1
|
Mullapudi VB, Craig KC, Guo Z. Synthesis of a Bifunctionalized Glycosylphosphatidylinositol (GPI) Anchor Useful for the Study of GPI Biology. Chemistry 2023; 29:e202203457. [PMID: 36445784 PMCID: PMC10038835 DOI: 10.1002/chem.202203457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
A new, bifunctional glycosylphosphatidylinositol (GPI) derivative containing the highly conserved core structure of all natural GPI anchors with a photoactivable diazirine in the lipid chain and clickable alkynes in the glycan was synthesized by a convergent [3+2] glycosylation strategy with late stage protecting group manipulation and regioselective phosphorylation. The challenges of this synthesis were due to the presence of several distinctive functional groups in the synthetic target, which complicated the protection tactics, in addition to the inherent difficulties associated with GPI synthesis. This bifunctional GPI derivative can cross-react with molecules in proximity upon photoactivation and be subsequently labeled with other molecular tags via click reaction. Therefore, it should be a valuable probe for biological studies of GPIs, such as analysis of GPI-interacting membrane proteins, and gaining insights into their functional mechanisms.
Collapse
Affiliation(s)
| | - Kendall C Craig
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Morotti ALM, Martins-Teixeira MB, Carvalho I. Protozoan Parasites Glycosylphosphatidylinositol Anchors: Structures, Functions and Trends for Drug Discovery. Curr Med Chem 2019; 26:4301-4322. [PMID: 28748758 DOI: 10.2174/0929867324666170727110801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) anchors are molecules located on cell membranes of all eukaryotic organisms. Proteins, enzymes, and other macromolecules which are anchored by GPIs are essential elements for interaction between cells, and are widely used by protozoan parasites when compared to higher eukaryotes. METHODS More than one hundred references were collected to obtain broad information about mammalian and protozoan parasites' GPI structures, biosynthetic pathways, functions and attempts to use these molecules as drug targets against parasitic diseases. Differences between GPI among species were compared and highlighted. Strategies for drug discovery and development against protozoan GPI anchors were discussed based on what has been reported on literature. RESULTS There are many evidences that GPI anchors are crucial for parasite's survival and interaction with hosts' cells. Despite all GPI anchors contain a conserved glycan core, they present variations regarding structural features and biosynthetic pathways between organisms, which could offer adequate selectivity to validate GPI anchors as drug targets. Discussion was developed with focus on the following parasites: Trypanosoma brucei, Trypanosoma cruzi, Leishmania, Plasmodium falciparum and Toxoplasma gondii, causative agents of tropical neglected diseases. CONCLUSION This review debates the main variances between parasitic and mammalian GPI anchor biosynthesis and structures, as well as clues for strategic development for new anti-parasitic therapies based on GPI anchors.
Collapse
Affiliation(s)
- Ana Luísa Malaco Morotti
- School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Turney T, Zhang W, Oliver AG, Serianni AS. Structural properties of D-mannopyranosyl rings containing O-acetyl side-chains. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1166-1174. [PMID: 31380800 DOI: 10.1107/s2053229619008817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/20/2019] [Indexed: 01/29/2024]
Abstract
The crystal structures of 1,2,3,4,6-penta-O-acetyl-α-D-mannopyranose, C16H22O11, and 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-O-acetyl-α-D-mannopyranosyl-(1→3)-1,2,4,6-tetra-O-acetyl-α-D-mannopyranose, C40H54O27, were determined and compared to those of methyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside, methyl α-D-mannopyranoside and methyl α-D-mannopyranosyl-(1→2)-α-D-mannopyranoside to evaluate the effects of O-acetylation on bond lengths, bond angles and torsion angles. In general, O-acetylation exerts little effect on the exo- and endocyclic C-C and endocyclic C-O bond lengths, but the exocyclic C-O bonds involved in O-acetylation are lengthened by ∼0.02 Å. The conformation of the O-acetyl side-chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°-alcoholic C atom or bisecting the H-C-H bond angle of a 1°-alcoholic C atom. Of the two C-O bonds that determine O-acetyl side-chain conformation, that involving the alcoholic C atom exhibits greater rotational variability than that involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of O-acetyl side-chain conformations in saccharides. Experimental evidence was also obtained to confirm density functional theory (DFT) predictions of C-O and O-H bond-length behavior in a C-O-H fragment involved in hydrogen bonding.
Collapse
Affiliation(s)
- Toby Turney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Wenhui Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| |
Collapse
|
5
|
Zhang W, Pan Q, Serianni AS. A chemical synthesis of a multiply 13 C-labeled hexasaccharide: a high-mannose N-glycan fragment. J Labelled Comp Radiopharm 2016; 59:673-679. [PMID: 27387600 PMCID: PMC5177528 DOI: 10.1002/jlcr.3418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022]
Abstract
As covalent modifiers of proteins, high-mannose N-glycans are important in maintaining protein structure and function in vivo. The conformations of these glycans can be studied by nuclear magnetic resonance spectroscopy using spin-spin couplings (J-couplings; scalar couplings) and other nuclear magnetic resonance parameters that are sensitive to the geometries of their constituent glycosidic linkages and other mobile elements in their structures. These analyses often require 13 C-labeling at specific carbon atoms, especially when measurements of 13 C-13 C J-couplings are of interest. The selection of particular 13 C isotopomers of a glycan depends on the type of question under scrutiny. A chemical synthesis of a mannose-containing hexasaccharide, α[1-13 C]Man(1→2)α[1,2-13 C2 ]Man(1→6)[α[1-13 C]Man(1→2)α[1,2-13 C2 ]Man(1→3)]α[1,2-13 C2 ]Man(1→6)βManOCH3 , which is a nested fragment of the high-mannose N-glycans of human glycoproteins and contains eight 13 C-enriched carbon sites, is described in this report. The selected 13 C isotopomer was chosen to maximize the measurement of J-couplings sensitive to linkage conformations. This work demonstrates that chemical syntheses of multiply 13 C-labeled oligosaccharides are technically feasible and practical using present synthetic methods. The availability of this and other multiply 13 C-labeled mannose-containing oligosaccharides will promote future studies of their conformations in solution and in the bound state.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA
| | - Qingfeng Pan
- Omicron Biochemicals, Inc., South Bend, IN 46617-2701 USA
| | - Anthony S. Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA
| |
Collapse
|
6
|
Tu Z, Liu PK, Wu MC, Lin CH. Expeditious Synthesis of Orthogonally Protected Saccharides through Consecutive Protection/Glycosylation Steps. Isr J Chem 2015. [DOI: 10.1002/ijch.201400166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Mukherjee C, Liu L, Pohl NLB. Regioselective Benzylation of 2-Deoxy-2-Aminosugars Using Crown Ethers: Application to a Shortened Synthesis of Hyaluronic Acid Oligomers. Adv Synth Catal 2014; 356:2247-2256. [PMID: 25419207 PMCID: PMC4235972 DOI: 10.1002/adsc.201400269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The combination of benzyl bromide, sodium hydroxide and 15-crown-5 in tetrahydrofuran is shown to be an efficient method for installing benzyl groups at both the 4- and 6-positions regioselectively directly from peracetylated N-trichloroacetyl-protected glucosamine and galactosamine. Application of this benzylation strategy proved to significantly shorten the synthetic route to hyaluronic acid tetra- and hexamers.
Collapse
Affiliation(s)
- Chinmoy Mukherjee
- Department of Chemistry, Simon Hall, Indiana University, Bloomington, IN 47405-7003, USA
| | - Lin Liu
- Department of Chemistry, Hach Hall, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Nicola L B Pohl
- Department of Chemistry, Simon Hall, Indiana University, Bloomington, IN 47405-7003, USA
| |
Collapse
|
8
|
Wu Z, Guo X, Gao J, Guo Z. Sortase A-mediated chemoenzymatic synthesis of complex glycosylphosphatidylinositol-anchored protein. Chem Commun (Camb) 2014; 49:11689-91. [PMID: 24195111 DOI: 10.1039/c3cc47229a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green fluorescent protein and a glycosylphosphatidylinositol (GPI) anchor containing the common core structure and a lipid chain were synthesized and then coupled together in the promotion of bacterial sortase A (SrtA), which was the first example for the synthesis of a full-size GPI-anchored protein by SrtA, demonstrating that this can be a generally useful method for GPI-anchored protein synthesis.
Collapse
Affiliation(s)
- Zhimeng Wu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
9
|
Niehus S, Smith TK, Azzouz N, Campos MA, Dubremetz JF, Gazzinelli RT, Schwarz RT, Debierre-Grockiego F. Virulent and avirulent strains of Toxoplasma gondii which differ in their glycosylphosphatidylinositol content induce similar biological functions in macrophages. PLoS One 2014; 9:e85386. [PMID: 24489660 PMCID: PMC3904843 DOI: 10.1371/journal.pone.0085386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH). The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ∼34% of the protein-free GPIs as well as ∼70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages.
Collapse
Affiliation(s)
- Sebastian Niehus
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UPR 9022 CNRS, Institute of Molecular and Cellular Biology, Strasbourg, France
- * E-mail:
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Nahid Azzouz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Marco A. Campos
- Research Center René Rachou, Oswaldo Cruz Foundation, Laboratory of Immunopathology, Belo Horizonte, Brazil
| | | | - Ricardo T. Gazzinelli
- Research Center René Rachou, Oswaldo Cruz Foundation, Laboratory of Immunopathology, Belo Horizonte, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ralph T. Schwarz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UMR 8576 CNRS, Unit of Structural and Functional Glycobiology, University of, Lille, France
| | - Françoise Debierre-Grockiego
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UMR 1282 Infectiology and Public Health, University of Tours, Tours, France and INRA, Nouzilly, France
| |
Collapse
|
10
|
Yadav M, Raghupathy R, Saikam V, Dara S, Singh PP, Sawant SD, Mayor S, Vishwakarma RA. Synthesis of non-hydrolysable mimics of glycosylphosphatidylinositol (GPI) anchors. Org Biomol Chem 2014; 12:1163-72. [DOI: 10.1039/c3ob42116c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wu Z, Guo X, Gu G, Guo Z. Chemoenzymatic synthesis of the human CD52 and CD24 antigen analogues. Org Lett 2013; 15:5906-8. [PMID: 24147914 DOI: 10.1021/ol4028144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Analogs of the human CD52 and CD24 antigens carrying the common core structure of glycosylphosphatidylinositol (GPI) anchors and the intact polypeptide sequences of CD52 and CD24 were chemoenzymatically synthesized. CD52 and CD24 proteins were obtained by solid-phase peptide synthesis and then coupled to chemically synthesized GPI anchors under the influence of a bacterial enzyme, sortase A, to afford the target molecules in good yields.
Collapse
Affiliation(s)
- Zhimeng Wu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States , and National Glycoengineering Research Center, Shandong University , Jinan 250100, China
| | | | | | | |
Collapse
|
12
|
Ohara K, Lin CC, Yang PJ, Hung WT, Yang WB, Cheng TJR, Fang JM, Wong CH. Synthesis and Bioactivity of β-(1→4)-Linked Oligomannoses and Partially Acetylated Derivatives. J Org Chem 2013; 78:6390-411. [DOI: 10.1021/jo4005266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keiichiro Ohara
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Chien Lin
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Jung Yang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Ting Hung
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Bin Yang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - Jim-Min Fang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Huey Wong
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
13
|
Chassagne P, Fontana C, Guerreiro C, Gauthier C, Phalipon A, Widmalm G, Mulard LA. Structural Studies of theO-Acetyl-Containing O-Antigen from aShigella flexneriSerotype 6 Strain and Synthesis of Oligosaccharide Fragments Thereof. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Guo Z. Synthetic Studies of Glycosylphosphatidylinositol (GPI) Anchors and GPI-Anchored Peptides, Glycopeptides, and Proteins. Curr Org Synth 2013; 10:366-383. [PMID: 24955081 DOI: 10.2174/1570179411310030003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage of proteins and glycoproteins onto the cell surface is ubiquitous in eukaryotes, and GPI-anchored proteins and glycoproteins play an important role in many biological processes. To study GPI anchorage and explore the functions of GPIs and GPI-anchored proteins and glycoproteins, it is essential to have access to these molecules in homogeneous and structurally defined forms. This review is focused on the progress that our laboratory has made towards the chemical and chemoenzymatic synthesis of structurally defined GPI anchors and GPI-anchored peptides, glycopeptides, and proteins. Briefly, highly convergent strategies were developed for GPI synthesis and were employed to successfully synthesize a number of GPIs, including those carrying unsaturated lipids and other useful functionalities such as the azido and alkynyl groups. The latter enabled further site-specific modification of GPIs by click chemistry. GPI-linked peptides, glycopeptides, and proteins were prepared by regioselective chemical coupling of properly protected GPIs and peptides/glycopeptides or through site-specific ligation of synthetic GPIs and peptides/glycopeptides/proteins under the influence of sortase A. The investigation of interactions between GPI anchors and pore-forming bacterial toxins by means of synthetic GPI anchors and GPI analogs is also discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
15
|
Swarts BM, Guo Z. Chemical synthesis of glycosylphosphatidylinositol anchors. Adv Carbohydr Chem Biochem 2012; 67:137-219. [PMID: 22794184 DOI: 10.1016/b978-0-12-396527-1.00004-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Chang SM, Tu Z, Jan HM, Pan JF, Lin CH. Rapid synthesis of oligomannosides with orthogonally protected monosaccharides. Chem Commun (Camb) 2012; 49:4265-7. [PMID: 23124079 DOI: 10.1039/c2cc37099a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We developed a facile synthesis to yield orthogonally protected mannose building blocks with high overall yields. The protection/glycosylation steps can be carried out in a successive manner without purification of intermediate products. This developed synthesis led to formation of linear/branched tri-, penta- and heptasaccharides.
Collapse
Affiliation(s)
- Sue-Ming Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
18
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
20
|
Richichi B, Luzzatto L, Notaro R, Marca GL, Nativi C. Synthesis of the essential core of the human glycosylphosphatidylinositol (GPI) anchor. Bioorg Chem 2011; 39:88-93. [DOI: 10.1016/j.bioorg.2010.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/29/2022]
|
21
|
Nikolaev AV, Al-Maharik N. Synthetic glycosylphosphatidylinositol (GPI) anchors: how these complex molecules have been made. Nat Prod Rep 2011; 28:970-1020. [PMID: 21448495 DOI: 10.1039/c0np00064g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrei V Nikolaev
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
22
|
Debierre-Grockiego F, Niehus S, Coddeville B, Elass E, Poirier F, Weingart R, Schmidt RR, Mazurier J, Guérardel Y, Schwarz RT. Binding of Toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. J Biol Chem 2010; 285:32744-32750. [PMID: 20729207 DOI: 10.1074/jbc.m110.137588] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed that the production of tumor necrosis factor (TNF) α by macrophages in response to Toxoplasma gondii glycosylphosphatidylinositols (GPIs) requires the expression of both Toll-like receptors TLR2 and TLR4, but not of their co-receptor CD14. Galectin-3 is a β-galactoside-binding protein with immune-regulatory effects, which associates with TLR2. We demonstrate here by using the surface plasmon resonance method that the GPIs of T. gondii bind to human galectin-3 with strong affinity and in a dose-dependent manner. The use of a synthetic glycan and of the lipid moiety cleaved from the GPIs shows that both parts are involved in the interaction with galectin-3. GPIs of T. gondii also bind to galectin-1 but with a lower affinity and only through the lipid moiety. At the cellular level, the production of TNF-α induced by T. gondii GPIs in macrophages depends on the expression of galectin-3 but not of galectin-1. This study is the first identification of a galectin-3 ligand of T. gondii origin, and galectin-3 might be a co-receptor presenting the GPIs to the TLRs on macrophages.
Collapse
Affiliation(s)
- Françoise Debierre-Grockiego
- From the Institut für Virologie, AG Parasitologie, Philipps University, Marburg D-35043, Germany; Unité Mixte de Recherche Université-Institut National de la Recherche Agronomique 0483 Immunologie Parasitaire, Vaccinologie et Biothérapies Anti-infectieuses, Unité de Formation de Recherche Sciences Pharmaceutiques, 31 Avenue Monge, F-37200 Tours, France.
| | - Sebastian Niehus
- From the Institut für Virologie, AG Parasitologie, Philipps University, Marburg D-35043, Germany
| | - Bernadette Coddeville
- CNRS-Unité Mixte de Recherche 8576, Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche 147, Université Lille Nord de France, F-59000 Lille, France
| | - Elisabeth Elass
- CNRS-Unité Mixte de Recherche 8576, Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche 147, Université Lille Nord de France, F-59000 Lille, France
| | - Françoise Poirier
- Laboratoire de Génétique et Développement des Mammifères, Institut Jacques Monod, Paris F-75013, France
| | - Ralf Weingart
- Fachbereich Chemie, University of Konstanz, Konstanz D-78457, Germany
| | - Richard R Schmidt
- Fachbereich Chemie, University of Konstanz, Konstanz D-78457, Germany
| | - Joël Mazurier
- CNRS-Unité Mixte de Recherche 8576, Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche 147, Université Lille Nord de France, F-59000 Lille, France
| | - Yann Guérardel
- CNRS-Unité Mixte de Recherche 8576, Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche 147, Université Lille Nord de France, F-59000 Lille, France
| | - Ralph T Schwarz
- From the Institut für Virologie, AG Parasitologie, Philipps University, Marburg D-35043, Germany; CNRS-Unité Mixte de Recherche 8576, Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche 147, Université Lille Nord de France, F-59000 Lille, France
| |
Collapse
|
23
|
Debierre-Grockiego F. Glycolipids are potential targets for protozoan parasite diseases. Trends Parasitol 2010; 26:404-11. [DOI: 10.1016/j.pt.2010.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 04/06/2010] [Accepted: 04/19/2010] [Indexed: 11/16/2022]
|
24
|
Eller S, Weishaupt M, Seeberger PH. Solution- and solid-phase synthesis of oligosaccharides. CARBOHYDRATE CHEMISTRY 2010. [DOI: 10.1039/9781849730891-00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Steffen Eller
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Markus Weishaupt
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| |
Collapse
|
25
|
Total synthesis of the fully lipidated glycosylphosphatidylinositol (GPI) anchor of malarial parasite Plasmodium falciparum. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Debierre-Grockiego F, Schwarz RT. Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 2010; 20:801-11. [PMID: 20378610 DOI: 10.1093/glycob/cwq038] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apicomplexan protozoa are a phylum of parasites that includes pathogens such as Plasmodium, the causative agent of the most severe form of malaria responsible for almost 1 million deaths per year and Toxoplasma gondii causing toxoplasmosis, a disease leading to cerebral meningitis in immunocompromised individuals or to abortion in farm animals or in women that are infected for the first time during pregnancy. The initial immune reactions developed by the host are similar in response to an infection with Plasmodium and Toxoplasma in the sense that the same cells of the innate immune system are stimulated to produce inflammatory cytokines. The glycosylphosphatidylinositol (GPI) anchor is the major carbohydrate modification in parasite proteins and the GPIs are essential for parasite survival. Two immediate GPI precursors with the structures ethanolamine phosphate-6(Manalpha1-2)Manalpha1-2Manalpha1-6Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6Man-alpha1-4-GlcN-PI are synthesized by P. falciparum. Two main structures are synthesized by T. gondii: ethanolamine phosphate-6Manalpha1-2Manalpha1-6(GalNAcbeta1-4)Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6(Glcalpha1-4GalNAcbeta1-4)Manalpha1-4GlcN-PI. This review describes the biosynthesis of the apicomplexan GPIs and their role in the activation of the host immune system.
Collapse
Affiliation(s)
- Françoise Debierre-Grockiego
- UMR Université-INRA 0483, Immunologie Parasitaire Vaccinologie et Biothérapies anti-infectieuses, UFR Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France
| | | |
Collapse
|
27
|
Hada N, Shida Y, Negishi N, Schweizer F, Takeda T. Syntheses of glycoclusters containing a phosphocholine residue related to a glycosphingolipid from the earthworm Pheretima hilgendorfi. Chem Pharm Bull (Tokyo) 2009; 57:1081-8. [PMID: 19801862 DOI: 10.1248/cpb.57.1081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three types of glycoclusters related to an amphoteric glycosphingolipid found in the earthworm Pheretima hilgendorfi were synthesized. The glycoclusters were prepared from a common precursor and a simple approach for the rational design of a glycocluster was developed.
Collapse
Affiliation(s)
- Noriyasu Hada
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
| | | | | | | | | |
Collapse
|
28
|
Ali A, Wenk MR, Lear MJ. Total synthesis of a fully lipidated form of phosphatidyl-myo-inositol dimannoside (PIM-2) of Mycobacterium tuberculosis. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.07.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Wu Q, Guo Z. Glycosylphosphatidylinositols are potential targets for the development of novel inhibitors for aerolysin-type of pore-forming bacterial toxins. Med Res Rev 2009; 30:258-69. [DOI: 10.1002/med.20167] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Chapter 9 GPIs of Apicomplexan Protozoa. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Hada N, Shida Y, Shimamura H, Sonoda Y, Kasahara T, Sugita M, Takeda T. Synthetic studies on glycosphingolipids from Protostomia phyla: syntheses and biological activities of amphoteric glycolipids containing a phosphocholine residue from the earthworm Pheretima hilgendorfi. Carbohydr Res 2008; 343:2221-8. [DOI: 10.1016/j.carres.2008.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
|
32
|
Synthesis and biological evaluation of sperm CD52 GPI anchor and related derivatives as binding receptors of pore-forming CAMP factor. Carbohydr Res 2008; 343:1718-29. [PMID: 18439573 DOI: 10.1016/j.carres.2008.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/20/2008] [Accepted: 03/30/2008] [Indexed: 11/21/2022]
Abstract
Sperm CD52 GPI anchor and its derivatives containing different carbohydrate chains were prepared in a highly convergent fashion starting from the same properly protected phospholipidated pseudodisaccharide. Coupling this common key intermediate to various oligosaccharyl donors quickly afforded the framework of the synthetic targets, which was followed by global deprotection to furnish the desired structures. Preliminary studies on the biological properties of the synthetic GPI derivatives indicated that both the intact GPI anchor and the free phospholipidated pseudodisaccharide interacted strongly with CAMP factor, a pore-forming bacterial toxin.
Collapse
|
33
|
Jaipuri FA, Pohl NL. Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. Org Biomol Chem 2008; 6:2686-91. [DOI: 10.1039/b803451f] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, Mansur DS, Weingart R, Schmidt RR, Golenbock DT, Gazzinelli RT, Schwarz RT. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2007; 179:1129-37. [PMID: 17617606 DOI: 10.4049/jimmunol.179.2.1129] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-alpha production by macrophages exposed to T. gondii GPIs. Importantly, TNF-alpha response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88(-/-) mice were more susceptible to death than wild-type (WT), TLR2(-/-), TLR4(-/-), TLR2/4(-/-), and CD14(-/-) mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4(-/-), but not TLR2(-/-), TLR4(-/-), and CD14(-/-), mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-gamma production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2(-/-) and TLR2/4(-/-) mice produced more IFN-gamma than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.
Collapse
|
35
|
Mari S, Sánchez-Medina I, Mereghetti P, Belvisi L, Jiménez-Barbero J, Bernardi A. Synthesis and conformational analysis of an α-d-mannopyranosyl-(1→2)-α-d-mannopyranosyl-(1→6)-α-d-mannopyranose mimic. Carbohydr Res 2007; 342:1859-68. [PMID: 17420008 DOI: 10.1016/j.carres.2007.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/13/2007] [Accepted: 03/17/2007] [Indexed: 11/24/2022]
Abstract
A mimic of a (1-->2),(1-->6)-mannotrioside was synthesized by replacing the central mannose unit with an enantiomerically pure, conformationally stable trans-diaxial cyclohexanediol. The three-dimensional structure of the molecule was investigated by NMR spectroscopy supported by molecular modelling and was compared to the known features of the natural mannotrioside.
Collapse
Affiliation(s)
- Silvia Mari
- Centro de Investigaciones Biológicas, Departamento de Estructura y Functión de Proteínas, CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR. Synthetic analogues of glycosylphosphatidylinositol-anchored proteins and their behavior in supported lipid bilayers. J Am Chem Soc 2007; 129:11543-50. [PMID: 17715922 DOI: 10.1021/ja073271j] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified proteins in the outer leaflet of the plasma membrane. GPI-anchored proteins play vital roles in signal transduction, the vertebrate immune response, and the pathobiology of trypanosomal parasites. While many GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. We synthesized a series of GPI-protein analogues bearing modified anchor structures that were designed to dissect the contribution of various glycan components to the GPI-protein's membrane behavior. These anchor analogues were similar in length to native GPI anchors and included mimics of the native structure's three domains. A combination of expressed protein ligation and native chemical ligation was used to attach these analogues to the green fluorescent protein (GFP). These modified GFPs were incorporated in supported lipid bilayers, and their mobilities were analyzed using fluorescence correlation spectroscopy. The data from these experiments suggest that the GPI anchor is more than a simple membrane-anchoring device; it also may prevent transient interactions between the attached protein and the underlying lipid bilayer, thereby permitting rapid diffusion in the bilayer. The ability to generate chemically defined analogues of GPI-anchored proteins is an important step toward elucidating the molecular functions of this interesting post-translational modification.
Collapse
Affiliation(s)
- Margot G Paulick
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Yashunsky DV, Borodkin VS, Ferguson MAJ, Nikolaev AV. The chemical synthesis of bioactive glycosylphosphatidylinositols from Trypanosoma cruzi containing an unsaturated fatty acid in the lipid. Angew Chem Int Ed Engl 2006; 45:468-74. [PMID: 16342127 DOI: 10.1002/anie.200502779] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dmitry V Yashunsky
- Faculty of Life Sciences, Division of Biological Chemistry and Molecular Microbiology, University of Dundee, Carnelley Building, Dundee DD1 4HN, UK
| | | | | | | |
Collapse
|
39
|
Blattner R, Furneaux RH, Ludewig M. Syntheses of oligomannosides in solution and on a soluble polymer support: a comparison. Carbohydr Res 2006; 341:299-321. [PMID: 16364272 DOI: 10.1016/j.carres.2005.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 11/28/2005] [Indexed: 11/26/2022]
Abstract
The alpha-(1-->6)-linked and the alpha-(1-->2)-linked linear mannotetraose glycosides and, respectively, and the branched mannopentaoside [R=CH2(CH2)2CH2Cl] were synthesised by conventional methods in solution, using trichloroacetimidate donors, and the products were obtained in 39%, 42% and 40% overall yield, respectively. For comparative purposes, the same two linear tetrasaccharides were prepared by use of MPEG as a soluble polymer support, the yields being 34% and 14%, respectively. An attempted MPEG-supported synthesis of the branched pentasaccharide was unsuccessful. The merits and shortcomings of oligosaccharide syntheses on MPEG are discussed.
Collapse
Affiliation(s)
- Regine Blattner
- Industrial Research Limited, PO Box 31 310, Lower Hutt, New Zealand
| | | | | |
Collapse
|
40
|
Yashunsky DV, Borodkin VS, Ferguson MAJ, Nikolaev AV. The Chemical Synthesis of Bioactive Glycosylphosphatidylinositols fromTrypanosoma cruzi Containing an Unsaturated Fatty Acid in the Lipid. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Kwon YU, Soucy RL, Snyder DA, Seeberger PH. Assembly of a Series of Malarial Glycosylphosphatidylinositol Anchor Oligosaccharides. Chemistry 2005; 11:2493-504. [PMID: 15729674 DOI: 10.1002/chem.200400934] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report an efficient and convergent synthesis of a series of oligosaccharides comprised of the malaria GPI glycan (2a), a promising anti-malaria vaccine candidate currently in preclinical trials and several related oligosaccharide sequences (3-8) that are possible biosynthetic precursors of the malarial GPI. A flexible synthetic strategy is disclosed that relies on a late-stage coupling between oligomannosides of varying length and pseudo-disaccharide glycosyl acceptor 11 to readily access various malarial GPI structures. Phosphorylation was accomplished by mild and efficient H-phosphonate chemistry before the final deprotection was carried out by using sodium in ammonia. The direct connection of a thiol group via a phosphate diester linkage to the inositol moiety provides a handle for easy conjugation of the GPI glycan to carrier proteins, immobilization on carbohydrate microarrays and photo-affinity labels identification. These synthetic oligosaccharides will serve as molecular probes.
Collapse
Affiliation(s)
- Yong-Uk Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
42
|
Kwon YU, Liu X, Seeberger PH. Total syntheses of fully lipidated glycosylphosphatidylinositol anchors of Toxoplasma gondii. Chem Commun (Camb) 2005:2280-2. [PMID: 15856122 DOI: 10.1039/b501373a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modular syntheses of the glycosylphosphatidylinositol anchors of Toxoplasma gondii using a highly convergent strategy are reported.
Collapse
Affiliation(s)
- Yong-Uk Kwon
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106−7078, USA, Fax: (internat.) +1‐216‐368‐3006
| | - Lee Bishop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106−7078, USA, Fax: (internat.) +1‐216‐368‐3006
| |
Collapse
|
44
|
Abstract
Two strategies towards the synthesis of phosphatidylinositol mannosides (PIMs) were elaborated which permit selective access to the O-1-, O-2-, and the O-6 position of the myo-inositol residue. Starting materials are 1,2:5,6- and 1,2:4,5-di-O-cyclohexylidene-DL-myo-inositol, respectively. In the latter case, the required assignment to the D- or L-series is based on the transformation of one enantiomer into known (-)-liriodentritol. The efficiency and potential versatility of the two approaches is exemplified in the synthesis of PIMs (D)-1a and its pseudoenantiomer (L)-1b, both having myristoyl residues as part of the phosphatidyl moiety.
Collapse
Affiliation(s)
- Andreas Stadelmaier
- Fachbereich Chemie, Universität Konstanz, Fach M 725, D-78457 Konstanz, Germany
| | | |
Collapse
|
45
|
Sureshan KM, Shashidhar MS, Praveen T, Das T. Regioselective Protection and Deprotection of Inositol Hydroxyl Groups. Chem Rev 2003; 103:4477-503. [PMID: 14611268 DOI: 10.1021/cr0200724] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kana M Sureshan
- Division of Organic Synthesis, National Chemical Laboratory, Pune 411 008, India
| | | | | | | |
Collapse
|
46
|
Debierre-Grockiego F, Azzouz N, Schmidt J, Dubremetz JF, Geyer H, Geyer R, Weingart R, Schmidt RR, Schwarz RT. Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-alpha production in macrophages. J Biol Chem 2003; 278:32987-93. [PMID: 12815041 DOI: 10.1074/jbc.m304791200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protozoan, which causes congenital infectious diseases as well as severe encephalitis, a major cause of death among immune-deficient persons, such as AIDS patients. T. gondii is normally controlled by the immune system of healthy individuals, leading to an asymptomatic infection. T. gondii triggers early cytokine production, which, to a certain extent, protects the host against replication of tachyzoites, the infective form of the parasite. Glycosylphosphatidylinositols (GPIs) constitute a class of glycolipids that have various functions, the most fundamental being to link proteins to eucaryotic cell membranes. GPIs are involved in the pathogenicity of other protozoan parasites and are known to induce tumor necrosis factor-alpha (TNF alpha) production. We show that GPIs highly purified from T. gondii tachyzoites, as well as their core glycans, induce TNF alpha production in macrophages. A chemically synthesized GPI of T. gondii lacking its lipid moiety, GPIa, has the same effect as the natural GPIs, whereas a chemically synthesized molecule with dialkylglycerol instead of diacylglycerol as lipid moiety, GPIb, does not induce TNF alpha production. Moreover, GPIb inhibits the TNF alpha production induced by T. gondii GPI or by GPIa. The core glycan prepared from the two chemically synthesized molecules activates macrophages, showing that the lipid moiety may regulate signaling. Stimulation of macrophages with GPIs of T. gondii results in activation of the transcription factor NF-kappa B, which is inhibited by the chemically synthesized GPIb, suggesting the involvement of NF-kappa B in TNF alpha gene expression. Our results support the idea that T. gondii GPIs are bioactive factors that participate in the production of TNF alpha during toxoplasmal pathogenesis.
Collapse
Affiliation(s)
- Françoise Debierre-Grockiego
- Institute for Virology, Medical Center for Hygiene, Philipps University, Robert-Koch-Strasse 17, D-35037 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pekari K, Schmidt RR. A variable concept for the preparation of branched glycosyl phosphatidyl inositol anchors. J Org Chem 2003; 68:1295-308. [PMID: 12585868 DOI: 10.1021/jo026380j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variable concept for the synthesis of branched glycosyl phosphatidyl inositol (GPI) anchors was established. Its efficiency could be shown by the successful synthesis of the GPI anchor of rat brain Thy-1 and of the scrapie prion protein both in the water soluble 1c and lipidated form 1a. Retrosynthesis led to building blocks 2-6 of which 5 could be further disconnected to building blocks 7-9. Trichloroacetimidate 5 was built up in a straightforward manner starting from glycosyl acceptor 9 using known glycosyl donors 7 and 8. The carbohydrate backbone was then assembled by glycosylation of pseudodisaccharide acceptor 6 with donor 5. To ensure high stereoselectivity and good yields in the glycosylation reactions, anchimeric assistance was employed. Successive deprotection and introduction of the various phosphate residues gave the fully protected GPI anchors. Catalytic hydrogenation and acid-catalyzed cleavage of the Boc protecting groups afforded the target molecules, which could be fully structurally assigned.
Collapse
Affiliation(s)
- Klaus Pekari
- Fachbereich Chemie, Universität Konstanz, Fach M725, D-78457 Konstanz, Germany
| | | |
Collapse
|
48
|
Meek B, Diepersloot RJ, van Gool T, Speijer D, Peek R. Igm recognition of recombinant Toxoplasma gondii antigens by sera of acutely or latently infected humans. Diagn Microbiol Infect Dis 2003; 45:45-52. [PMID: 12573550 DOI: 10.1016/s0732-8893(02)00476-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Clinical non-relevant (CNR) IgM specific for Toxoplasma gondii is responsible for false-positive results in commercially available IgM assays. Using IgM immunoblotting, it is possible to distinguish between IgM in sera of acutely infected (AI) patients and CNR IgM. Especially the combination of staining of a 55 and 30 kD antigen in T.gondii lysate proved useful in this respect. The 55 kD antigen was identified as Rop1, while the 30 kD antigen was confirmed to be Sag1. However, the use of recombinant antigens instead of lysates for diagnostic assays would improve reproducibility. IgM recognized recombinant Rop1, but most CNR sera also had low anti-Rop1 titers. Although purified native Sag1 separated AI and CNR sera very well on immunoblot, IgM did not recognize recombinant Sag1 at all. Clearly, it is difficult to produce a recombinant Sag1 that can be recognized by IgM. Recombinant Rop1 might be suitable as one of the recombinant antigens in an IgM immunoblot assay, but has to be combined with at least one other immunogenic antigen.
Collapse
Affiliation(s)
- Bob Meek
- Department of Molecular Immunology, The Netherlands Ophthalmic Research Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Hewitt MC, Snyder DA, Seeberger PH. Rapid synthesis of a glycosylphosphatidylinositol-based malaria vaccine using automated solid-phase oligosaccharide synthesis. J Am Chem Soc 2002; 124:13434-6. [PMID: 12418894 DOI: 10.1021/ja027538k] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described is an automated synthesis of hexasaccharide malarial toxin 1, currently under development as a malaria vaccine candidate. Using a combination of automated solid-phase methods and solution-phase fragment coupling, the target glycosylphosphatidylinositol was assembled in a matter of days, compared with several weeks for a comparable solution-phase synthesis.
Collapse
Affiliation(s)
- Michael C Hewitt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
50
|
Bosse F, Marcaurelle LA, Seeberger PH. Linear synthesis of the tumor-associated carbohydrate antigens Globo-H, SSEA-3, and Gb3. J Org Chem 2002; 67:6659-70. [PMID: 12227795 DOI: 10.1021/jo025834+] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tumor-associated carbohydrate antigens Globo-H, SSEA-3, and Gb3 were synthesized in a linear fashion using glycosyl phosphate monosaccharide building blocks. All of the building blocks were prepared from readily available common precursors. The difficult alpha-(1-->4-cis)-galactosidic linkage was installed using a galactosyl phosphate donor with high selectivity. Introduction of the beta-galactosamine unit required the screening a variety of amine protecting groups to ensure good donor reactivity and protecting group compatibility. An N-trichloroacetyl-protected galactosamine donor performed best for the installation of the beta-glycosidic linkage. Conversion of the trichloroacetyl group to the N-acetyl group was achieved under mild conditions, fully compatible with the presence of multiple glycosidic bonds. This synthetic strategy is expected to be amenable to the synthesis of the globo-series of tumor antigens on solid-support.
Collapse
Affiliation(s)
- Folkert Bosse
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|