1
|
Pitasi G, Brancale A, Floris S, Fais A, Gitto R, De Luca L. Computational Approach to Identifying New Chemical Entities as Elastase Inhibitors with Potential Antiaging Effects. Int J Mol Sci 2024; 25:11174. [PMID: 39456954 PMCID: PMC11508974 DOI: 10.3390/ijms252011174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
In the aging process, skin morphology might be affected by wrinkle formation due to the loss of elasticity and resilience of connective tissues linked to the cleavage of elastin by the enzymatic activity of elastase. Little information is available about the structural requirements to efficiently inhibit elastase 1 (EC 3.4.21.36) expressed in skin keratinocytes. In this study, a structure-based approach led to the identification to the pharmacophoric hypotheses that described the main structural requirements for binding to porcine pancreatic elastase as a valuable tool for the development of skin therapeutic agents due to its similarity with human elastase 1. The obtained models were subsequently refined through the application of computational alanine-scanning mutagenesis to evaluate the effect of single residues on the binding affinity and protein stability; in turn, molecular dynamic simulations were carried out; these procedures led to a simplified model bearing few essential features, enabling a reliable collection of chemical features for their interactions with elastase. Then, a virtual screening campaign on the in-house library of synthetic compounds led to the identification of a nonpeptide-based inhibitor (IC50 = 60.4 µM) belonging to the class of N-substituted-1H-benzimidazol-2-yl]thio]acetamides, which might be further exploited to obtain more efficient ligands of elastase for therapeutic applications.
Collapse
Affiliation(s)
- Giovanna Pitasi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98125 Messina, Italy; (G.P.); (L.D.L.)
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic;
| | - Sonia Floris
- Department of Life and Environment Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (S.F.); (A.F.)
| | - Antonella Fais
- Department of Life and Environment Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (S.F.); (A.F.)
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98125 Messina, Italy; (G.P.); (L.D.L.)
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98125 Messina, Italy; (G.P.); (L.D.L.)
| |
Collapse
|
2
|
Easson MW, Jordan JH, Edwards JV, Prevost NT, Dupre RA, Hillyer MB, Lima IM, Nam S. Assessment of Cellulose Nanofiber-Based Elastase Biosensors to Inflammatory Disease as a Function of Spacer Length and Fluorescence Response. ACS APPLIED BIO MATERIALS 2024; 7:1490-1500. [PMID: 38377436 PMCID: PMC10951950 DOI: 10.1021/acsabm.3c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Inflammatory disease biomarker detection has become a high priority in point-of-care diagnostic research in relation to chronic wounds, with a variety of sensor-based designs becoming available. Herein, two primary aspects of biosensor design are examined: (1) assessment of a cellulose nanofiber (CNF) matrix derived from cotton ginning byproducts as a sensor transducer surface; and (2) assessment of the relation of spacer length and morphology between the CNF cellulose backbone and peptide fluorophore as a function of sensor activity for porcine pancreatic and human neutrophil elastases. X-ray crystallography, specific surface area, and pore size analyses confirmed the suitability of CNF as a matrix for wound care diagnostics. Based upon the normalized degree of substitution, a pegylated-linker connecting CNF transducer substrate to peptide fluorophore showed the greatest fluorescence response, compared to short- and long-chain alkylated linkers.
Collapse
Affiliation(s)
- Michael W. Easson
- US
Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, Louisiana 70124, United States
| | - Jacobs H. Jordan
- US
Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, Louisiana 70124, United States
| | - J. Vincent Edwards
- US
Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, Louisiana 70124, United States
| | - Nicolette T. Prevost
- US
Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, Louisiana 70124, United States
| | - Rebecca A. Dupre
- Oak
Ridge Institute for Science and Education, U.S. Department of Energy, 1299 Bethel Valley Rd, Oak
Ridge, Tennessee 37831, United States
| | - Matthew B. Hillyer
- US
Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, Louisiana 70124, United States
| | - Isabel M. Lima
- US
Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, Louisiana 70124, United States
| | - Sunghyun Nam
- US
Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, Louisiana 70124, United States
| |
Collapse
|
3
|
Nur S, Setiawan H, Hanafi M, Elya B. Phytochemical composition, antioxidant, in vitro and in silico studies of active compounds of Curculigo latifolia extracts as promising elastase inhibitor. Saudi J Biol Sci 2023; 30:103716. [PMID: 37457237 PMCID: PMC10344807 DOI: 10.1016/j.sjbs.2023.103716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Curculigo latifolia is a plant in the Hypoxidaceae family commonly used in herbal medicine. The study objective was to evaluate the antioxidant and anti-elastase properties of C. latifolia extracts in vitro and silico as a candidate for antiaging active ingredients. This study identified secondary metabolites of the hexane (HE), ethyl acetate (EAE), and ethanol extracts (EE) from the root (R), stem (S), and leaf (L) organs by LC-ESI-MS and evaluated in vitro antioxidant and inhibitor elastase activity. An antioxidant evaluation was performed using ABTS, Beta Carotene Bleaching (BCB), and Ferric Reduction Antioxidant Power (FRAP). Evaluation of anti-elastase was carried out using elastase and followed by an in silico study of molecular docking using the target protein elastase (1B0F). Fifteen C. latifolia metabolites were identified in C. latifolia extracts, most of which were phenolic compounds. In antioxidant testing, REE, REAE, SEE, and SEAE extracts showed potent antioxidant activity based on the ABTS, BCB, and FRAP methods. In anti-elastase testing, it was found that SEE, REE, REAE, and RHE extracts gave powerful inhibition of elastase activity (in the ranges of 16.89 to 27.91 µg/mL). The in-silico study demonstrated the potential of the identified metabolites to bind to the target protein 1B0F involved in remodeling the skin aging process. This research concludes that the extracts from C. latifolia have the potential to serve as an active antiaging source.
Collapse
Affiliation(s)
- Syamsu Nur
- Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
- Department of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90245, Indonesia
| | - Heri Setiawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Muhammad Hanafi
- Research Centre for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Serpong 15314, Indonesia
- Department of Phytochemistry, Faculty of Pharmacy, Pancasila University, South Jakarta 12640, Indonesia
| | - Berna Elya
- Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
4
|
Nag A, Dhull N, Gupta A. Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking. Mol Divers 2023; 27:487-509. [PMID: 35536529 PMCID: PMC9086669 DOI: 10.1007/s11030-022-10437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Tea (Camellia sinensis L.) is considered as to be one of the most consumed beverages globally and a reservoir of phytochemicals with immense health benefits. Despite numerous advantages, tea compounds lack a robust multi-disease target study. In this work, we presented a unique in silico approach consisting of molecular docking, multivariate statistics, pharmacophore analysis, and network pharmacology approaches. Eight tea phytochemicals were identified through literature mining, namely gallic acid, catechin, epigallocatechin gallate, epicatechin, epicatechin gallate (ECG), quercetin, kaempferol, and ellagic acid, based on their richness in tea leaves. Further, exploration of databases revealed 30 target proteins related to the pharmacological properties of tea compounds and multiple associated diseases. Molecular docking experiment with eight tea compounds and all 30 proteins revealed that except gallic acid all other seven phytochemicals had potential inhibitory activities against these targets. The docking experiment was validated by comparing the binding affinities (Kcal mol-1) of the compounds with known drug molecules for the respective proteins. Further, with the aid of the application of statistical tools (principal component analysis and clustering), we identified two major clusters of phytochemicals based on their chemical properties and docking scores (Kcal mol-1). Pharmacophore analysis of these clusters revealed the functional descriptors of phytochemicals, related to the ligand-protein docking interactions. Tripartite network was constructed based on the docking scores, and it consisted of seven tea phytochemicals (gallic acid was excluded) targeting five proteins and ten associated diseases. Epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex was found to be highest in docking performance (10 kcal mol-1). Finally, molecular dynamic simulation showed that ECG-1FYR could make a stable complex in the near-native physiological condition.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India.
| | - Nikhil Dhull
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| | - Ashmita Gupta
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| |
Collapse
|
5
|
Papaemmanouil CD, Peña-García J, Banegas-Luna AJ, Kostagianni AD, Gerothanassis IP, Pérez-Sánchez H, Tzakos AG. ANTIAGE-DB: A Database and Server for the Prediction of Anti-Aging Compounds Targeting Elastase, Hyaluronidase, and Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11112268. [PMID: 36421454 PMCID: PMC9686885 DOI: 10.3390/antiox11112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products bear a multivariate biochemical profile with antioxidant, anti-inflammatory, antibacterial, and antitumoral properties. Along with their natural sources, they have been widely used both as anti-aging and anti-melanogenic agents due to their effective contribution in the elimination of reactive oxygen species (ROS) caused by oxidative stress. Their anti-aging activity is mainly related to their capacity of inhibiting enzymes like Human Neutrophil Elastase (HNE), Hyaluronidase (Hyal) and Tyrosinase (Tyr). Herein, we accumulated literature information (covering the period 1965–2020) on the inhibitory activity of natural products and their natural sources towards these enzymes. To navigate this information, we developed a database and server termed ANTIAGE-DB that allows the prediction of the anti-aging potential of target compounds. The server operates in two axes. First a comparison of compounds by shape similarity can be performed against our curated database of natural products whose inhibitory potential has been established in the literature. In addition, inverse virtual screening can be performed for a chosen molecule against the three targeted enzymes. The server is open access, and a detailed report with the prediction results is emailed to the user. ANTIAGE-DB could enable researchers to explore the chemical space of natural based products, but is not limited to, as anti-aging compounds and can predict their anti-aging potential. ANTIAGE-DB is accessed online.
Collapse
Affiliation(s)
- Christina D. Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Antonio Jesús Banegas-Luna
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Androniki D. Kostagianni
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
- Correspondence: (H.P.-S.); (A.G.T.)
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence: (H.P.-S.); (A.G.T.)
| |
Collapse
|
6
|
Mengmeng G, Zilun Y, Yulan C, Danhua G, Mengtao M, Zhiliang S, Xueqiang C. Difluorinated Silyl Enol Ethers as Fluorine-Containing Building Blocks for the Synthesis of Organofluorine Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Ahmad J, Ikram S, Hafeez AB, Durdagi S. Physics-driven identification of clinically approved and investigation drugs against human neutrophil serine protease 4 (NSP4): A virtual drug repurposing study. J Mol Graph Model 2020; 101:107744. [PMID: 33032202 DOI: 10.1016/j.jmgm.2020.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
Abstract
Neutrophils synthesize four immune associated serine proteases: Cathepsin G (CTSG), Elastase (ELANE), Proteinase 3 (PRTN3) and Neutrophil Serine Protease 4 (NSP4). While previously considered to be immune modulators, overexpression of neutrophil serine proteases correlates with various disease conditions. Therefore, identifying novel small molecules that can potentially control or inhibit the proteolytic activity of these proteases is crucial to revert or temper the aggravated disease phenotype. To the best of our knowledge, although there is limited data for inhibitors of other neutrophil protease members, there is no previous clinical study of a synthetic small molecule inhibitor targeting NSP4. In this study, an integrated molecular modeling algorithm was performed within a virtual drug repurposing study to identify novel inhibitors for NSP4, using clinically approved and investigation drugs library (∼8000 compounds). Based on our rigorous filtration, we found that following molecules Becatecarin, Iogulamide, Delprostenate and Iralukast are predicted to block the activity of NSP4 by interacting with core catalytic residues. The selected ligands were energetically more favorable compared to the reference molecule. The result of this study identifies promising molecules as potential lead candidates.
Collapse
Affiliation(s)
- Jamshaid Ahmad
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Saima Ikram
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ahmer Bin Hafeez
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
8
|
Crocetti L, Giovannoni MP, Cantini N, Guerrini G, Vergelli C, Schepetkin IA, Khlebnikov AI, Quinn MT. Novel Sulfonamide Analogs of Sivelestat as Potent Human Neutrophil Elastase Inhibitors. Front Chem 2020; 8:795. [PMID: 33033716 PMCID: PMC7491426 DOI: 10.3389/fchem.2020.00795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human neutrophil elastase (HNE) is involved in a number of essential physiological processes and has been identified as a potential therapeutic target for treating acute and chronic lung injury. Nevertheless, only one drug, Sivelestat, has been approved for clinical use and just in Japan and the Republic of Korea. Thus, there is an urgent need for the development of low-molecular-weight synthetic HNE inhibitors, and we have developed a wide variety of HNE inhibitors with various chemical scaffolds. We hypothesized that substitution of the active fragment of Sivelestat into these HNE inhibitor scaffolds could modulate their inhibitory activity, potentially resulting in higher efficacy and/or improved chemical stability. Here, we report the synthesis, biological evaluation, and molecular modeling studies of novel compounds substituted with the 4-(sulfamoyl)phenyl pivalate fragment necessary for Sivelestat activity. Many of these compounds were potent HNE inhibitors with activity in the nanomolar range (IC50 = 19-30 nM for compounds 3a, 3b, 3f, 3g, and 9a), confirming that the 4-(sulfamoyl)phenyl pivalate fragment could substitute for the N-CO group at position 1 and offer a different point of attack for Ser195. Results of molecular docking of the these pivaloyl-containing compounds into the HNE binding site supported the mechanism of inhibitory activity involving a nucleophilic attack of Ser195 from the catalytic triad onto the pivaloyl carbonyl group. Furthermore, some compounds (e.g., 3a and 3f) had a relatively good stability in aqueous buffer (t1/2 > 9 h). Thus, this novel approach led to the identification of a number of potent HNE inhibitors that could be used as leads for the further development of new therapeutics.
Collapse
Affiliation(s)
- Letizia Crocetti
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Maria Paola Giovannoni
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Niccolò Cantini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Gabriella Guerrini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudia Vergelli
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | | | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
9
|
Jobichen C, Prabhakar MT, Loh SN, Sivaraman J. Structural Basis for the Inhibition Mechanism of Ecotin against Neutrophil Elastase by Targeting the Active Site and Secondary Binding Site. Biochemistry 2020; 59:2788-2795. [PMID: 32657577 DOI: 10.1021/acs.biochem.0c00493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human neutrophil elastase (hNE) is a serine protease that plays a major role in defending the bacterial infection. However, elevated expression of hNE is reported in lung and breast cancer, among others. Moreover, hNE is a target for the treatment of cardiopulmonary diseases. Ecotin (ET) is a serine protease inhibitor present in many Gram-negative bacteria, and it plays a physiological role in inhibiting host proteases, including hNE. Despite this known interaction, the structure of the hNE-ET complex has not been reported, and the mechanism of ecotin inhibition is not available. We determined the structure of the hNE-ET complex by molecular replacement method. The structure of the hNE-ET complex revealed the presence of six interface regions comprising 50s, 60s, and 80s loops, between the ET dimer and two independent hNE monomers, which explains the high affinity of ecotin for hNE (12 pM). Notably, we observed a secondary binding site of hNE located 24 Å from the primary binding site. Comparison of the closely related trypsin-ecotin complex with our hNE-ET complex shows movement of the backbone atoms of the 80s and 50s loops by 4.6 Å, suggesting the flexibility of these loops in inhibiting a range of proteases. Through a detailed structural analysis, we demonstrate the flexibility of the hNE subsites to dock various side chains concomitant with inhibition, indicating the broad specificity of hNE against various inhibitors. These findings will aid in the design of chimeric inhibitors that target both sites of hNE and in the development of therapeutics for controlling hNE-mediated pathogenesis.
Collapse
Affiliation(s)
- Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | - Su Ning Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
10
|
Liu X, Wen J, Yao L, Nie H, Jiang R, Chen W, Zhang X. Highly Chemo- and Enantioselective Hydrogenation of 2-Substituted-4-oxo-2-alkenoic Acids. Org Lett 2020; 22:4812-4816. [PMID: 32519872 DOI: 10.1021/acs.orglett.0c01618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly chemo- and enantioselective hydrogenation of (E)-2-substituted-4-oxo-2-alkenoic acids was established for the first time using the Rh/JosiPhos complex, affording a series of chiral α-substituted-γ-keto acids with excellent results (up to 99% yield and >99% ee) and high efficiency (up to 3000 TON). In addition, the importance of this methodology was further demonstrated by a concise and gram-scale synthesis of the anti-inflammatory drug (R)-flobufen.
Collapse
Affiliation(s)
- Xian Liu
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Yao
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Huifang Nie
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ru Jiang
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Weiping Chen
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Jiang X, Meyer D, Baran D, Cortés González MA, Szabó KJ. Trifluoromethylthiolation, Trifluoromethylation, and Arylation Reactions of Difluoro Enol Silyl Ethers. J Org Chem 2020; 85:8311-8319. [PMID: 32441100 PMCID: PMC7339110 DOI: 10.1021/acs.joc.0c01030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
This study reports a new application
area of difluoro enol silyl
ethers, which can be easily obtained from trifluoromethyl ketones.
The main focus has been directed to the electrophilic fluoroalkylation
and arylation methods. The trifluoromethylthiolation of difluoro enol
silyl ethers can be used for the construction of a novel trifluoromethylthio-α,α-difluoroketone
(−COCF2SCF3) functionality. The −CF2SCF3 moiety has interesting properties due to the
electron-withdrawing, albeit lipophilic, character of the SCF3 group, which can be combined with the high electrophilicity
of the difluoroketone motif. The methodology could also be extended
to difluoro homologation of the trifluoromethyl ketones using the
Togni reagent. In addition, we presented a method for transition-metal-free
arylation of difluoro enol silyl ethers based on hypervalent iodines.
Collapse
Affiliation(s)
- Xingguo Jiang
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Denise Meyer
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Dominik Baran
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | | | - Kálmán J Szabó
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
12
|
Li X, Li J, Zhang B, Gu Y, Li Q, Gu G, Xiong J, Li Y, Yang X, Qian Z. Comparative peptidome profiling reveals critical roles for peptides in the pathology of pancreatic cancer. Int J Biochem Cell Biol 2020; 120:105687. [PMID: 31927104 DOI: 10.1016/j.biocel.2020.105687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUNDS/AIMS Pancreatic cancer is a digestive system tumour disease with a notably poor prognosis and a 5-year survival rate of less than 10 %. In recent years, peptide drugs have shown great clinical value in antitumour applications. We aim to identify differentially expressed peptides by using peptidomics techniques to explore the mechanisms involved in the development and pathology of pancreatic cancer. METHODS We performed peptidomic analysis of pancreatic cancer and paired paracancerous tissues by using ITRAQ labelling technology and conducted in-depth bioinformatics analysis and functional studies on differentially expressed peptides. RESULTS A total of 2,881 peptides were identified, of which 133 were differentially expressed (116 were upregulated and 17 were downregulated). By using GO analysis, the differentially expressed peptides were found to be closely related to the tumour microenvironment and extracellular matrix. KEGG enrichment analysis revealed that precursor proteins were closely related to the T2DM and RAS signalling pathways. The endogenous peptide P1DG can significantly inhibit the proliferation, migration and invasion of pancreatic cancer cells. CONCLUSION P1DG and its precursor GAPDH may be closely related to the proliferation, migration and invasion of pancreatic cancer. Peptidomics can aid in understanding the pathogenesis of pancreatic cancer more comprehensively.
Collapse
Affiliation(s)
- Xingxing Li
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Bin Zhang
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqing Gu
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Guangliang Gu
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiageng Xiong
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Li
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhuyin Qian
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Hochscherf J, Pietsch M, Tieu W, Kuan K, Abell AD, Gütschow M, Niefind K. Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2' site binding inhibitor. Acta Crystallogr F Struct Biol Commun 2018; 74:480-489. [PMID: 30084397 PMCID: PMC6096481 DOI: 10.1107/s2053230x1800537x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3-thiazolidine-2,4-dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small-molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate-recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2' site is blocked that normally binds the second side chain at the C-terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N-glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Markus Pietsch
- Centre of Pharmacology, Medical Faculty, Universität zu Köln, Gleueler Str. 24, 50931 Cologne, Germany
| | - William Tieu
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Kevin Kuan
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| |
Collapse
|
14
|
Loo S, Kam A, Xiao T, Nguyen GKT, Liu CF, Tam JP. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa. Sci Rep 2016; 6:39401. [PMID: 27991569 PMCID: PMC5171801 DOI: 10.1038/srep39401] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023] Open
Abstract
Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases.
Collapse
Affiliation(s)
- Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Giang K T Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
15
|
Medicinal applications of perfluoroalkylated chain-containing compounds. Future Med Chem 2015; 6:1201-29. [PMID: 25078138 DOI: 10.4155/fmc.14.53] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Compounds with polyfluorinated molecular fragments possess unique properties associated with the presence of a large number of fluorine atoms that affect lipophilicity and conformational rigidity of the parent molecule along with other effects. The aim of this review is to provide an overview of synthesized compounds possessing perfluoroalkylated or polyfluorinated chains that have been tested for bioactivity or as potential drug candidates for the treatment of various diseases. As far as the length of the perfluoroalkylated chain is concerned the focus is centered on the compound bearing perfluoroethyl or tetrafluoroethyl as well as longer chains. The perfluoroalkylated compounds discussed are classified according to their biological activity.
Collapse
|
16
|
Nenajdenko VG, Muzalevskiy VM, Shastin AV. Polyfluorinated ethanes as versatile fluorinated C2-building blocks for organic synthesis. Chem Rev 2015; 115:973-1050. [PMID: 25594605 DOI: 10.1021/cr500465n] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Valentine G Nenajdenko
- Department of Chemistry, Moscow State University , Leninskie Gory, Moscow 119992, Russia
| | | | | |
Collapse
|
17
|
Huo X, Quan M, Yang G, Zhao X, Liu D, Liu Y, Zhang W. Hydrogen-Bond-Activated Palladium-Catalyzed Allylic Alkylation via Allylic Alkyl Ethers: Challenging Leaving Groups. Org Lett 2014; 16:1570-3. [DOI: 10.1021/ol5000988] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaohong Huo
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Mao Quan
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Guoqiang Yang
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiaohu Zhao
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Delong Liu
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yangang Liu
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Barros SC, Louro RO, Micaêlo NM, Martins JA, Marcos JC, Cavaco-Paulo A. NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Ma Z, Xie F, Yu H, Zhang Y, Wu X, Zhang W. Copper-catalyzed asymmetric 1,4-conjugate addition of Grignard reagents to linear α,β,γ,δ-unsaturated ketones. Chem Commun (Camb) 2013; 49:5292-4. [DOI: 10.1039/c3cc42088d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Feng L, Zhu W, Huang C, Li Y. Direct interaction of ONO-5046 with human neutrophil elastase through ¹H NMR and molecular docking. Int J Biol Macromol 2012; 51:196-200. [PMID: 22579959 DOI: 10.1016/j.ijbiomac.2012.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/26/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022]
Abstract
Human neutrophil elastase (HNE) has been implicated as a major contributor in the pathogenesis of diseases, such as pulmonary emphysema, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and other inflammatory diseases. Therefore, searching for appropriate and potential human neutrophil elastase inhibitors (HNEI) that would restore the balance between the free enzyme and the endogenous inhibitors would be of therapeutic interest. ONO-5046 is the first specific HNEI to improve respiratory function and protect lung tissues against various lung injuries. However, the mechanism of ONO-5046 to HNE is still unclear. In this study, the binding properties of ONO-5046 were investigated through (1)H NMR, molecular docking, and bioassay methods to understand the effect of ONO-5046 to HNE. The proton spin-lattice relaxation rate and molecular rotational correlation time results indicated that ONO-5046 has higher affinity with HNE. The molecular docking study showed that ONO-5046 is perfectly matched for the primary enzyme specificity pocket (S1 pocket), and is tightly bound to this pocket of HNE through hydrophobic and hydrogen bonding interactions. The results of both methods were validated through analysis of the HNE inhibitory activity bioassay of ONO-5046 with an IC(50) value of 87.05 nM. Our data suggested that ONO-5046 could bind to HNE through direct interaction, and that molecular docking and NMR methods are valid approaches to survey new HNEI.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | | | | | | |
Collapse
|
21
|
Estácio SG, Moreira R, Guedes RC. Characterizing the Dynamics and Ligand-Specific Interactions in the Human Leukocyte Elastase through Molecular Dynamics Simulations. J Chem Inf Model 2011; 51:1690-702. [DOI: 10.1021/ci200076k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sílvia G. Estácio
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
22
|
Vasconcelos A, Azoia NG, Carvalho AC, Gomes AC, Güebitz G, Cavaco-Paulo A. Tailoring elastase inhibition with synthetic peptides. Eur J Pharmacol 2011; 666:53-60. [PMID: 21658384 DOI: 10.1016/j.ejphar.2011.05.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/13/2011] [Accepted: 05/22/2011] [Indexed: 10/18/2022]
Abstract
Chronic wounds are the result of excessive amounts of tissue destructive proteases such as human neutrophil elastase (HNE). The high levels of this enzyme found on those types of wounds inactivate the endogenous inhibitor barrier thus, the search for new HNE inhibitors is required. This work presents two new HNE inhibitor peptides, which were synthesized based on the reactive-site loop of the Bowman-Birk inhibitor protein. The results obtained indicated that these new peptides are competitive inhibitors for HNE and, the inhibitory activity can be modulated by modifications introduced at the N- and C-terminal of the peptides. Furthermore, these peptides were also able to inhibit elastase from a human wound exudate while showing no cytotoxicity against human skin fibroblasts in vitro, greatly supporting their potential application in chronic wound treatment.
Collapse
Affiliation(s)
- Andreia Vasconcelos
- Universidade do Minho, Departamento de Engenharia Têxtil, Campus de Azurém, 4800-058, Guimarães, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Hansen G, Gielen-Haertwig H, Reinemer P, Schomburg D, Harrenga A, Niefind K. Unexpected active-site flexibility in the structure of human neutrophil elastase in complex with a new dihydropyrimidone inhibitor. J Mol Biol 2011; 409:681-91. [PMID: 21549129 DOI: 10.1016/j.jmb.2011.04.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 12/21/2022]
Abstract
Human neutrophil elastase (HNE), a trypsin-type serine protease, is of pivotal importance in the onset and progression of chronic obstructive pulmonary disease (COPD). COPD encompasses a group of slowly progressive respiratory disorders and is a major medical problem and the fifth leading cause of death worldwide. HNE is a major target for the development of compounds that inhibit the progression of long-term lung function decline in COPD patients. Here, we present the three-dimensional structure of a potent dihydropyrimidone inhibitor (DHPI) non-covalently bound to HNE at a resolution of 2.0 Å. The inhibitor binds to the active site in a unique orientation addressing S1 and S2 subsites of the protease. To facilitate further analysis of this binding mode, we determined the structure of the uncomplexed enzyme at a resolution of 1.86 Å. Detailed comparisons of the HNE:DHPI complex with the uncomplexed HNE structure and published structures of other elastase:inhibitor complexes revealed that binding of DHPI leads to large conformational changes in residues located in the S2 subsite. The rearrangement of residues Asp95-Leu99B creates a deep, well-defined cavity, which is filled by the P2 moiety of the inhibitor molecule to almost perfect shape complementarity. The shape of the S2 subsite in complex with DHPI clearly differs from all other observed HNE structures. The observed structural flexibility of the S2 subsite is a key feature for the understanding of the binding mode of DHPIs in general and the development of new HNE selective inhibitors.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Yu XQ, Shirai T, Yamamoto Y, Miyaura N. Rhodium-Catalyzed 1,4-Addition of Lithium 2-Furyltriolborates to Unsaturated Ketones and Esters for Enantioselective Synthesis of γ-Oxo-Carboxylic Acids By Oxidation of the Furyl Ring with Ozone. Chem Asian J 2011; 6:932-7. [DOI: 10.1002/asia.201000589] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 11/08/2022]
|
25
|
The effect of the P1 side chain on the binding of optimized carboxylate and activated carbonyl inhibitors of the hepatitis C virus NS3 protease. Future Med Chem 2010; 2:1073-81. [DOI: 10.4155/fmc.10.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peptidyl inhibitors of the hepatitis C virus NS3 protease hold much promise as direct-acting antiviral agents against hepatitis C infection. The optimization of N-terminal cleavage products, found to exhibit activity (product inhibition) against the enzyme, has led to potent tripeptide inhibitors that bear free C-terminal carboxylate groups. An analogous activated carbonyl compound (pentafluoroethyl ketone) bearing a P1 norvaline (Nva) was found to possess comparable activity against hepatitis C virus protease. However, an analogue bearing an aminocyclopropylcarboxylic acid (Acca) P1 residue exhibited very poor activity. 19F-NMR studies indicate that the propensity of the Acca-derived activated carbonyl to form hemiketals is only slightly reduced compared with that of a P1 Nva equivalent. These results, as well as molecular modeling studies, argue against steric hindrance of the nucleophilic attack of Ser-139 accounting for the poor mechanism-based inhibition by the former. We hypothesize that the conformational properties of the respective C-termini in the context of an adaptable active site account for the divergent P1 structure–activity relationships.
Collapse
|
26
|
Hajjar E, Broemstrup T, Kantari C, Witko-Sarsat V, Reuter N. Structures of human proteinase 3 and neutrophil elastase--so similar yet so different. FEBS J 2010; 277:2238-54. [PMID: 20423453 DOI: 10.1111/j.1742-4658.2010.07659.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteinase 3 and neutrophil elastase are serine proteinases of the polymorphonuclear neutrophils, which are considered to have both similar localization and ligand specificity because of their high sequence similarity. However, recent studies indicate that they might have different and yet complementary physiologic roles. Specifically, proteinase 3 has intracellular specific protein substrates resulting in its involvement in the regulation of intracellular functions such as proliferation or apoptosis. It behaves as a peripheral membrane protein and its membrane expression is a risk factor in chronic inflammatory diseases. Moreover, in contrast to human neutrophil elastase, proteinase 3 is the preferred target antigen in Wegener's granulomatosis, a particular type of vasculitis. We review the structural basis for the different ligand specificities and membrane binding mechanisms of both enzymes, as well as the putative anti-neutrophil cytoplasm autoantibody epitopes on human neutrophil elastase 3. We also address the differences existing between murine and human enzymes, and their consequences with respect to the development of animal models for the study of human proteinase 3-related pathologies. By integrating the functional and the structural data, we assemble many pieces of a complicated puzzle to provide a new perspective on the structure-function relationship of human proteinase 3 and its interaction with membrane, partner proteins or cleavable substrates. Hence, precise and meticulous structural studies are essential tools for the rational design of specific proteinase 3 substrates or competitive ligands that modulate its activities.
Collapse
Affiliation(s)
- Eric Hajjar
- Dipartimento di Fisica, University of Cagliari (CA), Italy
| | | | | | | | | |
Collapse
|
27
|
Yashiro M, Kawakami Y, Taya JI, Arai S, Fujii Y. Zn(ii) complex for selective and rapid scission of protein backbone. Chem Commun (Camb) 2009:1544-6. [DOI: 10.1039/b818022a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Boyer N, Gloanec P, De Nanteuil G, Jubault P, Quirion JC. Synthesis of α,α-Difluoro-β-amino Esters orgem-Difluoro-β-lactams as Potential Metallocarboxypeptidase Inhibitors. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800363] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Li G, van der Donk WA. Efficient synthesis of suitably protected beta-difluoroalanine and gamma-difluorothreonine from L-ascorbic acid. Org Lett 2007; 9:41-4. [PMID: 17192080 PMCID: PMC2593874 DOI: 10.1021/ol062401a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Fluorinated amino acids are useful building blocks for the preparation of biologically active peptides and peptidomimetics with increased metabolic stability. We report here the synthesis of two fluorinated amino acids, beta-difluoroalanine and gamma-difluorothreonine, as analogues of Ser and Thr, respectively. These compounds were suitably protected for Fmoc-based solid-phase peptide synthesis. Once incorporated into peptides, they may serve as alternative substrates or inhibitors of lantibiotic synthetases that posttranslationally dehydrate Ser and Thr residues to dehydroalanine and dehydrobutyrine, respectively.
Collapse
|
30
|
Hajjar E, Korkmaz B, Gauthier F, Brandsdal BO, Witko-Sarsat V, Reuter N. Inspection of the binding sites of proteinase3 for the design of a highly specific substrate. J Med Chem 2006; 49:1248-60. [PMID: 16480262 DOI: 10.1021/jm051018t] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteinase3 (PR3) and human neutrophil elastase (HNE) are homologous proteases from the polymorphonuclear neutrophils and have been thought for a long time to have close enzymatic specificity. We have used molecular dynamics simulations to investigate and compare the interactions between different peptides and the two enzymes. The important role played especially by the C-terminal part of the peptides is confirmed. We provide a map of the subsites of PR3 and a description of the interaction scheme for six ligands. The main difference between HNE and PR3 concerns S2, S1', S2', and S3'. The recognition subsites in PR3 are interconnected; in particular, Lys99 participates to a hydrophobic (S4) and a polar (S2) pocket. On the basis of the simulations, we suggest that VADVKDR is a highly specific sequence for PR3; enzymatic assays confirm that it is cleaved by PR3 with a high specificity constant (k(cat)/K(m) = 3,400,000 M(-1) s(-1)) and not by HNE.
Collapse
Affiliation(s)
- Eric Hajjar
- Computational Biology Unit, BCCS, University of Bergen, N-5008 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
31
|
Steinbrecher T, Case DA, Labahn A. A Multistep Approach to Structure-Based Drug Design: Studying Ligand Binding at the Human Neutrophil Elastase. J Med Chem 2006; 49:1837-44. [PMID: 16539369 DOI: 10.1021/jm0505720] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we show that a combination of different theoretical methods is a viable approach to calculate the binding affinities of new ligands for the human neutrophile elastase. This protease degrades elastin and likely aids neutrophils in fulfilling their immunological functions. Abnormally high human neutrophil elastase (HNE) levels are involved in several diseases; therefore, inhibitors of HNE are of interest as targets for drug design. A recent study has revealed that cinnamic acid and bornyl ester derivatives bind to HNE, but DeltaG0 values from ligand docking results exhibited no correlation with those calculated from the IC50 values. To accurately compute binding affinities, we generated possible protein ligand complex structures by ligand docking calculations. For each of the ligands, the 30 most likely placements were used as starting points of nanosecond length molecular dynamics simulations. The binding free energies for these complex structures were estimated using a continuum solvent (MM-PBSA) approach. These results, along with structural data from the molecular dynamics runs, allowed the identification of a group of similar placements that serve as a model for the natural protein ligand complex structure. This structural model was used to perform thermodynamic integration (TI) calculations to obtain the relative binding free energies of similar ligands to HNE. The TI results were in quantitative agreement with the measured binding affinities. Thus, the presented approach can be used to generate a probable complex structure for known ligands to HNE and to use such a structure to calculate the effects of small ligand modifications on ligand binding, possibly leading to new inhibitors with improved binding affinities.
Collapse
Affiliation(s)
- Thomas Steinbrecher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 23a, 79104 Freiburg, Germany
| | | | | |
Collapse
|
32
|
Czapinska H, Helland R, Smalås AO, Otlewski J. Crystal structures of five bovine chymotrypsin complexes with P1 BPTI variants. J Mol Biol 2005; 344:1005-20. [PMID: 15544809 DOI: 10.1016/j.jmb.2004.09.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 09/24/2004] [Accepted: 09/28/2004] [Indexed: 11/28/2022]
Abstract
The bovine chymotrypsin-bovine pancreatic trypsin inhibitor (BPTI) interaction belongs to extensively studied models of protein-protein recognition. The accommodation of the inhibitor P1 residue in the S1 binding site of the enzyme forms the hot spot of this interaction. Mutations introduced at the P1 position of BPTI result in a more than five orders of magnitude difference of the association constant values with the protease. To elucidate the structural aspects of the discrimination between different P1 residues, crystal structures of five bovine chymotrypsin-P1 BPTI variant complexes have been determined at pH 7.8 to a resolution below 2 A. The set includes polar (Thr), ionizable (Glu, His), medium-sized aliphatic (Met) and large aromatic (Trp) P1 residues and complements our earlier studies of the interaction of different P1 side-chains with the S1 pocket of chymotrypsin. The structures have been compared to the complexes of proteases with similar and dissimilar P1 preferences, including Streptomyces griseus proteases B and E, human neutrophil elastase, crab collagenase, bovine trypsin and human thrombin. The S1 sites of these enzymes share a common general shape of significant rigidity. Large and branched P1 residues adapt in their complexes similar conformations regardless of the polarity and size differences between their S1 pockets. Conversely, long and flexible residues such as P1 Met are present in the disordered form and display a conformational diversity despite similar inhibitory properties with respect to most enzymes studied. Thus, the S1 specificity profiles of the serine proteases appear to result from the precise complementarity of the P1-S1 interface and minor conformational adjustments occurring upon the inhibitor binding.
Collapse
Affiliation(s)
- Honorata Czapinska
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | |
Collapse
|
33
|
Zhang FY, Corey EJ. Highly Enantioselective Dimerization of α,β-Enones Catalyzed by a Rigid Quaternary Ammonium Salt. Org Lett 2004; 6:3397-9. [PMID: 15355061 DOI: 10.1021/ol048583v] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] The chiral quaternary ammonium salt 1 served as a phase-transfer catalyst for the enantioselective dimerization of alpha,beta-enones, providing a route for the asymmetric syntheses of chiral 1,5-dicarbonyl compounds and alpha-alkylated gamma-keto acids.
Collapse
Affiliation(s)
- Fu-Yao Zhang
- Department of Chemistry and Chemical Biology Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
34
|
Gérard S, Galleni M, Dive G, Marchand-Brynaert J. Synthesis and evaluation of N1/C4-substituted β-lactams as PPE and HLE inhibitors. Bioorg Med Chem 2004; 12:129-38. [PMID: 14697778 DOI: 10.1016/j.bmc.2003.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
4-(Alkylamino)carbonyl-1-(alkoxy)carbonyl-2-azetidinones (9-11) have been prepared in five steps from 4-(benzyloxy)carbonyl-1-(t-butyldimethyl)silyl-2-azetidinone (1). The beta-lactam reactivity of 9 has been established by 1H NMR experiment. Compound 11 was a good reversible inhibitor of PPE and HLE. Based on theoretical design, series of 2-azetidinones (12-17) and 4-(alkoxy)carbonyl-2-azetidinones (18-21) bearing various carbonyl (ester, thiolester, amide) and thiocarbonyl (thioamide) functionalities at position N1 were similarly prepared. In the absence of C4-substituent, the compounds were inactive against elastases. On the other hand, 4-(benzyloxy)carbonyl-1-(ethylthioxy)carbonyl-2-azetidinone (19) and 4-(benzyloxy)carbonyl-1-(benzylamino)thiocarbonyl-2-azetidinone (21) were both good reversible inhibitors, but acting most probably via different mechanisms (enzymic processing of the exocyclic ester function or beta-lactam ring opening).
Collapse
Affiliation(s)
- Stéphane Gérard
- Unité de Chimie Organique et Médicinale, Université catholique de Louvain, Bâtiment Lavoisier, place Louis Pasteur 1, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
35
|
Helland R, Czapinska H, Leiros I, Olufsen M, Otlewski J, Smalås AO. Structural consequences of accommodation of four non-cognate amino acid residues in the S1 pocket of bovine trypsin and chymotrypsin. J Mol Biol 2003; 333:845-61. [PMID: 14568540 DOI: 10.1016/j.jmb.2003.08.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Crystal structures of P1 Gly, Val, Leu and Phe bovine pancreatic trypsin inhibitor (BPTI) variants in complex with two serine proteinases, bovine trypsin and chymotrypsin, have been determined. The association constants for the four mutants with the two enzymes show that the enlargement of the volume of the P1 residue is accompanied by an increase of the binding energy, which is more pronounced for bovine chymotrypsin. Since the conformation of the P1 side-chains in the two S1 pockets is very similar, we suggest that the difference in DeltaG values between the enzymes must arise from the more polar environment of the S1 site of trypsin. This results mainly from the substitutions of Met192 and Ser189 observed in chymotrypsin with Gln192 and Asp189 present in trypsin. The more polar interior of the S1 site of trypsin is reflected by a much higher order of the solvent network in the empty pocket of the enzyme, as is observed in the complexes of the two enzymes with the P1 Gly BPTI variant. The more optimal binding of the large hydrophobic P1 residues by chymotrypsin is also reflected by shrinkage of the S1 pocket upon the accommodation of the cognate residues of this enzyme. Conversely, the S1 pocket of trypsin expands upon binding of such side-chains, possibly to avoid interaction with the polar residues of the walls. Further differentiation between the two enzymes is achieved by small differences in the shape of the S1 sites, resulting in an unequal steric hindrance of some of the side-chains, as observed for the gamma-branched P1 Leu variant of BPTI, which is much more favored by bovine chymotrypsin than trypsin. Analysis of the discrimination of beta-branched residues by trypsin and chymotrypsin is based on the complexes with the P1 Val BPTI variant. Steric repulsion of the P1 Val residue by the walls of the S1 pocket of both enzymes prevents the P1 Val side-chain from adopting the most optimal chi1 value.
Collapse
Affiliation(s)
- Ronny Helland
- Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
36
|
Bandera Y, Yemets S, Timoshenko V, Nesterenko A, Chernega A, Shermolovich Y. Synthesis and some chemical properties of the 6-arylsulfonyl-6-polyfluoroalkanoyl-5,6-dihydro-2H-thiins—new fluorine-containing ketones. J Fluor Chem 2003. [DOI: 10.1016/s0022-1139(03)00134-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Marsilje TH, Hedrick MP, Desharnais J, Tavassoli A, Zhang Y, Wilson IA, Benkovic SJ, Boger DL. Design, synthesis, and biological evaluation of simplified alpha-keto heterocycle, trifluoromethyl ketone, and formyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. Bioorg Med Chem 2003; 11:4487-501. [PMID: 13129585 DOI: 10.1016/s0968-0896(03)00456-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of simplified alpha-keto heterocycle, trifluoromethyl ketone, and formyl substituted folate analogues lacking the benzoylglutamate subunit were prepared and examined as potential inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase).
Collapse
Affiliation(s)
- Thomas H Marsilje
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hinchliffe PS, Wood JM, Davis AM, Austin RP, Beckett RP, Page MI. Structure-reactivity relationships in the inactivation of elastase by beta-sultams. Org Biomol Chem 2003; 1:67-80. [PMID: 12929392 DOI: 10.1039/b208079f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Acyl-beta-sultams are time dependent irreversible active site directed inhibitors of elastase. The rate of inactivation is first order with respect to beta-sultam concentration and the second order rate constants show a similar dependence on pH to that for the hydrolysis of a peptide substrate. Inactivation is due to the formation of a stable 1:1 enzyme inhibitor complex as a result of the active site serine being sulfonylated by the beta-sultam. Ring opening of the beta-sultam occurs by S-N fission in contrast to the C-N fission observed in the acylation of elastase by N-acylsulfonamides. Structure-activity effects are compared between sulfonylation of the enzyme and alkaline hydrolysis. Variation in 4-alkyl and N-substituted beta-sultams causes differences in the rates of inactivation by 4 orders of magnitude.
Collapse
Affiliation(s)
- Paul S Hinchliffe
- Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield, UK HD1 3DH
| | | | | | | | | | | |
Collapse
|
39
|
Kinoshita T, Nakanishi I, Sato A, Tada T. True interaction mode of porcine pancreatic elastase with FR136706, a potent peptidyl inhibitor. Bioorg Med Chem Lett 2003; 13:21-4. [PMID: 12467609 DOI: 10.1016/s0960-894x(02)00852-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structure of porcine pancreatic elastase (PPE) complexed with a potent peptidyl inhibitor, FR136706, was solved at 2.2A resolution. FR136706 fits snugly into the extended active site pocket. The benzene moiety of FR136706 induced dramatic movement of the side chain moiety of Arg217 and both moieties formed a pi-pi interaction, which has never been found previously in structures of PPE complexed with inhibitors. This novel interaction mode may lead to design of new types of inhibitors.
Collapse
Affiliation(s)
- Takayoshi Kinoshita
- Exploratory Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., 5-2-3, Tokodai, Tsukuba, Ibaraki 300-2698, Japan.
| | | | | | | |
Collapse
|
40
|
Hillisch A, Hilgenfeld R. The role of protein 3D-structures in the drug discovery process. EXS 2003:157-81. [PMID: 12613176 DOI: 10.1007/978-3-0348-7997-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
41
|
Gérard S, Dive G, Clamot B, Touillaux R, Marchand-Brynaert J. Synthesis, hydrolysis, biochemical and theoretical evaluation of 1,4-bis(alkoxycarbonyl)azetidin-2-ones as potential elastase inhibitors. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00112-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Li FQ, Horwitz M. Characterization of mutant neutrophil elastase in severe congenital neutropenia. J Biol Chem 2001; 276:14230-41. [PMID: 11278653 DOI: 10.1074/jbc.m010279200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Severe congenital neutropenia is a heritable human disorder characterized by neutropenia and acute myelogenous leukemia. We recently determined that the majority of cases result from de novo or autosomal dominantly inherited heterozygous mutations in ELA2, encoding neutrophil elastase. Neutrophil elastase is a chymotryptic serine protease localized in granules of neutrophils and monocytes and is the major target of inhibition of the serpin alpha(1)-antitrypsin. The mutations causing severe congenital neutropenia consist of amino acid missense substitutions, in-frame deletion, splice donor mutation producing a deletion, splice acceptor mutation causing insertion of novel residues, and protein truncating mutations of the carboxyl terminus resulting from nonsense substitutions and deletions leading to frameshifts. We have expressed 14 mutant forms of neutrophil elastase in vitro and have characterized their biochemical properties. The mutations have variable effects on proteolytic activity, eliminating the possibility that the disease results from haploinsufficiency. There is no evidence that the mutant enzymes are cytotoxic. The mutant enzymes retain vulnerability to inhibition by alpha(1)-antitrypsin, but demonstrate variable avidity for interaction with this serpin. Somewhat surprisingly, the mutant enzymes inhibit the wild type enzyme when both are coexpressed within the same cell, suggesting the potential to interfere with normal subcellular trafficking or post-translational processing.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Codon, Nonsense
- DNA, Complementary/metabolism
- Exons
- Frameshift Mutation
- Gene Deletion
- Genes, Dominant
- HL-60 Cells
- Heterozygote
- Humans
- Leukocyte Elastase/chemistry
- Leukocyte Elastase/genetics
- Microscopy, Fluorescence
- Models, Molecular
- Monocytes/metabolism
- Mutation
- Mutation, Missense
- Neutropenia/congenital
- Neutropenia/genetics
- Precipitin Tests
- Protein Conformation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Rats
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- F Q Li
- Markey Molecular Medicine Center, Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle 98195, USA
| | | |
Collapse
|
43
|
Odagaki Y, Ohmoto K, Matsuoka S, Hamanaka N, Nakai H, Toda M, Katsuya Y. The crystal structure of the complex of non-peptidic inhibitor of human neutrophil elastase ONO-6818 and porcine pancreatic elastase. Bioorg Med Chem 2001; 9:647-51. [PMID: 11310599 DOI: 10.1016/s0968-0896(00)00277-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crystal structure of a new inhibitor of human neutrophil elastase (HNE), N-[2-[5-(tert-butyl)-1,3,4-oxadiazol-2-yl]-(IRS)-1-(methylethyl)-2-oxoethyl]-2-(5-amino-6-oxo-2-phenyl-6H-pyrimidin-1-ly)acetamide (ONO-6818, 1) complexed to porcine pancreatic elastase (PPE) has been determined at 1.86 A resolution. Analytical results provided evidence of a 1:1 complex in which the electrophilic ketone of 1 covalently bound to O gamma of Ser195 at the active site of PPE. The role of the unique electron-withdrawing ketone of 1 has been elucidated.
Collapse
Affiliation(s)
- Y Odagaki
- Minase Research Institute, Ono Pharmaceutical Co., Ltd. Mishima-Gun, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Boger DL, Sato H, Lerner AE, Hedrick MP, Fecik RA, Miyauchi H, Wilkie GD, Austin BJ, Patricelli MP, Cravatt BF. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci U S A 2000; 97:5044-9. [PMID: 10805767 PMCID: PMC25778 DOI: 10.1073/pnas.97.10.5044] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2000] [Accepted: 02/25/2000] [Indexed: 01/03/2023] Open
Abstract
The development of exceptionally potent inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of oleamide (an endogenous sleep-inducing lipid), and anandamide (an endogenous ligand for cannabinoid receptors) is detailed. The inhibitors may serve as useful tools to clarify the role of endogenous oleamide and anandamide and may prove to be useful therapeutic agents for the treatment of sleep disorders or pain. The combination of several features-an optimal C12-C8 chain length, pi-unsaturation introduction at the corresponding arachidonoyl Delta(8,9)/Delta(11,12) and oleoyl Delta(9,10) location, and an alpha-keto N4 oxazolopyridine with incorporation of a second weakly basic nitrogen provided FAAH inhibitors with K(i)s that drop below 200 pM and are 10(2)-10(3) times more potent than the corresponding trifluoromethyl ketones.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Diastereoselective photosensitised radical addition to fumaric acid derivatives bearing oxazolidine chiral auxiliaries. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0957-4166(00)00138-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Leung D, Abbenante G, Fairlie DP. Protease inhibitors: current status and future prospects. J Med Chem 2000; 43:305-41. [PMID: 10669559 DOI: 10.1021/jm990412m] [Citation(s) in RCA: 674] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Leung
- Centre for Drug Design and Development, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
47
|
Gütschow M, Kuerschner L, Neumann U, Pietsch M, Löser R, Koglin N, Eger K. 2-(diethylamino)thieno1,3ŏxazin-4-ones as stable inhibitors of human leukocyte elastase. J Med Chem 1999; 42:5437-47. [PMID: 10639285 DOI: 10.1021/jm991108w] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 2-(diethylamino)thieno1,3ŏxazin-4-ones was synthesized and evaluated in vitro for inhibitory activity toward human leukocyte elastase (HLE). The Gewald thiophene synthesis was utilized to obtain several ethyl 2-aminothiophene-3-carboxylates. These precursors were subjected to a five-step route to obtain thieno2,3-d1,3ŏxazin-4-ones bearing various substituents at positions 5 and 6. Both thieno2,3-d and thieno3,2-d fused oxazin-4-ones possess extraordinary chemical stability, which was expressed as rate constants of the alkaline hydrolysis. The kinetic parameters of the HLE inhibition were determined. The most potent compound, 2-(diethylamino)-4H-1benzothieno2,3-d1,3ŏxazin-4-one, exhibited a K(i) value of 5.8 nM. 2-(Diethylamino)thieno1, 3ŏxazin-4-ones act as acyl-enzyme inhibitors of HLE, similar to the inhibition of serine proteases by 4H-3,1-benzoxazin-4-ones. The isosteric benzene-thiophene replacement accounts for an enhanced stability of the acyl-enzyme intermediates.
Collapse
Affiliation(s)
- M Gütschow
- Institute of Pharmacy, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 1999; 23:433-6. [PMID: 10581030 DOI: 10.1038/70544] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human cyclic haematopoiesis (cyclic neutropenia, MIM 162800) is an autosomal dominant disease in which blood-cell production from the bone marrow oscillates with 21-day periodicity. Circulating neutrophils vary between almost normal numbers and zero. During intervals of neutropenia, affected individuals are at risk for opportunistic infection. Monocytes, platelets, lymphocytes and reticulocytes also cycle with the same frequency. Here we use a genome-wide screen and positional cloning to map the locus to chromosome 19p13.3. We identified 7 different single-base substitutions in the gene (ELA2) encoding neutrophil elastase (EC 3. 4.21.37, also known as leukocyte elastase, elastase 2 and medullasin), a serine protease of neutrophil and monocyte granules, on unique haplotypes in 13 of 13 families as well as a new mutation in a sporadic case. Neutrophil elastase (a 240-aa mature protein predominantly found in neutrophil granules) is the target for protease inhibition by alpha1-antitrypsin, and its unopposed release destroys tissue at sites of inflammation. We hypothesize that a perturbed interaction between neutrophil elastase and serpins or other substrates may regulate mechanisms governing the clock-like timing of haematopoiesis.
Collapse
Affiliation(s)
- M Horwitz
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
49
|
Wieczorek M, Gyorkos A, Spruce LW, Ettinger A, Ross SE, Kroona HS, Burgos-Lepley CE, Bratton LD, Drennan TS, Garnert DL, Von Burg G, Pilkington CG, Cheronis JC. Biochemical characterization of alpha-ketooxadiazole inhibitors of elastases. Arch Biochem Biophys 1999; 367:193-201. [PMID: 10395735 DOI: 10.1006/abbi.1999.1249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of alpha-ketooxadiazole compounds was prepared and evaluated in vitro as potential inhibitors of human neutrophil elastase (HNE), proteinase-3 (PR-3), and porcine pancreatic elastase (PPE). Several compounds have been found to be very potent, fast, reversible, and selective inhibitors of HNE with Ki values below 100 pM. The highest kon value exceeded 10(7) M(-1) s(-1). Some alpha-ketooxadiazoles were also very effective against PR-3 and PPE with Ki values in the range of 5(-10) nM and 0.1(-2) nM, respectively. The two rings, 1,2,4- and 1,3,4-oxadiazole, are amenable to substitutions, extending the P' side of the inhibitor and allowing additional binding interactions at S' subsites of the enzyme. Nonpeptidic HNE inhibitors containing the oxadiazole heterocycle displayed promising oral bioavailability.
Collapse
Affiliation(s)
- M Wieczorek
- Cortech, Inc., 6850 North Broadway, Denver, Colorado, 80221, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|