1
|
Dent A, Escopy S, Demchenko AV. Cooperatively Catalyzed Activation of Thioglycosides That Bypasses Intermediacy of Glycosyl Halides. Chemistry 2023; 29:e202300873. [PMID: 37154481 PMCID: PMC11370891 DOI: 10.1002/chem.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Reported herein is the development of a novel method for activating thioglycosides without a glycosyl halide intermediate. This has been achieved through the use of a silver salt coupled with an acid additive and molecular iodine. The enhanced stereocontrol was achieved via the H-bond mediated aglycone delivery (HAD) method, and the extended trisaccharide synthesis was achieved via iteration of deprotection and glycosylation steps.
Collapse
Affiliation(s)
- Ashley Dent
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Samira Escopy
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
2
|
Ruatta SM, Prada Gori DN, Fló Díaz M, Lorenzelli F, Perelmuter K, Alberca LN, Bellera CL, Medeiros A, López GV, Ingold M, Porcal W, Dibello E, Ihnatenko I, Kunick C, Incerti M, Luzardo M, Colobbio M, Ramos JC, Manta E, Minini L, Lavaggi ML, Hernández P, Šarlauskas J, Huerta García CS, Castillo R, Hernández-Campos A, Ribaudo G, Zagotto G, Carlucci R, Medrán NS, Labadie GR, Martinez-Amezaga M, Delpiccolo CML, Mata EG, Scarone L, Posada L, Serra G, Calogeropoulou T, Prousis K, Detsi A, Cabrera M, Alvarez G, Aicardo A, Araújo V, Chavarría C, Mašič LP, Gantner ME, Llanos MA, Rodríguez S, Gavernet L, Park S, Heo J, Lee H, Paul Park KH, Bollati-Fogolín M, Pritsch O, Shum D, Talevi A, Comini MA. Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro. Front Pharmacol 2023; 14:1193282. [PMID: 37426813 PMCID: PMC10323144 DOI: 10.3389/fphar.2023.1193282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 μM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.
Collapse
Affiliation(s)
- Santiago M. Ruatta
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Denis N. Prada Gori
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Martín Fló Díaz
- Laboratory of Immunovirology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Franca Lorenzelli
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Lucas N. Alberca
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina L. Bellera
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gloria V. López
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Vascular Biology and Drug Discovery Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Ingold
- Vascular Biology and Drug Discovery Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Vascular Biology and Drug Discovery Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Estefanía Dibello
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Irina Ihnatenko
- PVZ—Center of Pharmaceutical Engineering, Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Conrad Kunick
- PVZ—Center of Pharmaceutical Engineering, Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcelo Incerti
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Martín Luzardo
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Maximiliano Colobbio
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Química Fina, Facultad de Química, Instituto Polo Tecnológico de Pando, Universidad de la República, Montevideo, Uruguay
| | - Juan Carlos Ramos
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Química Fina, Facultad de Química, Instituto Polo Tecnológico de Pando, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Manta
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Química Fina, Facultad de Química, Instituto Polo Tecnológico de Pando, Universidad de la República, Montevideo, Uruguay
| | - Lucía Minini
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - María Laura Lavaggi
- Laboratorio de Química Biológica Ambiental, Sede Rivera, Centro Universitario Regional Noreste, Universidad de la República, Montevideo, Uruguay
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Jonas Šarlauskas
- Life Sciences Centre, Department of Xenobiotic Biochemistry, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | | | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Renzo Carlucci
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Noelia S. Medrán
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo R. Labadie
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maitena Martinez-Amezaga
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina M. L. Delpiccolo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ernesto G. Mata
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (IQUIR) UNR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Scarone
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Laura Posada
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gloria Serra
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | - Kyriakos Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Mauricio Cabrera
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Guzmán Alvarez
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Adrián Aicardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Nutrición Clínica, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Verena Araújo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Alimentos, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Chavarría
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | | | - Melisa E. Gantner
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manuel A. Llanos
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago Rodríguez
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Soonju Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Jinyeong Heo
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Honggun Lee
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Kyu-Ho Paul Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | | | - Otto Pritsch
- Laboratory of Immunovirology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo A. Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
3
|
Liang XY, Liu AL, Shawn Fan HJ, Wang L, Xu ZN, Ding XG, Huang BS. TsOH-catalyzed acyl migration reaction of the Bz-group: innovative assembly of various building blocks for the synthesis of saccharides. Org Biomol Chem 2023; 21:1537-1548. [PMID: 36723045 DOI: 10.1039/d2ob02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed an efficient method to achieve the regioselective acyl migration of benzoyl ester. In all the cases, the reactions required only the commercially available organic acid catalyst TsOH·H2O. This method enables the benzoyl group to migrate from secondary groups to primary hydroxyl groups, or from equatorial secondary hydroxyl groups to axial hydroxyl groups. The 1,2 or 1,3 acyl migration would potentially occur via five- and six-membered cyclic ortho acid intermediates. A wide range of orthogonally protected monosaccharides, which are useful intermediates for the synthesis of natural oligosaccharides, were synthesized. Finally, to demonstrate the utility of the method, a tetrasaccharide portion from a mycobacterial cell wall polysaccharide was assembled.
Collapse
Affiliation(s)
- Xing-Yong Liang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - An-Lin Liu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hua-Jun Shawn Fan
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Lei Wang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Zhi-Ning Xu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xin-Gang Ding
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Bo-Shun Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology and Howard Hughes Medical Institute, 1200 East California Boulevard, Pasadena, California 91125, USA.
| |
Collapse
|
4
|
Shadrick M, Stine KJ, Demchenko AV. Expanding the scope of stereoselective α-galactosylation using glycosyl chlorides. Bioorg Med Chem 2022; 73:117031. [PMID: 36202065 PMCID: PMC9677435 DOI: 10.1016/j.bmc.2022.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Recently, we reported that silver(I) oxide mediated Koenigs-Knorr glycosylation reaction can be dramatically accelerated in the presence of catalytic acid additives. We have also investigated how well this reaction works in application to differentially protected galactosyl bromides. Reported herein is the stereoselective synthesis of α-galactosides with galactosyl chlorides as glycosyl donors. Chlorides are easily accessible, stable, and can be efficiently activated for glycosylation. In this application, the most favorable reactions conditions comprised cooperative Ag2SO4 and Bi(OTf)3 promoter system.
Collapse
Affiliation(s)
- Melanie Shadrick
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA; Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA; Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA.
| |
Collapse
|
5
|
Steber HB, Singh Y, Demchenko AV. Bismuth(iii) triflate as a novel and efficient activator for glycosyl halides. Org Biomol Chem 2021; 19:3220-3233. [PMID: 33885577 PMCID: PMC8112625 DOI: 10.1039/d1ob00093d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Presented herein is the discovery that bismuth(iii) trifluoromethanesulfonate (Bi(OTf)3) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf)3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf)3 catalyst.
Collapse
Affiliation(s)
- Hayley B Steber
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | | | |
Collapse
|
6
|
Shadrick M, Singh Y, Demchenko AV. Stereocontrolled α-Galactosylation under Cooperative Catalysis. J Org Chem 2020; 85:15936-15944. [PMID: 33064474 PMCID: PMC8142852 DOI: 10.1021/acs.joc.0c01279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A recent discovery of a cooperative catalysis comprising a silver salt and an acid led to a dramatic improvement in the way glycosyl halides are glycosidated. Excellent yields have been achieved, but the stereoselectivity achieved with 2-O-benzylated donors was poor. Reported herein is our first attempt to refine the stereoselectivity of the cooperatively catalyzed galactosylation reaction. Careful optimization of the reaction conditions along with studying effects of the remote protecting groups led to excellent stereocontrol of α-galactosylation of a variety of glycosyl acceptors with differentially protected galactosyl donors.
Collapse
Affiliation(s)
- Melanie Shadrick
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
7
|
Herrera-González I, Sánchez-Fernández EM, Sau A, Nativi C, García Fernández JM, Galán MC, Ortiz Mellet C. Stereoselective Synthesis of Iminosugar 2-Deoxy(thio)glycosides from Bicyclic Iminoglycal Carbamates Promoted by Cerium(IV) Ammonium Nitrate and Cooperative Brønsted Acid-Type Organocatalysis. J Org Chem 2020; 85:5038-5047. [PMID: 32159355 DOI: 10.1021/acs.joc.0c00324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first examples of iminosugar-type 2-deoxy(thio)glycoside mimetics are reported. The key step is the activation of a bicyclic iminoglycal carbamate to generate a highly reactive acyliminium cation. Cerium(IV) ammonium nitrate efficiently promoted the formation of 2-deoxy S-glycosides in the presence of thiols, probably by in situ generation of catalytic HNO3, with complete α-stereoselectivity. Cooperative phosphoric acid/Schreiner's thiourea organocatalysis proved better suited for generating 2-deoxy O-glycosides, significantly broadening the scope of the approach.
Collapse
Affiliation(s)
- Irene Herrera-González
- Deptartment of Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, E-41012 Sevilla, Spain
| | - Elena M Sánchez-Fernández
- Deptartment of Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, E-41012 Sevilla, Spain
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 13, 50019 Sesto Fiorentino, Florence, Italy
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - M Carmen Galán
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Carmen Ortiz Mellet
- Deptartment of Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, E-41012 Sevilla, Spain
| |
Collapse
|
8
|
Mannino MP, Demchenko AV. Synthesis of β-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: Defining the Scope. Chemistry 2020; 26:2938-2946. [PMID: 31886911 DOI: 10.1002/chem.201905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 11/08/2022]
Abstract
Excellent β-stereoselectivity for the glycosylation with glucosyl donors equipped with the 3-O-picoloyl (Pico) group, without the use of participating group, was achieved in the presence of NIS/excess TfOH promoter system. A complete investigation of the scope of this reaction was performed, revealing all important attributes of successful glycosylation. While altering the halogen source was tolerated, substitution of the triflate anion resulted in complete loss of stereoselectivity. Protonation of the Pico group was determined to be crucial in this reaction. The stability or extent of the protonated pyridine ring was also found to be another important key factor in obtaining high stereoselectivity. The nucleophilicity of the acceptor was found to be proportional to the stereoselectivity obtained, suggesting an SN 2-like mechanism.
Collapse
Affiliation(s)
- Michael P Mannino
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
9
|
Singh Y, Demchenko AV. Defining the Scope of the Acid-Catalyzed Glycosidation of Glycosyl Bromides. Chemistry 2020; 26:1042-1051. [PMID: 31614042 PMCID: PMC7675295 DOI: 10.1002/chem.201904185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Following the recent discovery that traditional silver(I) oxide-promoted glycosidations of glycosyl bromides (Koenigs-Knorr reaction) can be greatly accelerated in the presence of catalytic TMSOTf, reported herein is a dedicated study of all major aspects of this reaction. A thorough investigation of numerous silver salts and careful refinement of the reaction conditions led to an improved mechanistic understanding. This, in turn, led to a significant reduction in the amount of silver salt required for these glycosylations. The progress of this reaction can be monitored by naked eye, and the completion of the reaction can be judged by the disappearance of characteristic dark color of Ag2 O. Further evidence on higher reactivity of benzoylated α-bromides in comparison to that of their benzylated counterparts has been acquired.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
10
|
Someya H, Seki T, Ishigami G, Itoh T, Saga Y, Yamada Y, Aoki S. One-pot synthesis of cyclic oligosaccharides by the polyglycosylation of monothioglycosides. Carbohydr Res 2020; 487:107888. [DOI: 10.1016/j.carres.2019.107888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
11
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
12
|
Imrich MR, Ziegler T. Carbohydrate based chiral iodoarene catalysts for enantioselective dearomative spirocyclization. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Wang T, Singh Y, Stine KJ, Demchenko AV. Investigation of Glycosyl Nitrates as Building Blocks for Chemical Glycosylation. European J Org Chem 2018; 2018:6699-6705. [PMID: 31341403 DOI: 10.1002/ejoc.201801272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycosyl nitrates are important synthetic intermediates in the synthesis of 2-amino sugars, 1,2-orthoesters or, more recently, 2-OH glucose. However, glycosyl nitrates have never been glycosidated. Presented herein is our first attempt to use glycosyl nitrates as glycosyl donors for O-glycosylation. Lanthanide triflates showed good affinity to activate the nitrate leaving group.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
14
|
Mannino MP, Yasomanee JP, Demchenko AV. Investigation of the H-bond-mediated aglycone delivery reaction in application to the synthesis of β-glucosides. Carbohydr Res 2018; 470:1-7. [PMID: 30286335 PMCID: PMC6215728 DOI: 10.1016/j.carres.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023]
Abstract
In an attempt to refine the H-bond-mediated Aglycone Delivery (HAD) glycosylation reaction reported herein is the synthesis of β-glucosides using an ethylthio glucoside donor equipped with the remote 6-O-picoloyl substituent. Upon examining various aliphatic, aromatic, and carbohydrate acceptors, it was determined that both electronic and steric factors may greatly affect the stereoselectivity of the HAD reaction with this donor.
Collapse
Affiliation(s)
- Michael P. Mannino
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis One University Boulevard, St. Louis, MO 63121, USA Fax: (+) 1-314-516-5342;
| | - Jagodige P. Yasomanee
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis One University Boulevard, St. Louis, MO 63121, USA Fax: (+) 1-314-516-5342;
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis One University Boulevard, St. Louis, MO 63121, USA Fax: (+) 1-314-516-5342;
| |
Collapse
|
15
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
17
|
Hou KL, Chiang PY, Lin CH, Li BY, Chien WT, Huang YT, Yu CC, Lin CC. Water-Soluble Sulfo-Fluorous Affinity (SOFA) Tag-Assisted Enzymatic Synthesis of Oligosaccharides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kai-Ling Hou
- Department of Chemistry; National Tsing Hua University; 101 Sec. 2, Kuang Fu Road Hsinchu 30013 Taiwan
| | - Pei-Yun Chiang
- Department of Chemistry; National Tsing Hua University; 101 Sec. 2, Kuang Fu Road Hsinchu 30013 Taiwan
| | - Chien-Hung Lin
- Department of Chemistry; National Tsing Hua University; 101 Sec. 2, Kuang Fu Road Hsinchu 30013 Taiwan
| | - Ben-Yuan Li
- Department of Chemistry; National Tsing Hua University; 101 Sec. 2, Kuang Fu Road Hsinchu 30013 Taiwan
| | - Wei-Ting Chien
- Department of Chemistry; National Tsing Hua University; 101 Sec. 2, Kuang Fu Road Hsinchu 30013 Taiwan
| | - Yu-Ting Huang
- Department of Chemistry and Biochemistry; National Chung Cheng University; 168 University Road Min-Hsiung, Chiayi 62102 Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry; National Chung Cheng University; 168 University Road Min-Hsiung, Chiayi 62102 Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry; National Tsing Hua University; 101 Sec. 2, Kuang Fu Road Hsinchu 30013 Taiwan
| |
Collapse
|
18
|
Maza S, Gandia-Aguado N, de Paz JL, Nieto PM. Fluorous-tag assisted synthesis of a glycosaminoglycan mimetic tetrasaccharide as a high-affinity FGF-2 and midkine ligand. Bioorg Med Chem 2018; 26:1076-1085. [DOI: 10.1016/j.bmc.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 02/01/2023]
|
19
|
Abstract
Previously, we communicated 3,3-difluoroxindole (HOFox)-mediated glycosylations wherein 3,3-difluoro-3H-indol-2-yl (OFox) imidates were found to be key intermediates. Both the in situ synthesis from the corresponding glycosyl bromides and activation of the OFox imidates could be conducted in a regenerative fashion. Herein, we extend this study to the synthesis of various glycosidic linkages using different sugar series. The main outcome of this study relates to enhanced yields and/or reduced reaction times of glycosylations. The effect of HOFox-mediated reactions is particularly pronounced in case of unreactive glycosyl donors and/or glycosyl acceptors. A multistep regenerative synthesis of oligosaccharides is also reported.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A. Geringer
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
20
|
Chai YH, Feng YL, Wu JJ, Deng CQ, Liu AY, Zhang Q. Recyclable benzyl-type fluorous tags: Preparation and application in oligosaccharide synthesis. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Design, synthesis and biological evaluation of gentiopicroside derivatives as potential antiviral inhibitors. Eur J Med Chem 2017; 130:308-319. [DOI: 10.1016/j.ejmech.2017.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/18/2022]
|
22
|
Nigudkar SS, Wang T, Pistorio SG, Yasomanee JP, Stine KJ, Demchenko AV. OFox imidates as versatile glycosyl donors for chemical glycosylation. Org Biomol Chem 2017; 15:348-359. [PMID: 27808325 PMCID: PMC5499515 DOI: 10.1039/c6ob02230h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previously we communicated 3,3-difluoroxindole (HOFox) - mediated glycosylations wherein 3,3-difluoro-3H-indol-2-yl (OFox) imidates were found to be key intermediates. Both the in situ synthesis from the corresponding glycosyl bromides and activation of the OFox imidates could be conducted in a regenerative fashion. Herein, we extend this study with the main focus on the synthesis of various OFox imidates and their investigation as glycosyl donors for chemical 1,2-cis and 1,2-trans glycosylation.
Collapse
Affiliation(s)
- Swati S Nigudkar
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Salvatore G Pistorio
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Jagodige P Yasomanee
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| |
Collapse
|
23
|
Marqvorsen MHS, Pedersen MJ, Rasmussen MR, Kristensen SK, Dahl-Lassen R, Jensen HH. Why Is Direct Glycosylation with N-Acetylglucosamine Donors Such a Poor Reaction and What Can Be Done about It? J Org Chem 2016; 82:143-156. [PMID: 28001415 DOI: 10.1021/acs.joc.6b02305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The monosaccharide N-acetyl-d-glucosamine (GlcNAc) is an abundant building block in naturally occurring oligosaccharides, but its incorporation by chemical glycosylation is challenging since direct reactions are low yielding. This issue, generally agreed upon to be caused by an intermediate 1,2-oxazoline, is often bypassed by introducing extra synthetic steps to avoid the presence of the NHAc functional group during glycosylation. The present paper describes new fundamental mechanistic insights into the inherent challenges of performing direct glycosylation with GlcNAc. These results show that controlling the balance of oxazoline formation and glycosylation is key to achieving acceptable chemical yields. By applying this line of reasoning to direct glycosylation with a traditional thioglycoside donor of GlcNAc, which otherwise affords poor glycosylation yields, one may obtain useful glycosylation results.
Collapse
Affiliation(s)
- Mikkel H S Marqvorsen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Martin J Pedersen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Michelle R Rasmussen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steffan K Kristensen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Rasmus Dahl-Lassen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik H Jensen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Exploring human glycosylation for better therapies. Mol Aspects Med 2016; 51:125-43. [DOI: 10.1016/j.mam.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
|
25
|
Krasnova L, Wong CH. Understanding the Chemistry and Biology of Glycosylation with Glycan Synthesis. Annu Rev Biochem 2016; 85:599-630. [DOI: 10.1146/annurev-biochem-060614-034420] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
26
|
Collet C, Chrétien F, Chapleur Y, Lamandé-Langle S. Diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues. Beilstein J Org Chem 2016; 12:353-61. [PMID: 26977196 PMCID: PMC4778503 DOI: 10.3762/bjoc.12.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/11/2016] [Indexed: 01/10/2023] Open
Abstract
Efficient routes were developed for the diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues. The key steps of the synthesis were the easy accessibility of different types of arms in term of configuration (myo and scyllo), the linking method and length, which could modulate the biological properties. These inositol derivatives, bearing an arm terminated either with a hydroxy group or a fluorine atom, could be interesting candidates for diastereoisomeric intermediates and biological evaluations, especially for PET imaging experiments.
Collapse
Affiliation(s)
- Charlotte Collet
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Françoise Chrétien
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Yves Chapleur
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Sandrine Lamandé-Langle
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| |
Collapse
|
27
|
Meng S, Tian T, Wang YH, Meng XB, Li ZJ. Convergent synthesis of oligosaccharides on the gram-scale using cetyl thioglycoside based on a hydrophobically assisted switching phase method. Org Biomol Chem 2016; 14:7722-30. [DOI: 10.1039/c6ob01267a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A hydrophobically assisted switching phase (HASP) method is an efficient strategy for the synthesis of carrier-loaded oligosaccharides.
Collapse
Affiliation(s)
- Shuai Meng
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Tian Tian
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yun-He Wang
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xiang-Bao Meng
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Zhong-Jun Li
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
28
|
Kayastha AK, Jia XG, Yasomanee JP, Demchenko AV. 6-O-Picolinyl and 6-O-Picoloyl Building Blocks As Glycosyl Donors with Switchable Stereoselectivity. Org Lett 2015; 17:4448-51. [DOI: 10.1021/acs.orglett.5b02110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhijeet K. Kayastha
- Department of Chemistry and
Biochemistry, University of Missouri—St. Louis, One University
Boulevard, St. Louis, Missouri 63121, United States
| | - Xiao G. Jia
- Department of Chemistry and
Biochemistry, University of Missouri—St. Louis, One University
Boulevard, St. Louis, Missouri 63121, United States
| | - Jagodige P. Yasomanee
- Department of Chemistry and
Biochemistry, University of Missouri—St. Louis, One University
Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and
Biochemistry, University of Missouri—St. Louis, One University
Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
29
|
Huang W, Gao Q, Boons GJ. Assembly of a Complex Branched Oligosaccharide by Combining Fluorous-Supported Synthesis and Stereoselective Glycosylations using Anomeric Sulfonium Ions. Chemistry 2015; 21:12920-6. [PMID: 26250358 PMCID: PMC4878019 DOI: 10.1002/chem.201501844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 11/09/2022]
Abstract
There is an urgent need to develop reliable strategies for the rapid assembly of complex oligosaccharides. This paper presents a set of strategically selected orthogonal protecting groups, glycosyl donors modified by a (S)-phenylthiomethylbenzyl ether at C-2, and a glycosyl acceptor containing a fluorous tag, which makes it possible to rapidly prepare complex branched oligosaccharides of biological importance. The C-2 auxiliary controlled the 1,2-cis anomeric selectivity of the various galactosylations. The orthogonal protecting groups, 2-naphthylmethyl ether (Nap) and levulinic ester (Lev), made it possible to generate glycosyl acceptors and allowed the installation of a crowded branching point. After the glycosylations, the chiral auxiliary could be removed using acidic conditions, which was compatible with the presence of the orthogonal protecting groups Lev and Nap, thereby allowing the efficient installation of 1,2-linked glycosides. The light fluorous tag made it possible to purify the compounds by a simple filtration method using silica gel modified by fluorocarbons. The set of building blocks was successfully employed for the preparation of the carbohydrate moiety of the GPI anchor of Trypanosoma brucei, which is a parasite that causes sleeping sickness in humans and similar diseases in domestic animals.
Collapse
Affiliation(s)
- Wei Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| | - Qi Gao
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA).
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA).
| |
Collapse
|
30
|
Meng S, Tian T, Han D, Wang LN, Tang SG, Meng XB, Li ZJ. Efficient assembly of oligomannosides using the hydrophobically assisted switching phase method. Org Biomol Chem 2015; 13:6711-22. [PMID: 25967589 DOI: 10.1039/c5ob00730e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hydrophobically assisted switching phase (HASP) method was applied in the assembly of oligomannosides. A new mannosyl donor with high reactivity was selected after a series of optimization studies, which was suitable for the synthesis of oligomannosides via the HASP method. The practicability of the HASP method towards the synthesis of branched oligosaccharides was explored and two branched penta-mannosides were assembled efficiently.
Collapse
Affiliation(s)
- Shuai Meng
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Johannes M, Reindl M, Gerlitzki B, Schmitt E, Hoffmann-Röder A. Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4'-deoxy-4'-fluoro-Thomsen-Friedenreich epitope. Beilstein J Org Chem 2015; 11:155-161. [PMID: 25670999 PMCID: PMC4311645 DOI: 10.3762/bjoc.11.15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/02/2015] [Indexed: 02/03/2023] Open
Abstract
The development of selective anticancer vaccines that provide enhanced protection against tumor recurrence and metastasis has been the subject of intense research in the scientific community. The tumor-associated glycoprotein MUC1 represents a well-established target for cancer immunotherapy and has been used for the construction of various synthetic vaccine candidates. However, many of these vaccine prototypes suffer from an inherent low immunogenicity and are susceptible to rapid in vivo degradation. To overcome these drawbacks, novel fluorinated MUC1 glycopeptide-BSA/TTox conjugate vaccines have been prepared. Immunization of mice with the 4’F-TF-MUC1-TTox conjugate resulted in strong immune responses overriding the natural tolerance against MUC1 and producing selective IgG antibodies that are cross-reactive with native MUC1 epitopes on MCF-7 human cancer cells.
Collapse
Affiliation(s)
- Manuel Johannes
- Department of Chemistry and Center of Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University, Butenandtstraße 5-13, D-81377 Munich, Germany
| | - Maximilian Reindl
- Department of Chemistry and Center of Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University, Butenandtstraße 5-13, D-81377 Munich, Germany
| | - Bastian Gerlitzki
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Geb. 708, D-55101 Mainz, Germany
| | - Edgar Schmitt
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Geb. 708, D-55101 Mainz, Germany
| | - Anja Hoffmann-Röder
- Department of Chemistry and Center of Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University, Butenandtstraße 5-13, D-81377 Munich, Germany
| |
Collapse
|
32
|
Fluorous affinity-based separation techniques for the analysis of biogenic and related molecules. J Pharm Biomed Anal 2014; 101:151-60. [DOI: 10.1016/j.jpba.2014.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
|
33
|
In(III) triflate-catalyzed detritylation and glycosylation by solvent-free ball milling. Carbohydr Res 2014; 397:18-26. [DOI: 10.1016/j.carres.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 11/21/2022]
|
34
|
Macchione G, de Paz JL, Nieto PM. Synthesis of hyaluronic acid oligosaccharides and exploration of a fluorous-assisted approach. Carbohydr Res 2014; 394:17-25. [DOI: 10.1016/j.carres.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
|
35
|
Roychoudhury R, Pohl NLB. Synthesis of fluorous photolabile aldehyde and carbamate and alkyl carbamate protecting groups for carbohydrate-associated amines. Org Lett 2014; 16:1156-9. [PMID: 24512452 PMCID: PMC3993871 DOI: 10.1021/ol500023y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Two
new fluorous photolabile-protecting groups (FNBC and FNB) and
a new base-labile protecting group (FOC) for the masking of amines
are reported. The protecting groups survive a wide range of common
reaction conditions used in oligosaccharide synthesis and render the
attached molecules amenable to fluorous solid-phase extraction (FSPE).
A glycosyl acceptor containing the FNB group is shown to be useful
in the synthesis of carbohydrates tagged with free deactivated secondary
amines.
Collapse
Affiliation(s)
- Rajarshi Roychoudhury
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | |
Collapse
|
36
|
Hwang J, Yu H, Malekan H, Sugiarto G, Li Y, Qu J, Nguyen V, Wu D, Chen X. Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification. Chem Commun (Camb) 2014; 50:3159-62. [PMID: 24473465 DOI: 10.1039/c4cc00070f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oligo(ethylene glycol)-linked light fluorous tags have been found to be optimal for conjugating to glycans for both high-yield enzymatic glycosylation reactions using one-pot multienzyme (OPME) systems and quick product purification using fluorous solid-phase extraction (FSPE) cartridges. The combination of OPME glycosylation systems and the FSPE cartridge purification scheme provides a highly effective strategy for facile synthesis and purification of glycans.
Collapse
Affiliation(s)
- Joel Hwang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu B, Zhang F, Zhang Y, Liu G. A new approach for the synthesis of O-glycopeptides through a combination of solid-phase glycosylation and fluorous tagging chemistry (SHGPFT). Org Biomol Chem 2014; 12:1892-6. [DOI: 10.1039/c3ob42430h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and efficient hybrid approach has been developed for the synthesis and purification of O-linked glycopeptides with high purity.
Collapse
Affiliation(s)
- Bo Liu
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050, P. R. China
| | - Fa Zhang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050, P. R. China
| | - Yan Zhang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050, P. R. China
| | - Gang Liu
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050, P. R. China
- Tsinghua-Peking Center for Life Sciences
- Tsinghua University
| |
Collapse
|
38
|
Galan MC, Jones RA, Tran AT. Recent developments of ionic liquids in oligosaccharide synthesis: the sweet side of ionic liquids. Carbohydr Res 2013; 375:35-46. [DOI: 10.1016/j.carres.2013.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
|
39
|
Facile synthesis of tetrasaccharide aided by fluorous chemistry toward a dengue virus vaccine. Mol Divers 2013; 17:613-8. [DOI: 10.1007/s11030-013-9451-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
40
|
Zong C, Venot A, Dhamale O, Boons GJ. Fluorous supported modular synthesis of heparan sulfate oligosaccharides. Org Lett 2013; 15:342-5. [PMID: 23293947 PMCID: PMC3563243 DOI: 10.1021/ol303270v] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular synthesis of heparan sulfate fragments is greatly facilitated by employing an anomeric aminopentyl linker protected by a benzyloxycarbonyl group modified by a perfluorodecyl tag, which made it possible to purify highly polar intermediates by fluorous solid phase extraction. This tagging methodology made it also possible to perform repeated glycosylations to drive reactions to completion.
Collapse
Affiliation(s)
- Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602
| | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Omkar Dhamale
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602
| |
Collapse
|
41
|
Efficient activation of thioglycosides with N-(p-methylphenylthio)-ε-caprolactam-TMSOTf. Carbohydr Res 2012; 354:40-8. [PMID: 22542575 DOI: 10.1016/j.carres.2012.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/17/2012] [Accepted: 03/22/2012] [Indexed: 11/22/2022]
Abstract
N-(p-Methylphenylthio)-ε-caprolactam (1) in combination with trimethylsilyl trifluoromethanesulfonate (TMSOTf) provides an efficient thiophilic promoter system, capable of activating different thioglycosides. Both 'armed' and 'disarmed' thioglycosyl donors were activated for glycosidic bond formation. Notably, this reagent combination works well in reactivity-based one-pot oligosaccharide assembly strategy.
Collapse
|
42
|
Tanaka H, Tanimoto Y, Kawai T, Takahashi T. A fluorous-assisted synthesis of oligosaccharides using a phenyl ether linker as a safety-catch linker. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Tran AT, Jones RA, Pastor J, Boisson J, Smith N, Galan MC. Copper(II) Triflate: A Versatile Catalyst for the One-Pot Preparation of Orthogonally Protected Glycosides. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100228] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Codée JD, Ali A, Overkleeft HS, van der Marel GA. Novel protecting groups in carbohydrate chemistry. CR CHIM 2011. [DOI: 10.1016/j.crci.2010.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Tran AT, Burden R, Racys DT, Carmen Galan M. Ionic catch and release oligosaccharide synthesis (ICROS). Chem Commun (Camb) 2011; 47:4526-8. [DOI: 10.1039/c0cc05580h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Galan MC, Benito-Alifonso D, Watt GM. Carbohydrate chemistry in drug discovery. Org Biomol Chem 2011; 9:3598-610. [DOI: 10.1039/c0ob01017k] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Kaeothip S, Akins SJ, Demchenko AV. On the stereoselectivity of glycosidation of thiocyanates, thioimidates, and thioglycosides. Carbohydr Res 2010; 345:2146-50. [PMID: 20817156 DOI: 10.1016/j.carres.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 11/16/2022]
Abstract
Comparative side-by-side glycosylation studies demonstrated that glycosyl thiocyanates, thioimidates, and thioglycosides provide comparative stereoselectivities in glycosylations. Very high α-stereoselectivity that was previously recorded for glycosyl thiocyanates can be achieved, but only if glycosyl acceptors are equipped with electron-withdrawing acyl substituents. Partially benzylated glycosyl acceptors provided relatively modest stereoselectivity, which was on a par with other common glycosyl donors. Accordingly, thioimidates and thioglycosides showed high stereoselectivity similarly to that of thiocyanates with different classes of acylated primary and secondary glycosyl acceptors.
Collapse
Affiliation(s)
- Sophon Kaeothip
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | | | | |
Collapse
|
50
|
Yang B, Jing Y, Huang X. Fluorous-Assisted One-Pot Oligosaccharide Synthesis. European J Org Chem 2010; 2010:1290-1298. [PMID: 22505838 PMCID: PMC3324286 DOI: 10.1002/ejoc.200901155] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Indexed: 12/25/2022]
Abstract
A new method for oligosaccharide assembly that combines the advantages of one-pot synthesis and fluorous separation is described. After one-pot glycosylations are completed, a fluorous tag is introduced into the reaction mixture to selectively "catch" the desired oligosaccharide, which is rapidly separated from non-fluorous impurities by fluorous solid-phase extraction (F-SPE). Subsequent "release" of the fluo rous tag and F-SPE achieved the purification of the desired oligosaccharide without the use of time- and solvent-consuming silica gel chromatography. Linear and branched oligosaccharides have been synthesized with this approach in just a few hours (for the overall oligosaccharide assembly and purification process).
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|