1
|
Sangji MH, Lee SR, Sai H, Weigand S, Palmer LC, Stupp SI. Self-Sorting vs Coassembly in Peptide Amphiphile Supramolecular Nanostructures. ACS NANO 2024; 18:15878-15887. [PMID: 38848478 DOI: 10.1021/acsnano.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The functionality of supramolecular nanostructures can be expanded if systems containing multiple components are designed to either self-sort or mix into coassemblies. This is critical to gain the ability to craft self-assembling materials that integrate functions, and our understanding of this process is in its early stages. In this work, we have utilized three different peptide amphiphiles with the capacity to form β-sheets within supramolecular nanostructures and found binary systems that self-sort and others that form coassemblies. This was measured using atomic force microscopy to reveal the nanoscale morphology of assemblies and confocal laser scanning microscopy to determine the distribution of fluorescently labeled monomers. We discovered that PA assemblies with opposite supramolecular chirality self-sorted into chemically distinct nanostructures. In contrast, the PA molecules that formed a mixture of right-handed, left-handed, and flat nanostructures on their own were able to coassemble with the other PA molecules. We attribute this phenomenon to the energy barrier associated with changing the handedness of a β-sheet twist in a coassembly of two different PA molecules. This observation could be useful for designing biomolecular nanostructures with dual bioactivity or interpenetrating networks of PA supramolecular assemblies.
Collapse
Affiliation(s)
- M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N St. Clair Street, Chicago, Illinois 60611, United States
| |
Collapse
|
2
|
Mohanty S, Sen S, Sharma P, Roy S. Designing Pathway-Controlled Multicomponent Ultrashort Peptide Hydrogels with Diverse Functionalities at the Nanoscale for Directing Cellular Behavior. Biomacromolecules 2024; 25:3271-3287. [PMID: 38712837 DOI: 10.1021/acs.biomac.3c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tuning self-assembling pathways by implementing different external stimuli has been extensively studied, owing to their effective control over structural and mechanical properties. Consequently, multicomponent peptide hydrogels with high structural tunability and stimuli responsiveness are crucial in dictating cellular behavior. Herein, we have implemented both coassembly approach and pathway-dependent self-assembly to design nonequilibrium nanostructures to understand the thermodynamic and kinetic aspects of peptide self-assembly toward controlling cellular response. Our system involved an ultrashort peptide gelator and a hydrophilic surfactant which coassembled through different pathways, i.e., heat-cool and sonication methods with variable energy input. Interestingly, it was possible to access diverse structural and mechanical properties at the nanoscale in a single coassembled system. Further, the hydrophilic surfactant provided additional surface functionalities, thus creating an efficient hydrophilic matrix for cellular interaction. Such diverse functionalities in a single coassembled system could lead to the development of advanced scaffolds, with applications in various biomedical fields.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Pooja Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| |
Collapse
|
3
|
Gustavsson L, Lv ZP, Cherian T, Seppälä W, Liljeström V, Peng B, Huotari S, Rannou P, Ikkala O. Heating-Induced Switching to Hierarchical Liquid Crystallinity Combining Colloidal and Molecular Order in Zwitterionic Molecules. ACS OMEGA 2023; 8:39345-39353. [PMID: 37901556 PMCID: PMC10601052 DOI: 10.1021/acsomega.3c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Hierarchical self-assemblies of soft matter involving triggerable or switchable structures at different length scales have been pursued toward multifunctional behaviors and complexity inspired by biological matter. They require several and balanced competing attractive and repulsive interactions, which provide a grand challenge in particular in the "bulk" state, i.e., in the absence of plasticizing solvents. Here, we disclose that zwitterionic bis-n-tetradecylphosphobetaine, as a model compound, shows a complex thermally switchable hierarchical self-assembly in the solvent-free state. It shows polymorphism and heating-induced reversible switching from low-temperature molecular-level assemblies to high-temperature hierarchical self-assemblies, unexpectedly combining colloidal and molecular self-assemblies, as inferred by synchrotron small-angle X-ray scattering (SAXS). The high-temperature phase sustains birefringent flow, indicating a new type of hierarchical thermotropic liquid crystallinity. The high-temperature colloidal-level SAXS reflections suggest indexation as a 2D oblique pattern and their well-defined layer separation in the perpendicular direction. We suggest that the colloidal self-assembled motifs are 2D nanoplatelets formed by the lateral packing of the molecules, where the molecular packing frustration between the tightly packed zwitterionic moieties and the coiled alkyl chains demanding more space limits the lateral platelet growth controlled by the alkyl stretching entropy. An indirect proof is provided by the addition of plasticizing ionic liquids, which relieve the ionic dense packings of zwitterions, thus allowing purely smectic liquid crystallinity without the colloidal level order. Thus, molecules with a simple chemical structure can lead to structural hierarchy and tunable complexity in the solvent-free state by balancing the competing long-range electrostatics and short-range nanosegregations.
Collapse
Affiliation(s)
- Lotta Gustavsson
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Zhong-Peng Lv
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Tomy Cherian
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Wille Seppälä
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Ville Liljeström
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Bo Peng
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Simo Huotari
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Patrice Rannou
- Université
Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, Grenoble
INP, LEPMI, 38000 Grenoble, France
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| |
Collapse
|
4
|
Hamley IW, Castelletto V. Small-angle scattering techniques for peptide and peptide hybrid nanostructures and peptide-based biomaterials. Adv Colloid Interface Sci 2023; 318:102959. [PMID: 37473606 DOI: 10.1016/j.cis.2023.102959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The use of small-angle scattering (SAS) in the study of the self-assembly of peptides and peptide conjugates (lipopeptides, polymer-peptide conjugates and others) is reviewed, highlighting selected research that illustrates different methods and analysis techniques. Both small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are considered along with examples that exploit their unique capabilities. For SAXS, this includes the ability to perform rapid measurements enabling high throughput or fast kinetic studies and measurements under dilute conditions. For SANS, contrast variation using H2O/D2O mixtures enables the study of peptides interacting with lipids and TR-SANS (time-resolved SANS) studies of exchange kinetics and/or peptide-induced structural changes. Examples are provided of studies measuring form factors of different self-assembled structures (micelles, fibrils, nanotapes, nanotubes etc) as well as structure factors from ordered phases (lyotropic mesophases), peptide gels and hybrid materials such as membranes formed by mixing peptides with polysaccharides or peptide/liposome mixtures. SAXS/WAXS (WAXS: wide-angle x-ray scattering) on peptides and peptide hybrids is also discussed, and the review concludes with a perspective on potential future directions for research in the field.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| |
Collapse
|
5
|
Zhang Y, Brooks SC, Rosi NL. Molecular Modulator Approach for Controlling the Length of Chiral 1D Single-Helical Gold Nanoparticle Superstructures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5071-5078. [PMID: 37456597 PMCID: PMC10339826 DOI: 10.1021/acs.chemmater.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Indexed: 07/18/2023]
Abstract
Peptide-based methods have proven useful for constructing helical gold nanoparticle superstructures that exhibit strong plasmonic chiroptical activity. Superstructure syntheses using the amphiphilic peptide conjugate C16-(AYSSGAPPMoxPPF)2 typically yield 1D helices with a broad length distribution. In this study, we introduce a molecular modulator approach for controlling helix length. It represents a first step toward achieving narrowly disperse populations of single helices fabricated using peptide-based methods. Varying amounts of modulator, C16-(AYSSGA)2, were added to C16-(AYSSGAPPMoxPPF)2-based single-helix syntheses, resulting in decreased helix length and narrowing of the helix length distribution. Kinetic studies of fiber assembly were performed to investigate the mechanism by which the modulator affects helix length. It was found that the modulator leads to rapid peptide conjugate nucleation and fiber growth, which in turn results in large amounts of short fibers that serve as the underlying scaffold for the single-helix superstructures. These results constitute important advances toward generating monodisperse samples of plasmonic helical colloids.
Collapse
Affiliation(s)
- Yuyu Zhang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sydney C. Brooks
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Brooks SC, Jin R, Zerbach VC, Zhang Y, Walsh TR, Rosi NL. Single Amino Acid Modifications for Controlling the Helicity of Peptide-Based Chiral Gold Nanoparticle Superstructures. J Am Chem Soc 2023; 145:6546-6553. [PMID: 36912863 PMCID: PMC10037318 DOI: 10.1021/jacs.3c00827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Assembling nanoparticles (NPs) into well-defined superstructures can lead to emergent collective properties that depend on their 3-D structural arrangement. Peptide conjugate molecules designed to both bind to NP surfaces and direct NP assembly have proven useful for constructing NP superstructures, and atomic- and molecular-level alterations to these conjugates have been shown to manifest in observable changes to nanoscale structure and properties. The divalent peptide conjugate, C16-(PEPAu)2 (PEPAu = AYSSGAPPMPPF), directs the formation of one-dimensional helical Au NP superstructures. This study examines how variation of the ninth amino acid residue (M), which is known to be a key Au anchoring residue, affects the structure of the helical assemblies. A series of conjugates of differential Au binding affinities based on variation of the ninth residue were designed, and Replica Exchange with Solute Tempering (REST) Molecular Dynamics simulations of the peptides on an Au(111) surface were performed to determine the approximate surface contact and to assign a binding score for each new peptide. A helical structure transition from double helices to single helices is observed as the peptide binding affinity to the Au(111) surface decreases. Accompanying this distinct structural transition is the emergence of a plasmonic chiroptical signal. REST-MD simulations were also used to predict new peptide conjugate molecules that would preferentially direct the formation of single-helical AuNP superstructures. Significantly, these findings demonstrate how small modifications to peptide precursors can be leveraged to precisely direct inorganic NP structure and assembly at the nano- and microscale, further expanding and enriching the peptide-based molecular toolkit for controlling NP superstructure assembly and properties.
Collapse
Affiliation(s)
- Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruitao Jin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Victoria C Zerbach
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuyu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Poirier A, Le Griel P, Hoffmann I, Perez J, Pernot P, Fresnais J, Baccile N. Ca 2+ and Ag + orient low-molecular weight amphiphile self-assembly into "nano-fishnet" fibrillar hydrogels with unusual β-sheet-like raft domains. SOFT MATTER 2023; 19:378-393. [PMID: 36562421 DOI: 10.1039/d2sm01218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water when triggered by an external stimulus. A great majority of SAFiN gels involve an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. In some rare cases, a combination of attractive van der Waals and repulsive electrostatic forces drives the formation of bundles with a suprafibrillar hexagonal order. In this work, an unexpected micelle-to-fiber transition is triggered by Ca2+ or Ag+ ions added to a micellar solution of a novel glycolipid surfactant, whereas salt-induced fibrillation is not common for surfactants. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and β-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but not known for SAFiNs. The β-sheet-like raft domains are characterized by a combination of cryo-TEM and SAXS and seem to contribute to the stability of glycolipid gels. Furthermore, glycolipid is obtained by fermentation from natural resources (glucose, rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX - UMR 8234, F-75252, Paris Cedex 05, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| |
Collapse
|
8
|
Monroe MK, Wang H, Anderson CF, Qin M, Thio CL, Flexner C, Cui H. Antiviral supramolecular polymeric hydrogels by self-assembly of tenofovir-bearing peptide amphiphiles. Biomater Sci 2023; 11:489-498. [PMID: 36449365 PMCID: PMC9894536 DOI: 10.1039/d2bm01649d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of long-acting antiviral therapeutic delivery systems is crucial to improve the current treatment and prevention of HIV and chronic HBV. We report here on the conjugation of tenofovir (TFV), an FDA approved nucleotide reverse transcriptase inhibitor (NRTI), to rationally designed peptide amphiphiles (PAs), to construct antiviral prodrug hydrogelators (TFV-PAs). The resultant conjugates can self-assemble into one-dimensional nanostructures in aqueous environments and consequently undergo rapid gelation upon injection into 1× PBS solution to create a drug depot. The TFV-PA designs containing two or three valines could attain instantaneous gelation, with one displaying sustained release for more than 28 days in vitro. Our studies suggest that minor changes in peptide design can result in differences in supramolecular morphology and structural stability, which impacted in vitro gelation and release. We envision the use of this system as an important delivery platform for the sustained, linear release of TFV at rates that can be precisely tuned to attain therapeutically relevant TFV plasma concentrations.
Collapse
Affiliation(s)
- Maya K Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Meng Qin
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chloe L Thio
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Zhang L, Li M, Wang M, Li L, Guo M, Ke Y, Zhou P, Wang W. Tailored Cross-β Assemblies Establish Peptide "Dominos" Structures for Anchoring Undruggable Pharmacophores. Angew Chem Int Ed Engl 2022; 61:e202212527. [PMID: 36102014 DOI: 10.1002/anie.202212527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 12/15/2022]
Abstract
β-sheets have the ability to hierarchically stack into assemblies, and much effort has been spent on designing different peptides to regulate their assembly behaviors. Although the progress is remarkable, it remains challenging to manipulate them in a controllable way for achieving both tailored structures and specific functions. In this study, we obtained bola-like peptides using de novo design and combinatorial chemical screening. By regulating the solvent-accessible surface area of the peptide chain, a series of assemblies with different tilt angles and active sites of the β-sheet were obtained, resembling collapsed dominos. The structure-activity relationship of the optimized peptide NQ40 system was established and its ability to target the PD-L1 was demonstrated. This study successfully established the structure-function relationship of β-sheets assemblies and has positive implications on the rational design of peptide assemblies that possess recognition abilities.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mingmei Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Peng Zhou
- College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Poirier A, Le Griel P, Perez J, Baccile N. Cation-Induced Fibrillation of Microbial Glycolipid Biosurfactant Probed by Ion-Resolved In Situ SAXS. J Phys Chem B 2022; 126:10528-10542. [PMID: 36475558 DOI: 10.1021/acs.jpcb.2c03739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological amphiphiles are molecules with a rich phase behavior. Micellar, vesicular, and even fibrillar phases can be found for the same molecule by applying a change in pH or by selecting the appropriate metal ion. The rich phase behavior paves the way toward a broad class of soft materials, from carriers to hydrogels. The present work contributes to understanding the fibrillation of a microbial glycolipid, glucolipid G-C18:1, produced by Starmerella bombicola ΔugtB1 and characterized by a micellar phase at alkaline pH and a vesicular phase at acidic pH. Fibrillation and prompt hydrogelation is triggered by adding either alkaline earth, Ca2+, or transition metal, Ag+, Fe2+, Al3+, ions to a G-C18:1 micellar solution. A specifically designed apparatus coupled to a synchrotron SAXS beamline allows the performing of simultaneous cation- and pH-resolved in situ monitoring of the morphological evolution from spheroidal micelles to crystalline fibers, when Ca2+ is employed, or to wormlike aggregates, when Fe2+ or Al3+ solutions are employed. The fast reactivity of Ag+ and the crystallinity of Ca2+-induced fibers suggest that fibrillation is driven by direct metal-ligand interactions, while the shape transition from spheroidal to elongated micelles with Fe2+ or Al3+ rather suggest charge screening between the lipid and the hydroxylated cation species.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| | - Patrick Le Griel
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| | - Javier Perez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, 91190Saint-Aubin, France
| | - Niki Baccile
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| |
Collapse
|
11
|
Sis MJ, Ye Z, La Costa K, Webber MJ. Energy Landscapes of Supramolecular Peptide–Drug Conjugates Directed by Linker Selection and Drug Topology. ACS NANO 2022; 16:9546-9558. [PMID: 35639629 PMCID: PMC10019486 DOI: 10.1021/acsnano.2c02804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Matthew J. Sis
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Katherine La Costa
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J. Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Sasselli IR, Syrgiannis Z, Sather NA, Palmer LC, Stupp SI. Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments. J Phys Chem B 2022; 126:650-659. [PMID: 35029997 DOI: 10.1021/acs.jpcb.1c09258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many peptides are able to self-assemble into one-dimensional (1D) nanostructures, such as cylindrical fibers or ribbons of variable widths, but the relationship between the morphology of 1D objects and their molecular structure is not well understood. Here, we use coarse-grained molecular dynamics (CG-MD) simulations to study the nanostructures formed by self-assembly of different peptide amphiphiles (PAs). The results show that ribbons are hierarchical superstructures formed by laterally assembled cylindrical fibers. Simulations starting from bilayer structures demonstrate the formation of filaments, whereas other simulations starting from filaments indicate varying degrees of interaction among them depending on chemical structure. These interactions are verified by observations using atomic force microscopy of the various systems. The interfilament interactions are predicted to be strongest in supramolecular assemblies that display hydrophilic groups on their surfaces, while those with hydrophobic ones are predicted to interact more weakly as confirmed by viscosity measurements. The simulations also suggest that peptide amphiphiles with hydrophobic termini bend to reduce their interfacial energy with water, which may explain why these systems do not collapse into superstructures of bundled filaments. The simulations suggest that future experiments will need to address mechanistic questions about the self-assembly of these systems into hierarchical structures, namely, the preformation of interactive filaments vs equilibration of large assemblies into superstructures.
Collapse
Affiliation(s)
- Ivan R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas A Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Xiong Q, Stupp SI, Schatz GC. Molecular Insight into the β-Sheet Twist and Related Morphology of Self-Assembled Peptide Amphiphile Ribbons. J Phys Chem Lett 2021; 12:11238-11244. [PMID: 34762436 DOI: 10.1021/acs.jpclett.1c03243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembly of high-aspect-ratio filaments containing β-sheets has attracted much attention due to potential use in bioengineering and biomedicine. However, precisely predicting the assembled morphologies remains a grand challenge because of insufficient understanding of the self-assembly process. We employed an atomistic model to study the self-assembly of peptide amphiphiles (PAs) containing valine-glutamic acid (VE) dimeric repeats. By changing of the sequence length, the assembly morphology changes from flat ribbon to left-handed twisted ribbon, implying a relationship between β-sheet twist and strength of interstrand hydrogen bonds. The calculations are used to quantify this relationship including both magnitude and sign of the ribbon twist angle. Interestingly, a change in chirality is observed when we introduce the RGD epitope into the C-terminal of VE repeats, suggesting arginine and glycine's role in suppressing right-handed β-sheet formation. This study provides insight into the relationship between β-sheet twist and self-assembled nanostructures including a possible design rule for PA self-assembly.
Collapse
Affiliation(s)
- Qinsi Xiong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Samuel I Stupp
- Department of Chemistry, Center for BioInspired Energy Science, and Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
14
|
Shi Y, Wareham DW, Yuan Y, Deng X, Mata A, Azevedo HS. Polymyxin B-Triggered Assembly of Peptide Hydrogels for Localized and Sustained Release of Combined Antimicrobial Therapy. Adv Healthc Mater 2021; 10:e2101465. [PMID: 34523266 PMCID: PMC11469027 DOI: 10.1002/adhm.202101465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Indexed: 12/30/2022]
Abstract
Repurposing old antibiotics into more effective and safer formulations is an emergent approach to tackle the growing threat of antimicrobial resistance. Herein, a peptide hydrogel is reported for the localized and sustained release of polymyxin B (PMB), a decade-old antibiotic with increasing clinical utility for treating multidrug-resistant Gram-negative bacterial infections. The hydrogel is assembled by additing PMB solution into a rationally designed peptide amphiphile (PA) solution and its mechanical properties can be adjusted through the addition of counterions, envisioning its application in diverse infection scenarios. Sustained release of PMB from the hydrogel over a 5-day period and prolonged antimicrobial activities against Gram-negative bacteria are observed. The localized release of active PMB from the hydrogel is shown to be effective in vivo for treating Pseudomonas aeruginosa infection in the Galleria mellonella burn wound infection model, dramatically reducing the mortality from 93% to 13%. Complementary antimicrobial activity against Gram-positive Staphylococcus aureus and enhanced antimicrobial effect against the Gram-negative Acinetobacter baumannii are observed when an additional antibiotic fusidic acid is incorporated into the hydrogen network. These results demonstrate the potential of the PMB-triggered PA hydrogel as a versatile platform for the localized and sustained delivery of combined antimicrobial therapies.
Collapse
Affiliation(s)
- Yejiao Shi
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - David W. Wareham
- Center for ImmunobiologyThe Blizard InstituteBarts and The LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonE1 2ATUK
- Barts Health NHS TrustLondonE1 2ATUK
| | - Yichen Yuan
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - Xinru Deng
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamNG7 2ATUK
- Biodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Helena S. Azevedo
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
15
|
Affiliation(s)
- Catherine E. Killalea
- School of Chemistry The GSK Carbon Neutral Laboratories for Sustainable Chemistry The University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - David B. Amabilino
- School of Chemistry The GSK Carbon Neutral Laboratories for Sustainable Chemistry The University of Nottingham Triumph Road Nottingham NG7 2TU UK
| |
Collapse
|
16
|
Sangji MH, Sai H, Chin SM, Lee SR, R Sasselli I, Palmer LC, Stupp SI. Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures. NANO LETTERS 2021; 21:6146-6155. [PMID: 34259001 DOI: 10.1021/acs.nanolett.1c01737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The morphology of supramolecular peptide nanostructures is difficult to predict given their complex energy landscapes. We investigated peptide amphiphiles containing β-sheet forming domains that form twisted nanoribbons in water. We explained the morphology based on a balance between the energetically favorable packing of molecules in the center of the nanostructures, the unfavorable packing at the edges, and the deformations due to packing of twisted β-sheets. We find that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal β-sheets. We also observed a change in the supramolecular chirality of the nanostructures as the peptide sequence was modified, although only amino acids with l-configuration were used. Upon increasing charge repulsion between molecules, we observed a change in morphology to long cylinders and then rodlike fragments and spherical micelles. Understanding the self-assembly mechanisms of peptide amphiphiles into nanostructures should be useful to optimize their well-known functions.
Collapse
Affiliation(s)
- M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey M Chin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Mokashi-Punekar S, Brooks SC, Hogan CD, Rosi NL. Leveraging Peptide Sequence Modification to Promote Assembly of Chiral Helical Gold Nanoparticle Superstructures. Biochemistry 2021; 60:1044-1049. [PMID: 32510207 DOI: 10.1021/acs.biochem.0c00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide conjugate molecules comprising a gold-binding peptide (e.g., AYSSGAPPMPPF) attached to an aliphatic tail have proven to be powerful agents for directing the synthesis and assembly of gold nanoparticle superstructures, in particular chiral helices having interesting plasmonic chiroptical properties. The composition and structure of these molecular agents can be tailored to carefully tune the structure and properties of gold nanoparticle single and double helices. To date, modifications to the β-sheet region (AYSSGA) of the peptide sequence have not been exploited to control the metrics and assembly of such superstructures. We report here that systematic peptide sequence variation in a series of gold-binding peptide conjugate molecules can be leveraged not only to affect the assembly of peptide conjugates but also to control the synthesis, assembly, and optical properties of gold nanoparticle superstructures. Depending upon the hydrophobicity of a single-amino acid variant, the conjugates yield either dispersed gold nanoparticles or helical superstructures. These results provide evidence that subtle changes to peptide sequence, via single-amino acid variation in the β-sheet region, can be leveraged to program structural control in chiral gold nanoparticle superstructures.
Collapse
Affiliation(s)
- Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Camera D Hogan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
18
|
Edelbrock AN, Clemons TD, Chin SM, Roan JJW, Bruckner EP, Álvarez Z, Edelbrock JF, Wek KS, Stupp SI. Superstructured Biomaterials Formed by Exchange Dynamics and Host-Guest Interactions in Supramolecular Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004042. [PMID: 33898187 PMCID: PMC8061421 DOI: 10.1002/advs.202004042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Indexed: 05/12/2023]
Abstract
Dynamic and reversible assembly of molecules is ubiquitous in the hierarchical superstructures of living systems and plays a key role in cellular functions. Recent work from the laboratory reported on the reversible formation of such superstructures in systems of peptide amphiphiles conjugated to oligonucleotides and electrostatically complimentary peptide sequences. Here, a supramolecular system is reported upon where exchange dynamics and host-guest interactions between β-cyclodextrin and adamantane on peptide amphiphiles lead to superstructure formation. Superstructure formation with bundled nanoribbons generates a mechanically robust hydrogel with a highly porous architecture that can be 3D printed. Functionalization of the porous superstructured material with a biological signal results in a matrix with significant in vitro bioactivity toward neurons that could be used as a supramolecular model to design novel biomaterials.
Collapse
Affiliation(s)
- Alexandra N. Edelbrock
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
| | - Tristan D. Clemons
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
| | - Stacey M. Chin
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
| | - Joshua J. W. Roan
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Eric P. Bruckner
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Zaida Álvarez
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Jack F. Edelbrock
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Kristen S. Wek
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Samuel I. Stupp
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of MedicineNorthwestern UniversityChicagoIL60611USA
| |
Collapse
|
19
|
Wang J, Wang C, Ge Y, Sun Y, Wang D, Xu H. Self‐assembly
of hairpin peptides mediated by Cu(
II
) ion: Effect of amino acid sequence. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Chengdong Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao China
| | - Yanqing Ge
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| |
Collapse
|
20
|
Clemons TD, Stupp SI. Design of materials with supramolecular polymers. Prog Polym Sci 2020; 111:101310. [PMID: 33082608 PMCID: PMC7560124 DOI: 10.1016/j.progpolymsci.2020.101310] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/03/2023]
Abstract
One hundred years ago Hermann Staudinger was strongly criticized by his scientific peers for his macromolecular hypothesis, but today it is hard to imagine a world without polymers. His hypothesis described polymers as macromolecules composed of large numbers of structural units connected by covalent bonds. In the 1990s the concept of supramolecular polymers emerged in the scientific literature as discrete entities of large molar mass comparable to that of classical polymers but built through non-covalent bonds among monomers. Supramolecular polymers exist in biological systems, and potentially blend the physical properties of covalent polymers with unique features such as high degrees of internal order within the polymeric structure, defined shapes, and novel dynamics. This trend article provides a summary of seminal contributions in supramolecular polymerization and provides recent examples from the Stupp laboratory to demonstrate the potential applications of an exciting class of materials composed fully or partially of supramolecular polymers. In closing, we provide our perspective on future opportunities provided by this field at the onset of a second century of polymers. It is our objective here to demonstrate that this second century could be as prosperous, if not more so, than the preceding one.
Collapse
Affiliation(s)
- Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, IL. 60611 USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL. 60611 USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
21
|
Zhao Y, Li X, Zhang L, Wang D, Wang W, Wang L, Chen C. Tuning the self-assembled nanostructures of ultra-short bola peptides via side chain variations of the hydrophobic amino acids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Habila N, Kulkarni K, Lee TH, Al-Garawi ZS, Serpell LC, Aguilar MI, Del Borgo MP. Transition of Nano-Architectures Through Self-Assembly of Lipidated β 3-Tripeptide Foldamers. Front Chem 2020; 8:217. [PMID: 32296680 PMCID: PMC7136582 DOI: 10.3389/fchem.2020.00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
β3-peptides consisting exclusively of β3-amino acids adopt a variety of non-natural helical structures and can self-assemble into well-defined hierarchical structures by axial head-to-tail self-assembly resulting in fibrous materials of varying sizes and shapes. To allow control of fiber morphology, a lipid moiety was introduced within a tri-β3-peptide sequence at each of the three amino acid positions and the N-terminus to gain finer control over the lateral assembly of fibers. Depending on the position of the lipid, the self-assembled structures formed either twisted ribbon-like fibers or distinctive multilaminar nanobelts. The nanobelt structures were comprised of multiple layers of peptide fibrils as revealed by puncturing the surface of the nanobelts with an AFM probe. This stacking phenomenon was completely inhibited through changes in pH, indicating that the layer stacking was mediated by electrostatic interactions. Thus, the present study is the first to show controlled self-assembly of these fibrous structures, which is governed by the location of the acyl chain in combination with the 3-point H-bonding motif. Overall, the results demonstrate that the nanostructures formed by the β3-tripeptide foldamers can be tuned via sequential lipidation of N-acetyl β3-tripeptides which control the lateral interactions between peptide fibrils and provide defined structures with a greater homogeneous population.
Collapse
Affiliation(s)
- Nathan Habila
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Zahraa S Al-Garawi
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Chemistry Department, Mustansiriyah University, Baghdad, Iraq
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Zaldivar G, Conda-Sheridan M, Tagliazucchi M. Twisting of Charged Nanoribbons to Helicoids Driven by Electrostatics. J Phys Chem B 2020; 124:3221-3227. [DOI: 10.1021/acs.jpcb.0c01301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Gervasio Zaldivar
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía and Departamento de Química Inorgánica Analítica y Química Física, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Mario Tagliazucchi
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía and Departamento de Química Inorgánica Analítica y Química Física, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
24
|
Sahoo JK, VandenBerg MA, Ruiz Bello EE, Nazareth CD, Webber MJ. Electrostatic-driven self-sorting and nanostructure speciation in self-assembling tetrapeptides. NANOSCALE 2019; 11:16534-16543. [PMID: 31455952 DOI: 10.1039/c9nr03440d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant efforts in the field of supramolecular materials have strived to co-assemble small molecules in order to realize individual nanostructures with multiple, tunable activities. The design of self-assembling motifs bearing opposite charges is one commonly used method, with favorable electrostatic interactions used to promote mixing in a resulting co-assembly. This approach, at the same time, contrasts with a typical thermodynamic preference for self-sorting. Moreover, rigorous experimental techniques which can clearly elucidate co-assembly from self-sorting are limited. Here we describe the self-assembly of two oppositely charged tetrapeptides yielding highly disparate nanostructures of fibrillar and spherical assemblies. Upon mixing at different ratios, the disparate nanostructure of the parent peptides remain. Interestingly, while the assemblies appear self-sorted, surface-mediated interactions between spherical and fibrous assemblies translate to increased mechanical properties through enhanced fiber bundling. Moreover, the observed self-sorting is a thermodynamic product and not a result of kinetically trapped pre-existing structures. Taken together, and with the benefit of disparate nanostructures in the parent peptides, we have shown in our system experimental evidence for electrostatic-driven self-sorting in oligopeptide self-assembly.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Michael A VandenBerg
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Edgar E Ruiz Bello
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Calvin D Nazareth
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
25
|
Yuan C, Ji W, Xing R, Li J, Gazit E, Yan X. Hierarchically oriented organization in supramolecular peptide crystals. Protein Pept Lett 2019; 3:567-588. [PMID: 39649433 PMCID: PMC7617026 DOI: 10.1038/s41570-019-0129-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Hierarchical self-assembly and crystallization with long-range ordered spatial arrangement is ubiquitous in nature and plays an essential role in the regulation of structures and biological functions. Inspired by the multiscale hierarchical structures in biology, tremendous efforts have been devoted to the understanding of hierarchical self-assembly and crystallization of biomolecules such as peptides and amino acids. Understanding the fundamental mechanisms underlying the construction and organization of multiscale architectures is crucial for the design and fabrication of complex functional systems with long-range alignment of molecules. This Review summarizes the typical examples for hierarchically oriented organization of peptide self-assembly and discusses the thermodynamic and kinetic mechanisms that are responsible for this specific hierarchical organization. Most importantly, we propose the concept of hierarchically oriented organization for self-assembling peptide crystals, distinct from the traditional growth mechanism of supramolecular polymerization and crystallization based on the Ostwald ripening rule. Finally, we assess critical challenges and highlight future directions towards the mechanistic understanding and versatile application of the hierarchically oriented organization mechanism.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Ji
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University, Tel Aviv, Israel
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
26
|
Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective. J Colloid Interface Sci 2019; 548:244-254. [PMID: 31004957 DOI: 10.1016/j.jcis.2019.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS A variety of nanostructures with different chiral features can be self-assembled from short peptides with highly similar sequences. We hypothesize that these supramolecular nanostructures are ruled by the constituent amino acid residues which adopt their conformations under the influence of intra-/inter-molecular interactions during peptide self-assembly. APPROACH Through reviewing recent advances in the self-assembly of short peptides and focusing on the relationship between amino acid conformations, peptide secondary structures and intra-/inter-molecular interactions within the supramolecular architectures, we aim to rationalize the complex interactive processes involved in the self-assembly of short, designed peptides. RESULTS Given the highly complexing interactive processes, the adoption of amino acid conformations and their control over peptide self-assembly consist of 4 main steps: (1) Each amino acid residue adopts its unique conformation in a specific sequence; (2) The sequence exhibits its own main chain geometry and determines the propensity of the intermolecular alignment within the building block; (3) The structural propensity of the building block and the packing mode between them determine the self-assembled structural features such as twisting, growth and chirality; (4) In addition to intra-/inter-molecular interactions, inter-sheet and inter-building block interactions could also affect the residue conformations and nanostructures, causing structural readjustment.
Collapse
|
27
|
Peters EB, Tsihlis ND, Karver MR, Chin SM, Musetti B, Ledford BT, Bahnson EM, Stupp SI, Kibbe MR. Atheroma Niche-Responsive Nanocarriers for Immunotherapeutic Delivery. Adv Healthc Mater 2019; 8:e1801545. [PMID: 30620448 PMCID: PMC6367050 DOI: 10.1002/adhm.201801545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/24/2018] [Indexed: 11/12/2022]
Abstract
Nanomedicine is a promising, noninvasive approach to reduce atherosclerotic plaque burden. However, drug delivery is limited without the ability of nanocarriers to sense and respond to the diseased microenvironment. In this study, nanomaterials are developed from peptide amphiphiles (PAs) that respond to the increased levels of matrix metalloproteinases 2 and 9 (MMP2/9) or reactive oxygen species (ROS) found within the atherosclerotic niche. A pro-resolving therapeutic, Ac2-26, derived from annexin-A1 protein, is tethered to PAs using peptide linkages that cleave in response to MMP2/9 or ROS. By adjusting the molar ratios and processing conditions, the Ac2-26 PA can be co-assembled with a PA containing an apolipoprotein A1-mimetic peptide to create a targeted, therapeutic nanofiber (ApoA1-Ac226 PA). The ApoA1-Ac2-26 PAs demonstrate release of Ac2-26 within 24 h after treatment with MMP2 or ROS. The niche-responsive ApoA1-Ac2-26 PAs are cytocompatible and reduce macrophage activation from interferon gamma and lipopolysaccharide treatment, evidenced by decreased nitric oxide production. Interestingly, the linkage chemistry of ApoA1-Ac2-26 PAs significantly affects macrophage uptake and retention. Taken together, these findings demonstrate the potential of PAs to serve as an atheroma niche-responsive nanocarrier system to modulate the inflammatory microenvironment, with implications for atherosclerosis treatment.
Collapse
Affiliation(s)
- Erica B. Peters
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Mark R. Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Stacey M. Chin
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Bruno Musetti
- Institute of Biological Chemistry, Universidad de la República, Montevideo, 11400, Uruguay
| | - Benjamin T. Ledford
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Edward M. Bahnson
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melina R. Kibbe
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Abstract
Superparamagnetic nanoparticles incorporated into elastic media offer the possibility of creating actuators driven by external fields in a multitude of environments. Here, magnetoelastic membranes are studied through a combination of continuum mechanics and molecular dynamics simulations. We show how induced magnetic interactions affect the buckling and the configuration of magnetoelastic membranes in rapidly precessing magnetic fields. The field, in competition with the bending and stretching of the membrane, transmits forces and torques that drives the membrane to expand, contract, or twist. We identify critical field values that induce spontaneous symmetry breaking as well as field regimes where multiple membrane configurations may be observed. Our insights into buckling mechanisms provide the bases to develop soft, autonomous robotic systems that can be used at micro- and macroscopic length scales.
Collapse
|
29
|
Rodrigues de Almeida N, Han Y, Perez J, Kirkpatrick S, Wang Y, Sheridan MC. Design, Synthesis, and Nanostructure-Dependent Antibacterial Activity of Cationic Peptide Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2790-2801. [PMID: 30588791 PMCID: PMC7199185 DOI: 10.1021/acsami.8b17808] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of bacterial resistant strains is a global health concern. Designing antibiotics that limit the rise of pathogenic resistance is essential to efficiently treat pathogenic infections. Self-assembling amphiphilic molecules are an intriguing platform for the treatment of pathogens because of their ability to disrupt bacterial membranes and function as drug nanocarriers. We have designed cationic peptide amphiphiles (PAs) that can form micelles, nanofibers, and twisted ribbons with the aim of understanding antimicrobial activity at the supramolecular level. We have found that micelle-forming PAs possess excellent antimicrobial activity against various Gram-positive and Gram-negative pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Klebsiella pneumoniae with minimal inhibitory concentrations (MICs) ranging between 1 and 8 μg/mL, when compared to nanofibers with MICs >32 μg/mL. The data suggest that the antimicrobial activity of the PAs depends on their morphology, amino acid sequence, the length of the alkyl tail, and the overall hydrophobicity of the PA. Scanning electron microscopy, confocal microscopy, and flow cytometry studies using MRSA and Escherichia coli K12 strains showed that PAs increase cell membrane permeability and disrupt the integrity of pathogen's membrane, leading to cell lysis and death. PAs are a promising platform to develop new antimicrobials that could work as nanocarriers to develop synergistic antibacterial therapies.
Collapse
Affiliation(s)
- Nathalia Rodrigues de Almeida
- Department of Pharmaceutical Sciences , College of Pharmacy, University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yuchun Han
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS) , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | | | | | - Yilin Wang
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS) , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Martin Conda Sheridan
- Department of Pharmaceutical Sciences , College of Pharmacy, University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
30
|
Ashwanikumar N, Plaut JS, Mostofian B, Patel S, Kwak P, Sun C, McPhail K, Zuckerman DM, Esener SC, Sahay G. Supramolecular self assembly of nanodrill-like structures for intracellular delivery. J Control Release 2018; 282:76-89. [PMID: 29501722 PMCID: PMC6008205 DOI: 10.1016/j.jconrel.2018.02.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Despite recent advances in the supramolecular assembly of cell-penetrating peptide (CPP) nanostructures, the tuning of size, shape, morphology and packaging of drugs in these materials still remain unexplored. Herein, through sequential ligation of peptide building blocks, we create cell-penetrating self-assembling peptide nanomaterials (CSPNs) with the capability to translocate inside cells. We devised a triblock array of Tat48-59 [HIV-1 derived transactivator of transcription48-59] based CPPs, conjugated to up to four Phenylalanine (Phe) residues through an amphiphilic linker, (RADA)2. We observed that the sequential addition of Phe leads to the transition of CSPN secondary structures from a random coil, to a distorted α-helix, a β-sheet, or a pure α-helix. This transition occurs due to formation of a heptad by virtue of even number of Phe. Atomic force microscopy revealed that CSPNs form distinct shapes reminiscent of a "drill-bit". CSPNs containing two, three or four Phe, self-assemble into "nanodrill-like structures" with a coarse-twisted, non-twisted or fine-twisted morphology, respectively. These nanodrills had a high capacity to encapsulate hydrophobic guest molecules. In particular, the coarse-twisted nanodrills demonstrate higher internalization and are able to deliver rapamycin, a hydrophobic small molecule that induced autophagy and are capable of in vivo delivery. Molecular dynamics studies provide microscopic insights into the structure of the nanodrills that can contribute to its morphology and ability to interact with cellular membrane. CSPNs represent a new modular drug delivery platform that can be programmed into exquisite structures through sequence-specific fine tuning of amino acids.
Collapse
Affiliation(s)
- N Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Justin S Plaut
- CEDAR, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, United States; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Barmak Mostofian
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201, United States
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Peter Kwak
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States; Department of Radiation Medicine, School of Medicine, Oregon Health and Science University, Portland, OR 97239, United States
| | - Kerry McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201, United States
| | - Sadik C Esener
- CEDAR, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, United States
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201, United States.
| |
Collapse
|
31
|
Chen J, Xing X, Yao Z. Depletion zones and crystallography on pinched spheres. Phys Rev E 2018; 97:032605. [PMID: 29776116 DOI: 10.1103/physreve.97.032605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/07/2022]
Abstract
Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, we investigate the two-dimensional packing structures of charged particles confined on a pinched sphere. By continuously pinching the sphere, we observe cleavage of elongated scars into pleats, proliferation of disclinations, and subsequently, emergence of a depletion zone at the negatively curved waist that is completely void of particles. We systematically study the geometrics and energetics of the depletion zone, and reveal its physical origin as a finite size effect, due to the interplay between Coulomb repulsion and concave geometry of the pinched sphere. These results further our understanding of crystallography on curved surfaces, and have implications in design and manipulation of charged, deformable interfaces in various applications.
Collapse
Affiliation(s)
- Jingyuan Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Xing
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Zhenwei Yao
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Zaldivar G, Samad MB, Conda-Sheridan M, Tagliazucchi M. Self-assembly of model short triblock amphiphiles in dilute solution. SOFT MATTER 2018; 14:3171-3181. [PMID: 29645060 DOI: 10.1039/c8sm00096d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, a molecular theory is used to study the self-assembly of short diblock and triblock amphiphiles, with head-tail and head-linker-tail structures, respectively. The theory was used to systematically explore the effects of the molecular architecture and the affinity of the solvent for the linker and tail blocks on the relative stability of the different nanostructures formed by the amphiphiles in dilute solution, which include spherical micelles, cylindrical fibers and planar lamellas. Moreover, the theory predicts that each of these nanostructures can adopt two different types of internal organization: (i) normal nanostructures with a core composed of tail segments and a corona composed of head segments, and (ii) nanostructures with a core formed by linker segments and a corona formed by tail and head segments. The theory predicts the occurrence of a transition from micelle to fiber to lamella when increasing the length of the tail or the linker blocks, which is in qualitative agreement with the geometric packing theory and with experiments in the literature. The theory also predicts a transition from micelle to fiber to lamella as the affinity of the solvent for the tail or linker block is decreased. This result is also in qualitative agreement with experiments in the literature but cannot be explained in terms of the geometric packing theory. The molecular theory provides an explanation for this result in terms of the competition between solvophobic attractions among segments in the core and steric repulsions between segments in the corona for the different types of self-assembled nanostructures.
Collapse
Affiliation(s)
- G Zaldivar
- INQUIMAE-CONICET and DQIAQF, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina.
| | | | | | | |
Collapse
|
33
|
Fink TD, Zha RH. Silk and Silk-Like Supramolecular Materials. Macromol Rapid Commun 2018; 39:e1700834. [DOI: 10.1002/marc.201700834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Tanner D. Fink
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| | - R. Helen Zha
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| |
Collapse
|
34
|
Zhao Y, Yang W, Deng L, Wang D. Tuning supramolecular architectures of KI4K amphiphiles via varying terminal variations. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Mokashi-Punekar S, Merg AD, Rosi NL. Systematic Adjustment of Pitch and Particle Dimensions within a Family of Chiral Plasmonic Gold Nanoparticle Single Helices. J Am Chem Soc 2017; 139:15043-15048. [DOI: 10.1021/jacs.7b07143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea D. Merg
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
36
|
Li P, Dou X, Feng C, Müller M, Chang MW, Frettlöh M, Schönherr H. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7799-7809. [PMID: 28486805 PMCID: PMC5740480 DOI: 10.1021/acs.langmuir.7b00749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Indexed: 06/07/2023]
Abstract
The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C2-phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers.
Collapse
Affiliation(s)
- Ping Li
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Xiaoqiu Dou
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Chuanliang Feng
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, 200240, Shanghai, People’s Republic of China
| | - Mareike Müller
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Matthew Wook Chang
- Department
of Biochemistry, Yong Loo Lin School of Medicine, and NUS Synthetic
Biology for Clinical and Technological Innovation (SynCTI), Life Sciences
Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Martin Frettlöh
- Quh-Lab
Food Safety, Siegener
Strasse 29, 57080, Siegen, Germany
| | - Holger Schönherr
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| |
Collapse
|
37
|
Travaglini L, Giordano C, D'Annibale A, Gubitosi M, di Gregorio MC, Schillén K, Stefanucci A, Mollica A, Pavel NV, Galantini L. Twisted nanoribbons from a RGD-bearing cholic acid derivative. Colloids Surf B Biointerfaces 2017; 159:183-190. [PMID: 28787634 DOI: 10.1016/j.colsurfb.2017.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/29/2017] [Indexed: 11/16/2022]
Abstract
In light of the biomedical interest for self-assembling amphiphiles bearing the tripeptide Arg-Gly-Gly (RGD), a cholic acid derivative was synthesized by introducing an aromatic moiety on the steroidal skeleton and the RGD sequence on the carboxylic function of its chain 17-24, thus forming a peptide amphiphile with the unconventional rigid amphiphilic structure of bile salts. In aqueous solution, the compound self-assembled into long twisted ribbons characterized by a very low degree of polydispersity in terms of width (≈25nm), thickness (≈4.5nm) and pitch (≈145nm). It was proposed that in the ribbon the molecules are arranged in a bilayer structure with the aromatic moieties in the interior, strongly involved in the intermolecular interaction, whereas the RGD residues are located at the bilayer-water interface. The nanostructure is significantly different from those generally provided by RGD-containing amphiphiles with the conventional peptide-tail structure, for which fibers with a circular cross-section were observed, and successfully tested as scaffolds for tissue regeneration. From previous work on the use of this kind of nanostructures, it is known that features like morphology, rigidity, epitope spacing and periodicity are important factors that dramatically affect cell adhesion and signaling. Within this context, the reported results demonstrate that bile salt-based peptide surfactants are promising building blocks in the preparation of non-trivial RGD-decorated nanoaggregates with well-defined morphologies and epitope distributions.
Collapse
Affiliation(s)
- Leana Travaglini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cesare Giordano
- Institute of Molecular Biology and Pathology, CNR, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea D'Annibale
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Marta Gubitosi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Nicolae Viorel Pavel
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
38
|
Yu Z, Erbas A, Tantakitti F, Palmer LC, Jackman JA, Olvera de la Cruz M, Cho NJ, Stupp SI. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion−π Interactions. J Am Chem Soc 2017; 139:7823-7830. [DOI: 10.1021/jacs.7b02058] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhilin Yu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Aykut Erbas
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Faifan Tantakitti
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liam C. Palmer
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Joshua A. Jackman
- School
of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Centre for
Biomimetic Sensor Science, Nanyang Technological University, 639798 Singapore
| | - Monica Olvera de la Cruz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - Nam-Joon Cho
- School
of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Centre for
Biomimetic Sensor Science, Nanyang Technological University, 639798 Singapore
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 639798 Singapore
| | - Samuel I. Stupp
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Samad MB, Chhonker YS, Contreras JI, McCarthy A, McClanahan MM, Murry DJ, Conda-Sheridan M. Developing Polyamine-Based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/05/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mehdi Bin Samad
- College of Pharmacy; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198-6125 USA
| | - Yashpal Singh Chhonker
- College of Pharmacy; Department of Pharmacy Practice; University of Nebraska Medical Center; Omaha NE 68198-6145 USA
| | - Jacob I. Contreras
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha NE 68022 USA
| | - Alec McCarthy
- Department of Biological Systems Engineering; University of Nebraska-Lincoln; Lincoln NE 68588 USA
| | - Megan M. McClanahan
- Division of Natural Science and Mathematics; Chaminade University of Honolulu; Honolulu HI 96816 USA
| | - Daryl J. Murry
- College of Pharmacy; Department of Pharmacy Practice; University of Nebraska Medical Center; Omaha NE 68198-6145 USA
| | - Martin Conda-Sheridan
- College of Pharmacy; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198-6125 USA
| |
Collapse
|
40
|
Chen Z, Xing L, Fan Q, Cheetham AG, Lin R, Holt B, Chen L, Xiao Y, Cui H. Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics 2017; 7:2003-2014. [PMID: 28656057 PMCID: PMC5485419 DOI: 10.7150/thno.19404] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
We report here on the covalent conversion of the anti-inflammatory agent ketoprofen into self-assembling prodrugs that enable the effective purification of ketoprofen enantiomers, the improved selectivity and potency of ketoprofen, as well as the formation of one-component drug-bearing supramolecular hydrogels. We found that the ketoprofen hydrogelator could exhibit much-enhanced selectivity for cyclooxygenase 2 (COX-2) over COX-1, reduce the concentration of inflammatory cytokines (IL-1 and TNFα), and induce apoptosis in fibroblast-like synoviocytes while maintaining biocompatibility with healthy chondrocytes. In addition, these anti-inflammatory agent-containing hydrogels demonstrated the ability to retain the therapeutic within a joint cavity after intra-articular injection, exhibiting a slow, steady release into the plasma. We believe that upon further optimization these drug-based injectable supramolecular hydrogels could provide the basis for a local treatment strategy for rheumatoid arthritis and similar conditions.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara Holt
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liwen Chen
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
41
|
Malaspina T, Fileti EE, Colherinhas G. Elucidating the stability of bolaamphiphilic polypeptide nanosheets using atomistic molecular dynamics. Phys Chem Chem Phys 2017; 19:31921-31928. [DOI: 10.1039/c7cp06284b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atomistic molecular dynamics was employed to characterize bolaamphiphilic polypeptides nanosheets.
Collapse
Affiliation(s)
- T. Malaspina
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| | - E. E. Fileti
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| | - G. Colherinhas
- Departamento de Física
- CEPAE
- Universidade Federal de Goiás
- Goiânia
- Brazil
| |
Collapse
|
42
|
Li X, Wang C, Xiao H, Moorefield CN, Newkome GR. Self-assembly of nanotubes and ordered mesostructures using weak interactions. Supramol Chem 2016. [DOI: 10.1080/10610278.2016.1149587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xinhua Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P.R. China
| | - Caixia Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P.R. China
| | - Hongping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P.R. China
| | - Charles N. Moorefield
- The Maurice Morton Institute for Polymer Science, The University of Akron, Akron, OH, USA
| | - George R. Newkome
- The Maurice Morton Institute for Polymer Science, The University of Akron, Akron, OH, USA
- The Departments of Polymer Science and Chemistry, The University of Akron, Akron, OH, USA
| |
Collapse
|
43
|
Merg AD, Boatz JC, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, van der Wel PCA, Rosi NL. Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity. J Am Chem Soc 2016; 138:13655-13663. [PMID: 27726354 PMCID: PMC5388601 DOI: 10.1021/jacs.6b07322] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chiral nanoparticle assemblies are an interesting class of materials whose chiroptical properties make them attractive for a variety of applications. Here, C18-(PEPAuM-ox)2 (PEPAuM-ox = AYSSGAPPMoxPPF) is shown to direct the assembly of single-helical gold nanoparticle superstructures that exhibit exceptionally strong chiroptical activity at the plasmon frequency with absolute g-factor values up to 0.04. Transmission electron microscopy (TEM) and cryogenic electron tomography (cryo-ET) results indicate that the single helices have a periodic pitch of approximately 100 nm and consist of oblong gold nanoparticles. The morphology and assembled structure of C18-(PEPAuM-ox)2 are studied using TEM, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy, X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. TEM and AFM reveal that C18-(PEPAuM-ox)2 assembles into linear amyloid-like 1D helical ribbons having structural parameters that correlate to those of the single-helical gold nanoparticle superstructures. FTIR, CD, XRD, and ssNMR indicate the presence of cross-β and polyproline II secondary structures. A molecular assembly model is presented that takes into account all experimental observations and that supports the single-helical nanoparticle assembly architecture. This model provides the basis for the design of future nanoparticle assemblies having programmable structures and properties.
Collapse
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer C. Boatz
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Xianting Wang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Patrick C. A. van der Wel
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
44
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
45
|
Wan Y, Wang Z, Sun J, Li Z. Extremely Stable Supramolecular Hydrogels Assembled from Nonionic Peptide Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7512-7518. [PMID: 27399915 DOI: 10.1021/acs.langmuir.6b00727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peptide hydrogels with high stability in different media are of great interest in biomedical applications. In this paper, we report an easy, fast, and scalable method for preparing a family of nonionic peptide amphiphiles (PAs) obtained by direct aminolysis of alkyl-oilgo(γ-benzyl-l-glutamate) samples, which were synthesized via the alkyl amine-initiated sequence ring-opening reaction of α-amino acid N-carboxyanhydrides. One great advantage of this method is that vast chemical diversity and large-scale yields can be achieved easily using commercially available hydramines. These PA samples can readily form a clear hydrogel without any external aid and show exceptionally enhanced gelation properties with a critical gelation concentration as low as 0.05 wt %. The hydrogels are highly stable against extreme pH values of 1 and 14 and a high salt concentration of 200 mM NaCl. These properties combined with the shear-thinning properties make these PA hydrogels ideal candidates for the new generation of injectable scaffolds.
Collapse
Affiliation(s)
- Yaoming Wan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Zuoning Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Jing Sun
- School of Polymer Science and Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Zhibo Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- School of Polymer Science and Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| |
Collapse
|
46
|
|
47
|
Li L, Salamonczyk M, Jákli A, Hegmann T. A Dual Modulated Homochiral Helical Nanofilament Phase with Local Columnar Ordering Formed by Bent Core Liquid Crystals: Effects of Molecular Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3944-3955. [PMID: 27334846 DOI: 10.1002/smll.201600882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 06/06/2023]
Abstract
Helical nanofilament (HNF) phases form as a result of an intralayer mismatch between top and bottom molecular halves in bent-core liquid crystals (BC-LCs) that is relieved by local saddle-splay geometry. HNFs are immensely attractive for photovoltaic and chiral separation applications and as templates for the chiral spatial assembly of guest molecules. Here, the synthesis and characterization of two unichiral BC-LCs and one racemic mixture with tris-biphenyl-diester cores featuring chiral (R,R) and (S,S) or racemic 2-octyloxy aliphatic side chains are presented. In comparison to the achiral compound with linear side chains forming an intralayer modulated HNF phase (HNFmod ), synchrotron small angle X-ray diffraction indicates that the unichiral derivatives form a dual modulated HNF phase with intra- as well as interlayer modulations (HNFmod2 ) suggesting a columnar local structure of the nanofilaments. Transmission electron microscopy and circular dichroism spectropolarimetry confirm that the unichiral materials exclusively form homochiral HNFs with a twist sense-matching secondary twist. A contact preparation provides the first example of two identical chiral liquid crystal phases only differing in their handedness that do not mix and form an achiral liquid crystal phase with an entirely different structure in the contact zone.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242-0001, USA
| | - Miroslaw Salamonczyk
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| | - Antal Jákli
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| | - Torsten Hegmann
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242-0001, USA
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| |
Collapse
|
48
|
Gulseren G, Khalily MA, Tekinay AB, Guler MO. Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. J Mater Chem B 2016; 4:4605-4611. [PMID: 32263403 DOI: 10.1039/c6tb00795c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Essential amino acids in catalytic sites of native enzymes are important in nature inspired catalyst designs. Active sites of enzymes contain the coordinated assembly of multiple amino acids, and catalytic action is generated by the dynamic interactions among multiple residues. However, catalysis studies are limited by the complex and dynamic structure of the enzyme; and it is difficult to exclusively attribute a given function to a specific residue. Minimalistic approaches involving artificial catalytic sites are promising for the investigation of the enzyme function in the absence of non-essential protein components, and self-assembling peptide nanostructures are especially advantageous in this context. Here we demonstrate the design and characterization of an enzyme-mimetic catalytic nanosystem presenting essential residues (Ser, His, Asp). The function of each residue and its combinations on the nanostructures in hydrolysis reaction was studied. The catalytic self-assembled nanostructures were used for efficient ester hydrolysis such as a model substrate (pNPA) and a natural substrate (acetylcholine) highlighting the key role of self-assembly in catalytic domain formation to test the efficiency of the de novo designed catalyst as a catalytic triad model.
Collapse
Affiliation(s)
- Gulcihan Gulseren
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | | | | | | |
Collapse
|
49
|
Dasgupta A. Exploring architectures at the nanoscale: the interplay between hydrophobic twin lipid chains and head groups of designer peptide amphiphiles in the self-assembly process and application. SOFT MATTER 2016; 12:4352-4360. [PMID: 27079384 DOI: 10.1039/c6sm00147e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The self-assembly of peptide amphiphiles (PAs) is found to be governed by the hydrophobic interactions induced by the hydrophobic groups/number of alkyl chains and the hydrophilic head groups. In this study, an assessment of the nanostructures formed by the self-assembly of simple twin chained PAs was carried out and compared to their single chain/short analogues. The spectroscopic and microscopic analysis revealed the fact that the twin chained amphiphiles had a high inclination to form β-sheet nanofibers and further towards hydrogelation. The mixture of twin chained PAs also exhibited cooperative self-assembly with improved aggregation behavior, although not much augmentation in β-type structuring was found. In contrast, the single chain/short analogue containing PAs showed very less of β-sheet type structures to a lesser extent and no hydrogelating behavior but resulted in mostly random conformations. The increase in the number or alteration of polar head groups in double chained PAs induced higher extent of β-type conformation and better gelling capability due to the combined hydrophobic effect of the twin chains. The overall results delineated the dominance of hydrophobic interactions. Finally, calcium phosphate bio-mineralization was done in the hydrogels of twin chained PAs with the aim of developing future biomaterials.
Collapse
Affiliation(s)
- Antara Dasgupta
- Department of Chemistry, IIT Guwahati, Guwahati, Assam - 781039, India.
| |
Collapse
|
50
|
Yao Z, Olvera de la Cruz M. Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons. PHYSICAL REVIEW LETTERS 2016; 116:148101. [PMID: 27104732 DOI: 10.1103/physrevlett.116.148101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 06/05/2023]
Abstract
We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.
Collapse
Affiliation(s)
- Zhenwei Yao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, USA and Department of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Monica Olvera de la Cruz
- Departments of Materials Science and Engineering, Chemistry, Chemical and Biological Engineering, and Physics, Northwestern University, Evanston, Illinois 60208-3108, USA
| |
Collapse
|