1
|
Wang Y, Zhan S, Hu Y, Chen X, Yin S. Understanding the Formation and Growth of New Atmospheric Particles at the Molecular Level through Laboratory Molecular Beam Experiments. Chempluschem 2024; 89:e202400108. [PMID: 38497136 DOI: 10.1002/cplu.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Atmospheric new particle formation (NPF), which exerts comprehensive implications for climate, air quality and human health, has received extensive attention. From molecule to cluster is the initial and most important stage of the nucleation process of atmospheric new particles. However, due to the complexity of the nucleation process and limitations of experimental characterization techniques, there is still a great uncertainty in understanding the nucleation mechanism at the molecular level. Laboratory-based molecular beam methods can experimentally implement the generation and growth of typical atmospheric gas-phase nucleation precursors to nanoscale clusters, characterize the key physical and chemical properties of clusters such as structure and composition, and obtain a series of their physicochemical parameters, including association rate coefficients, electron binding energy, pickup cross section and pickup probability and so on. These parameters can quantitatively illustrate the physicochemical properties of the cluster, and evaluate the effect of different gas phase nucleation precursors on the formation and growth of atmospheric new particles. We review the present literatures on atmospheric cluster formation and reaction employing the experimental method of laboratory molecular beam. The experimental apparatuses were classified and summarized from three aspects of cluster generation, growth and detection processes. Focus of this review is on the properties of nucleation clusters involving different precursor molecules of water, sulfuric acid, nitric acid and NxOy, respectively. We hope this review will provide a deep insight for effects of cluster physicochemical properties on nucleation, and reveal the formation and growth mechanism of atmospheric new particle at the molecular level.
Collapse
Affiliation(s)
- Yadong Wang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Shiyu Zhan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Yongjun Hu
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
2
|
Das A, Musharaf Ali S. Structure and dynamics of dissociated and undissociated forms of nitric acid and their implications in interfacial mass transfer: insights from molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:6916-6938. [PMID: 38334446 DOI: 10.1039/d3cp05622h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nitric acid (HNO3) is widely used in various chemical and nuclear industries. Therefore, it is important to develop an understanding of the different forms of nitric acid for its practical applications. Molecular dynamics (MD) simulation is one of the best tools to investigate the behavior of concentrated nitric acid in aqueous solution with various forms together with pure nitric acid to identify a suitable model of nitric acid for use in simulations of biphasic systems for interfacial mass transfer. The Mulliken partial charge embedded OPLS-AA force field was used to model the neutral nitric acid, hydronium ion and nitrate ion, and it was found that the Mulliken partial charge embedded force field works quite well. The computed density of the dissociated and mixed-form acid was in good agreement with the experimental values. In water, the HNO3 molecule was seen to be coordinated with three water molecules in the first sphere of coordination. The distribution of water surrounding the HNO3 molecule and nitrate ion was corroborated by the DFT-optimized hydrated cluster. The calculated diffusivity values of the neutral acid and ions were significantly higher in the mixed form of nitric acid, which is an important dynamic quantity controlling the kinetics of the liquid-liquid interfacial extraction. The structural analysis revealed that the local aggregation is minimized when both forms of acid are present together in the solution. The water-ion and water-neutral acid interactions were predicted to be enhanced, as confirmed by H-bond studies. The shear viscosity of the mixed acid exhibited excellent agreement with the experimental values, which again confirms the consideration of the mixed form of nitric acid. The simulated value of surface tension for the mixed form of acid also appeared to be quite accurate based on the surface tension of water. The mixed form of nitric acid comprising both forms of acid is the best representation for nitric acid to be considered for MD simulations of biphasic systems. The mixed form of nitric acid established that the concentrated nitric acid may not be present either in the fully dissociated form or fully undissociated form in the solution.
Collapse
Affiliation(s)
- Arya Das
- Nuclear Recycle Board, Bhabha Atomic Research Centre, Mumbai, 400094, India
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
3
|
Ma Q, Zhong C, Ma J, Ye C, Zhao Y, Liu Y, Zhang P, Chen T, Liu C, Chu B, He H. Comprehensive Study about the Photolysis of Nitrates on Mineral Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8604-8612. [PMID: 34132529 DOI: 10.1021/acs.est.1c02182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrates formed on mineral dust through heterogeneous reactions in high NOx areas can undergo photolysis to regenerate NOx and potentially interfere in the photochemistry in the downwind low NOx areas. However, little is known about such renoxification processes. In this study, photolysis of various nitrates on different mineral oxides was comprehensively investigated in a flow reactor and in situ diffuse reflectance Fourier-transform infrared spectroscopy (in situ DRIFTS). TiO2 was found much more reactive than Al2O3 and SiO2 with both NO2 and HONO as the two major photolysis products. The yields of NO2 and HONO depend on the cation basicity of the nitrate salts or the acidity of particles. As such, NH4NO3 is much more productive than other nitrates like Fe(NO3)3, Ca(NO3)2, and KNO3. SO2 and water vapor promote the photodegradation by increasing the surface acidity due to the photoinduced formation of H2SO4/sulfate and H+, respectively. O2 enables the photo-oxidation of NOx to regenerate nitrate and thus inhibits the NOx yield. Overall, our results demonstrated that the photolysis of nitrate can be accelerated under complex air pollution conditions, which are helpful for understanding the transformation of nitrate and the nitrogen cycle in the atmosphere.
Collapse
Affiliation(s)
- Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Zhong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiang Ye
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, Center for Environment and Health, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yaqi Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Xu W, Yang W, Han C, Yang H, Xue X. Significant influences of TiO 2 crystal structures on NO 2 and HONO emissions from the nitrates photolysis. J Environ Sci (China) 2021; 102:198-206. [PMID: 33637244 DOI: 10.1016/j.jes.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
The emissions of NO2 and HONO from the KNO3 photolysis in the presence of TiO2 were measured using a round-shape reactor coupled to a NOx analyzer. TiO2 played important roles in the emission flux density of NO2 (RNO2) and HONO (RHONO), depending on crystal structures and mass ratios of TiO2. RNO2 and RHONO significantly decreased with increasing the rutile and anatase mass ratios from 0 to 8 and 0.5 wt.%, respectively. Nevertheless, with further increasing the anatase mass ratio to 8 wt.%, there was an increase in RNO2 and RHONO. RNO2 on KNO3/TiO2/SiO2 had positive correlation with the KNO3 mass (1-20 wt.%), irradiation intensity (80-400 W/m2) and temperature (278-308 K), while it had the maximum value at the relative humidity (RH) of 55%. RHONO on KNO3/TiO2/SiO2 slightly varied with the KNO3 mass and temperature, whereas it increased with the irradiation intensity and RH. In addition, the mechanism for NO2 and HONO emissions from the nitrates photolysis and atmospheric implications were discussed.
Collapse
Affiliation(s)
- Wenwen Xu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Yang Y, Li X, Zu K, Lian C, Chen S, Dong H, Feng M, Liu H, Liu J, Lu K, Lu S, Ma X, Song D, Wang W, Yang S, Yang X, Yu X, Zhu Y, Zeng L, Tan Q, Zhang Y. Elucidating the effect of HONO on O 3 pollution by a case study in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144127. [PMID: 33288267 DOI: 10.1016/j.scitotenv.2020.144127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Photolysis of nitrous acid (HONO) is one of the major sources for atmospheric hydroxyl radicals (OH), playing significant role in initiating tropospheric photochemical reactions for ozone (O3) production. However, scarce field investigations were conducted to elucidate this effect. In this study, a field campaign was conducted at a suburban site in southwest China. The whole observation was classified into three periods based on O3 levels and data coverage: the serious O3 pollution period (Aug 13-18 as P1), the O3 pollution period (Aug 22-28 as P2) and the clean period (Sep 3-12 as P3), with average O3 peak values of 96 ppb, 82 ppb and 44 ppb, respectively. There was no significant difference of the levels of O3 precursors (VOCs and NOx) between P1 and P2, and thus the evident elevation of OH peak values in P1 was suspected to be the most possible explanation for the higher O3 peak values. Considering the larger contribution of HONO photolysis to HOX primary production than photolysis of HCHO, O3 and ozonolysis of Alkenes, sensitivity tests of HONO reduction on O3 production rate in P1 are conducted by a 0-dimension model. Reduced HONO concentration effectively slows the O3 production in the morning, and such effect correlates with the calculated production rate of OH radicals from HONO photolysis. Higher HONO level supplying for OH radical initiation in the early morning might be the main reason for the higher O3 peak values in P1, which explained the correlation (R2 = 0.51) between average O3 value during daytime (10:00-19:00 LT) and average HONO value during early morning (00:00-05:00 LT). For nighttime accumulation, a suitable range of relative humidity that favored NO2 conversion within P1 was assumed to be the reason for the higher HONO concentration in the following early morning which promoted O3 peak values.
Collapse
Affiliation(s)
- Yiming Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Kexin Zu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chaofan Lian
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Jingwei Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Danlin Song
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Weigang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Suding Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuena Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuan Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
6
|
Anglada JM, Martins-Costa MTC, Francisco JS, Ruiz-López MF. Reactivity of Undissociated Molecular Nitric Acid at the Air-Water Interface. J Am Chem Soc 2020; 143:453-462. [PMID: 33355444 DOI: 10.1021/jacs.0c11841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experiments and theoretical calculations have shown that HNO3 may exist in molecular form in aqueous environments, where in principle one would expect this strong acid to be completely dissociated. Much effort has been devoted to understanding this fact, which has huge environmental relevance since nitric acid is a component of acid rain and also contributes to renoxification processes in the atmosphere. Although the importance of heterogeneous processes such as oxidation and photolysis have been evidenced by experiments, most theoretical studies on hydrated molecular HNO3 have focused on the acid dissociation mechanism. In the present work, we carry out calculations at various levels of theory to obtain insight into the properties of molecular nitric acid at the surface of liquid water (the air-water interface). Through multi-nanosecond combined quantum-classical molecular dynamics simulations, we analyze the interface affinity of nitric acid and provide an order of magnitude for its lifetime with regard to acid dissociation, which is close to the value deduced using thermodynamic data in the literature (∼0.3 ns). Moreover, we study the electronic absorption spectrum and calculate the rate constant for the photolytic process HNO3 + hν → NO2 + OH, leading to 2 × 10-6 s-1, about twice the value in the gas phase. Finally, we describe the reaction HNO3 + OH → NO3 + H2O using a cluster model containing 21 water molecules with the help of high-level ab initio calculations. A large number of reaction paths are explored, and our study leads to the conclusion that the most favorable mechanism involves the formation of a pre-reactive complex (HNO3)(OH) from which product are obtained through a coupled proton-electron transfer mechanism that has a free-energy barrier of 6.65 kcal·mol-1. Kinetic calculations predict a rate constant increase by ∼4 orders of magnitude relative to the gas phase, and we conclude that at the air-water interface, a lower limit for the rate constant is k = 1.2 × 10-9 cm3·molecule-1·s-1. The atmospheric significance of all these results is discussed.
Collapse
Affiliation(s)
- Josep M Anglada
- Departament de Química Biològica, Institut de Química Avançada de Catalunya (IQAC - CSIC), c/Jordi Girona 18, E-08034 Barcelona, Spain
| | - Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
7
|
Lengyel J, Ončák M, Beyer MK. Chemistry of NO x and HNO 3 Molecules with Gas-Phase Hydrated O .- and OH - Ions. Chemistry 2020; 26:7861-7868. [PMID: 32250483 PMCID: PMC7384111 DOI: 10.1002/chem.202000322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/05/2020] [Indexed: 11/24/2022]
Abstract
The gas‐phase reactions of O.−(H2O)n and OH−(H2O)n, n=20–38, with nitrogen‐containing atmospherically relevant molecules, namely NOx and HNO3, are studied by Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry and theoretically with the use of DFT calculations. Hydrated O.− anions oxidize NO. and NO2. to NO2− and NO3− through a strongly exothermic reaction with enthalpy of −263±47 kJ mol−1 and −286±42 kJ mol−1, indicating a covalent bond formation. Comparison of the rate coefficients with collision models shows that the reactions are kinetically slow with 3.3 and 6.5 % collision efficiency. Reactions between hydrated OH− anions and nitric oxides were not observed in the present experiment and are most likely thermodynamically hindered. In contrast, both hydrated anions are reactive toward HNO3 through proton transfer from nitric acid, yielding hydrated NO3−. Although HNO3 is efficiently picked‐up by the water clusters, forming (HNO3)0–2(H2O)mNO3− clusters, the overall kinetics of nitrate formation are slow and correspond to an efficiency below 10 %. Combination of the measured reaction thermochemistry with literature values in thermochemical cycles yields ΔHf(O−(aq.))=48±42 kJ mol−1 and ΔHf(NO2−(aq.))=−125±63 kJ mol−1.
Collapse
Affiliation(s)
- Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.,Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Mitra S, Duong CH, McCaslin LM, Gerber RB, Johnson MA. Isomer-specific cryogenic ion vibrational spectroscopy of the D 2 tagged Cs +(HNO 3)(H 2O) n=0-2 complexes: ion-driven enhancement of the acidic H-bond to water. Phys Chem Chem Phys 2020; 22:4501-4507. [PMID: 32068217 DOI: 10.1039/c9cp06689f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report how the binary HNO3(H2O) interaction is modified upon complexation with a nearby Cs+ ion. Isomer-selective IR photodissociation spectra of the D2-tagged, ternary Cs+(HNO3)H2O cation confirms that two structural isomers are generated in the cryogenic ion source. In one of these, both HNO3 and H2O are directly coordinated to the ion, while in the other, the water molecule is attached to the OH group of the acid, which in turn binds to Cs+ with its -NO2 group. The acidic OH stretching fundamental in the latter isomer displays a ∼300 cm-1 red-shift relative to that in the neutral H-bonded van der Waals complex, HNO3(H2O). This behavior is analyzed with the aid of electronic structure calculations and discussed in the context of the increased effective acidity of HNO3 in the presence of the cation.
Collapse
Affiliation(s)
- Sayoni Mitra
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, USA.
| | - Chinh H Duong
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, USA.
| | - Laura M McCaslin
- Department of Chemistry, University of California Irvine, Irvine, CA, USA. and Institute of Chemistry and the Fritz-Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| | - R Benny Gerber
- Department of Chemistry, University of California Irvine, Irvine, CA, USA. and Institute of Chemistry and the Fritz-Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Zhao H, Gall ET, Stephens B. Measuring the Building Envelope Penetration Factor for Ambient Nitrogen Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9695-9704. [PMID: 31322867 DOI: 10.1021/acs.est.9b02920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Much of human exposure to nitrogen oxides (NOx) of ambient origin occurs indoors. Reactions with materials inside building envelopes are expected to influence the amount of ambient NOx that infiltrates indoors. However, envelope penetration factors for ambient NOx constituents have never been measured. Here, we develop and apply methods to measure the penetration factor and indoor loss rates for ambient NOx constituents using time-resolved measurements in an unoccupied apartment unit. Multiple test methods and parameter estimation approaches were tested, including natural and artificial indoor NOx elevation with and without accounting for indoor oxidation reactions. Twelve of 16 tests yielded successful estimates of penetration factors and indoor loss rates. The penetration factor for NO was confirmed to be ∼1 and the mean (±s.d.) NO2 penetration factor was 0.72 ± 0.06 with a mean relative uncertainty of ∼15%. The mean (±s.d.) indoor NO2 loss rate was 0.27 ± 0.12 h-1, ranging 0.06-0.47 h-1, with strong correlations with indoor relative and absolute humidity. Indoor NO loss rates were strongly correlated with the estimated ozone concentration in infiltrating air. Results suggest that envelope penetration factors and loss rates for NOx constituents can be reasonably estimated across a wide range of conditions using these approaches.
Collapse
Affiliation(s)
- Haoran Zhao
- Department of Civil, Architectural, and Environmental Engineering , Illinois Institute of Technology , Alumni Memorial Hall 228E, 3201 South Dearborn Street , Chicago , Illinois 60616 , United States
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering , Portland State University , Portland , Oregon 97201 , United States
| | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering , Illinois Institute of Technology , Alumni Memorial Hall 228E, 3201 South Dearborn Street , Chicago , Illinois 60616 , United States
| |
Collapse
|
10
|
Wang J, Zhang X, Guo J, Wang Z, Zhang M. Observation of nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal formation and daytime budget. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:350-359. [PMID: 28237466 DOI: 10.1016/j.scitotenv.2017.02.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/12/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Seasonal characteristics of atmospheric nitrous acid (HONO) were investigated with high time-resolution field measurements at an urban site of Beijing in four select months (representing four different seasons) from September 2015 to July 2016. The HONO concentrations displayed a pronounced seasonal profile with a maximum in autumn (2.27±1.82ppb) and a minimum in winter (1.05±0.89ppb). Significant diurnal cycles were also observed during the whole campaign. We found that the nighttime build-up of HONO was attributed to the heterogeneous conversion of NO2 on wet surface. The calculated NO2 to HONO conversion frequencies varied from 0.005h-1 in spring to 0.010h-1 in summer, with an average value of 0.008h-1. The seasonality of these conversion frequencies was closely related to the RH levels in different seasons. During daytime, large additional HONO sources were calculated. The noontime additional source was the highest in autumn 3.82ppbh-1, followed by summer 3.05ppbh-1, spring 2.63ppbh-1 and winter 1.30ppbh-1. Correlation studies between the additional HONO source and related parameters demonstrated that the controlling processes responsible for HONO daytime formation varied in different seasons, and that the photo-enhanced formation on wet surface or the photolysis of adsorbed nitric acid and nitrate could be potential HONO sources in Beijing.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhangwei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meigen Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, PR China
| |
Collapse
|
11
|
Finlayson-Pitts BJ. Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discuss 2017; 200:11-58. [DOI: 10.1039/c7fd00161d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.
Collapse
|
12
|
Ye C, Gao H, Zhang N, Zhou X. Photolysis of Nitric Acid and Nitrate on Natural and Artificial Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3530-6. [PMID: 26936001 DOI: 10.1021/acs.est.5b05032] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Photolysis of nitric acid and nitrate (HNO3/nitrate) was investigated on the surfaces of natural and artificial materials, including plant leaves, metal sheets, and construction materials. The surfaces were conditioned in the outdoor air prior to experiments to receive natural depositions of ambient HNO3/nitrate and other atmospheric constituents. The photolysis rate constant (JHNO3(s)) of the surface HNO3/nitrate was measured based on the production rates of nitrous acid (HONO) and nitrogen oxides (NOx). The JHNO3(s) values, from 6.0 × 10(-6) s(-1) to 3.7 × 10(-4) s(-1), are 1 to 3 orders of magnitude higher than that of gaseous HNO3. The HONO was the major product from photolysis of HNO3/nitrate on most plant leaves, whereas NOx was the major product on most artificial surfaces. The JHNO3(s) values decreased with HNO3/nitrate surface density and could be described by a simple analytical equation. Within a typical range of HNO3/nitrate surface density in the low-NOx forested areas, photolysis of HNO3/nitrate on the forest canopy can be a significant source for HONO and NOx for the overlying atmosphere.
Collapse
Affiliation(s)
- Chunxiang Ye
- Wadsworth Center, New York State Department of Health , Albany, New York 12201, United States
| | - Honglian Gao
- Department of Environmental Health Sciences, State University of New York , Albany, New York 12201, United States
| | - Ning Zhang
- Department of Environmental Health Sciences, State University of New York , Albany, New York 12201, United States
| | - Xianliang Zhou
- Wadsworth Center, New York State Department of Health , Albany, New York 12201, United States
- Department of Environmental Health Sciences, State University of New York , Albany, New York 12201, United States
| |
Collapse
|
13
|
Roscioli JR, Zahniser MS, Nelson DD, Herndon SC, Kolb CE. New Approaches to Measuring Sticky Molecules: Improvement of Instrumental Response Times Using Active Passivation. J Phys Chem A 2015; 120:1347-57. [DOI: 10.1021/acs.jpca.5b04395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. R. Roscioli
- Center for Atmospheric and
Environmental Chemistry, Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821, United States
| | - M. S. Zahniser
- Center for Atmospheric and
Environmental Chemistry, Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821, United States
| | - D. D. Nelson
- Center for Atmospheric and
Environmental Chemistry, Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821, United States
| | - S. C. Herndon
- Center for Atmospheric and
Environmental Chemistry, Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821, United States
| | - C. E. Kolb
- Center for Atmospheric and
Environmental Chemistry, Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821, United States
| |
Collapse
|
14
|
Borrelli NF, Senaratne W, Wei Y, Petzold O. Physics and chemistry of antimicrobial behavior of ion-exchanged silver in glass. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2195-201. [PMID: 25562105 DOI: 10.1021/am508159z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The results of a comprehensive study involving the antimicrobial activity in a silver ion-exchanged glass are presented. The study includes the glass composition, the method of incorporating silver into the glass, the effective concentration of the silver available at the glass surface, and the effect of the ambient environment. A quantitative kinetic model that includes the above factors in predicting the antimicrobial activity is proposed. Finally, experimental data demonstrating antibacterial activity against Staphylococcus aureus with correlation to the predicted model is shown.
Collapse
Affiliation(s)
- N F Borrelli
- S&T Division, Sullivan Park, Corning Incorporated , Corning, New York 14830, United States
| | | | | | | |
Collapse
|
15
|
Spataro F, Ianniello A. Sources of atmospheric nitrous acid: state of the science, current research needs, and future prospects. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:1232-50. [PMID: 25509545 DOI: 10.1080/10962247.2014.952846] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nitrous acid (HONO) plays a key role in tropospheric photochemistry, primarily due to its role as a source of hydroxyl (OH) radicals via its rapid photolysis. OH radicals are involved in photooxidation processes, such as the formation of tropospheric 03 and other secondary atmospheric pollutants (peroxyacetyl nitrate/PAN] and secondary particles). Recent field and modeling studies have postulated the occurrence of a strong and unknown daytime HONO source, but there are still many significant uncertainties concerning the identification and formation mechanisms of these unknown sources. Up to now, five HONO formation pathways are known: direct emission, homogeneous gas-phase reactions, heterogeneous reactions, surface photolysis; and biological processes. In this review paper the HONO sources proposed to explain the observed HONO budget, especially during daytime, are discussed, highlighting the knowledge gaps that need further investigation. In this framework it is crucial to have available accurate and reliable measurements of atmospheric HONO concentrations; thus, a short description ofHONO measurement techniques currently available is also reported. The techniquesare divided into three basic categories: spectroscopic techniques, wet chemical techniques, and off-line methods.
Collapse
|
16
|
Nishino N, Hollingsworth SA, Stern AC, Roeselová M, Tobias DJ, Finlayson-Pitts BJ. Interactions of gaseous HNO3 and water with individual and mixed alkyl self-assembled monolayers at room temperature. Phys Chem Chem Phys 2014; 16:2358-67. [PMID: 24352159 PMCID: PMC4000124 DOI: 10.1039/c3cp54118e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major removal processes for gaseous nitric acid (HNO3) in the atmosphere are dry and wet deposition onto various surfaces. The surface in the boundary layer is often covered with organic films, but the interaction of gaseous HNO3 with them is not well understood. To better understand the factors controlling the uptake of gaseous nitric acid and its dissociation in organic films, studies were carried out using single component and mixtures of C8 and C18 alkyl self-assembled monolayers (SAMs) attached to a germanium (Ge) attenuated total reflectance (ATR) crystal upon which a thin layer of SiOx had been deposited. For comparison, diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) studies were also carried out using a C18 SAM attached to the native oxide layer on the surface of silicon powder. These studies show that the alkyl chain length and order/disorder of the SAMs does not significantly affect the uptake or dissociation/recombination of molecular HNO3. Thus, independent of the nature of the SAM, molecular HNO3 is observed up to 70-90% relative humidity. After dissociation, molecular HNO3 is regenerated on all SAM surfaces when water is removed. Results of molecular dynamics simulations are consistent with experiments and show that defects and pores on the surfaces control the uptake, dissociation and recombination of molecular HNO3. Organic films on surfaces in the boundary layer will certainly be more irregular and less ordered than SAMs studied here, therefore undissociated HNO3 may be present on surfaces in the boundary layer to a greater extent than previously thought. The combination of this observation with the results of recent studies showing enhanced photolysis of nitric acid on surfaces suggests that renoxification of deposited nitric acid may need to be taken into account in atmospheric models.
Collapse
Affiliation(s)
- Noriko Nishino
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Scott A. Hollingsworth
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA, 92697-2025, USA
| | - Abraham C. Stern
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Martina Roeselová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Douglas J. Tobias
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | | |
Collapse
|
17
|
Fatunmbi HO, Bruch MD. Characterization of the structural morphology of chemically modified silica prepared by surface polymerization of a mixture of long and short alkyl chains using 13C and 29Si NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4974-4987. [PMID: 23530776 DOI: 10.1021/la3040853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A series of bonded phases were prepared by the chemical modification of silica using the surface polymerization of trifunctional and difunctional ligands, and the structural morphology was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy using cross-polarization and magic angle spinning (CP/MAS). Mixed-phase surfaces were prepared using mixtures of trifunctional long-chain (C18) ligands with trifunctional and difunctional short-chain (C1) ligands, and these surfaces were compared to the corresponding single-phase surfaces consisting of only long- or short-chain ligands. For both types of mixed-phase surfaces, the incorporation of short chains increases the overall ligand density, the density of long chains, and the degree of cross-linking between ligands compared to that of the single-phase surface consisting exclusively of long chains. When the percentage of long-chain ligands in the mixture is high, a horizontally polymerized monolayer of chains is formed on the silica surface for both trifunctional and difunctional short chains. However, essentially all of the long chains adopt a trans conformation when trifunctional short chains are used, and a significant number of gauche defects are observed for the long chains when mixed with difunctional short chains. Furthermore, the ligands on the mixed-phase surface are more rigid when the short chains are trifunctional. When the percentage of trifunctional short chains is increased, some vertical polymerization occurs, caused by the molecular stacking of the highly reactive short chains near the surface. However, this does not preclude cross-linking between the ligands necessary to seal the surface, and the degree of cross-linking is quite high, suggesting that the short chains cross-link both vertically, away from the surface, and horizontally, across the surface. No such vertical polymerization is observed for the bulkier difunctional short chains. For both trifunctional and difunctional short chains, the surface chains are more mobile, with a greater number of gauche conformations among the long chains when the percentage of short-chain ligands in the reaction mixture is increased.
Collapse
Affiliation(s)
- Hafeez O Fatunmbi
- Separation Methods Technologies, Inc., 31 Blue Hen Drive, Newark, Delaware 19713, United States
| | | |
Collapse
|
18
|
Phillips LF. Atmospheric reactions on electrically charged surfaces. Phys Chem Chem Phys 2013; 15:10749-52. [DOI: 10.1039/c3cp51171e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Moussa SG, Stern AC, Raff JD, Dilbeck CW, Tobias DJ, Finlayson-Pitts BJ. Experimental and theoretical studies of the interaction of gas phase nitric acid and water with a self-assembled monolayer. Phys Chem Chem Phys 2013; 15:448-58. [DOI: 10.1039/c2cp42405c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Richards NK, Finlayson-Pitts BJ. Production of gas phase NO₂ and halogens from the photochemical oxidation of aqueous mixtures of sea salt and nitrate ions at room temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10447-10454. [PMID: 22506935 DOI: 10.1021/es300607c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nitrate and halide ions coexist in a number of environmental systems, including sea salt particles, the Arctic snowpack, and alkaline dry lakes. However, little is known about potential synergisms between halide and nitrate ions. The effect of sea salt on NO(3)(-) photochemistry at 311 nm was investigated at 298 K using thin films of deliquesced NaNO(3)-synthetic sea salt mixtures. Gas phase NO(2), NO, and halogen products were measured as a function of photolysis time using NO(y) chemiluminescence and atmospheric pressure ionization mass spectrometry (API-MS). The production of NO(2) increases with the halide-to-nitrate ratio, and is similar to that for mixtures of NaCl with NaNO(3). Gas phase halogen production also increased with the halide-to-nitrate ratio, consistent with NO(3)(-) photolysis yielding OH which oxidizes halide ions in the film. Yields of gas phase halogens and NO were strongly dependent on the acidity of the solution, while that of NO(2) was not. An additional halogen formation mechanism in the dark involving molecular HNO(3) is proposed that may be important in other systems such as reactions on surfaces. These studies show that the yield of Br(2) relative to NO(2) during photolysis of halide-nitrate mixtures could be as high as 35% under some atmospheric conditions.
Collapse
Affiliation(s)
- Nicole K Richards
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | | |
Collapse
|
21
|
Indarto A. Heterogeneous reactions of HONO formation from NO2 and HNO3: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2011. [DOI: 10.1007/s11164-011-0439-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
|
23
|
Chen H, Navea JG, Young MA, Grassian VH. Heterogeneous Photochemistry of Trace Atmospheric Gases with Components of Mineral Dust Aerosol. J Phys Chem A 2011; 115:490-9. [DOI: 10.1021/jp110164j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haihan Chen
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Juan G. Navea
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Mark A. Young
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Vicki H. Grassian
- Departments of Chemical and Biochemical Engineering and Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Luts T, Iglesia E, Katz A. Silica-supported aminoxyls as reactive materials for NOxremoval. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02826f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Ramesh SG, Re S, Boisson J, Hynes JT. Vibrational Symmetry Breaking of NO3− in Aqueous Solution: NO Asymmetric Stretch Frequency Distribution and Mean Splitting. J Phys Chem A 2009; 114:1255-69. [DOI: 10.1021/jp903626t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sai G. Ramesh
- Chemistry Department, École Normale Supérieure, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8640, 24 rue Lhomond, 75005 Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Suyong Re
- Chemistry Department, École Normale Supérieure, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8640, 24 rue Lhomond, 75005 Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Jean Boisson
- Chemistry Department, École Normale Supérieure, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8640, 24 rue Lhomond, 75005 Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - James T. Hynes
- Chemistry Department, École Normale Supérieure, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8640, 24 rue Lhomond, 75005 Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| |
Collapse
|
26
|
Wang S, Bianco R, Hynes JT. Depth-Dependent Dissociation of Nitric Acid at an Aqueous Surface: Car−Parrinello Molecular Dynamics. J Phys Chem A 2009; 113:1295-307. [DOI: 10.1021/jp808533y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuzhi Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA, Ecole Normale Supérieure, Chemistry Department, 24 rue Lhomond 75005 Paris, France, and CNRS UMR Pasteur
| | - Roberto Bianco
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA, Ecole Normale Supérieure, Chemistry Department, 24 rue Lhomond 75005 Paris, France, and CNRS UMR Pasteur
| | - James T. Hynes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA, Ecole Normale Supérieure, Chemistry Department, 24 rue Lhomond 75005 Paris, France, and CNRS UMR Pasteur
| |
Collapse
|
27
|
Bianco R, Wang S, Hynes JT. Infrared Signatures of HNO3 and NO3− at a Model Aqueous Surface. A Theoretical Study. J Phys Chem A 2008; 112:9467-76. [DOI: 10.1021/jp802563g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Bianco
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, and Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure, 24 rue Lhomond, Paris 75231, France
| | - Shuzhi Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, and Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure, 24 rue Lhomond, Paris 75231, France
| | - James T. Hynes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, and Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure, 24 rue Lhomond, Paris 75231, France
| |
Collapse
|
28
|
Ramesh SG, Re S, Hynes JT. Charge Transfer and OH Vibrational Frequency Red Shifts in Nitrate−Water Clusters. J Phys Chem A 2008; 112:3391-8. [DOI: 10.1021/jp0761012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sai G. Ramesh
- Département de Chimie, UMR 8640 PASTEUR, École Normale Supérieure, 24 rue Lhomond, 75231 Paris CEDEX 05, France
| | - Suyong Re
- Département de Chimie, UMR 8640 PASTEUR, École Normale Supérieure, 24 rue Lhomond, 75231 Paris CEDEX 05, France
| | - James T. Hynes
- Département de Chimie, UMR 8640 PASTEUR, École Normale Supérieure, 24 rue Lhomond, 75231 Paris CEDEX 05, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309−0215
| |
Collapse
|
29
|
Theoretical Studies of the Dissociation of Sulfuric Acid and Nitric Acid at Model Aqueous Surfaces. ADVANCES IN QUANTUM CHEMISTRY 2008. [DOI: 10.1016/s0065-3276(07)00218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
30
|
Bianco R, Wang S, Hynes JT. Theoretical study of the dissociation of nitric acid at a model aqueous surface. J Phys Chem A 2007; 111:11033-42. [PMID: 17918815 DOI: 10.1021/jp075054a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The issue of acid dissociation of nitric acid at an aqueous surface is relevant in various portions of the atmosphere in connection with ozone depletion. This proton-transfer reaction is studied here via electronic structure calculations at the HF/SBK+(d) level of theory on the HNO(3) x (H(2)O)(3) model reaction system embedded in clusters comprising 33, 40, 45, and 50 classical, polarizable waters with an increasing degree of solvation of the nitrate group. Free energy estimates for all the cases examined favor undissociated, molecular nitric acid over the 0-300 K temperature range, including that relevant for the upper troposphere, where it is connected to the issue of the mechanism of nitric acid uptake by water ice aerosols. The presence of molecular HNO(3) at 300 K at the surface is further supported by vibrational band assignments in good agreement with a very recent surface-sensitive vibrational spectroscopy study of diluted HNO(3)/H(2)O solutions.
Collapse
Affiliation(s)
- Roberto Bianco
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA.
| | | | | |
Collapse
|
31
|
Miller Y, Chaban GM, Finlayson-Pitts BJ, Gerber RB. Photochemical processes induced by vibrational overtone excitations: dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3-H2O. J Phys Chem A 2007; 110:5342-54. [PMID: 16623461 DOI: 10.1021/jp0559940] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photochemical processes in HNO3, HNO3-H2O, and cis- and trans-HONO following overtone excitation of the OH stretching mode are studied by classical trajectory simulations. Initial conditions for the trajectories are sampled according to the initially prepared vibrational wave function. Semiempirical potential energy surfaces are used in "on-the-fly" simulations. Several tests indicate at least semiquantitative validity of the potential surfaces employed. A number of interesting new processes and intermediate species are found. The main results include the following: (1) In excitation of HNO3 to the fifth and sixth OH-stretch overtone, hopping of the H atom between the oxygen atoms is found to take place in nearly all trajectories, and can persist for many picoseconds. H-atom hopping events have a higher yield and a faster time scale than the photodissociation of HNO3 into OH and NO2. (2) A fraction of the trajectories for HNO3 show isomerization into HOONO, which in a few cases dissociates into HOO and NO. (3) For high overtone excitation of HONO, isomerization into the weakly bound species HOON is seen in all trajectories, in part of the events as an intermediate step on the way to dissociation into OH + NO. This process has not been reported previously. Well-established processes for HONO, including cis-trans isomerization and H hopping are also observed. (4) Only low overtone levels of HNO3-H2O have sufficiently long liftimes to be spectrocopically relevant. Excitation of these OH stretching overtones is found to result in the dissociation of the cluster H hopping, or dissociation of HNO3 does not take place. The results demonstrate the richness of processes induced by overtone excitation of HNO(x) species, with evidence for new phenomena. Possible relevance of the results to atmospheric processes is discussed.
Collapse
Affiliation(s)
- Y Miller
- Department of Physical Chemistry and Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
32
|
Kido Soule MC, Blower PG, Richmond GL. Nonlinear Vibrational Spectroscopic Studies of the Adsorption and Speciation of Nitric Acid at the Vapor/Acid Solution Interface. J Phys Chem A 2007; 111:3349-57. [PMID: 17419597 DOI: 10.1021/jp0686994] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric acid plays an important role in the heterogeneous chemistry of the atmosphere. Reactions involving HNO(3) at aqueous interfaces in the stratosphere and troposphere depend on the state of nitric acid at these surfaces. The vapor/liquid interface of HNO(3)-H2O binary solutions and HNO(3)-H(2)SO(4)-H2O ternary solutions are examined here using vibrational sum frequency spectroscopy (VSFS). Spectra of the NO2 group at different HNO(3) mole fractions and under different polarization combinations are used to develop a detailed picture of these atmospherically important systems. Consistent with surface tension and spectroscopic measurements from other laboratories, molecular nitric acid is identified at the surface of concentrated solutions. However, the data here reveal the adsorption of two different hydrogen-bonded species of undissociated HNO(3) in the interfacial region that differ in their degree of solvation of the nitro group. The adsorption of these undissociated nitric acid species is shown to be sensitive to the H2O:HNO(3) ratio as well as to the concentration of sulfuric acid.
Collapse
Affiliation(s)
- Melissa C Kido Soule
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
33
|
Affiliation(s)
- George E Ewing
- Department of Chemistry, University of Indiana, Chemistry Building, Bloomington, Indiana 47405, USA.
| |
Collapse
|
34
|
Ramazan KA, Wingen LM, Miller Y, Chaban GM, Gerber RB, Xantheas SS, Finlayson-Pitts BJ. New Experimental and Theoretical Approach to the Heterogeneous Hydrolysis of NO2: Key Role of Molecular Nitric Acid and Its Complexes. J Phys Chem A 2006; 110:6886-97. [PMID: 16722704 DOI: 10.1021/jp056426n] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although heterogeneous chemistry on surfaces in the troposphere is known to be important, there are currently only a few techniques available for studying the nature of surface-adsorbed species as well as their chemistry and photochemistry under atmospheric conditions of 1 atm pressure and in the presence of water vapor. We report here a new laboratory approach using a combination of long path Fourier transform infrared spectroscopy (FTIR) and attenuated total reflectance (ATR) FTIR that allows the simultaneous observation and measurement of gases and surface species. Theory is used to identify the surface-adsorbed intermediates and products, and to estimate their relative concentrations. At intermediate relative humidities typical of the tropospheric boundary layer, the nitric acid formed during NO2 heterogeneous hydrolysis is shown to exist both as nitrate ions from the dissociation of nitric acid formed on the surface and as molecular nitric acid. In both cases, the ions and HNO3 are complexed to water molecules. Upon pumping, water is selectively removed, shifting the NO(3-)-HNO3(H2O)y equilibria toward more dehydrated forms of HNO3 and ultimately to nitric acid dimers. Irradiation of the nitric acid-water film using 300-400 nm radiation generates gaseous NO, while irradiation at 254 nm generates both NO and HONO, resulting in conversion of surface-adsorbed nitrogen oxides into photochemically active NO(x). These studies suggest that the assumption that deposition or formation of nitric acid provides a permanent removal mechanism from the atmosphere may not be correct. Furthermore, a potential role of surface-adsorbed nitric acid and other species formed during the heterogeneous hydrolysis of NO2 in the oxidation of organics on surfaces, and in the generation of gas-phase HONO on local to global scales, should be considered.
Collapse
Affiliation(s)
- K A Ramazan
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hill KA, Shepson PB, Galbavy ES, Anastasio C. Measurement of wet deposition of inorganic and organic nitrogen in a forest environment. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jg000030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly A. Hill
- Department of Earth and Atmospheric Science; Purdue University; West Lafayette Indiana USA
| | - Paul B. Shepson
- Department of Earth and Atmospheric Science; Purdue University; West Lafayette Indiana USA
| | - Edward S. Galbavy
- Department of Land, Air, and Water Resources; University of California, Davis; Davis California USA
| | - Cort Anastasio
- Department of Land, Air, and Water Resources; University of California, Davis; Davis California USA
| |
Collapse
|
36
|
Min BK, Quiller RG, Deiner LJ, Friend CM. Water Dissociation Associated with NO2Coadsorption on Mo(110)-(1 × 6)-O: Effect of Coverage and Electronic Properties of Oxygen. J Phys Chem B 2005; 109:20463-8. [PMID: 16853648 DOI: 10.1021/jp051839+] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water dissociation on an oxygen-covered Mo(110) surface was investigated using temperature-programmed reaction spectroscopy (TPRS) and infrared reflectance absorbance spectroscopy (IRAS). Adsorbed hydroxyl formation is enhanced by increasing the coverage of chemisorbed oxygen prior to exposure to water up to saturation (0.66 ML). Additional oxidation of the surface using NO(2) suppresses the formation of hydroxyl species (OH). There is no detectable change in the reaction of NO(2) on Mo(110)-(1 x 6)-O when either the water or hydroxyl is adsorbed on the Mo(110)-(1 x 6)-O surface prior to NO(2) adsorption. In contrast, NO(2) induces the displacement of water into the gas phase and the conversion of hydroxyl species to molecular water. Infrared spectra show that the dissociation of NO(2) populates three types of terminal oxygen sites on Mo(110)-(1 x 6)-O, and the population of the terminal oxygen at step sites increases with respect to the amount of NO(2) deposited. Overall, these results suggest that the oxidic property of oxygen results in a lack of activity for the water dissociation.
Collapse
Affiliation(s)
- B K Min
- Department of Chemistry and Chemical Biology and Division of Engineering and Applied Sciences, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
37
|
Song W, Li G, Grassian VH, Larsen SC. Development of improved materials for environmental applications: nanocrystalline NaY zeolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:1214-1220. [PMID: 15787359 DOI: 10.1021/es049194z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two nanocrystalline NaY samples were synthesized with Si/Al ratios of 1.8 and crystal sizes of 23 and 50 nm, respectively. The synthesized NaY zeolites were characterized by powder X-ray diffraction, scanning electron microscopy, nitrogen adsorption isotherms, silicon solid-state magic angle spinning NMR and FTIR spectroscopy. A commercial NaY sample was analogously characterized for comparison with the synthesized nanocrystalline NaY. FTIR spectroscopy of adsorbed pyridine was used to elucidate the adsorption sites on the different NaY samples. More Brønsted acid sites and more silanol sites were detected on the nanocrystalline NaY zeolites, relative to the commercial NaY. The nanocrystalline NaY exhibited increased adsorption capacities for representative pollutant molecules, such as toluene (approximately 10%) and nitrogen dioxide (approximately 30%), relative to commercial NaY. Functionalization of nanocrystalline NaY was examined as a method for tailoring the properties of nanocrystalline zeolites for specific environmental applications through the control of zeolite properties, such as hydrophobicity.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
38
|
Ouyang B, Dong W, Hou H. A laser flash photolysis study of nitrous acid in the aqueous phase. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.12.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Ullerstam M, Thornberry T, Abbatt JPD. Uptake of gas-phase nitric acid to ice at low partial pressures: evidence for unsaturated surface coverage. Faraday Discuss 2005; 130:211-26; discussion 241-64, 519-24. [PMID: 16161786 DOI: 10.1039/b417418f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of gas-phase nitric acid onto water-ice surfaces at temperatures between 200 and 239 K has been studied over short time scales using a coated-wall flow tube coupled to a chemical ionization mass spectrometer. The nitric acid partial pressures used were between 10(-8) hPa and 10(-6) hPa, making this the first systematic study under partial pressure conditions present in the upper troposphere. Whereas previous findings using this technique have shown that the surface coverages are saturated at 2 to 3 x 10(14) molecules cm(-2) (referenced to the geometric surface area of the ice film) when partial pressures are larger than about 10(-7) hPa, the principal finding from this study is that the surface coverages are in the unsaturated regime at lower partial pressures. A conventional Langmuir adsorption isotherm describes the uptake in a quantitative manner while dissociative Langmuir isotherms that have been used in the past to model this process do not. The unsaturated surface coverages are strongly temperature dependent, in agreement with a number of field measurements of the nitric acid (or NOy) component of cirrus cloud particles. These laboratory results match those in the field better than do those measured at significantly higher partial pressures but, nevertheless, they still indicate somewhat greater uptake, particularly at higher temperatures.
Collapse
Affiliation(s)
- Maria Ullerstam
- Department of Chemistry, 80 St. George St., University of Toronto, ON, Toronto, Canada, MSS 3H6.
| | | | | |
Collapse
|
40
|
|
41
|
Kleffmann J, Benter T, Wiesen P. Heterogeneous Reaction of Nitric Acid with Nitric Oxide on Glass Surfaces under Simulated Atmospheric Conditions. J Phys Chem A 2004. [DOI: 10.1021/jp040184u] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jörg Kleffmann
- Physikalische Chemie/FB C, Bergische Universität Wuppertal, 42097 Wuppertal, Germany
| | - Thorsten Benter
- Physikalische Chemie/FB C, Bergische Universität Wuppertal, 42097 Wuppertal, Germany
| | - Peter Wiesen
- Physikalische Chemie/FB C, Bergische Universität Wuppertal, 42097 Wuppertal, Germany
| |
Collapse
|
42
|
Stutz J, Alicke B, Ackermann R, Geyer A, Wang S, White AB, Williams EJ, Spicer CW, Fast JD. Relative humidity dependence of HONO chemistry in urban areas. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004135] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jochen Stutz
- Department of Atmospheric Sciences; University of California; Los Angeles California USA
| | - Björn Alicke
- Department of Atmospheric Sciences; University of California; Los Angeles California USA
| | - Ralf Ackermann
- Department of Atmospheric Sciences; University of California; Los Angeles California USA
| | - Andreas Geyer
- Department of Atmospheric Sciences; University of California; Los Angeles California USA
| | - Shuhui Wang
- Department of Atmospheric Sciences; University of California; Los Angeles California USA
| | - Allen B. White
- Environmental Technology Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - Eric J. Williams
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | | | - Jerome D. Fast
- Pacific Northwest National Laboratory; Richland Washington USA
| |
Collapse
|
43
|
Affiliation(s)
- Courtney R Usher
- Department of Chemistry, and Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA 52242. USA
| | | | | |
Collapse
|
44
|
Rivera-Figueroa AM, Sumner AL, Finlayson-Pitts BJ. Laboratory studies of potential mechanisms of renoxification of tropospheric nitric acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:548-554. [PMID: 12630471 DOI: 10.1021/es020828g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Laboratory studies of the heterogeneous reactions between HNO3 in thin water films on silica surfaces and gaseous NO, CO, CH4, and SO2, proposed as potential "renoxification" mechanisms in the atmosphere, are reported. Transmission FTIR was used to monitor reactants and products on the silica surface and in the gas phase as a function of time. No reaction of CO, CH4, or SO2 was observed; upper limits to the reaction probabilities (gamma(rxn)) are < or = 10(-10) for CO and SO2 and < or = 10(-12) for CH4. However, the reaction of HNO3 with NO does occur with a lower limit for the reaction probability of gammaNO > or = (6 +/- 2) x 10(-9) (2s). The experimental evidence shows that the chemistry is insensitive to whether the substrate is pure silica or borosilicate glass. Nitric acid in its molecular form, and not the nitrate anion form, was shown to be the reactive species, and NH4NO3 was shown not to react with NO. The HNO3-NO reaction could be a significant means of renoxification of nitric acid on the surfaces of buildings and soils in the boundary layer of polluted urban atmospheres. This chemistry may help to resolve some discrepancies between model-predicted ozone and field observations in polluted urban atmospheres.
Collapse
Affiliation(s)
- A M Rivera-Figueroa
- Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, USA
| | | | | |
Collapse
|
45
|
Salgado Muñoz MS, Rossi MJ. Heterogeneous reactions of HNO3with flame soot generated under different combustion conditions. Reaction mechanism and kinetics. Phys Chem Chem Phys 2002. [DOI: 10.1039/b203912p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|