the pyridine ring were performed in good to excellent yields. These methodologies allow the direct introduction of a plethora of functional groups onto the pyridine ring of nicotine.
Collapse
Affiliation(s)
- Florence C Février
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | |
Collapse
|
42
|
Wagner FF, Comins DL. Regioselective 5-, 4-, and 2-Substitution of (S)-6-Chloronicotine and 4-Substitution of (S)-5-Chloronicotine. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Diastereoselective reduction of enantiopure N-p-toluenesulfinyl ketimines derived from pyridyl ketones. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Yin L, Liebscher J, Erdmann F. New calcineurin inhibiting 3-dimethylaminopropyl substituted diarylheterocycles by sonogashira reactions and catalytic hydrogenation. J Heterocycl Chem 2005. [DOI: 10.1002/jhet.5570420717] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005; 48:4705-45. [PMID: 16033252 DOI: 10.1021/jm040219e] [Citation(s) in RCA: 433] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
46
|
|
47
|
Daly JW. Nicotinic agonists, antagonists, and modulators from natural sources. Cell Mol Neurobiol 2005; 25:513-52. [PMID: 16075378 DOI: 10.1007/s10571-005-3968-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/14/2004] [Indexed: 10/25/2022]
Abstract
1. Acetylcholine receptors were initially defined as nicotinic or muscarinic, based on selective activation by two natural products, nicotine and muscarine. Several further nicotinic agonists have been discovered from natural sources, including cytisine, anatoxin, ferruginine, anabaseine, epibatidine, and epiquinamide. These have provided lead structures for the design of a wide range of synthetic agents. 2. Natural sources have also provided competitive nicotinic antagonists, such as the Erythrina alkaloids, the tubocurarines, and methyllycaconitine. Noncompetitive antagonists, such as the histrionicotoxins, various izidines, decahydroquinolines, spiropyrrolizidine oximes, pseudophrynamines, ibogaine, strychnine, cocaine, and sparteine have come from natural sources. Finally, galanthamine, codeine, and ivermectin represent positive modulators of nicotinic function, derived from natural sources. 3. Clearly, research on acetylcholine receptors and functions has been dependent on key natural products and the synthetic agents that they inspired.
Collapse
Affiliation(s)
- John W Daly
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA.
| |
Collapse
|
48
|
Lin NH, Meyer MD. Recent developments in neuronal nicotinic acetylcholine receptor modulators. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.8.991] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Abstract
Nicotine is of importance as the addictive chemical in tobacco, pharmacotherapy for smoking cessation, a potential medication for several diseases, and a useful probe drug for phenotyping cytochrome P450 2A6 (CYP2A6). We review current knowledge about the metabolism and disposition kinetics of nicotine, some other naturally occurring tobacco alkaloids, and nicotine analogs that are under development as potential therapeutic agents. The focus is on studies in humans, but animal data are mentioned when relevant to the interpretation of human data. The pathways of nicotine metabolism are described in detail. Absorption, distribution, metabolism, and excretion of nicotine and related compounds are reviewed. Enzymes involved in nicotine metabolism including cytochrome P450 enzymes, aldehyde oxidase, flavin-containing monooxygenase 3, amine N-methyltransferase, and UDP-glucuronosyltransferases are represented, as well as factors affecting metabolism, such as genetic variations in metabolic enzymes, effects of diet, age, gender, pregnancy, liver and kidney diseases, and racial and ethnic differences. Also effects of smoking and various inhibitors and inducers, including oral contraceptives, on nicotine metabolism are discussed. Due to the significance of the CYP2A6 enzyme in nicotine clearance, special emphasis is given to the effects and population distributions of CYP2A6 alleles and the regulation of CYP2A6 enzyme.
Collapse
Affiliation(s)
- Janne Hukkanen
- Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco Genreral Hospital Medical Center, and the Department of Medicine, University of California, San Francisco, Box 1220, San Francisco, CA 94143-1220, USA
| | | | | |
Collapse
|
50
|
Rao TS, Sacaan AI, Menzaghi FM, Reid RT, Adams PB, Correa LD, Whelan KT, Vernier JM. Pharmacological characterization of SIB-1663, a conformationally rigid analog of nicotine. Brain Res 2004; 1003:42-53. [PMID: 15019562 DOI: 10.1016/j.brainres.2003.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
SIB-1663 ([+/-]-7-methoxy-2,3,3a,4,5,6,9b-hexahydro-1H-pyrrolo-[3,2h]-isoquinoline) is a conformationally restricted analog of nicotine (NIC). SIB-1663 exhibited modest affinities to cholinergic receptors (K(i) values displacing the binding of [(3)H]-nicotine (NIC) and [(3)H]-quinuclinidylbenzilate (QNB) binding were 1.0+/-0.3 and 2.6+/-0.3 microM, respectively) with no appreciable affinity to nearly 40 other receptors. SIB-1663 selectively activated alpha2beta4 and alpha4beta4 human recombinant neuronal nicotinic acetylcholine receptors (nAChRs) with no appreciable activation of alpha4beta2 nAChRs, the presumed high-affinity nAChRs in rodent brain. These properties led us to examine profile of SIB-1663 in native preparations. SIB-1663 increased DA release from the rat striatum (STR) and olfactory tubercles and NE release from hippocampus, thalamus and prefrontal cortex (PFC). SIB-1663 was equiefficacious to NIC in STR-DA and PFC-NE release assays and less efficacious than NIC in other release assays. SIB-1663 appeared to be partial agonist in the hippocampal NE release assay. SIB-1663-induced neurotransmitter release in vitro was relatively insensitive to the nAChR antagonists, mecamylamine (MEC) or dihydro-beta-erythroidine (DHbetaE) providing equivocal evidence for nAChR activity. SIB-1663 (3-30 mg/kg, s.c.) increased locomotor activity in naive rats in a novel environment, increased ipsilateral turning in rats with unilateral 6-OHDA nigrostriatal lesion and increased withdrawal latencies in the tail-flick assay. The in vivo effects of SIB-1663 in these assays showed varying degrees of sensitivity to nAChR antagonists in that the locomotor activity and turning behavior of SIB-1663 were partially sensitive to MEC, whereas the antinociceptive activity was completely sensitive to MEC. In addition, SIB-1663 (s.c. or i.c.v.) attenuated antinociceptive activity NIC given by the same route suggesting a partial agonist activity. SIB-1663 also increased the retention of avoidance learning in normal rats when administered immediately after the acquisition session. These data indicate that SIB-1663, a conformationally restricted analog of NIC, with distinct nAChR subtype selectivity from NIC exhibits contrasting pharmacology with some of its in vivo actions involving nAChRs.
Collapse
Affiliation(s)
- Tadimeti S Rao
- Merck Research Laboratories, 3535 General Atomics Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|