1
|
Mackman RL. Phosphoramidate Prodrugs Continue to Deliver, The Journey of Remdesivir (GS-5734) from RSV to SARS-CoV-2. ACS Med Chem Lett 2022; 13:338-347. [PMID: 35291757 PMCID: PMC8887656 DOI: 10.1021/acsmedchemlett.1c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
![]()
Remdesivir (GS-5734) is a monophenol,
2-ethylbutylalanine phosphoramidate
prodrug of a 1′-cyano-4-aza-7,9-dideazaadenosine C-nucleoside
(GS-441524) that is FDA approved for the treatment of hospitalized
patients with COVID-19. The prodrug, initially invented for respiratory
syncytial virus, was later found to have activity toward emerging
RNA viruses, including Ebola and coronaviruses. Remdesivir is among
the first examples of a phosphoramidate prodrug aimed at delivering
a nucleoside monophosphate into lung cells to efficiently generate
the nucleoside triphosphate inhibitor of viral RNA polymerases. With
remdesivir as the central case study, the present work describes the
antiviral potency and in vitro metabolism evidence for lung cell activation
of phosphoramidates, together with their in vivo pharmacokinetics,
lung distribution, and antiviral efficacy toward respiratory viruses.
The lung delivery of nucleoside monophosphate analogs using prodrugs
warrants further investigation toward the development of novel respiratory
antivirals.
Collapse
|
2
|
Ballatore C. New Heights for ProTides? J Med Chem 2021; 64:16422-16424. [PMID: 34783565 DOI: 10.1021/acs.jmedchem.1c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this issue of the Journal of Medicinal Chemistry, Janeba et al. found that the in vitro antiviral activity and selectivity index of the aryloxy phosphoramidate (ProTide) prodrug of the acyclic nucleoside phosphonate tenofovir (tenofovir alafenamide) can be dramatically improved by replacing the aryloxy pro-moiety with an appropriate tyrosine derivative. This Viewpoint highlights the possible impact and ramifications that these findings may have in the development of new ProTides.
Collapse
Affiliation(s)
- Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Kalčic F, Zgarbová M, Hodek J, Chalupský K, Dračínský M, Dvořáková A, Strmeň T, Šebestík J, Baszczyňski O, Weber J, Mertlíková-Kaiserová H, Janeba Z. Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. J Med Chem 2021; 64:16425-16449. [PMID: 34713696 DOI: 10.1021/acs.jmedchem.1c01444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.
Collapse
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Karel Chalupský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Timotej Strmeň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
4
|
Passow KT, Caldwell HS, Ngo KA, Arnold JJ, Antczak NM, Narayanan A, Jose J, Sturla SJ, Cameron CE, Ciota AT, Harki DA. A Chemical Strategy for Intracellular Arming of an Endogenous Broad-Spectrum Antiviral Nucleotide. J Med Chem 2021; 64:15429-15439. [PMID: 34661397 DOI: 10.1021/acs.jmedchem.1c01481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The naturally occurring nucleotide 3'-deoxy-3',4'-didehydro-cytidine-5'-triphosphate (ddhCTP) was recently found to exert potent and broad-spectrum antiviral activity. However, nucleoside 5'-triphosphates in general are not cell-permeable, which precludes the direct use of ddhCTP as a therapeutic. To harness the therapeutic potential of this endogenous antiviral nucleotide, we synthesized phosphoramidate prodrug HLB-0532247 (1) and found it to result in dramatically elevated levels of ddhCTP in cells. We compared 1 and 3'-deoxy-3',4'-didehydro-cytidine (ddhC) and found that 1 more effectively reduces titers of Zika and West Nile viruses in cell culture with minimal nonspecific toxicity to host cells. We conclude that 1 is a promising antiviral agent based on a novel strategy of facilitating elevated levels of the endogenous ddhCTP antiviral nucleotide.
Collapse
Affiliation(s)
- Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haley S Caldwell
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12144, United States.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Kiet A Ngo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicole M Antczak
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexander T Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12144, United States.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Serpi M, Pertusati F. An overview of ProTide technology and its implications to drug discovery. Expert Opin Drug Discov 2021; 16:1149-1161. [PMID: 33985395 DOI: 10.1080/17460441.2021.1922385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The ProTide technology is a phosphate (or phosphonate) prodrug method devised to deliver nucleoside monophosphate (or monophosphonate) intracellularly bypassing the key challenges of antiviral and anticancer nucleoside analogs. Three new antiviral drugs, exploiting this technology, have been approved by the FDA while others are in clinical studies as anticancer agents.Areas covered: The authors describe the origin and development of this technology and its incredible success in transforming the drug discovery of antiviral and anticancer nucleoside analogues. As evidence, discussion on the antiviral ProTides on the market, and those currently in clinical development are included. The authors focus on how the proven capacity of this technology to generate new drug candidates has stimulated its application to non-nucleoside-based molecules.Expert opinion: The ProTide approach has been extremely successful in delivering blockbuster antiviral medicines and it seems highly promising in oncology. Its application to non-nucleoside-based small molecules is recently emerging and proving effective in other therapeutic areas. However, investigations to explain the lack of activity of certain ProTide series and comprehensive structure activity relationship studies to identify the appropriate phosphoramidate motifs depending on the parent molecule are in our opinion mandatory for the future development of these compounds.
Collapse
Affiliation(s)
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Wiemer AJ. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacol Transl Sci 2020; 3:613-626. [PMID: 32821882 PMCID: PMC7409933 DOI: 10.1021/acsptsci.0c00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/08/2023]
Abstract
![]()
Drugs that contain phosphates (and
phosphonates or phosphinates)
have intrinsic absorption issues and are therefore often delivered
in prodrug forms to promote their uptake. Effective prodrug forms
distribute their payload to the site of the intended target and release
it efficiently with minimal byproduct toxicity. The ability to balance
unwanted payload release during transit with desired release at the
site of action is critical to prodrug efficacy. Despite decades of
research on prodrug forms, choosing the ideal prodrug form remains
a challenge which is often solved empirically. The recent emergency
use authorization of the antiviral remdesivir for COVID-19 exemplifies
a new approach for delivery of phosphate prodrugs by parenteral dosing,
which minimizes payload release during transit and maximizes tissue
payload distribution. This review focuses on the role of metabolic
activation in efficacy during oral and parenteral dosing of phosphate,
phosphonate, and phosphinate prodrugs. Through examining prior structure–activity
studies on prodrug forms and the choices that led to development of
remdesivir and other clinical drugs and drug candidates, a better
understanding of their ability to distribute to the planned site of
action, such as the liver, plasma, PBMCs, or peripheral tissues, can
be gained. The structure–activity relationships described here
will facilitate the rational design of future prodrugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
7
|
Slusarczyk M, Serpi M, Pertusati F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir Chem Chemother 2018; 26:2040206618775243. [PMID: 29792071 PMCID: PMC5971382 DOI: 10.1177/2040206618775243] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5'-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5'-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5'-monophosphate, which is further transformed to the active 5'-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan's research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents.
Collapse
Affiliation(s)
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Abstract
The ProTide technology is a prodrug approach developed for the efficient intracellular delivery of nucleoside analogue monophosphates and monophosphonates. In this approach, the hydroxyls of the monophosphate or monophosphonate groups are masked by an aromatic group and an amino acid ester moiety, which are enzymatically cleaved-off inside cells to release the free nucleoside monophosphate and monophosphonate species. Structurally, this represents the current end-point of an extensive medicinal chemistry endeavor that spans almost three decades. It started from the masking of nucleoside monophosphate and monophosphonate groups by simple alkyl groups and evolved into the sophisticated ProTide system as known today. This technology has been extensively employed in drug discovery, and it has already led to the discovery of two FDA-approved (antiviral) ProTides. In this work, we will review the development of the ProTide technology, its application in drug discovery, and its role in the improvement of drug delivery and efficacy.
Collapse
Affiliation(s)
- Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences , Cardiff University , Redwood Building , Cardiff CF10 3NB , U.K
| | - Hardeep S Rattan
- School of Pharmacy, College of Medical and Dental Sciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy , Rega Institute for Medical Research , Herestraat 49 , 3000 Leuven , Belgium
| |
Collapse
|
9
|
Kolodziej K, Romanowska J, Stawinski J, Boryski J, Dabrowska A, Lipniacki A, Piasek A, Kraszewski A, Sobkowski M. Aryl H-Phosphonates 18. Synthesis, properties, and biological activity of 2',3'-dideoxynucleoside (N-heteroaryl)phosphoramidates of increased lipophilicity. Eur J Med Chem 2015; 100:77-88. [PMID: 26071860 DOI: 10.1016/j.ejmech.2015.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/22/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022]
Abstract
Recently, AZT (N-pyridyl)phosphoramidates were reported as a new type of potential anti-HIV therapeutics. In continuation of that work, here we present new (N-heteroaryl)phosphoramidate derivatives of antiviral 2',3'-dideoxynucleosides containing other types of N-heteroaryl moieties, particularly those with higher lipophilicity. The present studies comprise mechanistic investigations using (31)P NMR correlation analysis, which permitted improvements in the synthetic procedures. The obtained compounds were tested in biological systems to establish their cytotoxicity and anti-HIV activity. The results were analyzed with respect to possible correlations between biological and physico-chemical properties of the phosphoramidates studied, to get some insight into their antiviral mode of action.
Collapse
Affiliation(s)
- Krystian Kolodziej
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Joanna Romanowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jerzy Boryski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Aleksandra Dabrowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Andrzej Lipniacki
- National Institute of Medicines, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Andrzej Piasek
- National Institute of Medicines, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Adam Kraszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Michal Sobkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
10
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Sun Q, Li X, Gong S, Liu G, Shen L, Peng L. A novel synthesis of antiviral nucleoside phosphoramidate and thiophosphoramidate prodrugs via nucleoside H-phosphonamidates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 32:617-38. [PMID: 24138500 DOI: 10.1080/15257770.2013.838262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel and efficient method for the preparation of antiviral nucleoside 5'-H-phosphonamidates has been developed. The oxidization of the H-phosphonamidate intermediates with iodine and sulfur afforded nucleoside 5'-phosphoramidates and 5'-thiophosphoramidates in high yields.
Collapse
Affiliation(s)
- Qi Sun
- a Jiangxi Key Laboratory of Organic Chemistry , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi , PR China
| | | | | | | | | | | |
Collapse
|
12
|
Mehellou Y, Balzarini J, McGuigan C. Aryloxy phosphoramidate triesters: a technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem 2010; 4:1779-91. [PMID: 19760699 DOI: 10.1002/cmdc.200900289] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prodrug technologies aimed at delivering nucleoside monophosphates into cells (protides) have proved to be effective in improving the therapeutic potential of antiviral and anticancer nucleosides. In these cases, the nucleoside monophosphates are delivered into the cell, where they may then be further converted (phosphorylated) to their active species. Herein, we describe one of these technologies developed in our laboratories, known as the phosphoramidate protide method. In this approach, the charges of the phosphate group are fully masked to provide efficient passive cell-membrane penetration. Upon entering the cell, the masking groups are enzymatically cleaved to release the phosphorylated biomolecule. The application of this technology to various therapeutic nucleosides has resulted in improved antiviral and anticancer activities, and in some cases it has transformed inactive nucleosides to active ones. Additionally, the phosphoramidate technology has also been applied to numerous antiviral nucleoside phosphonates, and has resulted in at least three phosphoramidate-based nucleotides progressing to clinical investigations. Furthermore, the phosphoramidate technology has been recently applied to sugars (mainly glucosamine) in order to improve their therapeutic potential. The development of the phosphoramidate technology, mechanism of action and the application of the technology to various monophosphorylated nucleosides and sugars will be reviewed.
Collapse
|
13
|
Mehellou Y, De Clercq E. Twenty-Six Years of Anti-HIV Drug Discovery: Where Do We Stand and Where Do We Go? J Med Chem 2009; 53:521-38. [DOI: 10.1021/jm900492g] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Youcef Mehellou
- Center for BioEnergetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
14
|
Affiliation(s)
- Scott J. Hecker
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| | - Mark D. Erion
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
15
|
Birkus G, Wang R, Liu X, Kutty N, MacArthur H, Cihlar T, Gibbs C, Swaminathan S, Lee W, McDermott M. Cathepsin A is the major hydrolase catalyzing the intracellular hydrolysis of the antiretroviral nucleotide phosphonoamidate prodrugs GS-7340 and GS-9131. Antimicrob Agents Chemother 2006; 51:543-50. [PMID: 17145787 PMCID: PMC1797775 DOI: 10.1128/aac.00968-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GS-7340 and GS-9131 {9-[(R)-2-[[(S)-[[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl]methoxy]-propyl]adenine and 9-(R)-4'-(R)-[[[(S)-1-[(ethoxycarbonyl)ethyl]amino]phenoxyphosphinyl]methoxy]-2'-fluoro-1'-furanyladenine, respectively} are novel alkylalaninyl phenyl ester prodrugs of tenofovir {9-R-[(2-phosphonomethoxy)propyl]adenine} (TFV) and a cyclic nucleotide analog, GS-9148 (phosphonomethoxy-2'-fluoro-2', 3'-dideoxydidehydroadenosine), respectively. Both prodrugs exhibit potent antiretroviral activity against both wild-type and drug-resistant human immunodeficiency virus type 1 strains and excellent in vivo pharmacokinetic properties. In this study, the main enzymatic activity responsible for the initial step in the intracellular activation of GS-7340 and GS-9131 was isolated from human peripheral blood mononuclear cells and identified as lysosomal carboxypeptidase A (cathepsin A [CatA]; EC 3.4.16.5). Biochemical properties of the purified hydrolase (native complex and catalytic subunit molecular masses of 100 and 29 kDa, respectively; isoelectric point [pI] of 5.5) matched those of CatA. Recombinant CatA and the isolated prodrug hydrolase displayed identical susceptibilities to inhibitors and identical substrate preferences towards a panel of tenofovir phosphonoamidate prodrugs. Incubation of both enzymes with 14C-labeled GS-7340 or [3H]difluorophosphonate resulted in the covalent labeling of identical 29-kDa catalytic subunits. Finally, following a 4-h incubation with GS-7340 and GS-9131, the intracellular concentrations of prodrug metabolites detected in CatA-negative fibroblasts were approximately 7.5- and 3-fold lower, respectively, than those detected in normal control fibroblasts. Collectively, these data demonstrate the key role of CatA in the intracellular activation of nucleotide phosphonoamidate prodrugs and open new possibilities for further improvement of this important class of antiviral prodrugs.
Collapse
Affiliation(s)
- Gabriel Birkus
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Oberg B. Rational design of polymerase inhibitors as antiviral drugs. Antiviral Res 2006; 71:90-5. [PMID: 16820225 DOI: 10.1016/j.antiviral.2006.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 11/26/2022]
Abstract
Almost all viruses have polymerases which are suitable targets for antiviral drugs. The development of selective polymerase inhibitors started with screening of compounds in virus-infected cell cultures and the mechanism of action was investigated once an inhibitor had been found. Especially nucleoside analogs were screened as their triphosphates were potential substrates for polymerases. However, the stepwise phosphorylation by cellular, and sometimes viral, kinases to the active triphosphate prevented a truly rational design of polymerase inhibitors. Nucleotide analogs offers a type of compounds which could be designed in a more rational way than nucleoside analogs since the first, most selective, phosphorylation step is eliminated in the path to the active inhibitor. The development of pyrophosphate analogs made rational design possible since these compounds act directly on the viral enzyme, but the room for structural variation was limited. The non-nucleoside HIV reverse transcriptase inhibitors are direct inhibitors and can thus be designed in a truly rational way by use of structure information on the enzyme-inhibitor complex by use of X-ray and NMR. This rational design of allosteric inhibitors is also being used in the development of inhibitors to other viral polymerases.
Collapse
Affiliation(s)
- Bo Oberg
- Medivir AB and Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
17
|
Tuchnaya OA, Elizarova SN, Sharikova SA, Shastina NS, Stepanov AE, Yurkevich AM, Shvets VI. Synthesis of anti-HIV nucleoside conjugates with lipophilic diol compounds. Pharm Chem J 2006. [DOI: 10.1007/s11094-006-0108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Ladurée D, Fossey C, Delbederi Z, Sugeac E, Schmidt S, Laumond G, Aubertin AM. Synthesis and antiviral activity of aryl phosphoramidate derivatives of beta-D- and beta-L-C-5-substituted 2',3'-didehydro-2',3'-dideoxy-uridine bearing linker arms. J Enzyme Inhib Med Chem 2006; 20:533-49. [PMID: 16408789 DOI: 10.1080/14756360500220343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have previously reported the synthesis and evaluation of potent anti-human immunodeficiency virus compounds based on beta-D-d4T analogues bearing a tether attached at the C-5 position and their beta-L-counterparts. Initial study revealed a requirement for an alkyl side-chain with an optimal length of 12 carbons for a weak antiviral activity. As a continuation of that work, we have now prepared the corresponding phosphoramidate derivatives as possible membrane-permeable prodrugs. Phosphorochloridate chemistry gave the target phosphoramidates which were tested for anti-human immunodeficiency virus type 1 activity; unfortunately, they were devoid of anti-HIV activity.
Collapse
Affiliation(s)
- Daniel Ladurée
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, U. F. R. des Sciences Pharmaceutiques, 5, Rue Vaubénard, F-14032, Caen Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Venkatachalam TK, Samuel P, Uckun FM. Enzymatic hydrolysis of stampidine and other stavudine phosphoramidates in the presence of mammalian proteases. Bioorg Med Chem 2005; 13:2651-5. [PMID: 15755664 DOI: 10.1016/j.bmc.2005.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 01/10/2005] [Indexed: 11/20/2022]
Abstract
Mammalian proteases have not been implicated in the metabolism of any nucleoside phosphoramidate prodrug. The results presented herein provide unprecedented and conclusive experimental evidence that mammalian proteases are capable of hydrolyzing stavudine phosphoramidates. Specifically, cathepsin B and Proteinase K are able to metabolize stampidine and other phosphoramidate derivatives of stavudine. Additionally, cathepsin B exhibits chiral selectivity at the phosphorus center. The elucidation of the metabolic pathways leading to activation of stampidine may provide the basis for pharmacologic interventions aimed at modulating the metabolism and thereby improving the therapeutic window of stampidine as an anti-HIV agent.
Collapse
Affiliation(s)
- T K Venkatachalam
- Department of Chemistry, Pharmaceutical Sciences and Virology, Parker Hughes Institute, 2699, Patton Road, Roseville, MN 55113, USA
| | | | | |
Collapse
|
20
|
Gudmundsson KS, Wang Z, Daluge SM, Johnson LC, Hazen R, Condreay LD, McGuigan C. Phosphoramidate protides of carbocyclic 2',3'-dideoxy-2',3'-didehydro-7-deazaadenosine with potent activity against HIV and HBV. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1929-37. [PMID: 15628749 DOI: 10.1081/ncn-200040678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synthesis of phosphoramidate protides of carbocyclic D- and L-2',3'-dideoxy-2',3'-didehydro-7-deazaadenosine by treatment of the nucleoside with phosphorochloridates in the presence of pyridine and t-BuMgCl is described. Several of these protides showed significantly improved antiviral potency over the parent nucleosides against both HIV and HBV.
Collapse
|
21
|
Li P, Shaw BR. Synthesis of Nucleoside Boranophosphoramidate Prodrugs Conjugated with Amino Acids. J Org Chem 2005; 70:2171-83. [PMID: 15760202 DOI: 10.1021/jo0481248] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] Nucleoside boranophosphates and nucleoside amino acid phosphoramidates have been shown to be potent antiviral and anticancer agents with the potential to act as nucleoside prodrugs. A combination of these two types of compounds results in a boranophosphoramidate linkage between the nucleoside and amino acid. This new class of potential prodrugs is expected to possess advantages conferred by both types of parent compounds. Two approaches, specifically the H-phosphonate and oxathiaphospholane approaches, are described here to synthesize nucleoside boranophosphoramidate prodrugs conjugated with amino acids. The H-phosphonate approach involves a key intermediate, silylated nucleoside amino acid phosphoramidite 6, prepared from a series of reactions starting from nucleoside H-phosphonate in the presence of condensing reagent DPCP. Due to the lengthy procedure and the difficulties in removing DPCP from the final products, we switched to the oxathiaphospholane approach in which the DBU-assisted oxathiaphospholane ring-opening process constituted a key step for the generation of nucleoside amino acid boranophosphoramidates 24. We demonstrate that this key step did not cause any measurable C-racemization of boranophosphorylated amino acids 22. Diastereomers of compounds 24a-f were separated by RP-HPLC. An "adjacent"-type mechanism is proposed to explain the diastereomer ratio in the final products obtained via the oxathiaphospholane approach. A tentative assignment of configuration for the diastereomers was carried out based on the mechanism, molecular modeling, and (1)H NMR. Conclusively, the oxathiaphospholane methodology proved to be more facile and efficient than H-phosphonate chemistry in the preparation of the nucleoside amino acid boranophosphoramidate analogues that are promising as a new type of antiviral prodrugs.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346, USA
| | | |
Collapse
|
22
|
Venkatachalam TK, Samuel P, Li G, Qazi S, Mao C, Pendergrass S, Uckun FM. Lipase-mediated stereoselective hydrolysis of stampidine and other phosphoramidate derivatives of stavudine. Bioorg Med Chem 2005; 12:3371-81. [PMID: 15158806 DOI: 10.1016/j.bmc.2004.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Enzymatic hydrolysis of stampidine and other aryl phosphate derivatives of stavudine were investigated using the Candida Antarctica Type B lipase. Modeling studies and comparison of the hydrolysis rate constants revealed a chiral preference of the lipase active site for the putative S-stereoisomer. The in vitro anti-HIV activity of these compounds correlated with their susceptibility to lipase- (but not esterase-) mediated hydrolysis. We propose that stampidine undergoes rapid enzymatic hydrolysis in the presence of lipase according to the following biochemical pathway: During the first step, hydrolysis of the ester group results in the formation of carboxylic acid. Subsequent step involves an intramolecular cyclization at the phosphorous center with simultaneous elimination of the phenoxy group to form a cyclic intermediate. In the presence of water, this intermediate is converted into the active metabolite Ala-d4T-MP. We postulate that the lipase hydrolyzes the methyl ester group of the l-alanine side chain to form the cyclic intermediate in a stereoselective fashion. This hypothesis was supported by experimental data showing that chloroethyl substituted derivatives of stampidine, which possess a chloroethyl linker unit instead of a methyl ester side chain, were resistant to lipase-mediated hydrolysis, which excludes the possibility of a direct hydrolysis of stampidine at the phosphorous center. Thus, our model implies that the lipase-mediated formation of the cyclic intermediate is a key step in metabolism of stampidine and relies on the initial configuration of the stereoisomers.
Collapse
Affiliation(s)
- T K Venkatachalam
- Department of Chemistry, Pharmaceutical Sciences, Bioinformatics, Structural Biology, and Virology, Parker Hughes Institute, 2699 Patton Road, St. Paul, MN 55113, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Debnath B, Gayen S, Naskar SK, Roy K, Jha T. Quantitative structure-activity relationship study on some azidopyridinyl neonicotinoid insecticides for their selective affinity towards the drosophila nicotinic receptor over mammalian alpha4beta2 receptor using electrotopological state atom index. ACTA ACUST UNITED AC 2003; 18:81-9. [PMID: 14675945 DOI: 10.3109/10559610290249557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neonicotinoids are the most important class of synthetic insecticides increasingly used in agriculture and veterinary medicine. Fundamental differences between the nicotinic acetylcholine receptors (nAChRs) of insects and mammals confer remarkable selectivity of the neonicotinoids at insect nAChR over mammalian nAChR. To identify pharmacophoric requirements of azidopyridinyl neonicotinoids for their efficacy and selectivity towards the insect nAChR over the mammalian one, quantitative structure-activity relationship (QSAR) study was performed using electrotopological state atom (ETSA) indices. This study clearly showed that nitroimines, nitromethylenes, and cyanoimines are more selective to Drosophila nAChR and safe for human being, whereas N-substituted imines have affinity to mammalian receptor. Pharmacophore mapping for both the activities was done.
Collapse
Affiliation(s)
- Bikash Debnath
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | | | | | | |
Collapse
|
24
|
Siccardi D, Kandalaft LE, Gumbleton M, McGuigan C. Stereoselective and Concentration-Dependent Polarized Epithelial Permeability of a Series of Phosphoramidate Triester Prodrugs of d4T: An in Vitro Study in Caco-2 and Madin-Darby Canine Kidney Cell Monolayers. J Pharmacol Exp Ther 2003; 307:1112-9. [PMID: 14557377 DOI: 10.1124/jpet.103.056135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleoside analogs are successful, widely used antiviral and anticancer therapeutics. Nucleotide prodrugs (i.e., pronucleotide) have increasingly been used to improve in vivo efficacy of nucleoside analogs. In this study, we evaluated the permeability of a series of phosphoramidate triester prodrugs of the anti-HIV drug 2',3'-didehydro-2',3'-dideoxythymidine across monolayers of Caco-2, Madin-Darby canine kidney (MDCKII) epithelial cell line, and its recombinant clone containing the human MDR1/P-gp gene (MDR1-MDCKII). Transport was studied in the apical-to-basolateral (A-B) and the basolateral-to-apical directions (B-A). The impact upon transport of differences in stereochemistry at the chiral phosphate center was evaluated. In the Caco-2 and MDCK models the A-B permeability was lower than expected based on the lipophilicity of the compounds, suggesting the involvement of a polarized efflux system and/or metabolic degradation in limiting the absorption of these ester-based prodrugs. Average permeability values through cell monolayers obtained in the A-B direction were lower than in the B-A direction. The inclusion of the P-glycoprotein (P-gp) inhibitor verapamil in the transport medium markedly increased the permeability in the A-B direction, whereas decreasing it in the opposite direction, suggesting an efflux mechanism mainly mediated by P-gp. Stereoselective permeability was significant for the most lipophilic compounds, where the diastereoisomer possessing the slower eluting time on a reverse-phase high-performance liquid chromatography column was transported through Caco-2 and MDCK monolayers at higher rate.
Collapse
Affiliation(s)
- Dario Siccardi
- Welsh School of Pharmacy, University of Wales Cardiff, King Edward VII Ave., Cardiff CF10 3XF, Wales
| | | | | | | |
Collapse
|
25
|
Abstract
Virtually all the compounds that are currently used or are subject of advanced clinical trials for the treatment of HIV infections, belong to one of the following classes: (i) nucleoside reverse transcriptase inhibitors (NRTIs): i.e., zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir, emtricitabine and nucleotide reverse transcriptase inhibitors (NtRTIs) (i.e., tenofovir disoproxil fumarate); (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e., nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e., saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, and lopinavir. In addition to the reverse transcriptase and protease reaction, various other events in the HIV replicative cycle can be considered as potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulfates, polysulfonates, polycarboxylates, polyoxometalates, polynucleotides, and negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 (i.e., bicyclam (AMD3100) derivatives) and CCR5 (i.e., TAK-779 derivatives); (iii) virus-cell fusion, through binding to the viral envelope glycoprotein gp41 (T-20, T-1249); (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as 4-aryl-2,4-dioxobutanoic acid derivatives; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (flavopiridol, fluoroquinolones). Also, various new NRTIs, NNRTIs, and PIs have been developed that possess, respectively: (i) improved metabolic characteristics (i.e., phosphoramidate and cyclosaligenyl pronucleotides by-passing the first phosphorylation step of the NRTIs), (ii) increased activity ["second" or "third" generation NNRTIs ( i.e., TMC-125, DPC-083)] against those HIV strains that are resistant to the "first" generation NNRTIs, or (iii), as in the case of PIs, a different, modified peptidic (i.e., azapeptidic (atazanavir)) or non-peptidic scaffold (i.e., cyclic urea (mozenavir), 4-hydroxy-2-pyrone (tipranavir)). Non-peptidic PIs may be expected to inhibit HIV mutant strains that have become resistant to peptidomimetic PIs.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
26
|
Abstract
Virtually all the compounds that are currently used, or are subject of advanced clinical trials, for the treatment of human immunodeficiency virus (HIV) infections, belong to one of the following classes: (i) nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs): i.e. zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), stavudine (d4T), lamivudine (3TC), abacavir (ABC), emtricitabine [(-)FTC], tenofovir disoproxil fumarate; (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e. nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e. saquinavir, ritonavir, indinavir, nelfinavir, amprenavir and lopinavir. In addition to the reverse transcriptase (RT) and protease reaction, various other events in the HIV replicative cycle can be considered as potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulfates, polysulfonates, polycarboxylates, polyoxometalates, polynucleotides, and negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 [bicyclam (AMD3100) derivatives] and CCR5 (TAK-779 derivatives); (iii) virus-cell fusion, through binding to the viral envelope glycoprotein gp41 (T-20, T-1249); (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as 4-aryl-2,4-dioxobutanoic acid derivatives; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (flavopiridol, fluoroquinolones). Also, various new NRTIs, NNRTIs and PIs have been developed that possess, respectively: (i) improved metabolic characteristics (i.e. phosphoramidate and cyclosaligenyl pronucleotides by-passing the first phosphorylation step of the NRTIs), (ii) increased activity ["second" or "third" generation NNRTIs (i.e. TMC-125, DPC-083)] against those HIV strains that are resistant to the "first" generation NNRTIs, or (iii) as in the case of PIs, a different, nonpeptidic scaffold [i.e. cyclic urea (mozenavir), 4-hydroxy-2-pyrone (tipranavir)]. Nonpeptidic PIs may be expected to inhibit HIV mutant strains that have become resistant to peptidomimetic PIs. Given the multitude of molecular targets with which anti-HIV agents can interact, one should be cautious in extrapolating the mode of action of these agents from cell-free enzymatic assays to intact cells. Two examples in point are L-chicoric acid and the nonapeptoid CGP64222, which were initially described as an integrase inhibitor or Tat antagonist, respectively, but later shown to primarily act as virus adsorption/entry inhibitors, the latter through blockade of CXCR4.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven, Belgium.
| |
Collapse
|
27
|
Gupta SP. Advances in QSAR studies of HIV-1 reverse transcriptase inhibitors. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 58:223-64. [PMID: 12079201 DOI: 10.1007/978-3-0348-8183-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A review is presented of the recent advances in quantitative structure-activity relationship (QSAR) studies of HIV-1 reverse transcriptase (RT) inhibitors. These inhibitors have been put into two classes: nucleoside RT inhibitors (NRTIs), which are 2',3'-dideoxynucleoside analogues (ddNs), and non-nucleoside RT inhibitors (NNRTIs). For NRTIs (ddNs), which act as competitive inhibitors or alternate substrates of RT and hence interact at the substrate binding site of the enzyme, QSARs have pointed out the major role of the electronic factors governing their activity. For NNRTIs, which bind to a site entirely distinct from the substrate binding site, the activity has been shown to be largely dependent upon the hydrophobic nature of the compounds or substituents. The hydrophobic nature of the active site in the receptor with which the NNRTIs interact provides relatively few possibilities for the molecules to have polar interactions or hydrogen bondings, but QSARs have indicated that NNRTIs do involve some polar interactions and hydrogen bondings with some pockets of the enzyme. QSARs also indicate the significant roles of steric interactions and conformational shape of the molecule.
Collapse
Affiliation(s)
- Satya P Gupta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, India
| |
Collapse
|
28
|
Uckun FM, Samuel P, Qazi S, Chen C, Pendergrass S, Venkatachalam TK. Effects of aryl substituents on the anti-HIV activity of the arylphosphoramidate derivatives of stavudine. Antivir Chem Chemother 2002; 13:197-203. [PMID: 12448692 DOI: 10.1177/095632020201300306] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We compared the anti-HIV activity of 13 phenyl phosphate derivatives of stavudine (2',3'-didehydro-2',3'-dideoxythymidine/d4T) by examining their ability to inhibit HIV-1 replication in human peripheral blood mononuclear cells. Our results show that the introduction of electron-withdrawing substituents enhances the activity of these phosphoramidate derivatives. The rate of chemical hydrolysis under alkaline conditions (but not the lipophilicity) predicted the potency of the compounds.
Collapse
Affiliation(s)
- Fatih M Uckun
- Department of Virology, Parker Hughes Institute, St. Paul, Minn., USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
A decade ago, just five drugs were licensed for the treatment of viral infections. Since then, greater understanding of viral life cycles, prompted in particular by the need to combat human immunodeficiency virus, has resulted in the discovery and validation of several targets for therapeutic intervention. Consequently, the current antiviral repertoire now includes more than 30 drugs. But we still lack effective therapies for several viral infections, and established treatments are not always effective or well tolerated, highlighting the need for further refinement of antiviral drug design and development. Here, I describe the rationale behind current and future drug-based strategies for combating viral infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
De Clercq E. Hamao Umezawa Memorial Award Lecture: "An Odyssey in the Viral Chemotherapy Field". Int J Antimicrob Agents 2001; 18:309-28. [PMID: 11691563 DOI: 10.1016/s0924-8579(01)00411-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the search of effective and selective chemotherapeutic agents for the treatment of viral infections, my "Odyssey" brought me to explore a variety of approaches, encompassing interferon and interferon inducers, suramin and other polyanionic substances, S-adenosylhomocysteine hydrolase inhibitors, inosine 5'-monophosphate dehydrogenase inhibitors, 5-substituted 2'-deoxyuridines such as (E)-5-(2-bromovinyl)-2'-deoxyuridine, acyclovir (esters) and other acyclic guanosine analogues, 2',3'-dideoxynucleoside analogues, non-nucleoside reverse transcriptase inhibitors (NNRTIs), bicyclams, and acyclic nucleoside phosphonates. This had led to the identification of a number of compounds, efficacious against such important viral pathogens as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and other herpesviruses, pox-, adeno-, polyoma-, and papillomaviruses, and hemorrhagic fever viruses.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
31
|
Abstract
Virtually all the compounds that are currently used, or under advanced clinical trial, for the treatment of HIV infections, belong to one of the following classes: (i) nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs): i.e. zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir, emtricitabine, tenofovir (PMPA) disoproxil fumarate; (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e. nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e. saquinavir, ritonavir, indinavir, nelfinavir and amprenavir. In addition, various other events in the HIV replicative cycle are potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120; (ii) viral entry, through blockade of the viral coreceptors CXCR4 and CCR5; (iii) virus-cell fusion; (iv) viral assembly and disassembly; (v) proviral DNA integration; (vi) viral mRNA transcription. Also, new NRTIs, NNRTIs and PIs have been developed that possess respectively improved metabolic characteristics, or increased activity against NNRTI-resistant HIV strains or, as in the case of PIs, a different, non-peptidic scaffold. Given the multitude of molecular targets with which anti-HIV agents can interact, one should be cautious in extrapolating from cell-free enzymatic assays to the mode of action of these agents in intact cells.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| |
Collapse
|
32
|
Harris SA, McGuigan C, Andrei G, Snoeck R, De Clercq E, Balzarini J. Synthesis and antiviral evaluation of phosphoramidate derivatives of (E)-5-(2-bromovinyl)-2'-deoxyuridine. Antivir Chem Chemother 2001; 12:293-300. [PMID: 11900348 DOI: 10.1177/095632020101200504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report the design, synthesis and antiviral evaluation of a number of lipophilic, masked phosphoramidate derivatives of the antiherpetic agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), designed to act as membrane soluble prodrugs of the free nucleotide. The phosphoramidate derivatives of BVDU that contain L-alanine exhibited potent anti herpes simplex virus type 1 and varicella-zoster virus activity but lost marked activity against thymidine kinase-deficient virus strains. The phosphoramidate derivative bearing the amino acid alpha,alpha-dimethylglycine showed poor activity in all cell lines tested. It appears that successful kinase bypass by phosphoramidates is highly dependent on the nucleoside analogue, amino acid and ester structure, as well as the cell line to which the drugs are exposed.
Collapse
Affiliation(s)
- S A Harris
- Welsh School of Pharmacy, Cardiff University, UK
| | | | | | | | | | | |
Collapse
|
33
|
Separation of individual antiviral nucleotide prodrugs from synthetic mixtures using cross-reactivity of a molecularly imprinted stationary phase. Anal Chim Acta 2001. [DOI: 10.1016/s0003-2670(00)01369-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Taourirte M, Lazrek HB, Vasseur JJ, Ferrero M, Fernandez S, Gotor V. Synthesis of new homo and heterodinucleosides containing the 2',3'-dideoxynucleosides AZT and D4T. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:959-62. [PMID: 11563154 DOI: 10.1081/ncn-100002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The synthesis of new dinucleosides of AZT and D4T is described.
Collapse
Affiliation(s)
- M Taourirte
- Lab. Chimie Organique Biomoléculaire de Synthèse, UMR 5625 CNRS-Université Montpellier II, France
| | | | | | | | | | | |
Collapse
|
35
|
Chapman H, Kernan M, Prisbe E, Rohloff J, Sparacino M, Terhorst T, Yu R. Practical synthesis, separation, and stereochemical assignment of the PMPA pro-drug GS-7340. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:621-8. [PMID: 11563079 DOI: 10.1081/ncn-100002338] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The practical synthesis of a mixed phenoxy-amidate derivative of PMPA with high oral bioavailability and favorable pharmacokinetics is described. The non-stereoselective synthetic route produces a 1:1 mixture of two diastereomers at phosphorous. Simulated moving bed chromatography using Chiralpak AS enabled kilo-scale isolation of the more potent diastereomer (GS-7340). The GS-7340 phosphorous chiral center was found to be (S) by X-ray crystallography.
Collapse
Affiliation(s)
- H Chapman
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Virtually all the compounds that are currently used, or under advanced clinical trial, for the treatment of HIV infections, belong to one of the following classes: (i) nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs) and (iii) protease inhibitors (PIs). In addition to the reverse transcriptase and protease step, various other events in the HIV replicative cycle are potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulphates, polysulphonates, polyoxometalates, zintevir, negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 and CCR5 [bicyclams (AMD3100), polyphemusins (T22), TAK-779]; (iii) virus-cell fusion, through binding to the viral glycoprotein gp41 [T-20 (DP-178), siamycins, betulinic acid derivatives]; (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as L-chicoric acid; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (peptoid CGP64222, fluoroquinolone K-12, Streptomyces product EM2487). Also, in recent years new NRTIs, NNRTIs and PIs have been developed that possess, respectively, improved metabolic characteristics (i.e. phosphoramidate and cyclosaligenyl pronucleotides of d4T), or increased activity against NNRTI-resistant HIV strains, or, in the case of PIs, a different, non-peptidic scaffold. Given the multitude of molecular targets with which anti-HIV agents can interact, one should be cautious in extrapolating from cell-free enzymatic assays to the mode of action of these agents in intact cells. A number of compounds (i.e. zintevir and L-chicoric acid, on the one hand; and CGP64222 on the other hand) have recently been found to interact with virus-cell binding and viral entry in contrast to their proposed modes of action targeted at the integrase and transactivation process, respectively.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
37
|
Siddiqui A, McGuigan C, Ballatore C, Srinivasan S, De Clercq E, Balzarini J. Enhancing the aqueous solubility of d4T-based phosphoramidate prodrugs. Bioorg Med Chem Lett 2000; 10:381-4. [PMID: 10714505 DOI: 10.1016/s0960-894x(99)00701-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A range of polyether para-substituted phosphoramidates were synthesised and found to have substantially elevated aqueous solubilities compared to the underivatised parent prodrug. A 30-fold increase in aqueous solubility could be achieved without a substantial decrease of in vitro activity against HIV-1. Replacement of the aryl (i.e. phenolic) moiety by tyrosine led to a substantial enhancement in aqueous solubility but also to a decrease in antiviral potency. A previously unobserved trend was identified, relating increased aryl substituent steric bulk to decreased antiviral activity.
Collapse
Affiliation(s)
- A Siddiqui
- Welsh School of Pharmacy, Cardiff University, UK
| | | | | | | | | | | |
Collapse
|
38
|
Chapter 16. Recent developments in antiretroviral therapies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|