1
|
Mikaelian G, Megariotis G, Theodorou DN. Interactions of a Novel Anthracycline with Oligonucleotide DNA and Cyclodextrins in an Aqueous Environment. J Phys Chem B 2024; 128:6291-6307. [PMID: 38899795 PMCID: PMC11228990 DOI: 10.1021/acs.jpcb.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Berubicin, a chemotherapy medication belonging to the class of anthracyclines, is simulated in double-stranded DNA sequences and cyclodextrins in an aqueous environment via full-atom molecular dynamics simulations on the time scale of microseconds. The drug is studied in both the neutral and protonated states so as to better comprehend the role of its charge in the formed complexes. The noncovalent berubicin-DNA and berubicin-cyclodextrin complexes are investigated in detail, paying special attention to their thermodynamic description by employing the double decoupling method, the solvent balance method, the weighted solvent accessible surface model, and the linear interaction energy method. A novel approach for extracting the desolvation thermodynamics of the binding process is also presented. Both the binding and desolvation Gibbs energies are decomposed into entropic and enthalpic contributions so as to elucidate the nature of complexation and its driving forces. Selected structural and geometrical properties of all the complexes, which are all stable, are analyzed. Both cyclodextrins under consideration are widely utilized for drug delivery purposes, and a comparative investigation between their bound states with berubicin is carried out.
Collapse
Affiliation(s)
- Georgios Mikaelian
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| | - Grigorios Megariotis
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
- School
of Engineering, Department of Mineral Resources Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Doros N. Theodorou
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| |
Collapse
|
2
|
Radeva L, Zaharieva MM, Spassova I, Kovacheva D, Pencheva-El Tibi I, Najdenski H, Yoncheva K. Biopolymeric Nanogel as a Drug Delivery System for Doxorubicin-Improved Drug Stability and Enhanced Antineoplastic Activity in Skin Cancer Cells. Pharmaceuticals (Basel) 2024; 17:186. [PMID: 38399401 PMCID: PMC10891966 DOI: 10.3390/ph17020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, doxorubicin was loaded in a chitosan-albumin nanogel with the aim of improving its stability and exploring the potential of the system in the treatment of skin cancer. Infrared spectroscopy and X-ray diffraction confirmed the encapsulation of the drug. Transmission electron microscopy revealed the spherical shape of the nanogel particles. The drug-loaded nanogel was characterized with a small diameter of 29 nm, narrow polydispersity (0.223) and positive zeta potential (+34 mV). The exposure of encapsulated doxorubicin to light (including UV irradiation and daylight) did not provoke any degradation, whereas the nonencapsulated drug was significantly degraded. In vitro studies on keratinocytes (HaCaT) and epidermoid squamous skin carcinoma cells (A-431) disclosed that the encapsulated doxorubicin was more cytotoxic on both cell lines than the pure drug was. More importantly, the cytotoxic concentration of encapsulated doxorubicin in carcinoma cells was approximately two times lower than that in keratinocytes, indicating that it would not affect them. Thus, the loading of doxorubicin into the developed chitosan-albumin nanogel definitely stabilized the drug against photodegradation and increased its antineoplastic effect on the skin cancer cell line.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Maya M Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | |
Collapse
|
3
|
Mahmoud ME, Amira MF, Daniele S, El Nemr A, Abouelanwar ME, Morcos BM. Recovery of silver and gold quantum dots from wastewater via coagulative adsorption onto CoFe2O4 based magnetic covalent-organic framework to generate efficient nanocatalysts for degradation of doxorubicin drug. JOURNAL OF WATER PROCESS ENGINEERING 2023; 51:103409. [DOI: 10.1016/j.jwpe.2022.103409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Akbarian M, Chen SH. Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics 2022; 14:2533. [PMID: 36432723 PMCID: PMC9699111 DOI: 10.3390/pharmaceutics14112533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Maintaining the structure of protein and peptide drugs has become one of the most important goals of scientists in recent decades. Cold and thermal denaturation conditions, lyophilization and freeze drying, different pH conditions, concentrations, ionic strength, environmental agitation, the interaction between the surface of liquid and air as well as liquid and solid, and even the architectural structure of storage containers are among the factors that affect the stability of these therapeutic biomacromolecules. The use of genetic engineering, side-directed mutagenesis, fusion strategies, solvent engineering, the addition of various preservatives, surfactants, and additives are some of the solutions to overcome these problems. This article will discuss the types of stress that lead to instabilities of different proteins used in pharmaceutics including regulatory proteins, antibodies, and antibody-drug conjugates, and then all the methods for fighting these stresses will be reviewed. New and existing analytical methods that are used to detect the instabilities, mainly changes in their primary and higher order structures, are briefly summarized.
Collapse
Affiliation(s)
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Kamenova K, Radeva L, Yoncheva K, Ublekov F, Ravutsov MA, Marinova MK, Simeonov SP, Forys A, Trzebicka B, Petrov PD. Functional Nanogel from Natural Substances for Delivery of Doxorubicin. Polymers (Basel) 2022; 14:polym14173694. [PMID: 36080768 PMCID: PMC9459996 DOI: 10.3390/polym14173694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Nanogels (NGs) have attracted great attention because of their outstanding biocompatibility, biodegradability, very low toxicity, flexibility, and softness. NGs are characterized with a low and nonspecific interaction with blood proteins, meaning that they do not induce any immunological responses in the body. Due to these properties, NGs are considered promising candidates for pharmaceutical and biomedical application. In this work, we introduce the development of novel functional nanogel obtained from two naturally based products—citric acid (CA) and pentane-1,2,5-triol (PT). The nanogel was synthesized by precipitation esterification reaction of CA and PT in tetrahydrofuran using N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and 4-(dimethylamino)pyridine (DMAP) catalyst system. Dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM) analyses revealed formation of spherical nanogel particles with a negative surface charge. Next, the nanogel was loaded with doxorubicin hydrochloride (DOX) by electrostatic interactions between carboxylic groups present in the nanogel and amino groups of DOX. The drug-loaded nanogel exhibited high encapsulation efficiency (EE~95%), and a bi-phasic release behavior. Embedding DOX into nanogel also stabilized the drug against photodegradation. The degradability of nanogel under acidic and neutral conditions with time was investigated as well.
Collapse
Affiliation(s)
- Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyubomira Radeva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Filip Ublekov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Martin A. Ravutsov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya K. Marinova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Svilen P. Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-9796335
| |
Collapse
|
6
|
Mello Souza D, Reichert JF, Ramos do Nascimento V, Figueiredo Martins A. Ozonation and UV photolysis for removing anticancer drug residues from hospital wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:635-644. [PMID: 35848127 DOI: 10.1080/10934529.2022.2099195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The present study investigates the use of UV light and the ozone process for doxorubicin, daunorubicin, epirubicin, and irinotecan degradation. The process was carried out using different pH values in hospital wastewater. The use of UV radiation reduces the concentration of anticancer drugs, but in all cases, this technology was not able enough to remove on the whole these contaminants from hospital wastewater. The best condition was achieved when using pH 9 for most of the analytes. Doxorubicin, daunorubicin, and epirubicin were degraded at 97.3%, 88.3%, and 99.0%, respectively. Irinotecan showed the lowest degradation, just 55.6%; a slightly higher degradation (63.8%) was obtained when pH 5 was used. Complete removal of doxorubicin, daunorubicin, epirubicin, and irinotecan was achieved when ozone treatment was used for all the pH studied. The results indicated that UV light and the ozone process can be used as a tertiary treatment to reduce the concentration of anticancer drugs in the effluents. Ozonation, therefore, proved to be more efficient than the photolysis process, when considering the percentual degradation of the original compounds in shorter timespans.
Collapse
Affiliation(s)
- Darliana Mello Souza
- Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
7
|
Brevé TG, Filius M, Weerdenburg S, van der Griend SJ, Groeneveld TP, Denkova AG, Eelkema R. Light-Sensitive Phenacyl Crosslinked Dextran Hydrogels for Controlled Delivery. Chemistry 2022; 28:e202103523. [PMID: 34939694 PMCID: PMC9306828 DOI: 10.1002/chem.202103523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Stimuli-responsive soft materials enable controlled release of loaded drug molecules and biomolecules. Controlled release of potent chemotherapeutic or immunotherapeutic agents is crucial to reduce unwanted side effects. In an effort to develop controlled release strategies that can be triggered by using Cerenkov luminescence, we have developed polymer hydrogels that can release bovine serum albumin and immunoglobulin G by using light (254 nm-375 nm) as a trigger. We describe the synthesis and photochemical characterization of two light sensitive phenacyl bis-azide crosslinkers that are used to prepare transparent self-supporting hydrogel patches. One crosslinker was designed to optimize the overlap with the Cerenkov luminescence emission window, bearing an π-extended phenacyl core, resulting in a high quantum yield (14 %) of photocleavage when irradiated with 375 nm light. We used the extended phenacyl crosslinker for the preparation of protein-loaded dextran hydrogel patches, which showed efficient and selective dosed release of bovine serum albumin or immunoglobulin G after irradiation with 375 nm light. Cerenkov-triggered release is as yet inconclusive due to unexpected side-reactivity. Based on the high quantum yield, efficient release and large overlap with the Cerenkov window, we envision application of these photosensitive soft materials in radiation targeted drug release.
Collapse
Affiliation(s)
- Tobias G. Brevé
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Mike Filius
- Department of BioNanoScienceDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Sven Weerdenburg
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Stefan J. van der Griend
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Tim P. Groeneveld
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Antonia G. Denkova
- Department of Radiation Science and TechnologyDelft University of TechnologyMekelweg 152629 JBDelftThe Netherlands
| | - Rienk Eelkema
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
8
|
Il Kim M, Park CY, Seo JM, Kang KS, Park KS, Kang J, Hong KS, Choi Y, Lee SY, Park JP, Park HG, Park TJ. In Situ Biosynthesis of a Metal Nanoparticle Encapsulated in Alginate Gel for Imageable Drug-Delivery System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36697-36708. [PMID: 34313117 DOI: 10.1021/acsami.1c02286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of drug-delivery systems that allow simultaneous in vivo imaging has gained much interest. We report a novel strategy to encapsulate metal nanoparticles (NPs) within alginate gel for in vivo imaging. The cell lysate of recombinant Escherichia coli strain, expressing Arabidopsis thaliana phytochelatin synthase and Pseudomonas putida metallothionein genes, was encapsulated within the alginate gel. Incubation of alginate gel with metal ion precursors followed by UV irradiation resulted in the synthesis of high concentrations of metal NPs, such as Au, Ag, CdSe, and EuSe NPs, within the gel. The alginate gel with metal NPs was used as a drug-delivery system by further co-encapsulating doxorubicin and rifampicin, the release of which was made to be pH-dependent. This system can be conveniently and safely used for in vitro and in vivo bioimaging, enabled by the metal NPs formed within the gel matrix without using toxic reducing reagents or surfactants.
Collapse
Affiliation(s)
- Moon Il Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Chan Yeong Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji Min Seo
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyoung Suk Kang
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongeun Kang
- Bioimaging Research Team, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju, Chungcheongbuk-do 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju, Chungcheongbuk-do 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoojin Choi
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Biotechnology, School of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Effective degradation of the antineoplastic doxorubicin by electrochemical oxidation on boron doped diamond. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int J Mol Sci 2020; 21:ijms21031131. [PMID: 32046308 PMCID: PMC7037303 DOI: 10.3390/ijms21031131] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
The 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical cation-based assays are among the most abundant antioxidant capacity assays, together with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-based assays according to the Scopus citation rates. The main objective of this review was to elucidate the reaction pathways that underlie the ABTS/potassium persulfate decolorization assay of antioxidant capacity. Comparative analysis of the literature data showed that there are two principal reaction pathways. Some antioxidants, at least of phenolic nature, can form coupling adducts with ABTS•+, whereas others can undergo oxidation without coupling, thus the coupling is a specific reaction for certain antioxidants. These coupling adducts can undergo further oxidative degradation, leading to hydrazindyilidene-like and/or imine-like adducts with 3-ethyl-2-oxo-1,3-benzothiazoline-6-sulfonate and 3-ethyl-2-imino-1,3-benzothiazoline-6-sulfonate as marker compounds, respectively. The extent to which the coupling reaction contributes to the total antioxidant capacity, as well as the specificity and relevance of oxidation products, requires further in-depth elucidation. Undoubtedly, there are questions as to the overall application of this assay and this review adds to them, as specific reactions such as coupling might bias a comparison between antioxidants. Nevertheless, ABTS-based assays can still be recommended with certain reservations, particularly for tracking changes in the same antioxidant system during storage and processing.
Collapse
|
11
|
Gao L, He Q, Xing J, Ge Z. Removal of doxorubicin by magnetic copper phosphate nanoflowers for individual urine source separation. CHEMOSPHERE 2020; 238:124690. [PMID: 31524625 DOI: 10.1016/j.chemosphere.2019.124690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 05/21/2023]
Abstract
Doxorubicin (DOX) originated from users' urine has been an emerging environmental pollutant due to its significant genotoxicity to mankind. Thus, urine source separation is a potential strategy to isolate DOX at a higher concentration and reduce the burden of downstream wastewater treatment. To develop highly efficient, easy separation and retrievable materials for individual patient to conveniently remove DOX from own urine, magnetic Cu3(PO4)2 nanoflowers were prepared through anchoring amino-functionalized magnetic nanoparticles on the Cu3(PO4)2 nanoflowers. Characterizations revealed the magnetic nanoflowers were spherical in shape with a mean size of 15 μm, and porous and hierarchical in structure. Magnetic nanoparticles located the surface of petals. Multibatch experiments were performed to assess the removal performance of DOX from aqueous solution. The magnetic nanoflowers exhibited excellent removal efficiency of DOX under weakly alkaline condition at ambient temperature. Linear and non-linear analyses were carried out to compare the best fitting kinetics and isotherms. Sorption kinetic data best fitted the pseudo-second order model. The Freundlich isotherm explained equilibrium sorption data with R2 = 0.993 higher than that for the Langmuir isotherm. When the pH of synthetic urine was adjusted to weakly alkaline (pH 8.0-9.0), over 95% of DOX (20 mg L-1) was removed by a little of magnetic nanoflowers (50 mg L-1) within 5 min. Meanwhile, the magnetic nanoflowers could be easily separated and recovered from the synthetic urine by a magnet. So, for individual urine source separation strategy, the magnetic nanoflower seems to be an efficient, convenient and inexpensive approach to remove DOX from human urine.
Collapse
Affiliation(s)
- Linglu Gao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, People's Republic of China.
| | - Qing He
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, People's Republic of China.
| | - Jinfeng Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, People's Republic of China.
| | - Zhiqiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
12
|
Moreno EKG, Garcia LF, Lobón GS, Brito LB, Oliveira GAR, Luque R, de Souza Gil E. Ecotoxicological assessment and electrochemical remediation of doxorubicin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:143-150. [PMID: 31035248 DOI: 10.1016/j.ecoenv.2019.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Doxorubicin (DOX) is an anthracycline widely used in treatments of several cancers, so it has found in hospital effluents with a significant concentration (above 1 μg L-1). Electrochemical remediation is an alternative to promote its degradation. The aim of this work was to evaluate the ability of nanostructured graphite electrodes with metallic oxides to degrade DOX by electro-oxidation (EO). Graphite, TiO2@graphite and AuO-TiO2@graphite electrodes were used in medium with tap water or 10 mmol L-1 NaCl. DOX treatments at concentrations of 1.25-5 mg L-1 were carried out in a voltage source with 1.5-5 V. The cathode used was the platinum electrode. The treatment of DOX 1.25 mg L-1 with 10 mmol L-1 NaCl electrolyte using the AuO-TiO2@graphite electrode at 5 V and 1 mA was the best methodology to promote its degradation. Also, the modified electrode was efficient to DOX degradation after 17 cycles of reuse. An energy expenditure of 1.11 and 0.2 kWh m-3 were obtained for 3 and 50 mL of treatment, respectively. Fish embryo acute toxicity test with zebrafish (Danio rerio) were performed before and after treatment by EO using NaCl. This treatment caused no effect on embryo-larval development, however it induced significant damage in the DNA of the zebrafish larvae after 96 h of exposure, which emphasizes the importance of a depth ecotoxicological evaluation during the development of EO methodologies.
Collapse
Affiliation(s)
| | | | - Germán Sanz Lobón
- Institute of Chemistry, Federal University of Goias, Goiânia, 74001-970, Brazil.
| | - Lara Barroso Brito
- Faculty of Pharmacy, Federal University of Goias, Goiânia, 74605-170, Brazil.
| | - Gisele Augusto Rodrigues Oliveira
- Faculty of Pharmacy, Federal University of Goias, Goiânia, 74605-170, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia.
| | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goias, Goiânia, 74605-170, Brazil.
| |
Collapse
|
13
|
Racles C, Zaltariov MF, Silion M, Macsim AM, Cozan V. Photo-oxidative degradation of doxorubicin with siloxane MOFs by exposure to daylight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19684-19696. [PMID: 31081534 DOI: 10.1007/s11356-019-05288-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent from anthracycline class, which acts unselectively on all cells; thus, it may have genotoxic and/or mutagenic effects and cause serious environmental problems. Herein, the decomposition of a diluted solution of DOX hydrochloride for injection has been investigated under photo-oxidative conditions, in ambient light and without pH modification, using hydrogen peroxide as oxidizing agent and hydrophobic siloxane-based metal-organic frameworks (MOFs) as heterogeneous catalysts. The kinetics of the photodegradation process was followed by UV-Vis spectroscopy and by ESI-MS. According to UV-Vis data, two pseudo-first-order kinetic steps describe the process, with rate constants in the order of 10-3-10-2 min-1 for the rate-determining one. ESI-MS provided more accurate information, with a rate constant of 2.6 · 10-2 min-1 calculated from the variation of DOX ion abundance. Complete decomposition of DOX was achieved after 120 min in the shade and after only 20 min by exposure to sunlight. The analysis of the residual waters by mass spectrometry and 1D and 2D NMR spectroscopy showed complete disappearance of DOX in all cases, excluded any anthracycline species, which are destroyed in the tested conditions, and proved formation of an un-harmful compound-glycerol, while no trace of metal was detected by XRF. Preliminary data also showed decomposition of oxytetracycline in similar conditions. By this study, we bring into attention a less-addressed pollution issue and we propose a mild and effective method for the removal of drug emerging pollutants.
Collapse
Affiliation(s)
- Carmen Racles
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania.
| | - Mirela-Fernanda Zaltariov
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| | - Mihaela Silion
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| | - Ana-Maria Macsim
- NMR Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| | - Vasile Cozan
- Department of Polycondensation and Thermostable Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| |
Collapse
|
14
|
Kabanov V, Ghosh S, Lovell JF, Heyne B. Singlet oxygen partition between the outer-, inner- and membrane-phases of photo/chemotherapeutic liposomes. Phys Chem Chem Phys 2019; 21:25054-25064. [DOI: 10.1039/c9cp05159g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we developed a strategy to quantify the fraction of singlet oxygen lifetime spent in the three distinct local liposomal environments through the combination of direct and indirect singlet oxygen detection approaches.
Collapse
Affiliation(s)
| | - Sanjana Ghosh
- Department of Biomedical Engineering
- University at Buffalo
- Buffalo
- USA
| | | | - Belinda Heyne
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
15
|
Wang Y, Xia L, Wei C, Wang H, Wang H, Yuan R, Wei S. Ultrasensitive photoelectrochemical microRNA biosensor based on doxorubicin sensitized graphitic carbon nitride assisted by a target-activated enzyme-free DNA walker. Chem Commun (Camb) 2019; 55:13082-13084. [DOI: 10.1039/c9cc06556c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, a photoelectrochemical biosensor was constructed based on a sensitization strategy of doxorubicin sensitized graphitic carbon nitride for ultrasensitive detection of microRNA-141 assisted by a target-activated enzyme-free DNA walker.
Collapse
Affiliation(s)
- Yanlin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Lingying Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Chongyao Wei
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haihua Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haijun Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shaping Wei
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
16
|
Ansar SM, Jiang W, Mudalige T. Direct quantification of unencapsulated doxorubicin in liposomal doxorubicin formulations using capillary electrophoresis. Int J Pharm 2018; 549:109-114. [DOI: 10.1016/j.ijpharm.2018.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/19/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022]
|
17
|
Laura Soriano M, Carrillo-Carrion C, Ruiz-Palomero C, Valcárcel M. Cyclodextrin-modified nanodiamond for the sensitive fluorometric determination of doxorubicin in urine based on its differential affinity towards β/γ-cyclodextrins. Mikrochim Acta 2018; 185:115. [DOI: 10.1007/s00604-017-2660-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
|
18
|
Golec B, Nawara K, Gorski A, Thummel RP, Herbich J, Waluk J. Combined effect of hydrogen bonding interactions and freezing of rotameric equilibrium on the enhancement of photostability. Phys Chem Chem Phys 2018; 20:13306-13315. [DOI: 10.1039/c8cp00726h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rigid structure and hydrogen-bonding interactions provide a higher photostability of organic chromophores.
Collapse
Affiliation(s)
- Barbara Golec
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Krzysztof Nawara
- Faculty of Mathematics and Natural Sciences
- College of Science
- Cardinal Stefan Wyszyński University
- 01-815 Warsaw
- Poland
| | - Alexandr Gorski
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | - Jerzy Herbich
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Jacek Waluk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
- Faculty of Mathematics and Natural Sciences
| |
Collapse
|
19
|
Das A, Adhikari C, Nayak D, Chakraborty A. First Evidence of the Liposome-Mediated Deintercalation of Anticancer Drug Doxorubicin from the Drug-DNA Complex: A Spectroscopic Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:159-70. [PMID: 26605667 DOI: 10.1021/acs.langmuir.5b03702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biocompatible liposomes were used for the first time to study the deintercalation process of a prominent anticancer drug, doxorubicin (DOX), from doxorubicin-intercalated DNA (DOX-DNA complex) under controlled experimental conditions. The study revealed that anionic liposomes (DMPG liposomes) appeared to be the most effective to bring in the highest percentage of drug release while cationic liposomes (DOTAP liposomes) scored the lowest percentage of release. The drug release was primarily attributed to the electrostatic interaction between liposomes and drug molecules. Apart from this interaction, changes in the hydrophobicity of the medium upon addition of liposomes to the DNA-drug solution accompanied by lipoplex formation between DNA and liposomes were also attributed to the observed deintercalation. The CD and the time-resolved rotational relaxation studies confirmed that lipoplex formation took place between liposomes and DNA owing to electrostatic interaction. The confocal study revealed that in the postrelease period, DOX binds with liposomes. The reason behind the binding is electrostatic interaction as well as the unique bilayer structure of liposomes which helps it to act as a "hydrophobic sink" for DOX. The study overall highlighted a novel strategy for deintercalation of drug using biocompatible liposomes, as the release of the drug can be controlled over a period of time by varying the concentration and composition of the liposomes.
Collapse
Affiliation(s)
- Anupam Das
- Discipline of Chemistry, Indian Institute of Technology Indore , Indore, Madhya Pradesh, India
| | - Chandan Adhikari
- Discipline of Chemistry, Indian Institute of Technology Indore , Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Bioseciences and Biomedical Engineering, Indian Institute of Technology Indore , Indore, Madhya Pradesh, India
| | - Anjan Chakraborty
- Discipline of Chemistry, Indian Institute of Technology Indore , Indore, Madhya Pradesh, India
| |
Collapse
|
20
|
Kaushik D, Bansal G. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques. J Pharm Anal 2015; 5:285-295. [PMID: 29403942 PMCID: PMC5762242 DOI: 10.1016/j.jpha.2015.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
Forced degradation study on doxorubicin (DOX) was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH) guidelines Q1(R2). It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I-O-IV) in oxidative condition, and to single product (A-I) in acid hydrolytic condition. These products were resolved on a C8 (150 mm×4.6 mm, 5 µm) column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5), acetonitrile and methanol (65:15:20, v/v/v). Liquid chromatography-photodiode array (LC-PDA) technique was used to ascertain the purity of the products noted in LC-UV chromatogram. For their characterization, a six stage mass fragmentation (MS6) pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI) as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography-time of flight mass spectrometry (LC-MS-TOF) on degraded drug solutions. Based on it, O-I-O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed.
Collapse
Affiliation(s)
- Dheeraj Kaushik
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
21
|
Cockrell GM, Wolfe MS, Wolfe JL, Schöneich C. Photoinduced Aggregation of a Model Antibody–Drug Conjugate. Mol Pharm 2015; 12:1784-97. [DOI: 10.1021/mp5006799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory M. Cockrell
- Wolfe Laboratories Incorporated, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Michael S. Wolfe
- Wolfe Laboratories Incorporated, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Janet L. Wolfe
- Wolfe Laboratories Incorporated, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Christian Schöneich
- Department
of Pharmaceutical Chemistry, University of Kansas, 2095 Constant
Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
22
|
Zhang Y, Ding J, Sun D, Sun H, Zhuang X, Chang F, Wang J, Chen X. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:262-268. [PMID: 25686948 DOI: 10.1016/j.msec.2015.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/12/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
In the past few decades, the in situ sustained drug delivery platforms present fascinating potential in sentinel chemotherapy of various solid tumors. In this work, doxorubicin (DOX), a model antitumor drug, was loaded into the thermogel of poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide). The moderate mechanical property of DOX-loaded hydrogel was confirmed by rheological test. In vitro degradation revealed the good biodegradability of thermogel. The DOX-loaded hydrogel exhibited the sustained release profiles up to 30days without and even with elastase. The improved in vivo tumor inhibition and reduced side-effects were observed in the DOX-incorporated hydrogel group compared with those in free DOX group. The excellent in vivo results were further confirmed by the histopathological evaluation or terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. The thermogel with great prospect may be used as an ideal controlled drug delivery platform for the designated and long-term antitumor chemotherapy.
Collapse
Affiliation(s)
- Yanbo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Diankui Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
23
|
Parrella A, Lavorgna M, Criscuolo E, Russo C, Fiumano V, Isidori M. Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans. CHEMOSPHERE 2014; 115:59-66. [PMID: 24512989 DOI: 10.1016/j.chemosphere.2014.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/25/2013] [Accepted: 01/06/2014] [Indexed: 05/24/2023]
Abstract
The growing use of cytostatic drugs is gaining relevance as an environmental concern. Environmental and distribution studies are increasing due to the development of accurate analytical methods, whereas ecotoxicological studies are still lacking. The aim of the present study was to investigate the acute and chronic toxicity of six cytostatics (5-fluorouracil, capecitabine, cisplatin, doxorubicin, etoposide, and imatinib) belonging to five classes of Anatomical Therapeutic Classification (ATC) on primary consumers of the aquatic chain (Daphnia magna, Ceriodaphnia dubia, Brachionus calyciflorus, and Thamnocephalus platyurus). Acute ecotoxicological effects occurred at concentrations in the order of mgL(-)(1), higher than those predicted in the environment, and the most acutely toxic drugs among those tested were cisplatin and doxorubicin for most aquatic organisms. For chronic toxicity, cisplatin and 5-fluorouracil showed the highest toxic potential in all test organisms, inducing 50% reproduction inhibition in crustaceans at concentrations on the order of μgL(-)(1). Rotifers were less susceptible to these pharmaceuticals. On the basis of chronic results, the low effective concentrations suggest a potential environmental risk of cytostatics. Thus, this study could be an important starting point for establishing the real environmental impact of these substances.
Collapse
Affiliation(s)
- Alfredo Parrella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Emma Criscuolo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Vittorio Fiumano
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
24
|
Casolaro M, Casolaro I, Bottari S, Del Bello B, Maellaro E, Demadis KD. Long-term doxorubicin release from multiple stimuli-responsive hydrogels based on α-amino-acid residues. Eur J Pharm Biopharm 2014; 88:424-33. [DOI: 10.1016/j.ejpb.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
|
25
|
Nieciecka D, Królikowska A, Joniec A, Krysinski P. Partitioning of doxorubicin into Langmuir and Langmuir–Blodgett biomimetic mixed monolayers: Electrochemical and spectroscopic studies. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Swiech O, Dutkiewicz P, Wójciuk K, Chmurski K, Kruszewski M, Bilewicz R. Cyclodextrin Derivatives Conjugated with Aromatic Moieties as pH-responsive Drug Carriers for Anthracycline. J Phys Chem B 2013; 117:13444-50. [DOI: 10.1021/jp4060632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olga Swiech
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| | - Paula Dutkiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| | - Karolina Wójciuk
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw, Poland
| | | | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw, Poland
- Institute of Rural Health, Jaczewskiego
2, Lublin, Poland
| | - Renata Bilewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| |
Collapse
|
27
|
Fülöp Z, Gref R, Loftsson T. A permeation method for detection of self-aggregation of doxorubicin in aqueous environment. Int J Pharm 2013; 454:559-61. [PMID: 23850794 DOI: 10.1016/j.ijpharm.2013.06.058] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
For pharmaceutical scientists, it is important to know if dissolved drug molecules are present only as monomers or in the form of aggregates in a test solution or formulation. Amphiphilic or hydrophobic drugs frequently self-associate to form dimers, trimers or higher order aggregates. Doxorubicin aggregation was examined by a previously developed permeation technique to detect oligosaccharide aggregation in aqueous solutions. At very low doxorubicin concentrations dimers and trimers have been observed, but in aqueous 0.5mg/ml doxorubicin solutions aggregates containing about 40 molecules were observed. The permeation studies were supported by TEM studies. The results indicate that neutral doxorubicin molecules aggregate more readily than the protonated ones. Doxorubicin aggregation is a stepwise process resulting in formation of aggregates of variable sizes are enhanced aggregation with increasing doxorubicin concentration.
Collapse
Affiliation(s)
- Zoltán Fülöp
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland.
| | | | | |
Collapse
|
28
|
Xie J, Cao Y, Xia M, Gao X, Qin M, Wei J, Wang W. One-step photo synthesis of protein-drug nanoassemblies for drug delivery. Adv Healthc Mater 2013; 2:795-9. [PMID: 23296632 DOI: 10.1002/adhm.201200285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/26/2012] [Indexed: 11/11/2022]
Abstract
Upon controlled UV illumination, disulfide bonds in bovine α-lactalbumin (BLA) are selectively broken, leading to self-assembly of the BLA and doxorubicin (DOX) molecules into nanoparticles via hydrophobic interactions and intermolecular disulfide bonds. Such protein-drug nanoparticles have synergistic anticancer activity in vitro and tumor-homing specificity in vivo, which are of great potential for systemic drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Jinbing Xie
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Yi Cao
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Mao Xia
- Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiang Gao
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Meng Qin
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Jiwu Wei
- Medical School, Nanjing University, Nanjing 210093, PR China
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
29
|
Nawara K, McCracken JL, Krysiński P, Blanchard GJ. Structure-Dependent Complexation of Fe3+ by Anthracyclines. 1. The Importance of Pendent Hydroxyl Functionality. J Phys Chem B 2013; 117:6859-67. [DOI: 10.1021/jp402349e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Krzysztof Nawara
- Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - John L. McCracken
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Paweł Krysiński
- Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - G. J. Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Nawara K, Beeckman H, Krysiński P, Blanchard GJ. Structure-Dependent Complexation of Fe3+ by Anthracyclines. 2. The Roles of Methoxy and Daunosamine Functionalities. J Phys Chem B 2013; 117:6868-73. [DOI: 10.1021/jp4023508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krzysztof Nawara
- Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hillary Beeckman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Paweł Krysiński
- Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - G. J. Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
31
|
Changenet-Barret P, Gustavsson T, Markovitsi D, Manet I, Monti S. Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy. Phys Chem Chem Phys 2013; 15:2937-44. [DOI: 10.1039/c2cp44056c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|