1
|
Hunger L, Ludwig R, Chuang YC, Chang HC. Hydroxy-Functionalized Ionic Liquids under Pressure: The Influence on Hydrogen Bonding between Ions of Opposite and Like Charges. J Phys Chem B 2024. [PMID: 38696327 DOI: 10.1021/acs.jpcb.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Hydroxy functionalization of cations in ionic liquids (ILs) can lead to formation of hydrogen bonds between their OH groups, resulting in so-called (c-c) H-bonds. Thereby, the (c-c) H-bonds compete with regular H-bonds (c-a) between the OH groups and the anions. Polarizable cations, weakly interacting anions, and long alkyl chains at the cation support the propensity for the formation of (c-c) H-bonds. At low temperatures, the equilibrium between (c-c) and (c-a) H-bonds is strongly shifted in favor of the cation-cation interaction. Herein, we clarify the pressure dependence on (c-c) and (c-a) H-bond distributions in the IL 1-(2-hydroxyethyl)-3-methylimidazolium hexafluorophosphate [HOC2C1Im][PF6], in mixtures of [HOC2C1Im][PF6] with the nonhydroxy-functionalized IL 1-propyl-3-methylimidazolium hexafluorophosphate [C3C1Im][PF6] and in [HOC2C1Im][PF6] including trace amounts of water. The infrared (IR) spectra provide clear evidence that the (c-c) H-bonds diminish with increasing pressure in favor of the (c-a) H-bonds. Adding trace amounts of water results in enhanced (c-c) clustering due to cooperative effects. At ambient pressure, the water molecules are involved in the (c-c) H-bond motifs. Increasing pressure leads to squeezing them out of H-bond clusters, finally resulting in demixing of water and the IL at the microscopic level.
Collapse
Affiliation(s)
- Lasse Hunger
- Department of Chemistry, University of Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Ralf Ludwig
- Department of Chemistry, University of Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Yen-Ching Chuang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Hai-Chou Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| |
Collapse
|
2
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
3
|
Tiwari P, Podleśny B, Krzywiecki M, Milowska KZ, Janas D. Understanding the partitioning behavior of single-walled carbon nanotubes using an aqueous two-phase extraction system composed of non-ionic surfactants and polymers. NANOSCALE HORIZONS 2023; 8:685-694. [PMID: 36919756 DOI: 10.1039/d3nh00023k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, a Pluronic/Dextran system was developed to discover the mechanism of the aqueous two-phase extraction (ATPE) technique, which is widely employed for the sorting of single-walled carbon nanotubes (SWCNTs) and other types of nanomaterials. The role of the phase-forming components and partitioning modulators was comprehensively investigated to gain greater insights into the differentiation process. The obtained results revealed that sodium dodecyl sulfate and sodium dodecylbenzene sulfonate operated as excellent partitioning modulators, enabling the diameter-based sorting of SWCNTs. Additionally, the data strongly suggested that different densities of various SWCNT species drove the movement of SWCNTs in the ATPE system. Consequently, the largest diameter SWCNTs were first influenced by surfactants and, thus, the nanotubes migrated towards a lower density top phase in the following order (7,5) > (8,3) > (6,5) > (6,4). Based on the in-depth analysis of the partitioning system, a mechanism was proposed that described the method in which the popular ATPE separation technique operates.
Collapse
Affiliation(s)
- Pranjala Tiwari
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Błażej Podleśny
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Maciej Krzywiecki
- Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Karolina Z Milowska
- CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
4
|
Rao H, Li W, Zhao F, Song Y, Liu H, Zhu L, Chen H. Electrodeposition of High-Quality Ni/SiC Composite Coatings by Using Binary Non-Ionic Surfactants. Molecules 2023; 28:molecules28083344. [PMID: 37110578 PMCID: PMC10144436 DOI: 10.3390/molecules28083344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In order to increase the hardness, wear resistance and corrosion resistance of nickel-based coatings, pure nickel is often co-electrodeposited with silicon carbide (SiC) particles. However, SiC particles tend to agglomerate and precipitate in the bath, which reduces the amounts of nanoparticles and causes nonuniformity. Herein, we solve these problems by using binary non-ionic surfactants (Span 80 and Tween 60) to effectively disperse SiC particles (binary-SiC) in the bath, which suppresses nanoparticles agglomeration and leads to uniformly distributed SiC particles in the composite coatings. In comparison to the Ni/SiC coatings electrodeposited from the commonly used SDS-modified SiC, the coatings prepared with binary-SiC (Ni/binary-SiC) show finer crystallization and a smoother surface. In addition, the Ni/binary-SiC coatings exhibit higher hardness (556 Hv) and wear resistance (2.95 mg cm-2). Furthermore, higher corrosion resistance is also achieved by the Ni/binary-SiC coatings.
Collapse
Affiliation(s)
- Han Rao
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Weiping Li
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Fuzhen Zhao
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Yongfa Song
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Huicong Liu
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Liqun Zhu
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Haining Chen
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
5
|
Chauhan S, Manish. Temperature dependent micellization behavior of as synthesized anionic SAILs in aqueous nonionic polymer solutions: conductivity, UV-visible probe and antimicrobial studies. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2188924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | - Manish
- Department of Chemistry, H. P. University, Shimla, India
| |
Collapse
|
6
|
Grabowska O, Żamojć K, Olewniczak M, Chmurzyński L, Wyrzykowski D. Can sodium 1-alkylsulfonates participate in the sodium dodecyl sulfate micelle formation? J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
Interaction of Three-Pole ions of carnosine and anserine with an anionic micelle of SDS: Molecular dynamics simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Zhang Y, Placek TL, Jahan R, Alexandridis P, Tsianou M. Rhamnolipid Micellization and Adsorption Properties. Int J Mol Sci 2022; 23:ijms231911090. [PMID: 36232408 PMCID: PMC9570487 DOI: 10.3390/ijms231911090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are naturally occurring amphiphiles that are being actively pursued as alternatives to synthetic surfactants in cleaning, personal care, and cosmetic products. On the basis of their ability to mobilize and disperse hydrocarbons, biosurfactants are also involved in the bioremediation of oil spills. Rhamnolipids are low molecular weight glycolipid biosurfactants that consist of a mono- or di-rhamnose head group and a hydrocarbon fatty acid chain. We examine here the micellization of purified mono-rhamnolipids and di-rhamnolipids in aqueous solutions and their adsorption on model solid surfaces. Rhamnolipid micellization in water is endothermic; the CMC (critical micellization concentration) of di-rhamnolipid is lower than that of mono-rhamnolipid, and both CMCs decrease upon NaCl addition. Rhamnolipid adsorption on gold surface is mostly reversible and the adsorbed layer is rigid. A better understanding of biosurfactant self-assembly and adsorption properties is important for their utilization in consumer products and environmental applications.
Collapse
|
9
|
Peroukidis SD, Stott IP, Mavrantzas VG. Coarse-Grained Model Incorporating Short- and Long-Range Effective Potentials for the Fast Simulation of Micelle Formation in Solutions of Ionic Surfactants. J Phys Chem B 2022; 126:5555-5569. [PMID: 35838193 DOI: 10.1021/acs.jpcb.2c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A coarse-grained model comprising short- and long-range effective potentials, parametrized with the iterative Boltzmann inversion (IBI) method, is presented for capturing micelle formation in aqueous solutions of ionic surfactants using as a model system sodium dodecyl sulfate (SDS). In the coarse-grained (CG) model, each SDS molecule is represented as a sequence of four beads while each water molecule is modeled as a single bead. The proposed CG scheme involves ten potential energy functions: four of them describe bonded interactions and control the distribution functions of intramolecular degrees of freedom (bond lengths, valence angles, and dihedrals) along an SDS molecule while the other six account for intermolecular interactions between pairs of SDS and water beads and control the radial distribution functions. The nonbonded effective potentials between coarse-grained SDS molecules extend up to about 12 nm and capture structural and morphological features of the micellar solution both at short and long distances. The long-range component of these potentials, in particular, captures correlations between surfactant molecules belonging to different micelles and is essential to describe ordering associated with micelle formation. A new strategy is introduced for determining the effective potentials through IBI by using information (target distribution functions) extracted from independent atomistic simulations of a micellar reference system (a salt-free SDS solution at total surfactant concentration cT equal to 103 mM, temperature T equal to 300 K, and pressure P equal to 1 atm) obtained through a multiscale approach described in an earlier study. It employs several optimization steps for bonded and nonbonded interactions and a gradual parametrization of the short- and long-range components of the latter, followed by reparametrization of the bonded ones. The proposed CG model can reproduce remarkably accurately the microstructure and morphology of the reference system within only a few hours of computational time. It is therefore very promising for future studies of structural and morphological behavior of various liquid surfactant formulations.
Collapse
Affiliation(s)
- Stavros D Peroukidis
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, GR 26504, Patras, Greece
| | - Ian P Stott
- Unilever Research and Development Port Sunlight, Bebington CH63 3JW, United Kingdom
| | - Vlasis G Mavrantzas
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, GR 26504, Patras, Greece.,Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
10
|
Critical micelle concentration of SDS through DPD simulations using COSMO-RS–based interaction parameters, the thermal effects. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Sharma H, Tyagi R. Influence of inorganic and organic electrolytes on the micellization of synthesized
γ‐alkyl
(
C
12
and
C
14
) aspartate. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Himani Sharma
- Department of Chemistry Jaypee University of Engineering and Technology Guna India
| | - Rashmi Tyagi
- Department of Chemistry Jaypee University of Engineering and Technology Guna India
| |
Collapse
|
12
|
Bhat A, Harris MT, Jaeger VW. Structural Insights into Self-Assembled Aerosol-OT Aggregates in Aqueous Media Using Atomistic Molecular Dynamics. J Phys Chem B 2021; 125:13789-13803. [PMID: 34898216 DOI: 10.1021/acs.jpcb.1c07136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In water, the surfactant dioctyl sulfosuccinate (Aerosol-OT or AOT) exhibits diverse aggregate structures, ranging from micelles to lamella. An atomic-level understanding, however, of the formation and structure of these aggregates is lacking. Herein, using atomistic molecular dynamics (MD) with microsecond-long simulations, self-assembly of AOT in water is studied for concentrations of 1, 7.2, and 20 wt % at 293 K and for 7.2 wt % at 353 K. Assembly proceeds through stepwise association and dissociation of single AOT molecules, and the fusion and fission of AOT clusters. At 293 K, AOT self-assembles into either (i) spherical micelles (1 wt %), (ii) biphasic systems consisting of rod-like and prolate spheroidal micelles (7.2 wt %), or (iii) bilayers (20 wt %). We hypothesize that the observed rod-like structure is a precursor to lamellar microdomains found experimentally in biphasic dispersions. Increasing temperature to 353 K at 7.2 wt % results in a system consisting of prolate micelles but no rod-like micelles. Simulated phase behavior agrees with previously published experimental observations. Individual aggregates formed during self-assembly are identified using graph theory. Structural metrics of these aggregates like the radius of gyration, shape anisotropy, and prolateness are presented. Trends in structural metrics quantitatively reflect how shapes and sizes of AOT aggregates vary with surfactant concentration and temperature. These simulations provide deeper insight into open questions in the scientific community and demonstrate a method to generate physics-based micelle structures that can be used to rationalize experimental observations.
Collapse
Affiliation(s)
- Anuradha Bhat
- Division of Environmental and Ecological Engineering, Purdue University, Potter Engineering Center, 500 Central Drive, West Lafayette, Indiana 47907, United States
| | - Michael T Harris
- Davidson School of Chemical Engineering, Purdue University, Forney Hall of Chemical Engineering 1060, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Vance W Jaeger
- Department of Chemical Engineering, University of Louisville, Ernst Hall, Room 312, 216 Eastern Parkway, Louisville, Kentucky 40292, United States
| |
Collapse
|
13
|
Patiño-Agudelo ÁJ, Quina FH. Thermodynamics of anion binding to zwitterionic sulfobetaine micelles. J Colloid Interface Sci 2021; 611:39-45. [PMID: 34929437 DOI: 10.1016/j.jcis.2021.12.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/29/2023]
Abstract
One of the most intriguing aspects of zwitterionic surfactant micelles is their propensity to exhibit selectivity in the binding of the anions of added salts. In this work we examine the thermodynamics of the interaction of the strongly bound perchlorate ion and the more weakly bound bromide ion with micelles of N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB3-14) in aqueous solution employing enthalpies derived from isothermal titration calorimetry combined with Gibbs free energies derived from literature data for the binding equilibria. In both cases, the binding is exothermic and enthalpy driven, but entropically unfavorable, with only modest changes in the Gibbs free energy as a function of the extent of anion binding. Likewise, perchlorate ion binding was found to have little or no effect on the aggregation numbers of SB3-14 micelles determined by time-resolved fluorescence quenching of pyrene by the N-hexadecylpyridinium cation. The results are interpreted within the context of the factors involved in the ion-pairing between the anions and the positive charge center of the zwitterion headgroup and the interplay between electrostatics, solvent reorganization and a net loss of translational degrees of freedom that accompany anion binding.
Collapse
Affiliation(s)
| | - Frank H Quina
- Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Fatma I, Sharma V, Thakur RC, Kumar A. Current trends in protein-surfactant interactions: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Studies of thermodynamics of micellization and pattern of self-association of decyltrimethylammonium bromide in aqueous solutions at 298.15 K. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Kainourgiakis E, Samios J. A study of the micellar aggregation of aqueous N,N,N-decyltrimethyl ammonium chloride via extended microsecond-time atomistic molecular dynamics simulation and realistic potential models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Barannikov VP, Smirnov V, Kurbatova MS. The thermochemical behavior of glycyl-L-histidine and β-alanyl-L-histidine peptides in (SDS + phosphate-buffered saline) micellar solution at pH = 7.4. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
El Seoud OA, Keppeler N, Malek NI, Galgano PD. Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers (Basel) 2021; 13:1100. [PMID: 33808369 PMCID: PMC8036849 DOI: 10.3390/polym13071100] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
The impetus for the expanding interest in ionic liquids (ILs) is their favorable properties and important applications. Ionic liquid-based surfactants (ILBSs) carry long-chain hydrophobic tails. Two or more molecules of ILBSs can be joined by covalent bonds leading, e.g., to gemini compounds (GILBSs). This review article focuses on aspects of the chemistry and applications of ILBSs and GILBSs, especially in the last ten years. Data on their adsorption at the interface and micelle formation are relevant for the applications of these surfactants. Therefore, we collected data for 152 ILBSs and 11 biamphiphilic compounds. The head ions of ILBSs are usually heterocyclic (imidazolium, pyridinium, pyrrolidinium, etc.). Most of these head-ions are also present in the reported 53 GILBSs. Where possible, we correlate the adsorption/micellar properties of the surfactants with their molecular structures, in particular, the number of carbon atoms present in the hydrocarbon "tail". The use of ILBSs as templates for the fabrication of mesoporous nanoparticles enables better control of particle porosity and size, hence increasing their usefulness. ILs and ILBSs form thermodynamically stable water/oil and oil/water microemulsions. These were employed as templates for (radical) polymerization reactions, where the monomer is the "oil" component. The formed polymer nanoparticles can be further stabilized against aggregation by using a functionalized ILBS that is co-polymerized with the monomers. In addition to updating the literature on the subject, we hope that this review highlights the versatility and hence the potential applications of these classes of surfactants in several fields, including synthesis, catalysis, polymers, decontamination, and drug delivery.
Collapse
Affiliation(s)
- Omar A. El Seoud
- Institute of Chemistry, The University of São Paulo, São Paulo 05508-000, Brazil; (N.K.); (P.D.G.)
| | - Nicolas Keppeler
- Institute of Chemistry, The University of São Paulo, São Paulo 05508-000, Brazil; (N.K.); (P.D.G.)
| | - Naved I. Malek
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, Gujarat, India;
| | - Paula D. Galgano
- Institute of Chemistry, The University of São Paulo, São Paulo 05508-000, Brazil; (N.K.); (P.D.G.)
| |
Collapse
|
19
|
Jing J, Yuan Y, Yin R, Zhang M, Yin X, Liu X. Effects of oilfield injection water component on rheological characteristics of CTAC/NaSal aqueous solution. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- JiaQiang Jing
- School of Oil and Natural Gas Engineering Southwest Petroleum University Chengdu Sichuan China
- Oil and Gas Fire Protection Key Laboratory of Sichuan Province Chengdu Sichuan China
| | - Ying Yuan
- School of Oil and Natural Gas Engineering Southwest Petroleum University Chengdu Sichuan China
| | - Ran Yin
- School of Oil and Natural Gas Engineering Southwest Petroleum University Chengdu Sichuan China
| | - Ming Zhang
- Chian National Offshore Oil Corporation (CNOOC) Research Institute Beijing China
| | - XiaoYun Yin
- School of Oil and Natural Gas Engineering Southwest Petroleum University Chengdu Sichuan China
| | - XueWei Liu
- PetroChina Xinjiang Oilfield Company Karamay Xinjiang China
| |
Collapse
|
20
|
Banerjee T, Samanta A, Mandal A. Mathematical regression models for rheological behavior of interaction between polymer-surfactant binary mixtures and electrolytes. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1857261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tandrima Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, India
| | - Abhijit Samanta
- School of Engineering and Applied Sciences, The Neotia University, West Bengal, India
| | - Ajay Mandal
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
21
|
Das S, Patra N, Banerjee A, Das B, Ghosh S. Studies on the self-aggregation, interfacial and thermodynamic properties of a surface active imidazolium-based ionic liquid in aqueous solution: Effects of salt and temperature. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
A Volumetric Study of Tetracaine Hydrochloride in Aqueous and in Aqueous Electrolyte Solutions at Different Temperatures. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-01040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Philipp JK, Ludwig R. Clusters of Hydroxyl-Functionalized Cations Stabilized by Cooperative Hydrogen Bonds: The Role of Polarizability and Alkyl Chain Length. Molecules 2020; 25:E4972. [PMID: 33121087 PMCID: PMC7662246 DOI: 10.3390/molecules25214972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023] Open
Abstract
We explore quantum chemical calculations for studying clusters of hydroxyl-functionalized cations kinetically stabilized by hydrogen bonding despite strongly repulsive electrostatic forces. In a comprehensive study, we calculate clusters of ammonium, piperidinium, pyrrolidinium, imidazolium, pyridinium, and imidazolium cations, which are prominent constituents of ionic liquids. All cations are decorated with hydroxy-alkyl chains allowing H-bond formation between ions of like charge. The cluster topologies comprise linear and cyclic clusters up to the size of hexamers. The ring structures exhibit cooperative hydrogen bonds opposing the repulsive Coulomb forces and leading to kinetic stability of the clusters. We discuss the importance of hydrogen bonding and dispersion forces for the stability of the differently sized clusters. We find the largest clusters when hydrogen bonding is maximized in cyclic topologies and dispersion interaction is properly taken into account. The kinetic stability of the clusters with short-chained cations is studied for the different types of cations ranging from hard to polarizable or exhibiting additional functional groups such as the acidic C(2)-H position in the imidazolium-based cation. Increasing the alkyl chain length, the cation effect diminishes and the kinetic stability is exclusively governed by the alkyl chain tether increasing the distance between the positively charged rings of the cations. With adding the counterion tetrafluoroborate (BF4-) to the cationic clusters, the binding energies immediately switch from strongly positive to strongly negative. In the neutral clusters, the OH functional groups of the cations can interact either with other cations or with the anions. The hexamer cluster with the cyclic H-bond motive and "released" anions is almost as stable as the hexamer built by H-bonded ion pairs exclusively, which is in accord with recent IR spectra of similar ionic liquids detecting both types of hydrogen bonding. For the cationic and neutral clusters, we discuss geometric and spectroscopic properties as sensitive probes of opposite- and like-charge interaction. Finally, we show that NMR proton chemical shifts and deuteron quadrupole coupling constants can be related to each other, allowing to predict properties which are not easily accessible by experiment.
Collapse
Affiliation(s)
- Jule K. Philipp
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, 18059 Rostock, Germany;
| | - Ralf Ludwig
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, 18059 Rostock, Germany;
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
24
|
Wang C, Wang M, Li Y. Effects of sodium dodecyl sulfate on forward osmosis membrane fouling and its cleaning. CHEMOSPHERE 2020; 257:127180. [PMID: 32473407 DOI: 10.1016/j.chemosphere.2020.127180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Effect of sodium dodecyl sulfate (SDS) on the fouling of a commercial aquaporin based biomimetic forward osmosis (FO) membrane was investigated. Increasing draw solution (DS) concentration and decreasing the cross-flow velocity could aggravate the membrane fouling, and the effect of the latter was greater than the former. SDS as a surfactant could wash away some sodium alginate (SA) and calcium chloride (CaCl2) which were adsorbed on the surface of the membrane. However, SA and CaCl2 tended to form irreversible fouling when SDS had already been on the membrane. When SDS + SA + CaCl2 was used as the feed solution (FS), SDS was first adsorbed on the membrane surface and then SA and CaCl2 interact with SDS; irreversible fouling was formed when the hydrophobic tail of the SDS was adsorbed to the SA, and reversible fouling was formed while Ca2+ (bridged with SA) was bound with the hydrophilic head of the SDS. Afterwards, the cleaning effects of HCl and NaOH solutions on the membrane fouling caused by SDS were studied. The initial normalized flux could be recovered to 0.88 using both methods. Cleaning with HCl solution could slow down the formation of membrane fouling, while cleaning with NaOH solution could damage the aquaporin in the active layer of the membrane.
Collapse
Affiliation(s)
- Ce Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Zhuoyuan Water-Ecological Environmental Engineering Co., Ltd, Shanghai, 200003, PR China
| | - Meiling Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
25
|
Ganatra SH, Shaikh VR, Ujjankar AS, Khobragade SD, Tomar PA, Patil KJ. Volume and compressibility changes on mixing solutions of alkali halides/sodium acetate with sodium salt of butyric acid at 298.15 K: Understanding like charge ionic (anion–anion) interactions in water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Choudhary M, Kamil SM. Phase Diagram Study of Sodium Dodecyl Sulfate Using Dissipative Particle Dynamics. ACS OMEGA 2020; 5:22891-22900. [PMID: 32954138 PMCID: PMC7495727 DOI: 10.1021/acsomega.0c02255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/19/2020] [Indexed: 05/20/2023]
Abstract
Dissipative particle dynamics (DPD) simulations are performed to study the phase transition of sodium dodecyl sulfate (SDS) in aqueous solution, which is an anionic surfactant commonly known as sodium dodecyl sulfate. In this work, the aim is to find a coarse-grained minimal model suitable to produce the full phase diagram of SDS. We examine the coarse-grained models of SDS, which have been used in earlier computational studies to produce the phases as well as for finding the critical micelle concentration (CMC) of SDS. We contrast the results based on these models with the experimental observations to assess their accuracy. Our research also takes into account the importance of sodium ions, which come from the partial dissociation of SDS, when dissolved in water. The effect of sodium ion has not been considered explicitly in the computational work done so far using dissipative particle dynamics. In light of the above explorations, we propose new models for SDS and demonstrate that they successfully produce a compendious SDS phase diagram, which can precisely overlay the experimental results.
Collapse
|
27
|
Piechota EJ, Turro C. Dynamic orientation control of bimolecular electron transfer at charged micelle surfaces. J Chem Phys 2020; 153:064302. [DOI: 10.1063/5.0018584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Eric J. Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
28
|
Qazi MJ, Schlegel SJ, Backus EH, Bonn M, Bonn D, Shahidzadeh N. Dynamic Surface Tension of Surfactants in the Presence of High Salt Concentrations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7956-7964. [PMID: 32545966 PMCID: PMC7366510 DOI: 10.1021/acs.langmuir.0c01211] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/16/2020] [Indexed: 05/21/2023]
Abstract
We study the influence of high NaCl concentrations on the equilibrium and dynamic surface tensions of ionic (CTAB) and nonionic (Tween 80) surfactant solutions. Equilibrium surface tension measurements show that NaCl significantly reduces the critical micellar concentration (CMC) of CTAB but has no effect on the CMC of Tween 80. Dynamic surface tension measurements allow comparing the surface tension as a function of time for pure surfactant solutions and in the presence of NaCl. For the ionic surfactant, the dynamics agree with the usual diffusion-limited interfacial adsorption kinetics; however, the kinetics become orders of magnitude slower when NaCl is present. Sum-frequency generation spectroscopy experiments and the equilibrium adsorption measurements show that the presence of NaCl in CTAB solution leads to the formation of ion pairs at the surface, thereby neutralizing the charge of the head group of CTAB. This change, however, is not able to account for the slowing down of adsorption dynamics; we find that it is rather the decreases in the monomer concentration (CMC) in the presence of salt which has the major influence. For the nonionic surfactant, the kinetics of interfacial tension is seen to be already very slow, and the addition of salt does not influence it further. This also correlates very well to the very low CMC of Tween 80.
Collapse
Affiliation(s)
- Mohsin J. Qazi
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Simon J. Schlegel
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H.G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Bonn
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Noushine Shahidzadeh
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
29
|
Liu J, Li X, Hou J, Liu F. Electric-Field-Induced Interface Behavior of Dodecyl Sulfate with Large Organic Counterions: A Molecular Dynamics Study. J Phys Chem B 2020; 124:5498-5506. [PMID: 32520571 DOI: 10.1021/acs.jpcb.0c00129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dodecyl sulfate with tetramethylammonium counterions has been employed to systematically investigate the influence of different static electric fields on molecular structural properties, surface tension, by adopting molecular dynamics (MD) simulations with IR and sum frequency generation (SFG) spectrum calculations. The results indicated that dodecyl sulfate (DS-) and large organic TMA+ counterions can form a mixed adsorption layer in which one head group of DS- is surrounded by two tetramethylammonium (TMA+) and one water molecule. Additionally, it was observed that the surface tension significantly decreases with the increasing static electric field strength since the surfactant stands straighter at the interface as the electric field increases. The result can be instructively adopted in the manufacturing field to control surface tension. Moreover, it was found that the SFG stretch intensities of methylene decrease and the stretch intensities of the methyl group increase with increasing static electric fields. The result indicated that the static electric fields can make DS- more orderly and upright at the interface.
Collapse
Affiliation(s)
- Jianchuan Liu
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy Sciences, Beijing 100049, China
| | - Xun Li
- Institute of Linguistics, Shanghai International Studies University, Shanghai 201600, China
| | - Jian Hou
- University of Chinese Academy Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fenghai Liu
- College of Physical and Electronics Engineering, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
30
|
Correlations for Easy Calculation of the Critical Coalescence Concentration (CCC) of Simple Frothers. COATINGS 2020. [DOI: 10.3390/coatings10070612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Can the critical coalescence concentration (CCC) of the flotation frothers be predictable? What is the relation between their molecular structure and their CCC values? A literature survey found specific correlations between the hydrophilic-lipophilic balances (HLB) and HLB/Mw (where Mw stands for the molecular mass) of homologue series of frothers and their CCC values, but the results are invalid when the molecule’s functional groups change. For this reason, 37 frothers with known values of CCC were analyzed. The CCC values of seven frothers were determined, and the rest were taken from the literature. The frothers were subdivided in homologue series with an increasing number of the carbon atoms with an account for the type and the location of the functional group, thus deriving three types of correlations lnCCC = f(HLB) applicable for: (i) alcohols; (ii) propylene glycols alkyl ethers and propylene glycols; (iii) ethylene glycols alkyl ethers. The average accuracy of these correlations between CCC and HLB is 93%.
Collapse
|
31
|
Peroukidis SD, Tsalikis DG, Noro MG, Stott IP, Mavrantzas VG. Quantitative Prediction of the Structure and Viscosity of Aqueous Micellar Solutions of Ionic Surfactants: A Combined Approach Based on Coarse-Grained MARTINI Simulations Followed by Reverse-Mapped All-Atom Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:3363-3372. [DOI: 10.1021/acs.jctc.0c00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stavros D. Peroukidis
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, Patras, GR 26504, Greece
- Hellenic Open University, Patras, GR 26222, Greece
| | - Dimitrios G. Tsalikis
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Massimo G. Noro
- UKRI Science and Technology Facilities Council, Daresbury WA4 4AD, U.K
| | - Ian P. Stott
- Unilever Research & Development Port Sunlight, Bebington CH63 3JW, U.K
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, Patras, GR 26504, Greece
- Department of Mechanical and Process Engineering, Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
32
|
Vera RE, Salazar‐Rodríguez F, Marquez R, Forgiarini AM. How the Influence of Different Salts on Interfacial Properties of Surfactant–Oil–Water Systems at Optimum Formulation Matches the Hofmeister Series Ranking. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ramon E. Vera
- Laboratorio FIRPUniversidad de Los Andes Mérida Av Don Tulio Febres Cordero, Mérida 5101 Venezuela
| | | | - Ronald Marquez
- Laboratorio FIRPUniversidad de Los Andes Mérida Av Don Tulio Febres Cordero, Mérida 5101 Venezuela
| | - Ana M. Forgiarini
- Laboratorio FIRPUniversidad de Los Andes Mérida Av Don Tulio Febres Cordero, Mérida 5101 Venezuela
| |
Collapse
|
33
|
Niemann T, Zaitsau DH, Strate A, Stange P, Ludwig R. Controlling "like-likes-like" charge attraction in hydroxy-functionalized ionic liquids by polarizability of the cations, interaction strength of the anions and varying alkyl chain length. Phys Chem Chem Phys 2020; 22:2763-2774. [PMID: 31951236 DOI: 10.1039/c9cp06481h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We provide comprehensive understanding of "like-likes-like" charge attraction in hydroxy-functionalized ionic liquids (ILs) by means of infrared spectroscopy (IR), quantum chemistry and differential scanning calorimetry (DSC). We show that hydrogen bonding between cation and cation (c-c) is possible despite the repulsive forces between ions of like charge. Already at room temperature, the (c-c) hydrogen bonds can compete with the regular Coulomb-enhanced hydrogen bonds between cation and anion (c-a). For a large set of well-selected ILs, we show that "like-charge attraction" between the OH-functionalized cations is controllable by the polarizability of the cation, the interaction strength of the anion and the length of the hydroxyalkyl chain. In particular, we clarify whether tethering the OH group away from the positive charge center of the cationic ring with longer hydroxyalkyl chains compensates for unfavourable cation/anion combinations with respect to (c-c) cluster formation. For that purpose, we synthesized and characterized twelve ionic liquids including the differently polarizable cations, 1-(n-hydroxyalkyl)-1-methylpiperidinium [HOCnMPip]+ and 1-(n-hydroxyalkyl)-pyridinium [HOCnPy]+, as well as the weakly and strongly interacting anions, bis(trifluoromethanesulfonyl)imide [NTf2]- and methanesulfonate [OMs]-, respectively. On top, we varied the hydroxyalkyl chain length (HOCn) (n = 2-5). We systematically show how these three molecular ion parameters affect like-charge attraction. The use of polarizable cations, weakly interacting anions, and long alkyl chain tethers results in (c-c) clustering already at room temperature. Kinetic trapping is not a prerequisite for the existence of (c-c) cluster species in ILs. Moreover, we demonstrate that micro structuring affects macroscopic behavior of this type of ILs. We observed that substantial (c-c) interaction prevents ILs from crystallizing. Instead, these ILs supercool and finally form a glass.
Collapse
Affiliation(s)
- Thomas Niemann
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr-Lorenz-Weg 2, 18059, Rostock, Germany.
| | - Dzmitry H Zaitsau
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr-Lorenz-Weg 2, 18059, Rostock, Germany. and Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Anne Strate
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr-Lorenz-Weg 2, 18059, Rostock, Germany. and Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| | - Peter Stange
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr-Lorenz-Weg 2, 18059, Rostock, Germany.
| | - Ralf Ludwig
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr-Lorenz-Weg 2, 18059, Rostock, Germany. and Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany and Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
34
|
Eftekhari M, Schwarzenberger K, Javadi A, Eckert K. The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: electrostatic repulsion or the effect of ionic strength? Phys Chem Chem Phys 2020; 22:2238-2248. [PMID: 31915756 DOI: 10.1039/c9cp05475h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of negatively charged nanoparticles affects the surface activity of anionic surfactants in an aqueous phase. Recent studies suggest that electrostatic repulsive forces play an important role in increasing the surface activity of surfactants. However, the addition of nanoparticles also increases the ionic strength of the system, which has a significant impact on the surfactant's properties, e.g. its critical micelle concentration (CMC). To investigate how and to what extent electrostatic forces and ionic strength influence the behavior of ionic surfactants, the surface tension and elasticity of different solutions were measured using drop profile tensiometry as a function of the surfactant (SDBS), nanoparticle (silica) and salt (KNO3) concentration. It is observed that the surface activity of the surfactants is mainly influenced by the change in the system's ionic strength due to the presence of nanoparticles. Several characteristic parameters including the equivalent concentration of the surfactant, the CMC and the apparent partial molar area of the adsorbed surfactant are theoretically calculated and further employed to validate experimental observations. Both the nanoparticles and electrolyte decrease the CMC, while the equivalent concentration of the surfactant remains nearly constant. This paper presents a criterion to estimate the possible influence of such forces for nanoparticles of different sizes and mass fractions.
Collapse
Affiliation(s)
- Milad Eftekhari
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, 01328 Dresden, Germany. and TU Dresden, Institute of Process Engineering and Environmental Technology, 01062 Dresden, Germany
| | - Karin Schwarzenberger
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, 01328 Dresden, Germany. and TU Dresden, Institute of Process Engineering and Environmental Technology, 01062 Dresden, Germany
| | - Aliyar Javadi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, 01328 Dresden, Germany. and TU Dresden, Institute of Process Engineering and Environmental Technology, 01062 Dresden, Germany and Institute of Petroleum Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Kerstin Eckert
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, 01328 Dresden, Germany. and TU Dresden, Institute of Process Engineering and Environmental Technology, 01062 Dresden, Germany
| |
Collapse
|
35
|
Luan H, Gong L, Yue X, Nie X, Chen Q, Guan D, Que T, Liao G, Su X, Feng Y. Micellar Aggregation Behavior of Alkylaryl Sulfonate Surfactants for Enhanced Oil Recovery. Molecules 2019; 24:molecules24234325. [PMID: 31779282 PMCID: PMC6930474 DOI: 10.3390/molecules24234325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022] Open
Abstract
Alkylaryl sulfonate is a typical family of surfactants used for chemically enhanced oil recovery (EOR). While it has been widely used in surfactant–polymer flooding at Karamay Oilfield (40 °C, salinity 14,000 mg/L), its aggregation behavior in aqueous solutions and the contribution of aggregation to EOR have not been investigated so far. In this study, raw naphthenic arylsulfonate (NAS) and its purified derivatives, alkylaryl monosulfonate (AMS) and alkylaryl disulfonate (ADS), were examined under simulated temperature and salinity environment of Karamay reservoirs for their micellar aggregation behavior through measuring surface tension, micellar size, and micellar aggregation number. It was found that all three alkylaryl sulfonate surfactants could significantly lower the surface tension of their aqueous solutions. Also, it has been noted that an elevation both in temperature and salinity reduced the surface tension and critical micellar concentration. The results promote understanding of the performance of NAS and screening surfactants in EOR.
Collapse
Affiliation(s)
- Huoxin Luan
- Experimental Detection Research Institute, Xinjiang Oilfield Company, Karamay 834000, China; (H.L.); (X.N.); (Q.C.); (D.G.); (T.Q.)
| | - Lingyan Gong
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China;
| | - Xinjian Yue
- Experimental Detection Research Institute, Xinjiang Oilfield Company, Karamay 834000, China; (H.L.); (X.N.); (Q.C.); (D.G.); (T.Q.)
| | - Xiaobin Nie
- Experimental Detection Research Institute, Xinjiang Oilfield Company, Karamay 834000, China; (H.L.); (X.N.); (Q.C.); (D.G.); (T.Q.)
| | - Quansheng Chen
- Experimental Detection Research Institute, Xinjiang Oilfield Company, Karamay 834000, China; (H.L.); (X.N.); (Q.C.); (D.G.); (T.Q.)
| | - Dan Guan
- Experimental Detection Research Institute, Xinjiang Oilfield Company, Karamay 834000, China; (H.L.); (X.N.); (Q.C.); (D.G.); (T.Q.)
| | - Tingli Que
- Experimental Detection Research Institute, Xinjiang Oilfield Company, Karamay 834000, China; (H.L.); (X.N.); (Q.C.); (D.G.); (T.Q.)
| | - Guangzhi Liao
- PetroChina Exploration & Production Company, Beijing 100007, China;
| | - Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China;
- Correspondence: (X.S.); (Y.F.)
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China;
- Correspondence: (X.S.); (Y.F.)
| |
Collapse
|
36
|
Tarif E, Mukherjee K, Kumbhakar K, Barman A, Biswas R. Dynamics at the non-ionic micelle/water interface: Impact of linkage substitution. J Chem Phys 2019; 151:154902. [DOI: 10.1063/1.5121334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ejaj Tarif
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Kallol Mukherjee
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Anjan Barman
- Condensed Matter Physics and Material Sciences (CMPMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
37
|
Smirnov VI, Badelin VG, Barannikov VP, Kurbatova MS. Influence of the Composition of (H2O + SDS) Mixtures on the Interaction Energy of dl-α-Alanyl-dl-α-Valine and dl-α-Alanyl-dl-α-Norleucine with SDS Micelles at T = 298.15 K. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00910-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Zhou X, Hu S, Wang Y, Ullah S, Hu J, Liu H, Xu B. The surface adsorption, aggregate structure and antibacterial activity of Gemini quaternary ammonium surfactants with carboxylic counterions. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190378. [PMID: 31598238 PMCID: PMC6731746 DOI: 10.1098/rsos.190378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/30/2019] [Indexed: 05/20/2023]
Abstract
A group of Gemini quaternary ammonium surfactants with the formula C n H2n+1CONH(CH2)2N+(CH3)2(CH2)2N+(CH3)2(CH2)2 NHCOC n H2n+1 · 2Y (n = 11, 13 and 15, Y = HCOO-, CH3COO- and CH3CHOHCOO-) have been synthesized by a counterion conversion process and characterized by Fourier transform infrared spectroscopy and mass spectroscopy. Their adsorption and self-aggregation properties are investigated by surface tension, conductivity, dynamic light scattering and transmission electron microscopy (TEM) measurements. The results show that these surfactants reduce the surface tension of water to a minimum value of 26.51 mN m-1 at a concentration of 5.72 × 10-2 mmol l-1. Furthermore, the increased alkyl chain length of the carboxylic counterions leads to the increased critical micelle concentration, the decreased degree of counterion binding (β) and the decreased self-assembly tendency, but the minimum area per surfactant molecule (A min) adsorbed at the air-aqueous solution are similar. TEM images reveal that these surfactants self-assemble spontaneously into aggregates with vesicle or bilayer structures. It is also found that they have superior antibacterial activity at a concentration of 0.1 g l-1. The high surface activity and high antibacterial activity of the Gemini quaternary ammonium salt surfactants containing different carboxylic counterions bring more possibilities for the application in the field of biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongqin Liu
- Authors for correspondence: Hongqin Liu e-mail:
| | - Baocai Xu
- Authors for correspondence: Baocai Xu e-mail:
| |
Collapse
|
39
|
Brezesinski G, Schneck E. Investigating Ions at Amphiphilic Monolayers with X-ray Fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8531-8542. [PMID: 30835476 PMCID: PMC6727669 DOI: 10.1021/acs.langmuir.9b00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Amphiphilic monolayers formed at the soft air/liquid interface are easy-to-handle and versatile model systems for material and life sciences. Helmuth Möhwald was one of the pioneers in this field. Over the last few decades, total-reflection X-ray fluorescence (TRXF) has become an important analytical tool for the investigation of monolayer interactions with ions. Here, the theoretical background of TRXF is described, and practical aspects are discussed. The experimentally determined fluorescence intensity from the adsorbed ions can be interpreted quantitatively either by a calibration procedure utilizing monolayers with known charge density or by calibration with respect to the bare aqueous surface. Both calibration approaches yield quantitatively consistent results within <10% accuracy. Some examples demonstrating the power of TRXF for the study of ion adsorption to charged and noncharged monolayers as well as for the characterization of the physicochemical properties of novel cationic lipids used for improved gene delivery are given.
Collapse
Affiliation(s)
- Gerald Brezesinski
- Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Emanuel Schneck
- Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
40
|
Chanachichalermwong W, Charoensaeng A, Suriyapraphadilok U. Krafft Point Prediction of Anionic Surfactants Using Group Contribution Method: First‐Order and Higher‐Order Groups. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Woramet Chanachichalermwong
- The Petroleum and Petrochemical CollegeChulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology Bangkok Thailand
- Special Task Force for Applied Surfactant Research in Petroleum and Environmental ApplicationsChulalongkorn University Bangkok Thailand
| | - Ampira Charoensaeng
- The Petroleum and Petrochemical CollegeChulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology Bangkok Thailand
- Special Task Force for Applied Surfactant Research in Petroleum and Environmental ApplicationsChulalongkorn University Bangkok Thailand
| | - Uthaiporn Suriyapraphadilok
- The Petroleum and Petrochemical CollegeChulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology Bangkok Thailand
- Special Task Force for Applied Surfactant Research in Petroleum and Environmental ApplicationsChulalongkorn University Bangkok Thailand
| |
Collapse
|
41
|
Avchukir K, Yessaly N, Burkitbayeva B. Electrodeposition of Indium on Glassy Carbon from Tetrabutylammonium Chloride Containing Solutions. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2019. [DOI: 10.18321/ectj826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The effectiveness of tetrabutylammonium chloride (TBACh) as inhibition additive of dendritic growth of indium has been investigated by means of cyclic voltammetry and chronoamperometry methods. The rotating disk electrode (RDE) method allowed the calculation of the diffusion coefficient of In3+ ions using the Levich equation, at 25 °C is 4.41 × 10–6 cm2/s. Diffusion coefficient of indium ions determined by chronoamperometry using the Cottrell law (6.63 × 10–6 cm2/s) is in consistent with the value calculated by the Levich equation. The addition of tetrabutylammonium ions to the electrolyte reduces the diffusion coefficient and inhibits the cathodic process by increasing the activation energy from 10.5 kJ/mol to 20.7 kJ/mol. The indium nucleation and growth on glassy carbon in chloride solutions was studied by single potentiostatic pulse techniques. The nucleation mechanism was evaluated by analyzing the influence of different TBACh ion concentration and applied potentials. The electrocrystallization mechanisms were determined by fitting the experimental non-dimensional current transients on the basis nucleation and growth model developed by Scharifker-Hills. The type of nucleation corresponding to the progressive three-dimensional nucleation with diffusion control is determined. Based on theoretical models of 3D multiple nucleation from the potentiostatic current transients were calculated nucleation characteristics, such as the stationary nucleation rate, saturation nucleus density and the average grains radius of indium deposits. The leveling action of TBACh on the electrodeposition of indium at concentration of 10-4 M was found.
Collapse
|
42
|
Eslami H, Khani M, Müller-Plathe F. Gaussian Charge Distributions for Incorporation of Electrostatic Interactions in Dissipative Particle Dynamics: Application to Self-Assembly of Surfactants. J Chem Theory Comput 2019; 15:4197-4207. [DOI: 10.1021/acs.jctc.9b00174] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Marzieh Khani
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
43
|
Pleines M, Kunz W, Zemb T, Benczédi D, Fieber W. Molecular factors governing the viscosity peak of giant micelles in the presence of salt and fragrances. J Colloid Interface Sci 2019; 537:682-693. [DOI: 10.1016/j.jcis.2018.11.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 11/30/2022]
|
44
|
Sheth S, Li M, Song Q. New luminescent probe for the selective detection of dopamine based on in situ prepared Ru(II) complex-sodium dodecyl benzyl sulfonate assembly. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Schaeffer N, Kholany M, Veloso TLM, Pereira JL, Ventura SPM, Nicaud JM, Coutinho JAP. Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chem Commun (Camb) 2019; 55:8643-8646. [DOI: 10.1039/c9cc03831k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tuneable and thermoresponsive ionic system is applied to the extraction and cloud-point separation of violacein from biomass.
Collapse
Affiliation(s)
- Nicolas Schaeffer
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Mariam Kholany
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Telma L. M. Veloso
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Joana Luísa Pereira
- Department of Biology and CESAM – Centre for Environmental and Marine Studies
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Sónia P. M. Ventura
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Jean-Marc Nicaud
- Micalis Institute
- INRA
- AgroParisTech
- Université Paris-Saclay
- 78350 Jouy-en-Josas
| | - João A. P. Coutinho
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
46
|
Sharker KK, Nazrul Islam M, Das S. Interactions of Some Hofmeister Cations with Sodium Dodecyl Sulfate in Aqueous Solution. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Komol Kanta Sharker
- Department of Chemistry Bangladesh University of Engineering and Technology Dhaka, 1000 Bangladesh
| | - Md. Nazrul Islam
- Department of Chemistry Bangladesh University of Engineering and Technology Dhaka, 1000 Bangladesh
| | - Shuvo Das
- Department of Chemistry Bangladesh University of Engineering and Technology Dhaka, 1000 Bangladesh
| |
Collapse
|
47
|
Liu G, Feng J, Wang H, Gao F, Wei Y, Xia Q, Yuan S. The cloud point phenomenon of ionic surfactants: A view from molecular dynamics and metadynamics simulation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Niemann T, Zaitsau D, Strate A, Villinger A, Ludwig R. Cationic clustering influences the phase behaviour of ionic liquids. Sci Rep 2018; 8:14753. [PMID: 30283059 PMCID: PMC6170405 DOI: 10.1038/s41598-018-33176-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
“Unlike charges attract, but like charges repel”. This conventional wisdom has been recently challenged for ionic liquids. It could be shown that like-charged ions attract each other despite the powerful opposing electrostatic forces. In principle, cooperative hydrogen bonding between ions of like-charge can overcome the repulsive Coulomb interaction while pushing the limits of chemical bonding. The key challenge of this solvation phenomenon is to establish design principles for the efficient formation of clusters of like-charged ions in ionic liquids. This is realised here for a set of well-suited ionic liquids including the same hydrophobic anion but different cations all equipped with hydroxyethyl groups for possible H-bonding. The formation of H-bonded cationic clusters can be controlled by the delocalization of the positive charge on the cations. Strongly localized charge results in cation-anion interaction, delocalized charge leads to the formation of cationic clusters. For the first time we can show, that the cationic clusters influence the properties of ILs. ILs comprising these clusters can be supercooled and form glasses. Crystalline structures are obtained only, if the ILs are dominantly characterized by the attraction between opposite-charged ions resulting in conventional ion pairs. That may open a new path for controlling glass formation and crystallization. The glass temperatures and the phase transitions of the ILs are observed by differential scanning calorimetry (DSC) and infrared (IR) spectroscopy.
Collapse
Affiliation(s)
- Thomas Niemann
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr. -Lorenz-Weg 2, 18059, Rostock, Germany
| | - Dimitri Zaitsau
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr. -Lorenz-Weg 2, 18059, Rostock, Germany
| | - Anne Strate
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr. -Lorenz-Weg 2, 18059, Rostock, Germany
| | - Alexander Villinger
- Universität Rostock, Institut für Chemie, Abteilung für Anorganische Chemie, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Ralf Ludwig
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr. -Lorenz-Weg 2, 18059, Rostock, Germany. .,Department Life, Light & Matter, University of Rostock, 18051, Rostock, Germany. .,Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany.
| |
Collapse
|
49
|
He YH, Sun Q, Xing H, Wu Y, Xiao JX. Cationic–anionic fluorinated surfactant mixtures based on short fluorocarbon chains as potential aqueous film-forming foam. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1468262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yuan-Hua He
- School of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Qiang Sun
- School of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Hang Xing
- Beijing FLUOBON Surfactant Institute, Beijing, China
| | - Yi Wu
- School of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Jin-Xin Xiao
- Beijing FLUOBON Surfactant Institute, Beijing, China
| |
Collapse
|
50
|
Senra TD, Campana-Filho SP, Desbrières J. Surfactant-polysaccharide complexes based on quaternized chitosan. Characterization and application to emulsion stability. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|