1
|
Mizushima K, Kumamoto Y, Tamura S, Yamanaka M, Mochizuki K, Li M, Egoshi S, Dodo K, Harada Y, Smith NI, Sodeoka M, Tanaka H, Fujita K. Raman microscopy of cryofixed biological specimens for high-resolution and high-sensitivity chemical imaging. SCIENCE ADVANCES 2024; 10:eadn0110. [PMID: 39661690 PMCID: PMC11633761 DOI: 10.1126/sciadv.adn0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/16/2024] [Indexed: 12/13/2024]
Abstract
Raman microscopy is an emerging molecular imaging technology, yet its signal-to-noise ratio (SNR) in measurements of biological specimens is severely limited because of the small cross section of Raman scattering. Here, we present Raman imaging techniques of cryofixed specimens to overcome SNR limitations by enabling long exposure of specimens under highly stabilized low-temperature conditions. The observation of frozen specimens in a cryostat at a constant low temperature immediately after rapid freezing enabled the improvement of SNR and enhanced the spatial and spectral resolution. We also confirmed that the cryofixation can preserve physicochemical states of specimens by observing alkyne-labeled coenzyme Q in cytosol and hemeproteins in acute ischemic myocardium, which cannot be done by fixation using chemical reagents. Last, we applied the technique for multiplex Raman imaging of label-free endogenous molecules and alkyne-tagged molecules in cryofixed HeLa cells, demonstrating its capability of high-content imaging of complex biological phenomena while maintaining physiological conditions.
Collapse
Affiliation(s)
- Kenta Mizushima
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, AIST, Suita, Osaka 565-0871, Japan
| | - Yasuaki Kumamoto
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shoko Tamura
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masahito Yamanaka
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Menglu Li
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, AIST, Suita, Osaka 565-0871, Japan
| | - Syusuke Egoshi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nicholas I. Smith
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Faculty of Health and Medical Science, Kyoto University of Advanced Science, Ukyo-ku, Kyoto 615-8577, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, AIST, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
So̷rensen H, Krcic N, George I, Kocherbitov V. A Structural Study on Absorption of Lysozyme in Amorphous Starch Microspheres. Mol Pharm 2024; 21:3416-3424. [PMID: 38739906 PMCID: PMC11220755 DOI: 10.1021/acs.molpharmaceut.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The potential of using proteins as drugs is held back by their low stability in the human body and challenge of delivering them to the site of function. Extensive research is focused on drug delivery systems that can protect, carry, and release proteins in a controlled manner. Of high potential are cross-linked degradable starch microspheres (DSMs), as production of these is low-cost and environmentally friendly, and the products are degradable by the human body. Here, we demonstrate that DSMs can absorb the model protein lysozyme from an aqueous solution. At low amounts of lysozyme, its concentration in starch microspheres strongly exceeds the bulk concentration in water. However, at higher protein contents, the difference between concentrations in the two phases becomes small. This indicates that, at lower lysozyme contents, the absorption is driven by protein-starch interactions, which are counteracted by protein-protein electrostatic repulsion at high concentrations. By applying small-angle X-ray scattering (SAXS) to the DSM-lysozyme system, we show that lysozyme molecules are largely unaltered by the absorption in DSM. In the same process, the starch network is slightly perturbed, as demonstrated by a decrease in the characteristic chain to chain distance. The SAXS data modeling suggests an uneven distribution of the protein within the DSM particles, which can be dependent on the internal DSM structure and on the physical interactions between the components. The results presented here show that lysozyme can be incorporated into degradable starch microspheres without any dependence on electrostatic or specific interactions, suggesting that similar absorption would be possible for pharmaceutical proteins.
Collapse
Affiliation(s)
- Henrik
Vinther So̷rensen
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 20506, Sweden
- Biofilms
Research Center for Biointerfaces, Malmö
University, Malmö 20506, Sweden
| | - Nedim Krcic
- Magle
Chemoswed AB, Agneslundsvägen
27, Malmö 21215, Sweden
| | - Ian George
- Magle
Chemoswed AB, Agneslundsvägen
27, Malmö 21215, Sweden
| | - Vitaly Kocherbitov
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 20506, Sweden
- Biofilms
Research Center for Biointerfaces, Malmö
University, Malmö 20506, Sweden
| |
Collapse
|
3
|
Dolui S, Roy A, Pal U, Kundu S, Pandit E, N Ratha B, Pariary R, Saha A, Bhunia A, Maiti NC. Raman Spectroscopic Insights of Phase-Separated Insulin Aggregates. ACS PHYSICAL CHEMISTRY AU 2024; 4:268-280. [PMID: 38800728 PMCID: PMC11117687 DOI: 10.1021/acsphyschemau.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 05/29/2024]
Abstract
Phase-separated protein accumulation through the formation of several aggregate species is linked to the pathology of several human disorders and diseases. Our current investigation envisaged detailed Raman signature and structural intricacy of bovine insulin in its various forms of aggregates produced in situ at an elevated temperature (60 °C). The amide I band in the Raman spectrum of the protein in its native-like conformation appeared at 1655 cm-1 and indicated the presence of a high content of α-helical structure as prepared freshly in acidic pH. The disorder content (turn and coils) also was predominately present in both the monomeric and oligomeric states and was confirmed by the presence shoulder amide I maker band at ∼1680 cm-1. However, the band shifted to ∼1671 cm-1 upon the transformation of the protein solution into fibrillar aggregates as produced for a longer time of incubation. The protein, however, maintained most of its helical conformation in the oligomeric phase; the low-frequency backbone α-helical conformation signal at ∼935 cm-1 was similar to that of freshly prepared aqueous protein solution enriched in helical conformation. The peak intensity was significantly weak in the fibrillar aggregates, and it appeared as a good Raman signature to follow the phase separation and the aggregation behavior of insulin and similar other proteins. Tyrosine phenoxy moieties in the protein may maintained its H-bond donor-acceptor integrity throughout the course of fibril formation; however, it entered in more hydrophobic environment in its journey of fibril formation. In addition, it was noticed that oligomeric bovine insulin maintained the orientation/conformation of the disulfide bonds. However, in the fibrillar state, the disulfide linkages became more strained and preferred to maintain a single conformation state.
Collapse
Affiliation(s)
- Sandip Dolui
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anupam Roy
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Esha Pandit
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Bhisma N Ratha
- Department
of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake,
Sector V, Kolkata 700091, India
| | - Ranit Pariary
- Department
of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake,
Sector V, Kolkata 700091, India
| | - Achintya Saha
- Department
of Chemical Technology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009, India
| | - Anirban Bhunia
- Department
of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake,
Sector V, Kolkata 700091, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
4
|
Thissen J, Klassen MD, Constantinidis P, Hacker MC, Breitkreutz J, Teutenberg T, Fischer B. Online Coupling of Size Exclusion Chromatography to Capillary Enhanced Raman Spectroscopy for the Analysis of Proteins and Biopharmaceutical Drug Products. Anal Chem 2023; 95:17868-17877. [PMID: 38050672 DOI: 10.1021/acs.analchem.3c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The online coupling of size exclusion chromatography (SEC) to capillary enhanced Raman spectroscopy (CERS) based on a liquid core waveguide (LCW) flow cell was applied for the first time to assess the higher-order structure of different proteins. This setup allows recording of Raman spectra of the monomeric protein within complex mixtures, since SEC enables the separation of the monomeric protein from matrix components such as excipients of a biopharmaceutical product and higher molecular weight species (e.g., aggregates). The acquired Raman spectra were used for structural elucidation of well characterized proteins such as bovine serum albumin, hen egg white lysozyme, and β-lactoglobulin and of the monoclonal antibody rituximab in a medicinal product. Additionally, the CERS detection of the disaccharide sucrose, which is used as a stabilizing excipient, was quantified to achieve a limit of detection (LOD) of 120 μg and a limit of quantification (LOQ) of 363 μg injected on the column.
Collapse
Affiliation(s)
- Jana Thissen
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin D Klassen
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
| | - Philipp Constantinidis
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thorsten Teutenberg
- Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Ishigaki M, Kato Y, Chatani E, Ozaki Y. Variations in the Protein Hydration and Hydrogen-Bond Network of Water Molecules Induced by the Changes in the Secondary Structures of Proteins Studied through Near-Infrared Spectroscopy. J Phys Chem B 2023; 127:7111-7122. [PMID: 37477646 DOI: 10.1021/acs.jpcb.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
This study investigated how the secondary structural changes of proteins in aqueous solutions affect their hydration and the hydrogen-bond network of water molecules using near-infrared (NIR) spectroscopy. The aqueous solutions of three types of proteins, i.e., ovalbumin, β-lactoglobulin, and bovine serum albumin, were denatured by heating, and changes in the NIR bands of water reflecting the states of hydrogen bonds induced via protein secondary structural changes were investigated. On heating, the intermolecular hydrogen bonds between water molecules as well as between water and protein molecules were broken, and protein molecules were no longer strongly bound by the surrounding water molecules. Consequently, the denaturation was observed to proceed depending on the thermodynamic properties of the proteins. When the aqueous solutions of proteins were cooled after denaturation, the hydrogen-bond network was reformed. However, the state of protein hydration was changed owing to the secondary structural changes of proteins, and the variation patterns were different depending on the protein species. These changes in protein hydration may be derived from the differences in the surface charges of proteins. The elucidation of the mechanism of protein hydration and the formation of the hydrogen-bond network of water molecules will afford a comprehensive understanding of the protein functioning and dysfunctioning derived from the structural changes in proteins.
Collapse
Affiliation(s)
- Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yoshiki Kato
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
6
|
Liu L, Li X, Chen N, Chen X, Xing L, Zhou X, Liu S. Influence of cadmium ion on denaturation kinetics of hen egg white-lysozyme under thermal and acidic conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122650. [PMID: 36989696 DOI: 10.1016/j.saa.2023.122650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
To study the influence of Cd(II) ions on denaturation kinetics of hen egg white lysozyme (HEWL) under thermal and acidic conditions, spontaneous Raman spectroscopy in conjunction with Thioflavin-T fluorescence, AFM imaging, far-UV circular dichroism spectroscopy, and transmittance assays was conducted. Four distinctive Raman spectral markers for protein tertiary and secondary structures were recorded to follow the kinetics of conformational transformation. Through comparing variations of these markers in the presence or absence of Cd(II) ions, Cd(II) ions show an ability to efficiently accelerate the disruption of tertiary structure, and meanwhile, to promote the direct formation of organized β-sheets from the uncoiling of α-helices by skipping intermediate random coils. More significantly, with the action of Cd(II) ions, the initially resulting oligomers with disordered structures tend to assemble into aggregates with random structures like gels more than amyloid fibrils, along with a so-called "off-pathway" denaturation pathway. Our results advance the in-depth understanding of corresponding ion-specific effects.
Collapse
Affiliation(s)
- Liming Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xinfei Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Taha A, Casanova F, Talaikis M, Stankevič V, Žurauskienė N, Šimonis P, Pakštas V, Jurkūnas M, Gomaa MAE, Stirkė A. Effects of Pulsed Electric Field on the Physicochemical and Structural Properties of Micellar Casein. Polymers (Basel) 2023; 15:3311. [PMID: 37571205 PMCID: PMC10422647 DOI: 10.3390/polym15153311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Pulsed electric field (PEF) as a green processing technology is drawing greater attention due to its eco-friendliness and potential to promote sustainable development goals. In this study, the effects of different electric field strengths (EFS, 0-30 kV/cm) on the structure and physicochemical features of casein micelles (CSMs) were investigated. It was found that the particle sizes of CSMs increased at low EFS (10 kV/cm) but decreased at high EFS (30 kV/cm). The absolute ζ-potential at 30 kV/cm increased from -26.6 (native CSMs) to -29.5 mV. Moreover, it was noticed that PEF treatment leads to changes in the surface hydrophobicity; it slightly increased at low EFS (10 kV/cm) but decreased at EFS > 10 kV/cm. PEF enhanced the protein solubility from 84.9 (native CSMs) to 87.1% (at 10 kV/cm). PEF at low EFS (10 kV/cm) intensified the emission fluorescence spectrum of CSMs, while higher EFS reduced the fluorescence intensity compared to native CSMs. Moreover, the analysis of the Amide Ι region showed that PEF-treated CSMs reduced the α-helix and increased the β-sheet content. Raman spectra confirmed that PEF treatment > 10 kV/cm buried tyrosine (Tyr) residues in a hydrophobic environment. It was also found that PEF treatment mainly induced changes in the disulfide linkages. In conclusion, PEF technology can be employed as an eco-friendly technology to change the structure and physiochemical properties of CSMs; this could improve their techno-functional properties.
Collapse
Affiliation(s)
- Ahmed Taha
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Martynas Talaikis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Voitech Stankevič
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Nerija Žurauskienė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Povilas Šimonis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Vidas Pakštas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Marijus Jurkūnas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Arūnas Stirkė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
| |
Collapse
|
8
|
Tomečková V, Tkáčiková S, Talian I, Fabriciová G, Hovan A, Kondrakhova D, Zakutanská K, Skirková M, Komanický V, Tomašovičová N. Experimental Analysis of Tear Fluid and Its Processing for the Diagnosis of Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115251. [PMID: 37299978 DOI: 10.3390/s23115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
A pilot analysis of the tear fluid of patients with multiple sclerosis (MS) collected by glass microcapillary was performed using various experimental methods: liquid chromatography-mass spectrometry, Raman spectroscopy, infrared spectroscopy, and atomic-force microscopy. Infrared spectroscopy found no significant difference between the tear fluid of MS patients and the control spectra; all three significant peaks were located at around the same positions. Raman analysis showed differences between the spectra of the tear fluid of MS patients and the spectra of healthy subjects, which indicated a decrease in tryptophan and phenylalanine content and changes in the relative contributions of the secondary structures of the polypeptide chains of tear proteins. Atomic-force microscopy exhibited a surface fern-shaped dendrite morphology of the tear fluid of patients with MS, with less roughness on both oriented silicon (100) and glass substrates compared to the tear fluid of control subjects. The results of liquid chromatography-mass spectrometry showed downregulation of glycosphingolipid metabolism, sphingolipid metabolism, and lipid metabolism. Proteomic analysis identified upregulated proteins in the tear fluid of patients with MS such as cystatine, phospholipid transfer protein, transcobalamin-1, immunoglobulin lambda variable 1-47, lactoperoxidase, and ferroptosis suppressor protein 1; and downregulated proteins such as haptoglobin, prosaposin, cytoskeletal keratin type I pre-mRNA-processing factor 17, neutrophil gelatinase-associated lipocalin, and phospholipase A2. This study showed that the tear proteome in patients with MS is modified and can reflect inflammation. Tear fluid is not a commonly used biological material in clinico-biochemical laboratories. Experimental proteomics has the potential to become a promising contemporary tool for personalized medicine, and it might be applied in clinical practice by providing a detailed analysis of the tear-fluid proteomic profile of patients with MS.
Collapse
Affiliation(s)
- Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Andrej Hovan
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Daria Kondrakhova
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Katarína Zakutanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Miriama Skirková
- Department of Opthalmology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Vladimír Komanický
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
9
|
Sugiyama JI, Tokunaga Y, Hishida M, Tanaka M, Takeuchi K, Satoh D, Imashimizu M. Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nat Commun 2023; 14:2825. [PMID: 37217486 DOI: 10.1038/s41467-023-38462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The collective intermolecular dynamics of protein and water molecules, which overlap in the sub-terahertz (THz) frequency region, are relevant for expressing protein functions but remain largely unknown. This study used dielectric relaxation (DR) measurements to investigate how externally applied sub-THz electromagnetic fields perturb the rapid collective dynamics and influence the considerably slower chemical processes in protein-water systems. We analyzed an aqueous lysozyme solution, whose hydration is not thermally equilibrated. By detecting time-lapse differences in microwave DR, we demonstrated that sub-THz irradiation gradually decreases the dielectric permittivity of the lysozyme solution by reducing the orientational polarization of water molecules. Comprehensive analysis combining THz and nuclear magnetic resonance spectroscopies suggested that the gradual decrease in the dielectric permittivity is not induced by heating but is due to a slow shift toward the hydrophobic hydration structure in lysozyme. Our findings can be used to investigate hydration-mediated protein functions based on sub-THz irradiation.
Collapse
Affiliation(s)
- Jun-Ichi Sugiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Masahito Tanaka
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Satoh
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan.
| |
Collapse
|
10
|
Święch D, Palumbo G, Piergies N, Kollbek K, Marzec M, Szkudlarek A, Paluszkiewicz C. Surface modification of Cu nanoparticles coated commercial titanium in the presence of tryptophan: Comprehensive electrochemical and spectroscopic investigations. APPLIED SURFACE SCIENCE 2023; 608:155138. [DOI: 10.1016/j.apsusc.2022.155138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
|
11
|
Matsushita S, Suzuki R, Abe M, Kojima K, Tachibana M. Diffusion Coefficient of Intracrystalline Water in Intrinsic Hen Egg-White Lysozyme Crystals Determined by Confocal Raman Spectroscopy. J Phys Chem B 2022; 126:9000-9007. [PMID: 36318974 DOI: 10.1021/acs.jpcb.2c06329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein crystals composed of protein molecules are expected as a novel porous material. They have high porosity, and the knowledge of the diffusion of intracrystalline water is important. In this study, the diffusion coefficient of intracrystalline water in intrinsic hen egg-white lysozyme (HEWL) crystals was determined by a method that combines confocal Raman spectroscopy and air convection with controlled relative humidity. Similar to common porous materials, the drying process of the protein crystals includes three periods: constant-rate drying, falling-rate drying, and equilibrium state. During the falling-rate drying period, the drying rate depends on the diffusion of intracrystalline water in the protein crystal. The gradient of the water content was measured using confocal Raman spectroscopy. The diffusion coefficient of the intrinsic HEWL crystals was determined as 3.1 × 10-7 cm2/s with a water content of 36.3 vol %. The estimated diffusion coefficients of the intrinsic HEWL crystals without cross-linking were in close agreement with those of the cross-linked protein crystals. This study is timely as the knowledge of the intrinsic diffusion coefficient is useful not only for understanding the mechanism of hydration of proteins but also in practical applications such as porous materials, drug binding, and cryoprotectant soaks.
Collapse
Affiliation(s)
- Saori Matsushita
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Japan
| | - Ryo Suzuki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Marina Abe
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Japan
| | - Kenichi Kojima
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Japan
| | - Masaru Tachibana
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Japan
| |
Collapse
|
12
|
Pudžaitis V, Talaikis M, Sadzevičienė R, Labanauskas L, Niaura G. Electrochemical SEIRAS Analysis of Imidazole-Ring-Functionalized Self-Assembled Monolayers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7221. [PMID: 36295289 PMCID: PMC9610120 DOI: 10.3390/ma15207221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
An essential amino acid, histidine, has a vital role in the secondary structure and catalytic activity of proteins because of the diverse interactions its side chain imidazole (Im) ring can take part in. Among these interactions, hydrogen donating and accepting bonding are often found to operate at the charged interfaces. However, despite the great biological significance, hydrogen-bond interactions are difficult to investigate at electrochemical interfaces due to the lack of appropriate experimental methods. Here, we present a surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) study addressing this issue. To probe the hydrogen-bond interactions of the Im at the electrified organic layer/water interface, we constructed Au-adsorbed self-assembled monolayers (SAMs) that are functionalized with the Im group. As the prerequisite for spectroelectrochemical investigations, we first analyzed the formation of the monolayer and the relationship between the chemical composition of SAM and its structure. Infrared absorption markers that are sensitive to hydrogen-bonding interactions were identified. We found that negative electrode polarization effectively reduced hydrogen-bonding strength at the Im ring at the organic layer-water interface. The possible mechanism governing such a decrease in hydrogen-bonding interaction strength is discussed.
Collapse
Affiliation(s)
- Vaidas Pudžaitis
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rita Sadzevičienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Linas Labanauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
13
|
Zdaniauskienė A, Talaikis M, Charkova T, Sadzevičienė R, Labanauskas L, Niaura G. Electrochemical Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Imidazole Ring Functionalized Monolayer on Smooth Gold Electrode. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196531. [PMID: 36235068 PMCID: PMC9573715 DOI: 10.3390/molecules27196531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
The imidazole ring (Im) of histidine side chains plays a unique role in the function of proteins through covalent bonding with metal ions and hydrogen bonding interactions with adjusted biomolecules and water. At biological interfaces, these interactions are modified because of the presence of an electric field. Self-assembled monolayers (SAMs) with the functional Im group mimic the histidine side chain at electrified interfaces. In this study, we applied in-situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) to probe the structure and hydrogen bonding of Im-functionalized SAM on smooth Au at the electrochemical interface. The self-assembly of molecules on the Au induced the proton shift from N1 atom (Tautomer-I), which is the dominant form of Im in the bulk sample, to N3 atom (Tautomer-II). The impact of electrode potential on the hydrogen bonding interaction strength of the Im ring was identified by SHINERS. Temperature-Raman measurements and density functional theory (DFT) analysis revealed the spectral marker for Im ring packing (mode near 1496-1480 cm-1) that allowed us to associate the confined and strongly hydrogen bonded interfacial Im groups with electrode polarization at -0.8 V. Reflection adsorption IR (RAIR) spectra of SAMs with and without Im revealed that the bulky ring prevented the formation of a strongly hydrogen bonded amide group network.
Collapse
Affiliation(s)
- Agnė Zdaniauskienė
- Center for Physical Sciences and Technology (FTMC), Department of Organic Chemistry, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Martynas Talaikis
- Life Sciences Center, Institute of Biochemistry, Department of Bioelectrochemistry and Biospectroscopy, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Correspondence: (M.T.); (G.N.)
| | - Tatjana Charkova
- Center for Physical Sciences and Technology (FTMC), Department of Organic Chemistry, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Rita Sadzevičienė
- Center for Physical Sciences and Technology (FTMC), Department of Organic Chemistry, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Linas Labanauskas
- Center for Physical Sciences and Technology (FTMC), Department of Organic Chemistry, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Center for Physical Sciences and Technology (FTMC), Department of Organic Chemistry, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Life Sciences Center, Institute of Biochemistry, Department of Bioelectrochemistry and Biospectroscopy, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Correspondence: (M.T.); (G.N.)
| |
Collapse
|
14
|
Lactoferrin network with MC3T3-E1 cell proliferation, auxiliary mineralization, antibacterial functions: A multifunctional coating for biofunctionalization of implant surfaces. Colloids Surf B Biointerfaces 2022; 216:112598. [PMID: 35636326 DOI: 10.1016/j.colsurfb.2022.112598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
Developing biocompatible, low-immunoreactive, and antibacterial implants are challenging yet fundamental to osteosynthesis. In this study, mineralization-stimulative and antibacterial networking nanostructures are assembled via amyloid-like aggregation of lactoferrin (LF) triggered by reducing the intramolecular disulfide bonds. Due to the adhesive property of their rich β-sheet architecture, the LF networks are amenable to the deposition upon the surface of various implant materials, functionalizing the implants with cell-proliferative, mineralization-stimulative, and antibacterial properties. Specifically, the abundant functional groups and amino acids exposed on the surface of LF networks provide abundant functional microdomains for subsequent mineralization of different forms of calcium ions and promote the formation of hydroxyapatite (HAp) crystals in simulated body fluids. We further demonstrate that the LF network inherits the innate antibacterial properties of LF and exerts a synergistic antibacterial ability with surface-enriched positively charged and hydrophobic amino acid residues, disrupting bacterial biofilm formation, enhancing microbial cell wall perturbation, and ultimately leading to microbial death. The results underscore the feasibility of the LF network as a multifunctional coating on bioscaffold surfaces, which may provide insight into its future applications in next-generation artificial bone implants with bacterial/biofilm clearance and bone tissue remodeling capabilities.
Collapse
|
15
|
Zacharovas E, Velička M, Platkevičius G, Čekauskas A, Želvys A, Niaura G, Šablinskas V. Toward a SERS Diagnostic Tool for Discrimination between Cancerous and Normal Bladder Tissues via Analysis of the Extracellular Fluid. ACS OMEGA 2022; 7:10539-10549. [PMID: 35382275 PMCID: PMC8973049 DOI: 10.1021/acsomega.2c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 05/09/2023]
Abstract
Vibrational spectroscopy provides the possibility for sensitive and precise detection of chemical changes in biomolecules due to development of cancers. In this work, label-free near-infrared surface enhanced Raman spectroscopy (SERS) was applied for the differentiation between cancerous and normal human bladder tissues via analysis of the extracellular fluid of the tissue. Specific cancer-related SERS marker bands were identified by using a 1064 nm excitation wavelength. The prominent spectral marker band was found to be located near 1052 cm-1 and was assigned to the C-C, C-O, and C-N stretching vibrations of lactic acid and/or cysteine molecules. The correct identification of 80% of samples is achieved with even limited data set and could be further improved. The further development of such a detection method could be implemented in clinical practice for the aid of surgeons in determining of boundaries of malignant tumors during the surgery.
Collapse
Affiliation(s)
- Edvinas Zacharovas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Martynas Velička
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Platkevičius
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Albertas Čekauskas
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Aru̅nas Želvys
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Gediminas Niaura
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekis Avenue 3, LT 10257, Vilnius, Lithuania
| | - Valdas Šablinskas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
16
|
Tramonti V, Lofrumento C, Martina MR, Lucchesi G, Caminati G. Graphene Oxide/Silver Nanoparticles Platforms for the Detection and Discrimination of Native and Fibrillar Lysozyme: A Combined QCM and SERS Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:600. [PMID: 35214929 PMCID: PMC8878839 DOI: 10.3390/nano12040600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
We propose a sensing platform based on graphene oxide/silver nanoparticles arrays (GO/AgNPs) for the detection and discrimination of the native and toxic fibrillar forms of an amyloid-prone protein, lysozyme, by means of a combination of Quartz Crystal Microbalance (QCM) and Surface Enhanced Raman Scattering (SERS) measurements. The GO/AgNPs layer system was obtained by Langmuir-Blodgett assembly of the silver nanoparticles followed by controlled adsorption of GO sheets on the AgNPs array. The adsorption of native and fibrillar lysozyme was followed by means of QCM, the measurements provided the kinetics and the mechanism of adsorption as a function of protein concentration as well as the mass and thickness of the adsorbed protein on both nanoplatforms. The morphology of the protein layer was characterized by Confocal Laser Scanning Microscopy experiments on Thioflavine T-stained samples. SERS experiments performed on arrays of bare AgNPs and of GO coated AgNP after native, or fibrillar, lysozyme adsorption allowed for the discrimination of the native form and toxic fibrillar structure of lysozyme. Results from combined QCM/SERS studies indicate a general construction paradigm for an efficient sensing platform with high selectivity and low detection limit for native and amyloid lysozyme.
Collapse
Affiliation(s)
| | | | | | | | - Gabriella Caminati
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (V.T.); (C.L.); (M.R.M.); (G.L.)
| |
Collapse
|
17
|
Measurement of Secondary Structure Changes in Poly-L-lysine and Lysozyme during Acoustically Levitated Single Droplet Drying Experiments by In Situ Raman Spectroscopy. SENSORS 2022; 22:s22031111. [PMID: 35161856 PMCID: PMC8839924 DOI: 10.3390/s22031111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
Drying processes such as spray drying, as commonly used in the pharmaceutical industry to convert protein-based drugs into their particulate form, can lead to an irreversible loss of protein activity caused by protein secondary structure changes. Due to the nature of these processes (high droplet number, short drying time), an in situ investigation of the structural changes occurring during a real drying process is hardly possible. Therefore, an approach for the in situ investigation of the expected secondary structural changes during single droplet protein drying in an acoustic levitator by time-resolved Raman spectroscopy was developed and is demonstrated in this paper. For that purpose, a self-developed NIR–Raman sensor generates and detects the Raman signal from the levitated solution droplet. A mathematical spectral reconstruction by multiple Voigt functions is used to quantify the relative secondary structure changes occurring during the drying process. With the developed setup, it was possible to detect and quantify the relative secondary structure changes occurring during single droplet drying experiments for the two chosen model substances: poly-L-lysine, a homopolypeptide widely used as a protein mimic, and lysozyme. Throughout drying, an increase in the β-sheet structure and a decrease in the other two structural elements, α-helix, and random coil, could be identified. In addition, it was observed that the degree of structural changes increased with increasing temperature.
Collapse
|
18
|
Phan-Xuan T, Bogdanova E, Sommertune J, Fureby AM, Fransson J, Terry AE, Kocherbitov V. The role of water in the reversibility of thermal denaturation of lysozyme in solid and liquid states. Biochem Biophys Rep 2021; 28:101184. [PMID: 34917778 PMCID: PMC8665301 DOI: 10.1016/j.bbrep.2021.101184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Although unfolding of protein in the liquid state is relatively well studied, its mechanisms in the solid state, are much less understood. We evaluated the reversibility of thermal unfolding of lysozyme with respect to the water content using a combination of thermodynamic and structural techniques such as differential scanning calorimetry, synchrotron small and wide-angle X-ray scattering (SWAXS) and Raman spectroscopy. Analysis of the endothermic thermal transition obtained by DSC scans showed three distinct unfolding behaviors at different water contents. Using SWAXS and Raman spectroscopy, we investigated reversibility of the unfolding for each hydration regime for various structural levels including overall molecular shape, secondary structure, hydrophobic and hydrogen bonding interactions. In the substantially dehydrated state below 37 wt% of water the unfolding is an irreversible process and can be described by a kinetic approach; above 60 wt% the process is reversible, and the thermodynamic equilibrium approach is applied. In the intermediate range of water contents between 37 wt% and 60 wt%, the system is phase separated and the thermal denaturation involves two processes: melting of protein crystals and unfolding of protein molecules. A phase diagram of thermal unfolding/denaturation in lysozyme - water system was constructed based on the experimental data. Denaturation of lysozyme in solid and liquid is studied using SAXS, Raman and DSC. Denaturation of lysozyme in liquid is reversible, in solid state it is irreversible. A phase diagram of lysozyme-water system is constructed.
Collapse
Affiliation(s)
- Tuan Phan-Xuan
- Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms Research Centrer for Biointerfaces, Sweden
- Max IV Laboratory, Lund University, Lund, Sweden
- Corresponding author. Biofilms Research Centrer for Biointerfaces, Sweden
| | - Ekaterina Bogdanova
- Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms Research Centrer for Biointerfaces, Sweden
| | | | | | | | - Ann E. Terry
- Max IV Laboratory, Lund University, Lund, Sweden
| | - Vitaly Kocherbitov
- Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms Research Centrer for Biointerfaces, Sweden
- Corresponding author. Department of Biomedical, Malmö University, Per Albin Hanssons väg 35, SE-21432, Malmö, Sweden.
| |
Collapse
|
19
|
Liu J, Chen J, Liu X, Shao W, Mei X, Tang Z, Cao X. Binding mechanism of lipase with Lentinus edodes mycelia polysaccharide by multi-spectroscopic methods. J Mol Recognit 2021; 35:e2946. [PMID: 34918387 DOI: 10.1002/jmr.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/12/2022]
Abstract
It is an effective strategy to avoid obesity by inhibiting the activity of lipase. In this study, the binding mechanism of lipase and Lentinus edodes mycelia polysaccharide (LMP) were explored with multi-spectral methods, for example, three-dimensional (3D) fluorescence, Fourier-transformed infrared (FT-IR), and Raman spectra. At 290 K, the binding constant was 2.44 × 105 L/mol, there was only one binding site between LMP and lipase. Static quenching was the quenching mechanism. The major forces were hydrogen bonding and van der Waals force. The binding of LMP to lipase impacted the microenvironment around tyrosine and tryptophan residues. The polarity around these residues was decreased and hydrophobicity was enhanced. This study not only revealed the binding mechanism of LMP on lipase but also provided scientific evidence for expanding the application of LMP in functional food industries.
Collapse
Affiliation(s)
- Jianli Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Jiahe Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Xiangyang Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Wei Shao
- Biology Subject teaching, College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Xueying Mei
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Zhipeng Tang
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| |
Collapse
|
20
|
Alam I, Lertanantawong B, Prongmanee W, Lertvanithphol T, Horprathum M, Sutthibutpong T, Asanithi P. Investigating lysozyme amyloid fibrillization by electrochemical impedance spectroscopy for application in lysozyme sensor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Święch D, Palumbo G, Piergies N, Pięta E, Szkudlarek A, Paluszkiewicz C. Spectroscopic Investigations of 316L Stainless Steel under Simulated Inflammatory Conditions for Implant Applications: The Effect of Tryptophan as Corrosion Inhibitor/Hydrophobicity Marker. COATINGS 2021; 11:1097. [DOI: 10.3390/coatings11091097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
In this paper, the conformational changes of tryptophan (Trp) on the corroded 316 L stainless steel (SS) surface obtained under controlled simulated inflammatory conditions have been studied by Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopy methods. The corrosion behavior and protective efficiency of the investigated samples were performed using the potentiodynamic polarization (PDP) technique in phosphate-buffered saline (PBS) solution acidified to pH 3.0 at 37 °C in the presence and absence of 10−2 M Trp, with different immersion times (2 h and 24 h). The amino acid is adsorbed onto the corroded SS surface mainly through the lone electron pair of the nitrogen atom of the indole ring, which adopts a more/less tilted orientation, and the protonated amine group. The visible differences in the intensity of the Fermi doublet upon adsorption of Trp onto the corroded SS surface, which is a sensitive marker of the local environment, suggested that a stronger hydrophobic environment is observed. This may result in an improvement of the corrosion resistance, after 2 h than 24 h of exposure time. The electrochemical results confirm this statement—the inhibition efficiency of Trp, acting as a mixed-type inhibitor, is made drastically higher after a short period of immersion.
Collapse
Affiliation(s)
- Dominika Święch
- Faculty of Foundry Engineering, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Gaetano Palumbo
- Faculty of Foundry Engineering, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland
| | | |
Collapse
|
22
|
Kuhar N, Sil S, Umapathy S. Potential of Raman spectroscopic techniques to study proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119712. [PMID: 33965670 DOI: 10.1016/j.saa.2021.119712] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/18/2023]
Abstract
Proteins are large, complex molecules responsible for various biological processes. However, protein misfolding may lead to various life-threatening diseases. Therefore, it is vital to understand the shape and structure of proteins. Despite numerous techniques, a mechanistic understanding of the protein folding process is still unclear. Therefore, new techniques are continually being explored. In the present article, we have discussed the importance of Raman spectroscopy, Raman Optical Activity (ROA) and various other advancements in Raman spectroscopy to understand protein structure and conformational changes based on the review of our earlier work and recent literature. A Raman spectrum of a protein provides unique signatures for various secondary structures like helices, beta-sheets, turns, random structures, etc., and various amino acid residues such as tyrosine, tryptophan, and phenylalanine. We have shown how Raman spectra can differentiate between bovine serum albumin (BSA) and lysozyme protein based on their difference in sequence and structure (primary, secondary and tertiary). Although it is challenging to elucidate the structure of a protein using a Raman spectrum alone, Raman spectra can be used to differentiate small changes in conformations of proteins such as BSA during melting. Various new advancements in technique and data analyses in Raman spectroscopic studies of proteins have been discussed. The last part of the review focuses on the importance of the ROA spectrum to understand additional features about proteins. The ROA spectrum is rich in information about the protein backbone due to its rigidity compared to its side chains. Furthermore, the ROA spectra of lysozyme and BSA have been presented to show how ROA provides extra information about the solvent properties of proteins.
Collapse
Affiliation(s)
- Nikki Kuhar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India
| | - Sanchita Sil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India; Defence Bioengineering and Electromedical Laboratory (DEBEL), Defence Research and Development Organization (DRDO), C V Raman Nagar, Bangalore 560 093, Karnataka, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India; Department of Instrumentation & Applied Physics, Indian Institute of Science, Bengaluru 560 012, Karnataka, India.
| |
Collapse
|
23
|
Fan W, Chen XD, Liu LM, Chen N, Zhou XG, Zhang ZH, Liu SL. Concentration-dependent influence of silver nanoparticles on amyloid fibrillation kinetics of hen egg-white lysozyme. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-dong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Li-ming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-guo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-hong Zhang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Shi-lin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Asami H, Kawauchi N, Kohno JY. Gas-phase hydration of the lysozyme ion produced by infrared-laser ablation of a droplet beam studied by photodissociation and fluorescence spectroscopy. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4620. [PMID: 32721078 DOI: 10.1002/jms.4620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Biomolecules function in an aqueous environment. Elucidation of the hydration structures of biomolecules is hence important to understand their functions. Here, we investigated the hydration structure of lysozyme (Lys) in the gas phase by photodissociation and fluorescence spectroscopy in combination with droplet-beam laser ablation mass spectrometry. We found that water molecules are held inside and on the surface of the Lys molecule, and the hydration structure around the tryptophan residue changes by photoexcitation. This study provides a novel method to observe the hydration structures of large biomolecules at the molecular level.
Collapse
Affiliation(s)
- Hiroya Asami
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Norishi Kawauchi
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
25
|
Liu H, Zhang J, Li W. The distinct binding modes of pesticides affect the phase transitions of lysozyme. CrystEngComm 2021. [DOI: 10.1039/d1ce00108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the aggregation and nucleation of proteins in the presence of organic molecules is helpful for disclosing the mechanisms of protein crystallization.
Collapse
Affiliation(s)
- Han Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
26
|
Reflection Absorption Infrared Spectroscopy Characterization of SAM Formation from 8-Mercapto- N-(phenethyl)octanamide Thiols with Phe Ring and Amide Groups. Molecules 2020; 25:molecules25235633. [PMID: 33265984 PMCID: PMC7730404 DOI: 10.3390/molecules25235633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Multifunctional amide-containing self-assembled monolayers (SAMs) provide prospects for the construction of interfaces with required physicochemical properties and distinctive stability. In this study, we report the synthesis of amide-containing thiols with terminal phenylalanine (Phe) ring functionality (HS(CH2)7CONH(CH2)2C6H5) and the characterization of the formation of SAMs from these thiols on gold by reflection absorption infrared spectroscopy (RAIRS). For reliable assignments of vibrational bands, ring deuterated analogs were synthesized and studied as well. Adsorption time induced changes in Amide-II band frequency and relative intensity of Amide-II/Amide-I bands revealed two-state sigmoidal form dependence with a transition inflection points at 2.2 ± 0.5 and 4.7 ± 0.5 min, respectively. The transition from initial (disordered) to final (hydrogen-bonded, ordered) structure resulted in increased Amide-II frequency from 1548 to 1557 cm-1, which is diagnostic for a strongly hydrogen-bonded amide network in trans conformation. However, the lateral interactions between the alkyl chains were found to be somewhat reduced when compared with well-ordered alkane thiol monolayers.
Collapse
|
27
|
Zdaniauskienė A, Charkova T, Ignatjev I, Melvydas V, Garjonytė R, Matulaitienė I, Talaikis M, Niaura G. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118560. [PMID: 32526402 DOI: 10.1016/j.saa.2020.118560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 05/13/2023]
Abstract
Studying the biochemistry of yeast cells has enabled scientists to understand many essential cellular processes in human cells. Further development of biotechnological and medical progress requires revealing surface chemistry in living cells by using a non-destructive and molecular structure sensitive technique. In this study shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was applied for probing the molecular structure of Metschnikowia pulcherrima yeast cells. Important function of studied cells is the ability to eliminate iron from growth media by precipitating the insoluble pigment pulcherrimin. Comparative SERS and SHINERS analysis of the yeast cells in combination with bare Au and shell-isolated Au@SiO2 nanoparticles were performed. It was observed that additional bands, such as adenine ring-related vibrational modes appear due to interaction with bare Au nanoparticles; the registered spectra do not coincide with the spectra where Au@SiO2 nanoparticles were used. SHINERS spectra of M. pulcherrima were significantly enhanced comparing to the Raman spectra. Based on first-principles calculations and 830-nm excited Raman analysis of pulcherrimin, the SHINERS signatures of iron pigment in yeast cells were revealed. Being protected from direct interaction of metal with adsorbate, Au@SiO2 nanoparticles yield reproducible and reliable vibrational signatures of yeast cell wall constituents.
Collapse
Affiliation(s)
- Agnė Zdaniauskienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Tatjana Charkova
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Ilja Ignatjev
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | | | - Rasa Garjonytė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Matulaitienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
28
|
Phan-Xuan T, Bogdanova E, Millqvist Fureby A, Fransson J, Terry AE, Kocherbitov V. Hydration-Induced Structural Changes in the Solid State of Protein: A SAXS/WAXS Study on Lysozyme. Mol Pharm 2020; 17:3246-3258. [PMID: 32787275 PMCID: PMC7482395 DOI: 10.1021/acs.molpharmaceut.0c00351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The stability of biologically produced
pharmaceuticals is the limiting
factor to various applications, which can be improved by formulation
in solid-state forms, mostly via lyophilization. Knowledge about the
protein structure at the molecular level in the solid state and its
transition upon rehydration is however scarce, and yet it most likely
affects the physical and chemical stability of the biological drug.
In this work, synchrotron small- and wide-angle X-ray scattering (SWAXS)
are used to characterize the structure of a model protein, lysozyme,
in the solid state and its structural transition upon rehydration
to the liquid state. The results show that the protein undergoes distortion
upon drying to adopt structures that can continuously fill the space
to remove the protein–air interface that may be formed upon
dehydration. Above a hydration threshold of 35 wt %, the native structure
of the protein is recovered. The evolution of SWAXS peaks as a function
of water content in a broad range of concentrations is discussed in
relation to the structural changes in the protein. The findings presented
here can be used for the design and optimization of solid-state formulations
of proteins with improved stability.
Collapse
Affiliation(s)
- Tuan Phan-Xuan
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden.,Max IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Ekaterina Bogdanova
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| | | | | | - Ann E Terry
- Max IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Vitaly Kocherbitov
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| |
Collapse
|
29
|
Cennamo G, Montorio D, Morra VB, Criscuolo C, Lanzillo R, Salvatore E, Camerlingo C, Lisitskiy M, Delfino I, Portaccio M, Lepore M. Surface-enhanced Raman spectroscopy of tears: toward a diagnostic tool for neurodegenerative disease identification. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-12. [PMID: 32767890 PMCID: PMC7406892 DOI: 10.1117/1.jbo.25.8.087002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
SIGNIFICANCE A noninvasive method based on surface-enhanced Raman spectroscopy (SERS) of tears was proposed as a support for diagnosing neurodegenerative pathologies, including different forms of dementia and Alzheimer's disease (AD). In this field, timely and reliable discrimination and diagnosis are critical aspects for choosing a valid medical therapy, and new methods are highly required. AIM The aim is to evince spectral differences in SERS response of human tears from AD affected, mild cognitive impaired (MCI), and healthy control (Ctr) subjects. APPROACH Human tears were characterized by SERS coupled with multivariate data analysis. Thirty-one informed subjects (Ctr, MCI, and AD) were considered. RESULTS Average SERS spectra from Ctr, MCI, and AD subjects evidenced differences related to lactoferrin and lysozyme protein components. Quantitative changes were also observed by determining the intensity ratio between selected bands. We also constructed a classification model that discriminated among AD, MCI, and Ctr subjects. The model was built using the scores obtained by performing principal component analysis on specific spectral regions (i-PCA). CONCLUSIONS The results are very encouraging with interesting perspectives for medical applications as support of clinical diagnosis and discrimination of AD from other forms of dementia.
Collapse
Affiliation(s)
- Gilda Cennamo
- Universitá “Federico II” di Napoli, Dipartimento di Sanitá Pubblica, Napoli, Italy
| | - Daniela Montorio
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Vincenzo Brescia Morra
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Chiara Criscuolo
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Roberta Lanzillo
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Elena Salvatore
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Carlo Camerlingo
- CNR-SPIN, Ist. Superconduttori, Materiali Innovativi e Dispositivi, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Mikhail Lisitskiy
- CNR-SPIN, Ist. Superconduttori, Materiali Innovativi e Dispositivi, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Ines Delfino
- Universitá della Tuscia, Dipartimento di Scienze Ecologiche e Biologiche, Viterbo, Italy
| | - Marianna Portaccio
- Universitá della Campania “L. Vanvitelli,” Dipartimento di Medicina Sperimentale, Napoli, Italy
| | - Maria Lepore
- Universitá della Campania “L. Vanvitelli,” Dipartimento di Medicina Sperimentale, Napoli, Italy
| |
Collapse
|
30
|
Dolui S, Mondal A, Roy A, Pal U, Das S, Saha A, Maiti NC. Order, Disorder, and Reorder State of Lysozyme: Aggregation Mechanism by Raman Spectroscopy. J Phys Chem B 2019; 124:50-60. [PMID: 31820990 DOI: 10.1021/acs.jpcb.9b09139] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysozyme, like many other well-folded globular proteins, under stressful conditions produces nanoscale oligomer assembly and amyloid-like fibrillar aggregates. With engaging Raman microscopy, we made a critical structural analysis of oligomer and other assembly structures of lysozyme obtained from hen egg white and provided a quantitative estimation of a protein secondary structure in different states of its fibrillation. A strong amide I Raman band at 1660 cm-1 and a N-Cα-C stretching band at ∼930 cm-1 clearly indicated the presence of a substantial amount of α-helical folds of the protein in its oligomeric assembly state. In addition, analysis of the amide III region and Raman difference spectra suggested an ample presence of a PPII-like secondary structure in these oligomers without causing major loss of α-helical folds, which is found in the case of monomeric samples. Circular dichroism study also revealed the presence of typical α-helical folds in the oligomeric state. Nonetheless, most of the Raman bands associated with aromatic residues and disulfide (-S-S-) linkages broadened in the oligomeric state and indicated a collapse in the tertiary structure. In the fibrillar state of assembly, the amide I band became much sharper and enriched with the β-sheet secondary structure. Also, the disulfide bond vibration in matured fibrils became much weaker compared to monomer and oligomers and thus confirmed certain loss/cleavage of this bond during fibrillation. The Raman band of tryptophan and tyrosine residues indicated that some of these residues experienced a greater hydrophobic microenvironment in the fibrillar state than the protein in the oligomeric state of the assembly structure.
Collapse
Affiliation(s)
- Sandip Dolui
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Anupam Roy
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Supriya Das
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Achintya Saha
- Department of Chemical Technology , University of Calcutta , 92 Acharya Prafulla Chandra Road , Calcutta 700009 , India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.C. Mullick Road , Kolkata 700032 , India
| |
Collapse
|
31
|
Ota C, Suzuki H, Tanaka SI, Takano K. Spectroscopic Signature of the Steric Strains in an Escherichia coli RNase HI Cavity-Filling Destabilized Mutant Protein. J Phys Chem B 2019; 124:91-100. [DOI: 10.1021/acs.jpcb.9b09852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chikashi Ota
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hikari Suzuki
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shun-ichi Tanaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
32
|
Lo Faro MJ, D’Andrea C, Leonardi AA, Morganti D, Irrera A, Fazio B. Fractal Silver Dendrites as 3D SERS Platform for Highly Sensitive Detection of Biomolecules in Hydration Conditions. NANOMATERIALS 2019; 9:nano9111630. [PMID: 31744124 PMCID: PMC6915472 DOI: 10.3390/nano9111630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
In this paper, we report on the realization of a highly sensitive and low cost 3D surface-enhanced Raman scattering (SERS) platform. The structural features of the Ag dendrite network that characterize the SERS material were exploited, attesting a remarked self-similarity and scale invariance over a broad range of length scales that are typical of fractal systems. Additional structural and optical investigations confirmed the purity of the metal network, which was characterized by low oxygen contamination and by broad optical resonances introduced by the fractal behavior. The SERS performances of the 3D fractal Ag dendrites were tested for the detection of lysozyme as probe molecule, attesting an enhancement factor of ~2.4 × 106. Experimental results assessed the dendrite material as a suitable SERS detection platform for biomolecules investigations in hydration conditions.
Collapse
Affiliation(s)
- Maria José Lo Faro
- Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.); (D.M.)
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- CNR - MATIS IMM, Istituto per la Microelettronica e Microsistemi, via S. Sofia 64, 95123 Catania, Italy
| | - Cristiano D’Andrea
- CNR - IFAC, Istituto di Fisica Applicata “Nello Carrara”, Via Madonna del Piano, 10, I-50019 Sesto Fiorentino, Italy;
| | - Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.); (D.M.)
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- CNR - MATIS IMM, Istituto per la Microelettronica e Microsistemi, via S. Sofia 64, 95123 Catania, Italy
| | - Dario Morganti
- Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.); (D.M.)
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Alessia Irrera
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- Correspondence: (A.I.); (B.F.); Tel.: +39-090-3976-2266 (A.I.); +39-090-3976-2246 (B.F.)
| | - Barbara Fazio
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- Correspondence: (A.I.); (B.F.); Tel.: +39-090-3976-2266 (A.I.); +39-090-3976-2246 (B.F.)
| |
Collapse
|
33
|
Fan W, Xing L, Chen N, Zhou X, Yu Y, Liu S. Promotion Effect of Succinimide on Amyloid Fibrillation of Hen Egg-White Lysozyme. J Phys Chem B 2019; 123:8057-8064. [DOI: 10.1021/acs.jpcb.9b06958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xing
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanqin Yu
- Department of Physics, Anhui University, Hefei, Anhui 230601, China
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Valldeperas M, Talaikis M, Dhayal SK, Velička M, Barauskas J, Niaura G, Nylander T. Encapsulation of Aspartic Protease in Nonlamellar Lipid Liquid Crystalline Phases. Biophys J 2019; 117:829-843. [PMID: 31422820 DOI: 10.1016/j.bpj.2019.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/04/2023] Open
Abstract
Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.
Collapse
Affiliation(s)
- Maria Valldeperas
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Martynas Velička
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | | | - Gediminas Niaura
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
35
|
Double-edged effects of aluminium ions on amyloid fibrillation of hen egg-white lysozyme. Int J Biol Macromol 2019; 132:929-938. [PMID: 30954597 DOI: 10.1016/j.ijbiomac.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Elucidating the effects of Al(III) ions on amyloid fibrillation is important to understand the association between metal ions and Alzheimer's disease. Here, Raman spectroscopy was applied to investigate amyloid fibrillation of hen egg-white lysozymes during thermal incubation with Al(III) ions or acids, combined with atomic force microscopy and thioflavin T fluorescence assays. Kinetics of conformational changes in lysozymes were assessed by monitoring six characteristic Raman spectral markers. The peak of Phe residues at 1003 cm-1 and two bands of Trp residues at 759 cm-1 and 1340-1360 cm-1 corresponded to the lysozyme tertiary structure, whereas two NCαC stretching vibrations at 899 cm-1 and 935 cm-1 and an amide I band were associated with the lysozyme skeleton. There may be a four-stage transformation mechanism underlying the kinetics of amyloid fibrillation of lysozymes with the thermal/Al(III) treatment. Comparison of kinetics under thermal/Al(III) and thermal/acid conditions revealed double-edged roles of Al(III) ions in amyloid fibrillation of lysozymes. Specifically, in addition to postponing α-helix degradation, Al(III) ions accelerated conformational transformations from α-helices to organized β-sheets. The present investigation sheds light on the controversial effects of Al(III) ions on amyloid fibrillation of lysozymes.
Collapse
|
36
|
Starciuc T, Tabary N, Paccou L, Duponchel L, Guinet Y, Martel B, Hédoux A. A detailed analysis of the influence of β-cyclodextrin derivates on the thermal denaturation of lysozyme. Int J Pharm 2019; 554:1-13. [DOI: 10.1016/j.ijpharm.2018.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/07/2022]
|
37
|
D'Andrea C, Foti A, Cottat M, Banchelli M, Capitini C, Barreca F, Canale C, de Angelis M, Relini A, Maragò OM, Pini R, Chiti F, Gucciardi PG, Matteini P. Nanoscale Discrimination between Toxic and Nontoxic Protein Misfolded Oligomers with Tip-Enhanced Raman Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800890. [PMID: 30091859 DOI: 10.1002/smll.201800890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/20/2018] [Indexed: 05/12/2023]
Abstract
Highly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip-enhanced Raman spectroscopy (TERS) as a surface-sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels. TERS provides direct assignment of specific amino acid residues that are exposed to a large extent on the surface of toxic species and buried in nontoxic oligomers. These residues, thanks to their outward disposition, might represent structural factors driving the pathogenic behavior exhibited by protein misfolded oligomers, including affecting cell membrane integrity and specific signaling pathways in neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristiano D'Andrea
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Antonino Foti
- IPCF-CNR, Institute for Chemical and Physical Processes, National Research Council, Viale F. Stagno D'Alcontres 37, I-98158, Messina, Italy
| | - Maximilien Cottat
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Martina Banchelli
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Claudia Capitini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134, Firenze, Italy
| | - Francesco Barreca
- Department of MIFT, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Via Dodecaneso 33, I-16146, Genova, Italy
| | - Marella de Angelis
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Annalisa Relini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146, Genova, Italy
| | - Onofrio M Maragò
- IPCF-CNR, Institute for Chemical and Physical Processes, National Research Council, Viale F. Stagno D'Alcontres 37, I-98158, Messina, Italy
| | - Roberto Pini
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134, Firenze, Italy
| | - Pietro G Gucciardi
- IPCF-CNR, Institute for Chemical and Physical Processes, National Research Council, Viale F. Stagno D'Alcontres 37, I-98158, Messina, Italy
| | - Paolo Matteini
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
38
|
Banchelli M, de Angelis M, D'Andrea C, Pini R, Matteini P. Triggering molecular assembly at the mesoscale for advanced Raman detection of proteins in liquid. Sci Rep 2018; 8:1033. [PMID: 29348509 PMCID: PMC5773671 DOI: 10.1038/s41598-018-19558-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023] Open
Abstract
An advanced optofluidic system for protein detection based on Raman signal amplification via dewetting and molecular gathering within temporary mesoscale assemblies is presented. The evaporation of a microliter volume of protein solution deposited in a circular microwell precisely follows an outward-receding geometry. Herein the combination of liquid withdrawal with intermolecular interactions induces the formation of self-assembled molecular domains at the solid-liquid interface. Through proper control of the evaporation rate, amplitude of the assemblies and time for spectral collection at the liquid edge are extensively raised, resulting in a local enhancement and refinement of the Raman response, respectively. Further signal amplification is obtained by taking advantage of the intense local electromagnetic fields generated upon adding a plasmonic coating to the microwell. Major advantages of this optofluidic method lie in the obtainment of high-quality, high-sensitivity Raman spectra with detection limit down to sub-micromolar values. Peculiarly, the assembled proteins in the liquid edge region maintain their native-like state without displaying spectral changes usually occurring when dried drop deposits are considered.
Collapse
Affiliation(s)
- Martina Banchelli
- Institute of Applied Physics 'Nello Carrara', National Research Council (IFAC-CNR), via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - Marella de Angelis
- Institute of Applied Physics 'Nello Carrara', National Research Council (IFAC-CNR), via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics 'Nello Carrara', National Research Council (IFAC-CNR), via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - Roberto Pini
- Institute of Applied Physics 'Nello Carrara', National Research Council (IFAC-CNR), via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - Paolo Matteini
- Institute of Applied Physics 'Nello Carrara', National Research Council (IFAC-CNR), via Madonna del Piano 10, Sesto Fiorentino, Italy.
| |
Collapse
|
39
|
Suzuki M, Mogami G, Ohsugi H, Watanabe T, Matubayasi N. Physical driving force of actomyosin motility based on the hydration effect. Cytoskeleton (Hoboken) 2017; 74:512-527. [PMID: 29087038 DOI: 10.1002/cm.21417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.,Biological and Molecular Dynamics, Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - George Mogami
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hideyuki Ohsugi
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Takahiro Watanabe
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
40
|
Takekiyo T, Yoshida K, Funahashi Y, Nagata S, Abe H, Yamaguchi T, Yoshimura Y. Helix-forming ability of proteins in alkylammonium nitrate. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Takekiyo T, Ishikawa Y, Yoshimura Y. Cryopreservation of Proteins Using Ionic Liquids: A Case Study of Cytochrome c. J Phys Chem B 2017; 121:7614-7620. [DOI: 10.1021/acs.jpcb.7b05158] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka,
Kanagawa 239-8686, Japan
| | - Yuka Ishikawa
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka,
Kanagawa 239-8686, Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka,
Kanagawa 239-8686, Japan
| |
Collapse
|
42
|
Shilpa T, George SD, Bankapur A, Chidangil S, Dharmadhikari AK, Mathur D, Madan Kumar S, Byrappa K, Abdul Salam AA. Effect of nucleants in photothermally assisted crystallization. Photochem Photobiol Sci 2017; 16:870-882. [PMID: 28379273 DOI: 10.1039/c6pp00430j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Laser-induced crystallization is emerging as a promising technique to crystallize biomolecules like amino acids and proteins. The use of external materials as nucleants and novel seeding methods open new paths for protein crystallization. We report here the results of experiments that explore the effect of nucleants on laser-based crystallization of microlitre droplets of small molecules, amino acids, and proteins. The role of parameters like solute concentration, droplet volume, type and size of the nucleant, and laser power, are systematically investigated. In addition to crystallization of standard molecules like NaCl, KCl, and glycine, we demonstrate the crystallization of negatively (l-histidine), and positively (l-aspartic acid) charged amino acids and lysozyme protein. Single crystal X-ray diffraction and Raman spectroscopy studies unequivocally indicate that the nucleants do not alter the molecular structure of glycine, hydrogen bonding patterns, and packing. Localized vaporization of the solvent near the nucleant due to photothermal heating has enabled us to achieve rapid crystallization - within 3 s - at laser intensities of 0.1 MW cm-2, significantly lower than those reported earlier, with both saturated and unsaturated solutions. The outcome of the current experiments may be of utility in tackling various crystallization problems during the formation of crystals large enough to perform X-ray crystallography.
Collapse
Affiliation(s)
- T Shilpa
- Department of Atomic and Molecular Physics, Manipal University, Manipal 576 104, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cossé A, König C, Lamprecht A, Wagner KG. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants. AAPS PharmSciTech 2017; 18:15-26. [PMID: 27193002 DOI: 10.1208/s12249-016-0548-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
The design of biodegradable implants for sustained release of proteins is a complex challenge optimizing protein polymer interaction in combination with a mini-scale process which is predictive for production. The process of hot melt extrusion (HME) was therefore conducted on 5- and 9-mm mini-scale twin screw extruders. Poly(lactic-co-glycolic acid) (PLGA) implants were characterized for their erosion properties and the in vitro release of the embedded protein (bovine serum albumin, BSA). The release of acidic monomers as well as other parameters (pH value, mass loss) during 16 weeks indicated a delayed onset of matrix erosion in week 3. BSA-loaded implants released 17.0% glycolic and 5.9% lactic acid after a 2-week lag time. Following a low burst release (3.7% BSA), sustained protein release started in week 4. Storage under stress conditions (30°C, 75% rH) revealed a shift of erosion onset of 1 week (BSA-loaded implants: 26.9% glycolic and 9.3% lactic acid). Coherent with the changed erosion profiles, an influence on the protein release was observed. Confocal laser scanning and Raman microscopy showed a homogenous protein distribution throughout the matrix after extrusion and during release studies. Raman spectra indicated a conformational change of the protein structure which could be one reason for incomplete protein release. The study underlined the suitability of the HME process to obtain a solid dispersion of protein inside a polymeric matrix providing sustained protein release. However, the incomplete protein release and the impact by storage conditions require thorough characterization and understanding of erosion and release mechanisms.
Collapse
|
44
|
Yoshimura Y, Takekiyo T, Mori T. Structural study of lysozyme in two ionic liquids at cryogenic temperature. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Sheng L, Wang J, Huang M, Xu Q, Ma M. The changes of secondary structures and properties of lysozyme along with the egg storage. Int J Biol Macromol 2016; 92:600-606. [DOI: 10.1016/j.ijbiomac.2016.07.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
46
|
Xing L, Lin K, Zhou X, Liu S, Luo Y. Multistate Mechanism of Lysozyme Denaturation through Synchronous Analysis of Raman Spectra. J Phys Chem B 2016; 120:10660-10667. [DOI: 10.1021/acs.jpcb.6b07900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Ke Lin
- School
of Physics and Optoelectronic Engineering, Xidian University, Xi’an, Shanxi 710071, China
| | | | | | | |
Collapse
|
47
|
Mohammad MA, Grimsey IM, Forbes RT. Equation to Line the Borders of the Folding-Unfolding Transition Diagram of Lysozyme. J Phys Chem B 2016; 120:6911-6. [PMID: 27341101 DOI: 10.1021/acs.jpcb.6b01317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is important for the formulators of biopharmaceuticals to predict the folding-unfolding transition of proteins. This enables them to process proteins under predetermined conditions, without denaturation. Depending on the apparent denaturation temperature (Tm) of lysozyme, we have derived an equation describing its folding-unfolding transition diagram. According to the water content and temperature, this diagram was divided into three different areas, namely, the area of the water-folded lysozyme phase, the area of the water-folded lysozyme phase and the bulk water phase, and the area of the denatured lysozyme phase. The water content controlled the appearance and intensity of the Raman band at ∼1787 cm(-1) when lysozyme powders were thermally denatured at temperatures higher than Tm.
Collapse
Affiliation(s)
- Mohammad Amin Mohammad
- Drug Delivery Group, School of Pharmacy, University of Bradford , Bradford, West Yorkshire BD7 1DP, U.K.,Department of Pharmaceutics, Faculty of Pharmacy, University of Damascus , Damascus, Syria
| | - Ian M Grimsey
- Drug Delivery Group, School of Pharmacy, University of Bradford , Bradford, West Yorkshire BD7 1DP, U.K
| | - Robert T Forbes
- Drug Delivery Group, School of Pharmacy, University of Bradford , Bradford, West Yorkshire BD7 1DP, U.K.,School of Pharmacy and Biological Sciences, University of Central Lancashire , Preston, Lancashire PR12HE, U.K
| |
Collapse
|
48
|
Tang CQ, Lin K, Zhou XG, Liu SL. In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1511240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Frontzek (neé Svanidze) AV, Paccou L, Guinet Y, Hédoux A. Study of the phase transition in lysozyme crystals by Raman spectroscopy. Biochim Biophys Acta Gen Subj 2016; 1860:412-23. [DOI: 10.1016/j.bbagen.2015.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 11/27/2022]
|
50
|
Abazari A, Chakraborty N, Hand S, Aksan A, Toner M. A Raman microspectroscopy study of water and trehalose in spin-dried cells. Biophys J 2015; 107:2253-62. [PMID: 25418294 DOI: 10.1016/j.bpj.2014.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022] Open
Abstract
Long-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level is critical for predicting the glass formation and stability for dry storage. Using Raman microspectroscopy, we estimated the trehalose and residual water contents in the microenvironment of spin-dried cells. Individual cells with or without intracellular trehalose were embedded in a solid thin layer of extracellular trehalose after spin-drying. We found strong evidence suggesting that the residual water was bound at a 2:1 water/trehalose molar ratio in both the extracellular and intracellular milieus. Other than the water associated with trehalose, we did not find any more residual water in the spin-dried sample, intra- or extracellularly. The extracellular trehalose film exhibited characteristics of an amorphous state with a glass transition temperature of ?22°C. The intracellular milieu also dried to levels suitable for glass formation at room temperature. These findings demonstrate a method for quantification of water and trehalose in desiccated specimens using confocal Raman microspectroscopy. This approach has broad use in desiccation studies to carefully investigate the relationship of water and trehalose content and distribution with the tolerance to drying in mammalian cells.
Collapse
Affiliation(s)
- Alireza Abazari
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts
| | - Nilay Chakraborty
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, Michigan
| | - Steven Hand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mehmet Toner
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts.
| |
Collapse
|