1
|
Meng WH, Zhang X, Pan BB, Tan X, Zhao JL, Liu Y, Yang Y, Goldfarb D, Su XC. Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements. J Am Chem Soc 2025; 147:234-246. [PMID: 39731614 DOI: 10.1021/jacs.4c09139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs. Here, we report an efficient orthogonal labeling approach based on exploiting the cyclization between the 1,2-aminothiol moiety in a protein (e.g., the N-terminal cysteine) with the aldehyde group in a spin label and a thiol substitution (or addition) reaction with a different spin label. We demonstrated that this orthogonal spin labeling method enables high accuracy and precision of multiple protein distance constraints through the PD-EPR measurement from a single sample. This spin labeling approach was applied to characterize the oligomeric state of the trigger factor (TF) protein of Escherichia coli, an important protein chaperone, in solution and cell lysates by distance measurements between different spin-spin pairs. Contrary to popular belief, TF exists mainly in the monomeric state and not as a dimer in the cell lysate.
Collapse
Affiliation(s)
- Wei-Han Meng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Long Zhao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Sowiński MP, Warnke AL, Lund BA, Skagseth S, Cordes DB, Lovett JE, Haugland MM. Spirocyclic Pyrrolidinyl Nitroxides with Exo-Methylene Substituents. Chempluschem 2024; 89:e202400387. [PMID: 39073844 DOI: 10.1002/cplu.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
Nitroxides are stable organic radicals with exceptionally long lifetimes, which render them uniquely suitable as observable probes or polarising agents for spectroscopic investigation of biomolecular structure and dynamics. Radical-based probes for biological applications are ideally characterized by both robustness towards reductive degradation and beneficial electron spin relaxation parameters. These properties are largely influenced by the molecular structure of the nitroxide scaffold, and also by the conformations it prefers to adopt. In this study we present the synthesis of the first nitroxides based on a spirocyclic pyrrolidine scaffold with an exocyclic methylene substituent. The conformations adopted by these nitroxides were evaluated by X-ray crystallography, both with single nitroxide crystals and by inclusion of nitroxides in a microporous crystalline sponge. The kinetic and thermodynamic stability of the new nitroxides towards reduction was investigated by electron paramagnetic resonance (EPR) spectroscopy and cyclic voltammetry (CV). In combination with EPR measurements of electron spin relaxation properties, these results suggest that this new family of nitroxides can provide access to multifunctionalized probes and polarising agents suitable for use in biological environments at elevated temperatures.
Collapse
Affiliation(s)
- Mateusz P Sowiński
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Anna-Luisa Warnke
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Bjarte A Lund
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Susann Skagseth
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Marius M Haugland
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
3
|
Mitin D, Bullinger F, Dobrynin S, Engelmann J, Scheffler K, Kolokolov M, Krumkacheva O, Buckenmaier K, Kirilyuk I, Chubarov A. Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI. Int J Mol Sci 2024; 25:4041. [PMID: 38612851 PMCID: PMC11012161 DOI: 10.3390/ijms25074041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential "metal-free" organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40-50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21-27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI.
Collapse
Affiliation(s)
- Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Friedemann Bullinger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Sergey Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Jörn Engelmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Mikhail Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Igor Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
4
|
Harrabi R, Halbritter T, Alarab S, Chatterjee S, Wolska-Pietkiewicz M, Damodaran KK, van Tol J, Lee D, Paul S, Hediger S, Sigurdsson ST, Mentink-Vigier F, De Paëpe G. AsymPol-TEKs as efficient polarizing agents for MAS-DNP in glass matrices of non-aqueous solvents. Phys Chem Chem Phys 2024; 26:5669-5682. [PMID: 38288878 PMCID: PMC10849081 DOI: 10.1039/d3cp04271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.
Collapse
Affiliation(s)
- Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Shadi Alarab
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | - Krishna K Damodaran
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Subhradip Paul
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
5
|
Qiu Y, Eckvahl HJ, Equbal A, Krzyaniak MD, Wasielewski MR. Enhancing Coherence Times of Chromophore-Radical Molecular Qubits and Qudits by Rational Design. J Am Chem Soc 2023; 145:25903-25909. [PMID: 37963349 DOI: 10.1021/jacs.3c10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
An important criterion for quantum operations is long qubit coherence times. To elucidate the influence of molecular structure on the coherence times of molecular spin qubits and qudits, a series of molecules featuring perylenediimide (PDI) chromophores covalently linked to stable nitroxide radicals were synthesized and investigated by pulse electron paramagnetic resonance spectroscopy. Photoexcitation of PDI in these systems creates an excited quartet state (Q) followed by a spin-polarized doublet ground state (D0), which hold promise as spin qudits and qubits, respectively. By tailoring the molecular structure of these spin qudit/qubit candidates by selective deuteration and eliminating intramolecular motion, coherence times of Tm = 9.1 ± 0.3 and 4.2 ± 0.3 μs at 85 K for D0 and Q, respectively, are achieved. These coherence times represent a nearly 3-fold enhancement compared to those of the initial molecular design. This approach offers a rational structural design protocol for effectively extending coherence times in molecular spin qudits/qubits.
Collapse
Affiliation(s)
- Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Hannah J Eckvahl
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Asif Equbal
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| |
Collapse
|
6
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
7
|
Franco L, Isse AA, Barbon A, Altomare L, Hyppönen V, Rosa J, Olsson V, Kettunen M, Melone L. Redox Properties and in Vivo Magnetic Resonance Imaging of Cyclodextrin-Polynitroxides Contrast Agents. Chemphyschem 2023; 24:e202300100. [PMID: 37431722 DOI: 10.1002/cphc.202300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
This paper reports the synthesis, characterization and in vivo application of water-soluble supramolecular contrast agents (Mw: 5-5.6 kDa) for MRI obtained from β-cyclodextrin functionalized with different kinds of nitroxide radicals, both with piperidine structure (CD2 and CD3) and with pyrrolidine structure (CD4 and CD5). As to the stability of the radicals in presence of ascorbic acid, CD4 and CD5 have low second order kinetic constants (≤0.05 M-1 s-1 ) compared to CD2 (3.5 M-1 s-1 ) and CD3 (0.73 M-1 s-1 ). Relaxivity (r1 ) measurements on compounds CD3-CD5 were carried out at different magnetic field strength (0.7, 3, 7 and 9.4 T). At 0.7 T, r1 values comprised between 1.5 mM-1 s-1 and 1.9 mM-1 s-1 were found while a significant reduction was observed at higher fields (r1 ≈0.6-0.9 mM-1 s-1 at 9.4 T). Tests in vitro on HEK293 human embryonic kidney cells, L929 mouse fibroblasts and U87 glioblastoma cells indicated that all compounds were non-cytotoxic at concentrations below 1 μmol mL-1 . MRI in vivo was carried out at 9.4 T on glioma-bearing rats using the compounds CD3-CD5. The experiments showed a good lowering of T1 relaxation in tumor with a retention of the contrast for at least 60 mins confirming improved stability also in vivo conditions.
Collapse
Affiliation(s)
- Lorenzo Franco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Viivi Hyppönen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Jessica Rosa
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Venla Olsson
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Mikko Kettunen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lucio Melone
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
- Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Via Isimbardi 10, 22060, Novedrate, Italy
| |
Collapse
|
8
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
9
|
Khoroshunova YV, Morozov DA, Kuznetsov DA, Rybalova TV, Glazachev YI, Bagryanskaya EG, Kirilyuk IA. Synthesis and Properties of (1 R( S),5 R( S),7 R( S),8 R( S))-1,8-Bis(hydroxymethyl)-6-azadispiro[4.1.4.2]tridecane-6-oxyl: Reduction-Resistant Spin Labels with High Spin Relaxation Times. Int J Mol Sci 2023; 24:11498. [PMID: 37511257 PMCID: PMC10380268 DOI: 10.3390/ijms241411498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Site-directed spin labeling followed by investigation using Electron Paramagnetic Resonance spectroscopy is a rapidly expanding powerful biophysical technique to study structure, local dynamics and functions of biomolecules using pulsed EPR techniques and nitroxides are the most widely used spin labels. Modern trends of this method include measurements directly inside a living cell, as well as measurements without deep freezing (below 70 K), which provide information that is more consistent with the behavior of the molecules under study in natural conditions. Such studies require nitroxides, which are resistant to the action of biogenic reductants and have high spin relaxation (dephasing) times, Tm. (1R(S),5R(S),7R(S),8R(S))-1,8-bis(hydroxymethyl)-6-azadispiro[4.1.4.2]tridecane-6-oxyl is a unique nitroxide that combines these features. We have developed a convenient method for the synthesis of this radical and studied the ways of its functionalization. Promising spin labels have been obtained, the parameters of their spin relaxation T1 and Tm have been measured, and the kinetics of reduction with ascorbate have been studied.
Collapse
Affiliation(s)
- Yulia V Khoroshunova
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia
| | - Denis A Morozov
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Danil A Kuznetsov
- Department of Physics, Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia
| | - Tatyana V Rybalova
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Yurii I Glazachev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, 630090 Novosibirsk, Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Sowiński MP, Gahlawat S, Lund BA, Warnke AL, Hopmann KH, Lovett JE, Haugland MM. Conformational tuning improves the stability of spirocyclic nitroxides with long paramagnetic relaxation times. Commun Chem 2023; 6:111. [PMID: 37277501 DOI: 10.1038/s42004-023-00912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Nitroxides are widely used as probes and polarization transfer agents in spectroscopy and imaging. These applications require high stability towards reducing biological environments, as well as beneficial relaxation properties. While the latter is provided by spirocyclic groups on the nitroxide scaffold, such systems are not in themselves robust under reducing conditions. In this work, we introduce a strategy for stability enhancement through conformational tuning, where incorporating additional substituents on the nitroxide ring effects a shift towards highly stable closed spirocyclic conformations, as indicated by X-ray crystallography and density functional theory (DFT) calculations. Closed spirocyclohexyl nitroxides exhibit dramatically improved stability towards reduction by ascorbate, while maintaining long relaxation times in electron paramagnetic resonance (EPR) spectroscopy. These findings have important implications for the future design of new nitroxide-based spin labels and imaging agents.
Collapse
Affiliation(s)
- Mateusz P Sowiński
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Sahil Gahlawat
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Bjarte A Lund
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Anna-Luisa Warnke
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Janet E Lovett
- SUPA, School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Marius M Haugland
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
11
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
12
|
Asanbaeva NB, Gurskaya LY, Polienko YF, Rybalova TV, Kazantsev MS, Dmitriev AA, Gritsan NP, Haro-Mares N, Gutmann T, Buntkowsky G, Tretyakov EV, Bagryanskaya EG. Effects of Spiro-Cyclohexane Substitution of Nitroxyl Biradicals on Dynamic Nuclear Polarization. Molecules 2022; 27:3252. [PMID: 35630726 PMCID: PMC9143461 DOI: 10.3390/molecules27103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Spiro-substituted nitroxyl biradicals are widely used as reagents for dynamic nuclear polarization (DNP), which is especially important for biopolymer research. The main criterion for their applicability as polarizing agents is the value of the spin-spin exchange interaction parameter (J), which can vary considerably when different couplers are employed that link the radical moieties. This paper describes a study on biradicals, with a ferrocene-1,1'-diyl-substituted 1,3-diazetidine-2,4-diimine coupler, that have never been used before as DNP agents. We observed a substantial difference in the temperature dependence between Electron Paramagnetic Resonance (EPR) spectra of biradicals carrying either methyl or spirocyclohexane substituents and explain the difference using Density Functional Theory (DFT) calculation results. It was shown that the replacement of methyl groups by spirocycles near the N-O group leads to an increase in the contribution of conformers having J ≈ 0. The DNP gain observed for the biradicals with methyl substituents is three times higher than that for the spiro-substituted nitroxyl biradicals and is inversely proportional to the contribution of biradicals manifesting the negligible exchange interaction. The effects of nucleophiles and substituents in the nitroxide biradicals on the ring-opening reaction of 1,3-diazetidine and the influence of the ring opening on the exchange interaction were also investigated. It was found that in contrast to the methyl-substituted nitroxide biradical (where we observed the ring-opening reaction upon the addition of amines), the ring opening does not occur in the spiro-substituted biradical owing to a steric barrier created by the bulky cyclohexyl substituents.
Collapse
Affiliation(s)
- Nargiz B. Asanbaeva
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Larisa Yu. Gurskaya
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Yuliya F. Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Maxim S. Kazantsev
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Alexey A. Dmitriev
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia; (A.A.D.); (N.P.G.)
| | - Nina P. Gritsan
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia; (A.A.D.); (N.P.G.)
| | - Nadia Haro-Mares
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Torsten Gutmann
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Gerd Buntkowsky
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Evgeny V. Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia;
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| |
Collapse
|
13
|
EPR study of nanostructuring in protic ionic liquids [PriNH3]NO3 and [BuNH3]NO3. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Ivanov MY, Surovtsev NV, Fedin MV. Ionic liquid glasses: properties and applications. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
4-Dialkylamino-2,5-dihydroimidazol-1-oxyls with Functional Groups at the Position 2 and at the Exocyclic Nitrogen: The pH-Sensitive Spin Labels. Gels 2021; 8:gels8010011. [PMID: 35049546 PMCID: PMC8774874 DOI: 10.3390/gels8010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Local acidity and electrostatic interactions are associated both with catalytic properties and the adsorption activity of various materials, and with the vital functions of biomolecules. The observation of acid–base equilibria in stable free radicals using EPR spectroscopy represents a convenient method for monitoring pH changes and the investigation of surface electrostatics, the advantages of which are especially evident in opaque and turbid samples and in porous materials such as xerogels. Imidazoline nitroxides are the most commonly used pH-sensitive spin probes and labels due to the high sensitivity of the parameters of the EPR spectra to pH changes, their small size, and their well-developed chemistry. In this work, several new derivatives of 4-(N,N-dialkylamino)-2,5-dihydrioimidazol-1-oxyl, with functional groups suitable for specific binding, were synthesized. The dependence of the parameters of their EPR spectra on pH was studied. Several showed a pKa close to 7.4, following the pH changes in a normal physiological range, and some demonstrated a monotonous change of the hyperfine coupling constant by 0.14 mT upon pH variation by four units.
Collapse
|
16
|
Peek Inside the Water Mixtures of Ionic Liquids at Molecular Level: Microscopic Properties Probed by EPR Spectroscopy. Int J Mol Sci 2021; 22:ijms222111900. [PMID: 34769336 PMCID: PMC8584414 DOI: 10.3390/ijms222111900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023] Open
Abstract
Many ionic liquids (ILs) can be mixed with water, forming either true solutions or emulsions. This favors their applications in many respects, but at the same time might strongly alter their physicochemical properties. A number of methods exist for studying the macroscopic properties of such mixtures, whereas understanding their characteristics at micro/nanoscale is rather challenging. In this work we investigate microscopic properties, such as viscosity and local structuring, in binary water mixtures of IL [Bmim]BF4 in liquid and glassy states. For this sake, we use continuous wave and pulse electron paramagnetic resonance (EPR) spectroscopy with dedicated spin probes, located preferably in IL-rich domains or distributed in IL- and water-rich domains. We demonstrate that the glassy-state nanostructuring of IL-rich domains is very similar to that in neat ILs. At the same time, in liquid state the residual water makes local viscosity in IL-rich domains noticeably different compared to neat ILs, even though the overwhelming amount of water is contained in water-rich domains. These results have to be taken into account in various applications of IL-water mixtures, especially in those cases demanding the combinations of optimum micro- and macroscopic characteristics.
Collapse
|
17
|
Huang S, Pink M, Ngendahimana T, Rajca S, Eaton GR, Eaton SS, Rajca A. Bis-Spiro-Oxetane and Bis-Spiro-Tetrahydrofuran Pyrroline Nitroxide Radicals: Synthesis and Electron Spin Relaxation Studies. J Org Chem 2021; 86:13636-13643. [PMID: 34546727 PMCID: PMC10441184 DOI: 10.1021/acs.joc.1c01670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthesis of bis-spiro-oxetane and bis-spiro-tetrahydrofuran pyrroline nitroxide radicals relies on the Mitsunobu reaction-mediated double cyclizations of N-Boc protected pyrroline tetraols. Structures of the nitroxide radicals are supported by X-ray crystallography. In a trehalose/sucrose matrix at room temperature, the bis-spiro-oxetane nitroxide radical possesses electron spin coherence time, Tm ≈ 0.7 μs. The observed enhanced Tm is most likely associated with strong hydrogen bonding of oxetane moieties to the trehalose/sucrose matrix.
Collapse
Affiliation(s)
- Shengdian Huang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208-2436
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208-2436
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208-2436
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304
| |
Collapse
|
18
|
Ivanov MY, Prikhod’ko SA, Bakulina OD, Kiryutin AS, Adonin NY, Fedin MV. Validation of Structural Grounds for Anomalous Molecular Mobility in Ionic Liquid Glasses. Molecules 2021; 26:5828. [PMID: 34641371 PMCID: PMC8510339 DOI: 10.3390/molecules26195828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce electron-nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular mobility in these glasses. The obtained trends were found closely similar for deuterated and protonated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural grounds of the observed anomalies in heterogeneous IL glasses.
Collapse
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Olga D. Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Alexey S. Kiryutin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| |
Collapse
|
19
|
A Simple Method of Synthesis of 3-Carboxy-2,2,5,5-Tetraethylpyrrolidine-1-oxyl and Preparation of Reduction-Resistant Spin Labels and Probes of Pyrrolidine Series. Molecules 2021; 26:molecules26195761. [PMID: 34641310 PMCID: PMC8510269 DOI: 10.3390/molecules26195761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/31/2023] Open
Abstract
Stable free radicals are widely used as molecular probes and labels in various biophysical and biomedical research applications of magnetic resonance spectroscopy and imaging. Among these radicals, sterically shielded nitroxides of pyrrolidine series demonstrate the highest stability in biological systems. Here, we suggest new convenient procedure for preparation of 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl, a reduction-resistant analog of widely used carboxy-Proxyl, from cheap commercially available reagents with the yield exceeding the most optimistic literature data. Several new spin labels and probes of 2,2,5,5-tetraethylpyrrolidine-1-oxyl series were prepared and reduction of these radicals in ascorbate solutions, mice blood and tissue homogenates was studied.
Collapse
|
20
|
Polienko YF, Kuprikova NM, Parkhomenko DA, Gatilov YV, Chernyak EI, Kirilyuk IA. Synthesis of 2,5-bis(spirocyclohexane)-substituted nitroxides: New spin labeling agents. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zaytseva EV, Mazhukin DG. Spirocyclic Nitroxides as Versatile Tools in Modern Natural Sciences: From Synthesis to Applications. Part I. Old and New Synthetic Approaches to Spirocyclic Nitroxyl Radicals. Molecules 2021; 26:677. [PMID: 33525514 PMCID: PMC7865516 DOI: 10.3390/molecules26030677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Spirocyclic nitroxyl radicals (SNRs) are stable paramagnetics bearing spiro-junction at a-, b-, or g-carbon atom of the nitroxide fragment, which is part of the heterocyclic system. Despite the fact that the first representatives of SNRs were obtained about 50 years ago, the methodology of their synthesis and their usage in chemistry and biochemical applications have begun to develop rapidly only in the last two decades. Due to the presence of spiro-function in the SNRs molecules, the latter have increased stability to various reducing agents (including biogenic ones), while the structures of the biradicals (SNBRs) comprises a rigid spiro-fused core that fixes mutual position and orientation of nitroxide moieties that favors their use in dynamic nuclear polarization (DNP) experiments. This first review on SNRs will give a glance at various strategies for the synthesis of spiro-substituted, mono-, and bis-nitroxides on the base of six-membered (piperidine, 1,2,3,4-tetrahydroquinoline, 9,9'(10H,10H')-spirobiacridine, piperazine, and morpholine) or five-membered (2,5-dihydro-1H-pyrrole, pyrrolidine, 2,5-dihydro-1H-imidazole, 4,5-dihydro-1H-imidazole, imidazolidine, and oxazolidine) heterocyclic cores.
Collapse
Affiliation(s)
| | - Dmitrii G. Mazhukin
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia;
| |
Collapse
|
22
|
Ivanov MY, Poryvaev AS, Polyukhov DM, Prikhod'ko SA, Adonin NY, Fedin MV. Nanoconfinement effects on structural anomalies in imidazolium ionic liquids. NANOSCALE 2020; 12:23480-23487. [PMID: 33174581 DOI: 10.1039/d0nr06961b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Imidazolium Ionic Liquids (ILs) have been found to exhibit unusual nanostructuring behavior below their glass transition temperatures (Tg), which is ascribed to rearrangements in nonpolar domains formed by segregated alkyl chains. However, the dimensions required for such highly cooperative bulk phenomena are still unknown. In this work, we for the first time, investigate the effect of nanoconfinement on structural anomalies in imidazolium ILs. For this purpose, a series of ILs were embedded into the cavities of metal-organic framework (MOF) ZIF-8 and investigated using spin probes and Electron Paramagnetic Resonance (EPR) spectroscopy. The unusual nanostructuring near Tg, previously known for bulk ILs, was also observed for such nanoconfined ILs, and the amplitude of the anomaly was found to be dependent on the structure of the IL, thus showing the effects of molecular packing inside the MOF cavity. The first observation of structural anomalies in nanoconfined ILs opens perspectives for designing smart materials exhibiting these phenomena, and engaging MOFs as platforms creates the basis for potential applications of such functionalities.
Collapse
Affiliation(s)
- Mikhail Yu Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia.
| | | | | | | | | | | |
Collapse
|
23
|
Human Serum Albumin Labelled with Sterically-Hindered Nitroxides as Potential MRI Contrast Agents. Molecules 2020; 25:molecules25071709. [PMID: 32276437 PMCID: PMC7180620 DOI: 10.3390/molecules25071709] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
Four albumin-nitroxide conjugates were prepared and tested as metal-free organic radical contrast agents (ORCAs) for magnetic resonance imaging (MRI). Each human serum albumin (HSA) carrier bears multiple nitroxides conjugated via homocysteine thiolactones. These molecular conjugates retain important physical and biological properties of their HSA component, and the resistance of their nitroxide groups to bioreduction was retained or enhanced. The relaxivities are similar for these four conjugates and are much greater than those of their individual components: the HSA or the small nitroxide molecules. This new family of conjugates has excellent prospects for optimization as ORCAs.
Collapse
|
24
|
Dobrynin SA, Kirilyuk IA, Gatilov YV, Kuzhelev AA, Krumkacheva OA, Fedin MV, Bowman MK, Bagryanskaya EG. Unexpected one-pot formation of the 1 H-6a,8a-epiminotricyclopenta[ a, c, e][8]annulene system from cyclopentanone, ammonia and dimethyl fumarate. Synthesis of highly strained polycyclic nitroxide and EPR study. Beilstein J Org Chem 2019; 15:2664-2670. [PMID: 31807201 PMCID: PMC6880831 DOI: 10.3762/bjoc.15.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022] Open
Abstract
The unexpected formation of a highly strained polycyclic amine was observed in a one-pot synthesis from cyclopentanone, dimethyl fumarate and ammonium acetate. This multistep reaction includes 1,3-dipolar cycloaddition of dimethyl fumarate to the cyclic azomethine ylide formed in situ from cyclopentanone and ammonia. The polycyclic amine product was easily converted into a sterically shielded polycyclic nitroxide. The EPR spectra and spin relaxation behavior of the nitroxide were studied in solution. The spin relaxation seems well suited for the use as a biological spin label and are comparable with those of cyclic nitroxides with two spirocyclic moieties adjacent to the N–O· group.
Collapse
Affiliation(s)
- Sergey A Dobrynin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia
| | - Yuri V Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk, 630090, Russia
| | - Andrey A Kuzhelev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Michael K Bowman
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk, 630090, Russia.,University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
25
|
Ivanov MY, Prikhod’ko SA, Adonin NY, Fedin MV. Structural Anomalies in Binary Mixtures of Ionic Liquid [Bmim]BF4 with Water Studied by EPR. J Phys Chem B 2019; 123:9956-9962. [DOI: 10.1021/acs.jpcb.9b08933] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
26
|
Khoroshunova YV, Morozov DA, Taratayko AI, Gladkikh PD, Glazachev YI, Kirilyuk IA. Synthesis of 1-azaspiro[4.4]nonan-1-oxyls via intramolecular 1,3-dipolar cycloaddition. Beilstein J Org Chem 2019; 15:2036-2042. [PMID: 31501671 PMCID: PMC6720653 DOI: 10.3762/bjoc.15.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Sterically shielded nitroxides of the pyrrolidine series have shown the highest resistance to reduction. Here we report the synthesis of new pyrrolidine nitroxides from 5,5-dialkyl-1-pyrroline N-oxides via the introduction of a pent-4-enyl group to the nitrone carbon followed by an intramolecular 1,3-dipolar cycloaddition reaction and isoxazolidine ring opening. The kinetics of reduction of the new nitroxides with ascorbate were studied and compared to those of previously published (1S,2R,3′S,4′S,5′S,2″R)-dispiro[(2-hydroxymethyl)cyclopentan-1,2′-(3′,4′-di-tert-butoxy)pyrrolidine-5′,1″-(2″-hydroxymethyl)cyclopentane]-1′-oxyl (1).
Collapse
Affiliation(s)
- Yulia V Khoroshunova
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Denis A Morozov
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Andrey I Taratayko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Polina D Gladkikh
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Yuri I Glazachev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russian Federation
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
27
|
Lampp L, Morgenstern U, Merzweiler K, Imming P, Seidel RW. Synthesis and characterization of sterically and electrostatically shielded pyrrolidine nitroxide radicals. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Kuzhelev AA, Krumkacheva OA, Ivanov MY, Prikhod'ko SA, Adonin NY, Tormyshev VM, Bowman MK, Fedin MV, Bagryanskaya EG. Pulse EPR of Triarylmethyl Probes: A New Approach for the Investigation of Molecular Motions in Soft Matter. J Phys Chem B 2018; 122:8624-8630. [PMID: 30137993 DOI: 10.1021/acs.jpcb.8b07714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triarylmethyl (TAM) radicals have become widely used free radicals in the past few years. Their electron spins have long relaxation times and narrow electron paramagnetic resonance (EPR) lines, which make them an important class of probes and tags in biological applications and materials science. In this work, we propose a new approach to characterize librations by means of TAM radicals. The temperature dependence of motional parameter ⟨α2⟩τc, where ⟨α2⟩ is the mean-squared amplitude of librations and τc is their characteristic time, is obtained by comparison of the 1/ Tm phase-relaxation rates at X- and Q-band EPR frequencies. We study three soft matrixes, viz., glassy trehalose and two ionic liquids, using TAMs with optimized relaxation properties OX063D and a dodeca- n-butyl homologue of Finland trityl (DBT). The motional parameters ⟨α2⟩τc obtained using TAMs are in excellent agreement with those obtained by means of nitroxide radicals. At the same time, the new TAM-based approach has (1) greater sensitivity due to the narrower EPR spectrum and (2) greater measuring accuracy and broader temperature range due to longer relaxation times. The developed approach may be fruitfully implemented to probe low-temperature molecular motions of TAM-labeled biopolymers, membrane systems, polymers, molecules in glassy media, and ionic liquids.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Mikhail Yu Ivanov
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | | | - Nicolay Yu Adonin
- Boreskov Institute of Catalysis SB RAS , Novosibirsk 630090 , Russia
| | - Victor M Tormyshev
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Michael K Bowman
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Matvey V Fedin
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
29
|
Kuzhelev AA, Krumkacheva OA, Shevelev GY, Yulikov M, Fedin MV, Bagryanskaya EG. Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide. Phys Chem Chem Phys 2018; 20:10224-10230. [PMID: 29594278 DOI: 10.1039/c8cp01093e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) based nanometer distance measurements at ambient temperatures are of particular interest for structural biology applications. The nitroxide spin labels commonly used in EPR reveal relatively short transverse relaxation under these conditions, which limits their use for detecting static dipolar interactions. At the same time, the longitudinal relaxation of nitroxide spin labels is still long enough to allow using them as 'pumped' species in the relaxation induced dipolar modulation enhancement (RIDME) experiment where the detection is carried out on the slower relaxing triarylmethyl (TAM) spin labels. In the present study, we report the first demonstration of room-temperature RIDME distance measurements in nucleic acids using TAM as the slow-relaxing detected species and traditional nitroxide as the fast-relaxing partner spin. Two types of immobilizers, glassy trehalose and the modified silica gel Nucleosil, were used for immobilization of the spin-labeled biomolecules. The room-temperature RIDME-based distance distributions are in good agreement with those measured at 80 K by other techniques. Room-temperature RIDME on the spin pairs trityl/nitroxide may become a useful method for the structural characterization of biomacromolecules and biomolecular complexes at near physiological temperatures.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
30
|
Dobrynin SA, Glazachev YI, Gatilov YV, Chernyak EI, Salnikov GE, Kirilyuk IA. Synthesis of 3,4-Bis(hydroxymethyl)-2,2,5,5-tetraethylpyrrolidin-1-oxyl via 1,3-Dipolar Cycloaddition of Azomethine Ylide to Activated Alkene. J Org Chem 2018; 83:5392-5397. [DOI: 10.1021/acs.joc.8b00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sergey A. Dobrynin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Yuri I. Glazachev
- Institute of Chemical Kinetics & Combustion, Institutskaya 3, Novosibirsk 630090, Russia
| | - Yuri V. Gatilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
| | - Elena I. Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
| | - George E. Salnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Igor A. Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Haugland MM, Lovett JE, Anderson EA. Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling. Chem Soc Rev 2018; 47:668-680. [PMID: 29192696 DOI: 10.1039/c6cs00550k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
EPR spectroscopy is an increasingly useful analytical tool to probe biomolecule structure, dynamic behaviour, and interactions. Nitroxide radicals are the most commonly used radical probe in EPR experiments, and many methods have been developed for their synthesis, as well as incorporation into biomolecules using site-directed spin labelling. In this Tutorial Review, we discuss the most practical methods for the synthesis of nitroxides, focusing on the tunability of their structures, the manipulation of their sidechains into spin labelling handles, and their installation into biomolecules.
Collapse
Affiliation(s)
- Marius M Haugland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK.
| | | | | |
Collapse
|
32
|
Zhang K, Noble BB, Mater AC, Monteiro MJ, Coote ML, Jia Z. Effect of heteroatom and functionality substitution on the oxidation potential of cyclic nitroxide radicals: role of electrostatics in electrochemistry. Phys Chem Chem Phys 2018; 20:2606-2614. [DOI: 10.1039/c7cp07444a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic effects on electrochemical oxidation potentials of heteroatomic and functional substituted nitroxides were studied both experimentally and computationally.
Collapse
Affiliation(s)
- Kai Zhang
- Australian Institute for Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
| | - Benjamin B. Noble
- ARC Centre of Excellence for Electomaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Adam C. Mater
- ARC Centre of Excellence for Electomaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electomaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
| |
Collapse
|
33
|
Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA. Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides. Free Radic Res 2017; 52:339-350. [PMID: 29098905 DOI: 10.1080/10715762.2017.1390744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50 nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4 mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.
Collapse
Affiliation(s)
- Sergey I Dikalov
- a Department of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Anna E Dikalova
- a Department of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Denis A Morozov
- b Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk , Russia.,c Department of Organic Chemistry, Novosibirsk State University , Novosibirsk , Russia
| | - Igor A Kirilyuk
- b Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk , Russia.,c Department of Organic Chemistry, Novosibirsk State University , Novosibirsk , Russia
| |
Collapse
|
34
|
Krumkacheva O, Bagryanskaya E. EPR-based distance measurements at ambient temperature. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:117-126. [PMID: 28579097 DOI: 10.1016/j.jmr.2017.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/24/2023]
Abstract
Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.
Collapse
Affiliation(s)
- Olesya Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; International Tomography Center SB RAS, Institutskaya 3A, Novosibirsk 630090, Russian Federation.
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
35
|
Kucher S, Korneev S, Tyagi S, Apfelbaum R, Grohmann D, Lemke EA, Klare JP, Steinhoff HJ, Klose D. Orthogonal spin labeling using click chemistry for in vitro and in vivo applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 275:38-45. [PMID: 27992783 DOI: 10.1016/j.jmr.2016.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Site-directed spin labeling for EPR- and NMR spectroscopy has mainly been achieved exploiting the specific reactivity of cysteines. For proteins with native cysteines or for in vivo applications, an alternative coupling strategy is required. In these cases click chemistry offers major benefits by providing a fast and highly selective, biocompatible reaction between azide and alkyne groups. Here, we establish click chemistry as a tool to target unnatural amino acids in vitro and in vivo using azide- and alkyne-functionalized spin labels. The approach is compatible with a variety of labels including reduction-sensitive nitroxides. Comparing spin labeling efficiencies from the copper-free with the strongly reducing copper(I)-catalyzed azide-alkyne click reaction, we find that the faster kinetics for the catalyzed reaction outrun reduction of the labile nitroxide spin labels and allow quantitative labeling yields within short reaction times. Inter-spin distance measurements demonstrate that the novel side chain is suitable for paramagnetic NMR- or EPR-based conformational studies of macromolecular complexes.
Collapse
Affiliation(s)
- Svetlana Kucher
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany
| | - Sergei Korneev
- Department of Biology & Chemistry, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Swati Tyagi
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ronja Apfelbaum
- Physical and Theoretical Chemistry, Technical University of Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany
| | - Dina Grohmann
- Physical and Theoretical Chemistry, Technical University of Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
| | - Daniel Klose
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
| |
Collapse
|
36
|
Sasaki K, Ito T, Fujii HG, Sato S. Synthesis and Reduction Kinetics of Five Ibuprofen-Nitroxides for Ascorbic Acid and Methyl Radicals. Chem Pharm Bull (Tokyo) 2017; 64:1509-1513. [PMID: 27725505 DOI: 10.1248/cpb.c16-00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hybrid compounds 1-5 comprised of five nitroxides with ibuprofen were synthesized and their reduction rate for ascorbic acid (AsA) and methyl radicals were measured in comparison with 3-hydroxy-tetramethylpyrrolidine-1-oxyl (PROXYL) 6. The rate constants in reduction reaction with 200-fold excess of AsA were determined in following order: 1 (0.42±0.06), 3 (0.17±0.06), 2 (0.10±0.05), and 6 (0.09±0.02 M-1s-1). The remaining two sterically shielded nitroxides 4 and 5 scarcely reacted with AsA. In the reaction with the more reactive methyl radicals, produced by 200-fold excess of Fenton's reagent, the reduction rates of 2, 4, and 5 were in the following decreasing order: 2 (1.1±0.2), 4 (0.76±0.09), and 5 (0.31±0.03 M-1s-1).
Collapse
Affiliation(s)
- Kota Sasaki
- Graduate School of Science and Engineering, Yamagata University
| | | | | | | |
Collapse
|
37
|
Huang S, Paletta JT, Elajaili H, Huber K, Pink M, Rajca S, Eaton GR, Eaton SS, Rajca A. Synthesis and Electron Spin Relaxation of Tetracarboxylate Pyrroline Nitroxides. J Org Chem 2017; 82:1538-1544. [PMID: 28032758 PMCID: PMC5478179 DOI: 10.1021/acs.joc.6b02737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
We report the design,
synthesis, and electron spin relaxation properties
of hydrophilic tetracarboxylate ester pyrroline nitroxides 1 and 2, which serve as models in the search for new
spin labels for DEER distance measurement at room temperature. The
nitroxides are designed to have the methyl groups further away from
the N–O spin site to decrease the inequivalent couplings of
the unpaired electron to the methyl protons that shorten Tm at T > 70 K in currently used labels.
The key step in the synthesis of 1 and 2 is the reaction of the dianion of pyrrole-1,2,5-tricarboxylic acid tert-butyl ester dimethyl ester with electrophiles such
as methyl chloroformate and methyl bromoacetate. Structures of 1 and 2 are confirmed by X-ray crystallography.
Studies of electron spin relaxation rates in rigid trehalose/sucrose
matrices reveal approximately temperature independent values of 1/Tm for 1 and 2 up to
about 160 K and modest temperature dependence up to 295 K, demonstrating
that increasing the distance between the nitroxide moiety and methyl
groups is effective in lengthening Tm at T > 70 K.
Collapse
Affiliation(s)
- Shengdian Huang
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| | - Joseph T Paletta
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Kirby Huber
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
38
|
Ivanov MY, Krumkacheva OA, Dzuba SA, Fedin MV. Microscopic rigidity and heterogeneity of ionic liquids probed by stochastic molecular librations of the dissolved nitroxides. Phys Chem Chem Phys 2017; 19:26158-26163. [DOI: 10.1039/c7cp04890d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We propose a new potent approach for studying nano/microscopic heterogeneities in ionic liquids exploiting stochastic librations of nitroxides and pulse EPR.
Collapse
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Olesya A. Krumkacheva
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Sergei A. Dzuba
- Novosibirsk State University
- Novosibirsk
- Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
- Novosibirsk
| | - Matvey V. Fedin
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|
39
|
Kadtsyn E, Anikeenko A, Medvedev N. Molecular dynamics simulation of a DNA duplex labeled with triarylmethyl spin radicals. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Haugland MM, El-Sagheer AH, Porter RJ, Peña J, Brown T, Anderson EA, Lovett JE. 2'-Alkynylnucleotides: A Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in DNA. J Am Chem Soc 2016; 138:9069-72. [PMID: 27409454 DOI: 10.1021/jacs.6b05421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to elucidate molecular structure through the measurement of distances between conformationally well-defined spin labels. Here we report a sequence-flexible approach to the synthesis of double spin-labeled DNA duplexes, where 2'-alkynylnucleosides are incorporated at terminal and internal positions on complementary strands. Post-DNA synthesis copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with a variety of spin labels enable the use of double electron-electron resonance experiments to measure a number of distances on the duplex, affording a high level of detailed structural information.
Collapse
Affiliation(s)
- Marius M Haugland
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K.,Chemistry Branch, Faculty of Petroleum and Mining Engineering, Suez University , Suez 43721, Egypt
| | - Rachel J Porter
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Javier Peña
- Departamento de Química Orgánica, Universidad de Salamanca , Plaza de los Caídos 1-5, 37008 Salamanca, Spain
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Edward A Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Janet E Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, KY16 9SS, U.K
| |
Collapse
|
41
|
Kuzhelev AA, Strizhakov RK, Krumkacheva OA, Polienko YF, Morozov DA, Shevelev GY, Pyshnyi DV, Kirilyuk IA, Fedin MV, Bagryanskaya EG. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 266:1-7. [PMID: 26987109 DOI: 10.1016/j.jmr.2016.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/04/2016] [Accepted: 02/29/2016] [Indexed: 05/24/2023]
Abstract
Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T=80-300K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180K) becomes negligible at 300K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Rodion K Strizhakov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Denis A Morozov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Georgiy Yu Shevelev
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
42
|
Effect of the spacer length and nitroxide sterical shielding upon photostability of spin-labeled kynurenines. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Meyer V, Swanson MA, Clouston LJ, Boratyński PJ, Stein RA, Mchaourab HS, Rajca A, Eaton SS, Eaton GR. Room-temperature distance measurements of immobilized spin-labeled protein by DEER/PELDOR. Biophys J 2016; 108:1213-9. [PMID: 25762332 DOI: 10.1016/j.bpj.2015.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∼80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∼4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-(methyl)methanethio-sulfonate label.
Collapse
Affiliation(s)
- Virginia Meyer
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Michael A Swanson
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Laura J Clouston
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | | | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
| |
Collapse
|
44
|
|
45
|
Kirilyuk IA, Bobko AA, Semenov SV, Komarov DA, Irtegova IG, Grigor'ev IA, Bagryanskaya E. Effect of Sterical Shielding on the Redox Properties of Imidazoline and Imidazolidine Nitroxides. J Org Chem 2015; 80:9118-25. [PMID: 26302173 DOI: 10.1021/acs.joc.5b01494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidant properties of the series of 2,2,5,5-tetraalkyl imidazoline and imidazolidine nitroxides were investigated. An increase in the number of bulky alkyl substituents leads to a decrease in the rate of reduction with ascorbate, which makes the electrochemical reduction potential more negative and shifts the equilibrium in the mixture of nitroxide and reference hydroxylamine (3-carboxy-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl-1-(15)N) toward the starting compounds. The effect of structural factors on these reactions was analyzed by means of multiple regression using the Fujita steric constant Es and the inductive Hammett constant σI. Satisfactory statistical outputs were obtained in all of the biparameter correlations, denoting that the oxidant properties of the nitroxides are determined by steric and electronic effects of the substituents. The data imply that bulky substituents can stabilize nitroxide and/or destabilize hydroxylamine.
Collapse
Affiliation(s)
- Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Academician Lavrentjev Avenue 9, Novosibirsk, 630090, Russia.,Novosibirsk State University , Pirogova str. 2, Novosibirsk 630090, Russia
| | - Andrey A Bobko
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Sergey V Semenov
- Novosibirsk State University , Pirogova str. 2, Novosibirsk 630090, Russia
| | - Denis A Komarov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Academician Lavrentjev Avenue 9, Novosibirsk, 630090, Russia.,Novosibirsk State University , Pirogova str. 2, Novosibirsk 630090, Russia
| | - Irina G Irtegova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Academician Lavrentjev Avenue 9, Novosibirsk, 630090, Russia.,Novosibirsk State University , Pirogova str. 2, Novosibirsk 630090, Russia
| | - Igor A Grigor'ev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Academician Lavrentjev Avenue 9, Novosibirsk, 630090, Russia
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Academician Lavrentjev Avenue 9, Novosibirsk, 630090, Russia.,Novosibirsk State University , Pirogova str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
46
|
Casano G, Poulhès F, Tran TK, Ayhan MM, Karoui H, Siri D, Gaudel-Siri A, Rockenbauer A, Jeschke G, Bardelang D, Tordo P, Ouari O. High binding yet accelerated guest rotation within a cucurbit[7]uril complex. Toward paramagnetic gyroscopes and rolling nanomachines. NANOSCALE 2015; 7:12143-12150. [PMID: 26123621 DOI: 10.1039/c5nr03288a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The (15-oxo-3,7,11-triazadispiro[5.1.5.3]hexadec-7-yl)oxidanyl, a bis-spiropiperidinium nitroxide derived from TEMPONE, can be included in cucurbit[7]uril to form a strong (K(a)∼ 2 × 10(5) M(-1)) CB[7]@bPTO complex. EPR and MS spectra, DFT calculations, and unparalleled increased resistance (a factor of ∼10(3)) toward ascorbic acid reduction show evidence of deep inclusion of bPTO inside CB[7]. The unusual shape of the CB[7]@bPTO EPR spectrum can be explained by an anisotropic Brownian rotational diffusion, the global tumbling of the complex being slower than rotation of bPTO around its "long molecular axis" inside CB[7]. The CB[7] (stator) with the encapsulated bPTO (rotator) behaves as a supramolecular paramagnetic rotor with increased rotational speed of the rotator that has great potential for advanced nanoscale machines requiring wheels such as cucurbiturils with virtually no friction between the wheel and the axle for optimum wheel rotation (i.e. nanopulleys and nanocars).
Collapse
Affiliation(s)
- G Casano
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Babaylova ES, Ivanov AV, Malygin AA, Vorobjeva MA, Venyaminova AG, Polienko YF, Kirilyuk IA, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. A versatile approach for site-directed spin labeling and structural EPR studies of RNAs. Org Biomol Chem 2015; 12:3129-36. [PMID: 24714823 DOI: 10.1039/c3ob42154f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Site-directed spin labeling (SDSL) is widely applied for structural studies of biopolymers by electron paramagnetic resonance (EPR). However, SDSL of long RNA sequences still remains a challenging task. Here, we propose a novel SDSL approach potentially suitable for long natural RNAs, which is based on the attachment of a linker containing an aliphatic amino group to the target nucleotide residue followed by selective coupling of a spin label to this amino group. Such a linker can be attached to the desired RNA residue via a sequence-specific reaction with the derivatives of oligodeoxyribonucleotides. To verify this approach, we applied it to model RNA duplex with known structure and expected distance between corresponding residues. A new 2,5-bis(spirocyclohexane)-substituted spin label with advanced stability and relaxation properties has been used, and the distance distribution measured using Q-band (34 GHz) pulsed double electron-electron resonance corresponds well to the expected one. We have additionally validated the obtained results by studying a similar RNA duplex, where the linker with the aliphatic amino group was introduced via solid-phase synthesis. Although this novel SDSL approach does not provide an advantage in precision of molecular distance measurements, we believe that its applicability to long RNAs is a crucial benefit for future structural studies using pulse EPR.
Collapse
Affiliation(s)
- Elena S Babaylova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bagryanskaya EG, Krumkacheva OA, Fedin MV, Marque SR. Development and Application of Spin Traps, Spin Probes, and Spin Labels. Methods Enzymol 2015; 563:365-96. [DOI: 10.1016/bs.mie.2015.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Wang Y, Paletta JT, Berg K, Reinhart E, Rajca S, Rajca A. Synthesis of unnatural amino acids functionalized with sterically shielded pyrroline nitroxides. Org Lett 2014; 16:5298-300. [PMID: 25324010 PMCID: PMC4201325 DOI: 10.1021/ol502449r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 12/13/2022]
Abstract
A series of unnatural amino acids functionalized with sterically shielded pyrroline nitroxides were synthesized. Their reduction by ascorbate/glutathione indicates that L-cysteine functionalized with gem-diethylpyrroline nitroxide is reduced at the slowest rate and is comparable to that measured for the most resistant to reduction pyrroline and pyrrolidine nitroxides.
Collapse
Affiliation(s)
- Ying Wang
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Joseph T. Paletta
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Kathleen Berg
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Erin Reinhart
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Suchada Rajca
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
50
|
Shundrin LA, Kirilyuk IA, Grigor’ev IA. 3-Carboxy-2,2,5,5-tetra(2H3)methyl-[4-2H(1H)]-3-pyrroline-(1-15N)-1-oxyl as a spin probe for in vivo L-band electron paramagnetic resonance imaging. MENDELEEV COMMUNICATIONS 2014. [DOI: 10.1016/j.mencom.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|