1
|
Lee M, Wang L, Zhang D, Li J, Kim J, Yun JS, Seidel J. Scanning Probe Microscopy of Halide Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407291. [PMID: 39165039 DOI: 10.1002/adma.202407291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Scanning probe microscopy (SPM) has enabled significant new insights into the nanoscale and microscale properties of solar cell materials and underlying working principles of photovoltaic and optoelectronic technology. Various SPM modes, including atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, piezoresponse force microscopy, and scanning near-field optical microscopy, can be used for the investigation of electrical, optical and chemical properties of associated functional materials. A large body of work has improved the understanding of solar cell device processing and synthesis in close synergy with SPM investigations in recent years. This review provides an overview of SPM measurement capabilities and attainable insight with a focus on recently widely investigated halide perovskite materials.
Collapse
Affiliation(s)
- Minwoo Lee
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lei Wang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Dawei Zhang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jincheol Kim
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jae Sung Yun
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Computer Science and Electronic Engineering, Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Jan Seidel
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Guo J, Zhang J, Di Y, Gan Z. Research Progress on Rashba Effect in Two-Dimensional Organic-Inorganic Hybrid Lead Halide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:683. [PMID: 38668177 PMCID: PMC11054462 DOI: 10.3390/nano14080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
The Rashba effect appears in the semiconductors with an inversion-asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic-inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites.
Collapse
Affiliation(s)
- Junhong Guo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210023, China;
| | - Jinlei Zhang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Zou Z, Qiu H, Shao Z. Unveiling heterogeneity of hysteresis in perovskite thin films. DISCOVER NANO 2024; 19:48. [PMID: 38499837 PMCID: PMC10948732 DOI: 10.1186/s11671-024-03996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent-voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I-V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
Collapse
Affiliation(s)
- Zhouyiao Zou
- Industrial Training Center, Shenzhen Polytechnic University, Shenzhen, 518055, Guangdong, China
| | - Haian Qiu
- Physics Laboratory, School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen, 518055, Guangdong, China.
| | - Zhibin Shao
- Industrial Training Center, Shenzhen Polytechnic University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Lu Y, Su L, Fang L, Luo Q, Gong M, Cao D, Chen X, Shi X, Shu H. Domain nucleation kinetics and polarization-texture-dependent electronic properties in two-dimensional α-In 2Se 3 ferroelectrics. NANOSCALE 2023; 15:18306-18316. [PMID: 37920997 DOI: 10.1039/d3nr03166g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Two-dimensional (2D) ferroelectric semiconductors, such as α-In2Se3 with switchable spontaneous polarization and superior optoelectronic properties, exhibit large potential for functional device applications. The electric transport properties and device performance of 2D α-In2Se3 are strongly sensitive to the ferroelectric domain structures and polarization textures, but they are rarely explored at the atomic scale. Herein, by a combination of first-principles calculations and a developed domain switching theory, we report the domain nucleation kinetics and polarization-texture dependent electronic properties in α-In2Se3 ferroelectrics. Our calculated results reveal that the reversed domains characterized by armchair boundaries tend to form triangular or stripped shape. The energy barrier for propagating domain boundaries is ∼1.42 eV and can be reduced by loading external electric field, which is responsible for driving the evolution of domain structures. Moreover, the domain switching leads to notable changes in the band gap and carrier spatial distribution of α-In2Se3 monolayer, resulting in higher electric resistance of multi-polarization domain structures than that of single-polarization state. The domain structures of multilayer α-In2Se3 follow a layer-by-layer switching mechanism, which causes the transition of electronic structures from self-doped p-n junctions to type-II semiconductor homojunctions. This study not only provides an in-depth insight into the domain switching mechanisms of α-In2Se3 but also opens up the possibility to tailor their electronic and transport properties.
Collapse
Affiliation(s)
- Yanan Lu
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Liqin Su
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Linghui Fang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Qingyuan Luo
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Meiying Gong
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Dan Cao
- College of Science, China Jiliang University, 310018 Hangzhou, China
| | - Xiaoshuang Chen
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China
| | - Xiaowen Shi
- Hongzhiwei Technology (Shanghai) Co., Ltd, Shanghai 201206, People's Republic of China
| | - Haibo Shu
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| |
Collapse
|
5
|
Xiao CL, Liu S, Liu XY, Li YN, Zhang P. Optoelectronic Evolution in Halogen-Doped Organic-Inorganic Halide Perovskites: A First-Principles Analysis. Molecules 2023; 28:7341. [PMID: 37959761 PMCID: PMC10647401 DOI: 10.3390/molecules28217341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Cl, Br, and I are elements in the halogen family, and are often used as dopants in semiconductors. When employed as dopants, these halogens can significantly modify the optoelectronic properties of materials. From the perspective of halogen doping, we have successfully achieved the stabilization of crystal structures in CH3NH3PbX3, CH3NH3PbI3-xClx, CH3NH3PbI3-xBrx, and CH3NH3PbBr3-xClx, which are organic-inorganic hybrid perovskites. Utilizing first-principles density functional theory calculations with the CASTEP module, we investigated the optoelectronic properties of these structures by simulations. According to the calculations, a smaller difference in electronegativity between different halogens in doped structures can result in smoother energy bands, especially in CH3NH3PbI3-xBrx and CH3NH3PbBr3-xClx. The PDOS of the Cl-3p orbitals undergoes a shift along the energy axis as a result of variances in electronegativity levels. The optoelectronic performance, carrier mobility, and structural stability of the CH3NH3PbBr3-xClx system are superior to other systems like CH3NH3PbX3. Among many materials considered, CH3NH3PbBr2Cl exhibits higher carrier mobility and a relatively narrower bandgap, making it a more suitable material for the absorption layer in solar cells. This study provides valuable insights into the methodology employed for the selection of specific types, quantities, and positions of halogens for further research on halogen doping.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhang
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (C.-L.X.); (S.L.); (X.-Y.L.); (Y.-N.L.)
| |
Collapse
|
6
|
Chen W, Liu G, Dong C, Guan X, Gao S, Hao J, Chen C, Lu P. Investigation of Vacancy-Ordered Double Perovskite Halides A 2Sn 1-xTi xY 6 (A = K, Rb, Cs; Y = Cl, Br, I): Promising Materials for Photovoltaic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2744. [PMID: 37887895 PMCID: PMC10609051 DOI: 10.3390/nano13202744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023]
Abstract
In the present study, the structural, mechanical, electronic and optical properties of all-inorganic vacancy-ordered double perovskites A2Sn1-xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) are explored by density functional theory. The structural and thermodynamic stabilities are confirmed by the tolerance factor and negative formation energy. Moreover, by doping Ti ions into vacancy-ordered double perovskite A2SnY6, the effect of Ti doping on the electronic and optical properties was investigated in detail. Then, according to the requirement of practical applications in photovoltaics, the optimal concentration of Ti ions and the most suitable halide element are determined to screen the right compositions. In addition, the mechanical, electronic and optical properties of the selected compositions are discussed, exhibiting the maximum optical absorption both in the visible and ultraviolet energy ranges; thus, the selected compositions can be considered as promising materials for application in solar photovoltaics. The results suggest a great potential of A2Sn1-xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) for further theoretical research as well as experimental research on the photovoltaic performance of stable and toxic-free perovskite solar cells.
Collapse
Affiliation(s)
- Wen Chen
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Gang Liu
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Chao Dong
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China; (C.D.); (X.G.); (P.L.)
| | - Xiaoning Guan
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China; (C.D.); (X.G.); (P.L.)
| | - Shuli Gao
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Jinbo Hao
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Changcheng Chen
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Pengfei Lu
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China; (C.D.); (X.G.); (P.L.)
| |
Collapse
|
7
|
Zheng W, Wang X, Zhang X, Chen B, Suo H, Xing Z, Wang Y, Wei HL, Chen J, Guo Y, Wang F. Emerging Halide Perovskite Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205410. [PMID: 36517207 DOI: 10.1002/adma.202205410] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Halide perovskites have gained tremendous attention in the past decade owing to their excellent properties in optoelectronics. Recently, a fascinating property, ferroelectricity, has been discovered in halide perovskites and quickly attracted widespread interest. Compared with traditional perovskite oxide ferroelectrics, halide perovskites display natural advantages such as structural softness, low weight, and easy processing, which are highly desirable in applications pursuing miniaturization and flexibility. This review focuses on the current research progress in halide perovskite ferroelectrics, encompassing the emerging materials systems and their potential applications in ferroelectric photovoltaics, self-powered photodetection, and X-ray detection. The main challenges and possible solutions in the future development of halide perovskite ferroelectric materials are also attempted to be pointed out.
Collapse
Affiliation(s)
- Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiucai Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hao Suo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhifeng Xing
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Han-Lin Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
8
|
Bagri A, Jana A, Panchal G, Chowdhury S, Raj R, Kumar M, Gupta M, Reddy VR, Phase DM, Choudhary RJ. Light-Controlled Magnetoelastic Effects in Ni/BaTiO 3 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18391-18401. [PMID: 37010892 DOI: 10.1021/acsami.2c21948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetoelastic and magnetoelectric coupling in the artificial multiferroic heterostructures facilitate valuable features for device applications such as magnetic field sensors and electric-write magnetic-read memory devices. In ferromagnetic/ferroelectric heterostructures, the intertwined physical properties can be manipulated by an external perturbation, such as an electric field, temperature, or a magnetic field. Here, we demonstrate the remote-controlled tunability of these effects under visible, coherent, and polarized light. The combined surface and bulk magnetic study of domain-correlated Ni/BaTiO3 heterostructures reveals that the system shows strong sensitivity to the light illumination via the combined effect of piezoelectricity, ferroelectric polarization, spin imbalance, magnetostriction, and magnetoelectric coupling. A well-defined ferroelastic domain structure is fully transferred from a ferroelectric substrate to the magnetostrictive layer via interface strain transfer. The visible light illumination is used to manipulate the original ferromagnetic microstructure by the light-induced domain wall motion in ferroelectric substrates and consequently the domain wall motion in the ferromagnetic layer. Our findings mimic the attractive remote-controlled ferroelectric random-access memory write and magnetic random-access memory read application scenarios, hence facilitating a perspective for room temperature spintronic device applications.
Collapse
Affiliation(s)
- Anita Bagri
- UGC-DAE Consortium for Scientific Research, Indore 452001, India
| | - Anupam Jana
- UGC-DAE Consortium for Scientific Research, Indore 452001, India
| | - Gyanendra Panchal
- Department Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Sourav Chowdhury
- UGC-DAE Consortium for Scientific Research, Indore 452001, India
| | - Rakhul Raj
- UGC-DAE Consortium for Scientific Research, Indore 452001, India
| | - Manish Kumar
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, South Korea
| | - Mukul Gupta
- UGC-DAE Consortium for Scientific Research, Indore 452001, India
| | | | | | - Ram J Choudhary
- UGC-DAE Consortium for Scientific Research, Indore 452001, India
| |
Collapse
|
9
|
Qian Q, Wan Z, Takenaka H, Keum JK, Smart TJ, Wang L, Wang P, Zhou J, Ren H, Xu D, Huang Y, Ping Y, Duan X. Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites. NATURE NANOTECHNOLOGY 2023; 18:357-364. [PMID: 36702955 DOI: 10.1038/s41565-022-01306-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/24/2022] [Indexed: 06/18/2023]
Abstract
The success of the lead halide perovskites in diverse optoelectronics has motivated considerable interest in their fundamental photocarrier dynamics. Here we report the discovery of photocarrier-induced persistent structural polarization and local ferroelectricity in lead halide perovskites. Photoconductance studies of thin-film single-crystal CsPbBr3 at 10 K reveal long-lasting persistent photoconductance with an ultralong photocarrier lifetime beyond 106 s. X-ray diffraction studies reveal that photocarrier-induced structural polarization is present up to a critical freezing temperature. Photocapacitance studies at cryogenic temperatures further demonstrate a systematic local phase transition from linear dielectric to paraelectric and relaxor ferroelectric under increasing illumination. Our theoretical investigations highlight the critical role of photocarrier-phonon coupling and large polaron formation in driving the local relaxor ferroelectric phase transition. Our findings show that this photocarrier-induced persistent structural polarization enables the formation of ferroelectric nanodomains at low temperature, which suppress carrier recombination and offer the possibility of exploring intriguing carrier-phonon interplay and the rich polaron photophysics.
Collapse
Affiliation(s)
- Qi Qian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Zhong Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Hiroyuki Takenaka
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jong K Keum
- Center for Nanophase Materials Science and Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Tyler J Smart
- Department of Physics, University of California Santa Cruz, Santa Cruz, CA, USA
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Laiyuan Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Peiqi Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jingyuan Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dong Xu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Zhao J, Ying Y, Zeng H, Zhao K, Li G, Li W. Nanoscale Thermal Strain Engineering-Driven Ferroelastic Domain Evolution in CH 3NH 3PbI 3 Perovskites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12502-12510. [PMID: 36848597 DOI: 10.1021/acsami.2c19592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A local thermal strain engineering approach via an ac-heated thermal probe was incorporated into methylammonium lead triiodide (MAPbI3) crystals and acts as a driving force for ferroic twin domain dynamics, local ion migration, and property tailoring. Periodically, striped ferroic twin domains and their dynamic evolutions were successfully induced by local thermal strain and high-resolution thermal imaging, giving decisive evidence of the ferroelastic nature in MAPbI3 perovskites at room temperature. Local thermal ionic imaging and chemical mappings demonstrate that domain contrasts are from local methylammonium (MA+) redistribution into the stripes of chemical segregation in response to the local thermal strain fields. The present results reveal an inherent coupling among local thermal strains, ferroelastic twin domains, local chemical-ion segregations, and physical properties and offer a potential path to improve the functionality of metal halide perovskite-based solar cells.
Collapse
Affiliation(s)
- Jiaqi Zhao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Ying
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huarong Zeng
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunyu Zhao
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorong Li
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Chelil N, Sahnoun M, Benhalima Z, Larbi R, Eldin SM. Insights into the relationship between ferroelectric and photovoltaic properties in CsGeI 3 for solar energy conversion. RSC Adv 2023; 13:1955-1963. [PMID: 36712603 PMCID: PMC9833107 DOI: 10.1039/d2ra06860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Materials such as oxide and halide perovskites that simultaneously exhibit spontaneous polarization and absorption of visible light are called photoferroelectrics. They hold great promise for the development of applications in optoelectronics, information storage, and energy conversion. Devices based on ferroelectric photovoltaic materials yield an open-circuit voltage that is much higher than the band gap of the corresponding active material owing to a strong internal electric field. Their efficiency has been proposed to exceed the Shockley-Queisser limit for ideal solar cells. In this paper, we present theoretical calculations of the photovoltaic properties of the ferroelectric phase of the inorganic germanium halide perovskite (CsGeI3). Firstly, the electronic, optical and ferroelectric properties were calculated using the FP-LAPW method based on density functional theory, and the modern theory of polarization based on the Berry phase approach, respectively. The photovoltaic performance was evaluated using the Spectroscopic Limited Maximum Efficiency (SLME) model based on the results of first-principles calculations, in which the power conversion efficiency and the photocurrent density-voltage (J-V) characteristics were estimated. The calculated results show that the valence band maximum (VBM) of CsGeI3 is mainly contributed by the I-5p and Ge-4s orbitals, whereas the conduction band is predominantly derived from Ge-4p orbitals. It can be seen that CsGeI3 exhibits a direct bandgap semiconductor at the symmetric point of Z with a value of 1.53 eV, which is in good agreement with previous experimental results. The ferroelectric properties were therefore investigated. With a switching energy barrier of 19.83 meV per atom, CsGeI3 has a higher theoretical ferroelectric polarization strength of 15.82 μC cm-2. The SLME calculation also shows that CsGeI3 has a high photoelectric conversion efficiency of over 28%. In addition to confirming their established favorable band gap and strong absorption, we demonstrate that CsGeI3 exhibits a large shift current bulk photovoltaic effect of up to 40 μA V-2 in the visible region. Thus, this material is a potential ferroelectric photovoltaic absorbed layer with high efficiency.
Collapse
Affiliation(s)
- N Chelil
- Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara Algeria
| | - M Sahnoun
- Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara Algeria
| | - Z Benhalima
- Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara Algeria
| | - R Larbi
- Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara Algeria
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt New Cairo 11835 Egypt
| |
Collapse
|
12
|
Zienkiewicz JA, Kałduńska K, Fedoruk K, Barros dos Santos AJ, Stefanski M, Paraguassu W, Muzioł TM, Ptak M. Luminescence and Dielectric Switchable Properties of a 1D (1,1,1-Trimethylhydrazinium)PbI 3 Hybrid Perovskitoid. Inorg Chem 2022; 61:20886-20895. [PMID: 36520079 PMCID: PMC9795545 DOI: 10.1021/acs.inorgchem.2c03287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis and investigation of the physicochemical properties of a novel one-dimensional (1D) hybrid organic-inorganic perovskitoid templated by the 1,1,1-trimethylhydrazinium (Me3Hy+) cation are reported. (Me3Hy)[PbI3] crystallizes in the hexagonal P63/m symmetry and undergoes two phase transitions (PTs) during heating (cooling) at 322 (320) and 207 (202) K. X-ray diffraction data and temperature-dependent vibrational studies show that the second-order PT to the high-temperature hexagonal P63/mmc phase is associated with a weak change in entropy and is related to weak structural changes and different confinement of cations in the available space. The second PT to the low-temperature orthorhombic Pbca phase that corresponds to the high change in entropy and dielectric switching is associated with an ordering of the trimethylhydrazinium cations, re-arrangement and strengthening of hydrogen bonds, and slightly shifted lead-iodide octahedral chains. The high-pressure Raman data revealed two additional PTs, one between 2.8 and 3.2 GPa, related to the symmetry decrease, ordering of the cations, and inorganic chain distortion, and the other in the 6.4-6.8 GPa range related to the partial and reversible amorphization. Optical studies revealed that (Me3Hy)[PbI3] has a wide band gap (3.20 eV) and emits reddish-orange excitonic emission at low temperatures with an activation energy of 65 meV.
Collapse
Affiliation(s)
- Jan. A. Zienkiewicz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422Wrocław, Poland,
| | - Karolina Kałduńska
- Department
of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100Toruń, Poland
| | - Katarzyna Fedoruk
- Institute
of Physics, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370Wrocław, Poland
| | - Antonio J. Barros dos Santos
- Department
of Physics, Federal University of Pará, Campus do Guamá, Rua Augusto
Corrêa 01, Belém, 66075110Pará, Brazil
| | - Mariusz Stefanski
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422Wrocław, Poland
| | - Waldeci Paraguassu
- Department
of Physics, Federal University of Pará, Campus do Guamá, Rua Augusto
Corrêa 01, Belém, 66075110Pará, Brazil
| | - Tadeusz M. Muzioł
- Department
of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100Toruń, Poland
| | - Maciej Ptak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422Wrocław, Poland
| |
Collapse
|
13
|
Telychko M, Edalatmanesh S, Leng K, Abdelwahab I, Guo N, Zhang C, Mendieta-Moreno JI, Nachtigall M, Li J, Loh KP, Jelínek P, Lu J. Sub-angstrom noninvasive imaging of atomic arrangement in 2D hybrid perovskites. SCIENCE ADVANCES 2022; 8:eabj0395. [PMID: 35486735 PMCID: PMC9054006 DOI: 10.1126/sciadv.abj0395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Noninvasive imaging of the atomic arrangement in two-dimensional (2D) Ruddlesden-Popper hybrid perovskites (RPPs) is challenging because of the insulating nature and softness of the organic layers. Here, we demonstrate a sub-angstrom resolution imaging of both soft organic layers and inorganic framework in a prototypical 2D lead-halide RPP crystal via combined tip-functionalized scanning tunneling microscopy (STM) and noncontact atomic force microscopy (ncAFM) corroborated by theoretical simulations. STM measurements unveil the atomic reconstruction of the inorganic lead-halide lattice and overall twin-domain composition of the RPP crystal, while ncAFM measurements with a CO-tip enable nonperturbative visualization of the cooperative reordering of surface organic cations driven by their hydrogen bonding interactions with the inorganic lattice. Moreover, such a joint technique also allows for the atomic-scale imaging of the electrostatic potential variation across the twin-domain walls, revealing alternating quasi-1D electron and hole channels at neighboring twin boundaries, which may influence in-plane exciton transport and dissociation.
Collapse
Affiliation(s)
- Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shayan Edalatmanesh
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Kai Leng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ibrahim Abdelwahab
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Na Guo
- Department of Physics, National University of Singapore, Blk S12, Science Drive 3, Singapore 117551, Singapore
| | - Chun Zhang
- Department of Physics, National University of Singapore, Blk S12, Science Drive 3, Singapore 117551, Singapore
| | | | - Matyas Nachtigall
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Jing Li
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Corresponding author. (J.L.); (P.J.); (K.P.L.)
| | - Pavel Jelínek
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
- Corresponding author. (J.L.); (P.J.); (K.P.L.)
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- Corresponding author. (J.L.); (P.J.); (K.P.L.)
| |
Collapse
|
14
|
Zhang CC, Yuan S, Lou YH, Okada H, Wang ZK. Physical Fields Manipulation for High-Performance Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107556. [PMID: 35043565 DOI: 10.1002/smll.202107556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/14/2023]
Abstract
With the efforts of researchers from all over the world, metal halide perovskite solar cells (PSCs) have been booming rapidly in recent years. Generally, perovskite films are sensitive to surrounding conditions and will be changed under the action of physical fields, resulting in lattice distortion, degradation, ion migration, and so on. In this review, the progress of physical fields manipulation in PSCs, including the electric field, magnetic field, light field, stress field, and thermal field are reviewed. On this basis, the influences of these fields on PSCs are summarized and prospected. Finally, challenges and prospective research directions on how to make better use of external-fields while minimizing the unnecessary and disruptive impacts on commercial PSCs with high-efficiency and steady output are proposed.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Shuai Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yan-Hui Lou
- School of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Hiroyuki Okada
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
15
|
Zhu W, Khan AA, Rana MM, Gautheron-Bernard R, Tanguy NR, Yan N, Turban P, Ababou-Girard S, Ban D. Poly(vinylidene fluoride)-Stabilized Black γ-Phase CsPbI 3 Perovskite for High-Performance Piezoelectric Nanogenerators. ACS OMEGA 2022; 7:10559-10567. [PMID: 35382301 PMCID: PMC8973101 DOI: 10.1021/acsomega.2c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 05/28/2023]
Abstract
Halide perovskite materials have been recently recognized as promising materials for piezoelectric nanogenerators (PENGs) due to their potentially strong ferroelectricity and piezoelectricity. Here, we report a new method using a poly(vinylidene fluoride) (PVDF) polymer to achieve excellent long-term stable black γ-phase CsPbI3 and explore the piezoelectric performance on a CsPbI3@PVDF composite film. The PVDF-stabilized black-phase CsPbI3 perovskite composite film can be stable under ambient conditions for more than 60 days and over 24 h while heated at 80 °C. Piezoresponse force spectroscopy measurements revealed that the black CsPbI3/PVDF composite contains well-developed ferroelectric properties with a high piezoelectric charge coefficient (d 33) of 28.4 pm/V. The black phase of the CsPbI3-based PVDF composite exhibited 2 times higher performance than the yellow phase of the CsPbI3-based composite. A layer-by-layer stacking method was adopted to tune the thickness of the composite film. A five-layer black-phase CsPbI3@PVDF composite PENG exhibited a voltage output of 26 V and a current density of 1.1 μA/cm2. The output power can reach a peak value of 25 μW. Moreover, the PENG can be utilized to charge capacitors through a bridge rectifier and display good durability without degradation for over 14 000 cyclic tests. These results reveal the feasibility of the all-inorganic perovskite for the design and development of high-performance piezoelectric nanogenerators.
Collapse
Affiliation(s)
- Weiguang Zhu
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Asif Abdullah Khan
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Md Masud Rana
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Nicolas R. Tanguy
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Ning Yan
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Pascal Turban
- Univ
Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Soraya Ababou-Girard
- Univ
Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Dayan Ban
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department
of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- School
of Physics and Electronics, Henan University, Kaifeng 475001, Henan, P. R. China
| |
Collapse
|
16
|
Maiti A, Pal AJ. Carrier recombination in CH 3NH 3PbI 3: why is it a slow process? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:024501. [PMID: 35038679 DOI: 10.1088/1361-6633/ac4be9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In methylammonium lead iodide (MAPbI3), a slow recombination process of photogenerated carriers has often been considered to be the most intriguing property of the material resulting in high-efficiency perovskite solar cells. In spite of intense research over a decade or so, a complete understanding of carrier recombination dynamics in MAPbI3has remained inconclusive. In this regard, several microscopic processes have been proposed so far in order to explain the slow recombination pathways (both radiative and non-radiative), such as the existence of shallow defects, a weak electron-phonon coupling, presence of ferroelectric domains, screening of band-edge charges through the formation of polarons, occurrence of the Rashba splitting in the band(s), and photon-recycling in the material. Based on the up-to-date findings, we have critically assessed each of these proposals/models to shed light on the origin of a slow recombination process in MAPbI3. In this review, we have presented the interplay between the mechanisms and our views/perspectives in determining the likely processes, which may dictate the recombination dynamics in the material. We have also deliberated on their interdependences in decoupling contributions of different recombination processes.
Collapse
Affiliation(s)
- Abhishek Maiti
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
17
|
Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. MATERIALS HORIZONS 2022; 9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Theodore A Cohen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Breena M Sperry
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Laura M Jacoby
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Lin CK, Huang QR, Hayashi M, Kuo JL. An ab initio anharmonic approach to IR, Raman and SFG spectra of the solvated methylammonium ion. Phys Chem Chem Phys 2021; 23:25736-25747. [PMID: 34755745 DOI: 10.1039/d1cp04451f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The methylammonium ion (CH3NH3+, or noted as MA-H+) is one of the smallest organic ammonium ions that play important roles in organic-inorganic halide perovskites. Despite the simple structure, the vibrational spectra of MA-H+ exhibit complicated features in the 3 μm region which are sensitive to the solvation environment. In the present work, we have applied the ab initio anharmonic algorithm at the CCSD/aug-cc-pVDZ level to simulate the IR and Raman spectra of the solvated methylammonium ion, MA-H+⋯X3, where X denotes the solvent molecules, to understand the Fermi resonance mechanism in which the overtones of NH bending modes are coupled with the fundamentals of NH stretching modes. The spectral features of the solvated clusters with proper solvent species resemble those observed in the perovskite crystal, indicating that they have similar solvation environments and hydrogen bond interactions. Therefore, a linkage between the gas-phase cluster models and the condensed-phase materials can be established, and our simulations and anharmonic analyses help in interpreting the spectral assignments of the observed IR and Raman spectra of perovskites reliably. Furthermore, we have extended this approach to the SFG spectra to demonstrate the selective appearance of bands depending on both the beam polarization configurations and the symmetry of vibrational modes.
Collapse
Affiliation(s)
- Chih-Kai Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China.
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China.
| |
Collapse
|
19
|
Stereochemical expression of ns2 electron pairs in metal halide perovskites. Nat Rev Chem 2021; 5:838-852. [PMID: 37117392 DOI: 10.1038/s41570-021-00335-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Metal halide perovskites (MHPs) are characterized as strongly anharmonic and dynamic lattices. While there is a consensus on the solvation-like polarization effect in these materials, whether static polarization, that is, ferroelectricity, exists or not in 3D MHPs remains controversial. In this Review, we resolve this controversy by analysing the stereochemical expression (SE) of the ns2 electron pair (NSEP) on group IV metal cations. The SE-NSEP is key to lattice instability, which governs the breaking of inversion symmetry and induces ferroelectricity. The SE-NSEP is diminishingly small in commonly studied 3D lead iodide or bromide perovskites, indicating an absence of ferroelectricity. In contrast, 2D MHPs promote the SE-NSEP and produce unambiguous ferroelectricity or antiferroelectricity. Irrespective of ferroelectricity, the dynamic manifestation of the SE-NSEP provides the missing link to understanding polar fluctuations and efficient dielectric screening in MHPs, thus, contributing to the long carrier lifetimes and diffusion lengths.
Collapse
|
20
|
Kim EH, Lee JH, Kim SH, Gu JH, Lee D. A-Site Effect on the Oxidation Process of Sn-Halide Perovskite: First-Principles Calculations. J Phys Chem Lett 2021; 12:9691-9696. [PMID: 34590857 DOI: 10.1021/acs.jpclett.1c03033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tin-halide perovskite solar cells (Sn-PSCs) are promising candidates as an alternative to toxic lead-halide PSCs. However, Sn2+ is easily oxidized to Sn4+, so Sn-PSCs are unstable in air. Here, we use first-principles density functional theory calculations to elucidate the oxidation process of Sn2+ at the surface of ASnBr3 [A = Cs or CH3NH3 (MA)]. Regardless of the A-site cation, adsorption of O2 leads to the formation of SnO2, which creates a Sn vacancy at the surface. The A-site cation determines whether the created vacancies are stabilized in the bulk or at the surface. For CsSnBr3, the Sn vacancy is stabilized at the surface, so further oxidation is limited. For MASnBr3, the Sn vacancy moves into bulk region, so additional Sn is supplied to the surface; as a result, a continuous oxidation process can occur. The stabilization of Sn vacancy is closely related to the polarization that the A-site cation causes in the system.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - June Ho Lee
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seong Hun Kim
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jun Hyeong Gu
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
21
|
Gegevičius R, Franckevičius M, Gulbinas V. The Role of Grain Boundaries in Charge Carrier Dynamics in Polycrystalline Metal Halide Perovskites. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rokas Gegevičius
- Department of Molecular Compound Physics Center for Physical Sciences and Technology Saulėtekio ave. 3 LT-10257 Vilnius Lithuania
| | - Marius Franckevičius
- Department of Molecular Compound Physics Center for Physical Sciences and Technology Saulėtekio ave. 3 LT-10257 Vilnius Lithuania
| | - Vidmantas Gulbinas
- Department of Molecular Compound Physics Center for Physical Sciences and Technology Saulėtekio ave. 3 LT-10257 Vilnius Lithuania
| |
Collapse
|
22
|
Minussi FB, Reis SP, Araújo EB. DC bias electric field effects on ac electrical conductivity of MAPbI 3suggesting intrinsic changes on structure and charge carrier dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:475702. [PMID: 34464945 DOI: 10.1088/1361-648x/ac2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Methylammonium lead iodide (MAPbI3) emerges as a promising halide perovskite material for the next generation of solar cells due to its high efficiency and flexibility in material growth. Despite intensive studies of their optical and electronic properties in the past ten years, there are no reports on dc bias electric field effects on conductivity in a wide temperature range. In this work, we report the combined effects of frequency, temperature, and dc bias electric field on the ac conductivity of MAPbI3. We found that the results of dc bias electric fields are very contrasting in the tetragonal and cubic phases. In the tetragonal phase, sufficiently high dc bias electric fields induce a conductivity peak appearance ∼290 K well evidenced at frequencies higher than 100 kHz. Excluding possible degradation and extrinsic factors, we propose that this peak suggests a ferroelectric-like transition. In the absence of a dc bias electric field, the ac conductivity in the tetragonal phase increases with temperature while decreases with temperature in the cubic phase. Also, ac activation energies for tetragonal and cubic phases were found to be inversely and directly proportional to the dc bias electric field, respectively. This behavior was attributed to the ionic conduction, possibly of MA+and I-ions, for the tetragonal phase. As for the cubic phase, the ac conduction dynamics appear to be metallic-like, which seems to change to a polaronic-controlled charge transport to increased dc bias electric fields.
Collapse
Affiliation(s)
- F B Minussi
- Department of Physics and Chemistry, São Paulo State University, 15385-000 Ilha Solteira, Brazil
| | - S P Reis
- Department of Physics and Chemistry, São Paulo State University, 15385-000 Ilha Solteira, Brazil
- Federal Institute of Education, Science and Technology of São Paulo, 15503-110 Votuporanga, Brazil
| | - E B Araújo
- Department of Physics and Chemistry, São Paulo State University, 15385-000 Ilha Solteira, Brazil
| |
Collapse
|
23
|
Wali Q, Aamir M, Ullah A, Iftikhar FJ, Khan ME, Akhtar J, Yang S. Fundamentals of Hysteresis in Perovskite Solar Cells: From Structure-Property Relationship to Neoteric Breakthroughs. CHEM REC 2021; 22:e202100150. [PMID: 34418290 DOI: 10.1002/tcr.202100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
Perovskite solar cells (PSC) have shown a rapid increase in efficiency than other photovoltaic technology. Despite its success in terms of efficiency, this technology is inundated with numerous challenges hindering the progress towards commercial viability. The crucial one is the anomalous hysteresis observed in the photocurrent density-voltage (J-V) response in PSC. The hysteresis phenomenon in the solar cell presents a challenge for determining the accurate power conversion efficiency of the device. A detailed investigation of the fundamental origin of hysteresis behavior in the device and its associated mechanisms is highly crucial. Though numerous theories have been proposed to explain the causes of hysteresis, its origin includes slow transient capacitive current, trapping, and de-trapping process, ion migrations, and ferroelectric polarization. The remaining issues and future research required toward the understanding of hysteresis in PSC device is also discussed.
Collapse
Affiliation(s)
- Qamar Wali
- School of Applied Sciences and Humanities, National University of Technology, I-12, Islamabad, 42000, Pakistan
| | - Muhammad Aamir
- Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, 10250 (AJK), Pakistan
| | - Abid Ullah
- Material laboratory, Department of Physics, Comsats Institute of information technology, Islamabad, Pakistan
| | - Faiza Jan Iftikhar
- School of Applied Sciences and Humanities, National University of Technology, I-12, Islamabad, 42000, Pakistan
| | - Muhammad Ejaz Khan
- Department of Computer Engineering, National University of Technology, I-12, Islamabad, 42000, Pakistan
| | - Javeed Akhtar
- Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, 10250 (AJK), Pakistan
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, Shanghai "Belt & Road" Joint Laboratory of Advanced Fibers and Low-dimension Materials College of Materials Science and Engineering, Donghua University, Shanghai., 201620, P.R. China
| |
Collapse
|
24
|
He D, Tang X, Liu Y, Liu J, Du W, He P, Wang H. Phase Transition Effect on Ferroelectric Domain Surface Charge Dynamics in BaTiO 3 Single Crystal. MATERIALS 2021; 14:ma14164463. [PMID: 34442985 PMCID: PMC8398434 DOI: 10.3390/ma14164463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
The ferroelectric domain surface charge dynamics after a cubic-to-tetragonal phase transition on the BaTiO3 single crystal (001) surface was directly measured through scanning probe microscopy. The captured surface potential distribution shows significant changes: the domain structures formed rapidly, but the surface potential on polarized c domain was unstable and reversed its sign after lengthy lapse; the high broad potential barrier burst at the corrugated a-c domain wall and continued to dissipate thereafter. The generation of polarization charges and the migration of surface screening charges in the surrounding environment take the main responsibility in the experiment. Furthermore, the a-c domain wall suffers large topological defects and polarity variation, resulting in domain wall broadening and stress changes. Thus, the a-c domain wall has excess energy and polarization change is inclined to assemble on it. The potential barrier decay with time after exposing to the surrounding environment also gave proof of the surface screening charge migration at surface. Thus, both domain and domain wall characteristics should be taken into account in ferroelectric application.
Collapse
Affiliation(s)
- Dongyu He
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China; (X.T.); (Y.L.); (W.D.); (P.H.); (H.W.)
- Correspondence:
| | - Xiujian Tang
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China; (X.T.); (Y.L.); (W.D.); (P.H.); (H.W.)
| | - Yuxin Liu
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China; (X.T.); (Y.L.); (W.D.); (P.H.); (H.W.)
| | - Jian Liu
- National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China;
| | - Wenbo Du
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China; (X.T.); (Y.L.); (W.D.); (P.H.); (H.W.)
| | - Pengfei He
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China; (X.T.); (Y.L.); (W.D.); (P.H.); (H.W.)
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Haidou Wang
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China; (X.T.); (Y.L.); (W.D.); (P.H.); (H.W.)
- National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China;
| |
Collapse
|
25
|
Huang B, Liu Z, Wu C, Zhang Y, Zhao J, Wang X, Li J. Polar or nonpolar? That is not the question for perovskite solar cells. Natl Sci Rev 2021; 8:nwab094. [PMID: 34691717 PMCID: PMC8363338 DOI: 10.1093/nsr/nwab094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Perovskite solar cells (PSC) are promising next generation photovoltaic technologies, and there is considerable interest in the role of possible polarization of organic-inorganic halide perovskites (OIHPs) in photovoltaic conversion. The polarity of OIHPs is still hotly debated, however. In this review, we examine recent literature on the polarity of OIHPs from both theoretical and experimental points of view, and argue that they can be both polar and nonpolar, depending on composition, processing and environment. Implications of OIHP polarity to photovoltaic conversion are also discussed, and new insights gained through research efforts. In the future, integration of a local scanning probe with global macroscopic measurements in situ will provide invaluable microscopic insight into the intriguing macroscopic phenomena, while synchrotron diffractions and scanning transmission electron microscopy on more stable samples may ultimately settle the debate.
Collapse
Affiliation(s)
- Boyuan Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenghao Liu
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changwei Wu
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuan Zhang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinjin Zhao
- School of Materials Science and Engineering, Key Laboratory of Smart Materials and Structures Mechanics of Hebei Province, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
26
|
Zhang HY, Chen XG, Tang YY, Liao WQ, Di FF, Mu X, Peng H, Xiong RG. PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics. Chem Soc Rev 2021; 50:8248-8278. [PMID: 34081064 DOI: 10.1039/c9cs00504h] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rubio-Marcos F, Del Campo A, Ordoñez-Pimentel J, Venet M, Rojas-Hernandez RE, Páez-Margarit D, Ochoa DA, Fernández JF, García JE. Photocontrolled Strain in Polycrystalline Ferroelectrics via Domain Engineering Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20858-20864. [PMID: 33881295 PMCID: PMC8480775 DOI: 10.1021/acsami.1c03162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The use of photonic concepts to achieve nanoactuation based on light triggering requires complex architectures to obtain the desired effect. In this context, the recent discovery of reversible optical control of the domain configuration in ferroelectrics offers a light-ferroic interplay that can be easily controlled. To date, however, the optical control of ferroelectric domains has been explored in single crystals, although polycrystals are technologically more desirable because they can be manufactured in a scalable and reproducible fashion. Here we report experimental evidence for a large photostrain response in polycrystalline BaTiO3 that is comparable to their electrostrain values. Domains engineering is performed through grain size control, thereby evidencing that charged domain walls appear to be the functional interfaces for the light-driven domain switching. The findings shed light on the design of high-performance photoactuators based on ferroelectric ceramics, providing a feasible alternative to conventional voltage-driven nanoactuators.
Collapse
Affiliation(s)
- Fernando Rubio-Marcos
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, CSIC, Madrid 28049, Spain
| | - Adolfo Del Campo
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, CSIC, Madrid 28049, Spain
| | - Jonathan Ordoñez-Pimentel
- Department
of Physics, Universitat Politècnica
de Catalunya, BarcelonaTech, Barcelona 08034, Spain
- Department
of Physics, Universidade Federal de Sao
Carlos, Sao Carlos 13565-905, Brazil
| | - Michel Venet
- Department
of Physics, Universidade Federal de Sao
Carlos, Sao Carlos 13565-905, Brazil
| | | | - David Páez-Margarit
- Department
of Physics, Universitat Politècnica
de Catalunya, BarcelonaTech, Barcelona 08034, Spain
| | - Diego A. Ochoa
- Department
of Physics, Universitat Politècnica
de Catalunya, BarcelonaTech, Barcelona 08034, Spain
| | - José F. Fernández
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, CSIC, Madrid 28049, Spain
| | - Jose E. García
- Department
of Physics, Universitat Politècnica
de Catalunya, BarcelonaTech, Barcelona 08034, Spain
| |
Collapse
|
28
|
Li M, Yang S, Shi R, Li L, Zhu R, Li X, Cheng Y, Ma X, Zhang J, Liu K, Yu P, Gao P. Engineering of multiferroic BiFeO 3 grain boundaries with head-to-head polarization configurations. Sci Bull (Beijing) 2021; 66:771-776. [PMID: 36654134 DOI: 10.1016/j.scib.2020.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 01/20/2023]
Abstract
Confined low dimensional charges with high density such as two-dimensional electron gas (2DEG) at interfaces and charged domain walls in ferroelectrics show great potential to serve as functional elements in future nanoelectronics. However, stabilization and control of low dimensional charges is challenging, as they are usually subject to enormous depolarization fields. Here, we demonstrate a method to fabricate tunable charged interfaces with ~77°, 86° and 94° head-to-head polarization configurations in multiferroic BiFeO3 thin films by grain boundary engineering. The adjacent grains are cohesively bonded and the boundary is about 1 nm in width and devoid of any amorphous region. Remarkably, the polarization remains almost unchanged near the grain boundaries, indicating the polarization charges are well compensated, i.e., there should be two-dimensional charge gas confined at grain boundaries. Adjusting the tilt angle of the grain boundaries enables tuning the angle of polarization configurations from 71° to 109°, which in turn allows the control of charge density at the grain boundaries. This general and feasible method opens new doors for the application of charged interfaces in next generation nanoelectronics.
Collapse
Affiliation(s)
- Mingqiang Li
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuzhen Yang
- Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China; TCL China Star Optoelectronics Technology Co., Ltd., Shenzhen 518132, China; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Ruochen Shi
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Linglong Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Ruixue Zhu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiaomei Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiumei Ma
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Jingmin Zhang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Kaihui Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.
| | - Peng Gao
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Collaborative Innovation Centre of Quantum Matter, Beijing 100871, China.
| |
Collapse
|
29
|
Zhu TY, Shu DJ. Polarization-Controlled Surface Defect Formation in a Hybrid Perovskite. J Phys Chem Lett 2021; 12:3898-3906. [PMID: 33861073 DOI: 10.1021/acs.jpclett.1c00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid perovskites have two properties that are absent in traditional inorganic photovoltaic materials, namely, polarization and mobile ionic defects, the interaction between which may introduce new features into the materials. By using the first-principles calculations, we find that the formation energies of the vacancy defects at a tetragonal MAPbI3(110) surface are highly related to the surface polarization. The positive total polarization and local polarization of MA facilitate the formation of surface MA vacancies, whereas the negative total polarization and local polarization of MAI are favorable for the formation of surface iodine vacancies. The phenomena can be explained quantitatively on the basis of the two kinds of Coulomb interactions between the charged defect and the polarization-induced electrostatic field. The comprehensive insights into the interaction between the polarization and the ionic defects in hybrid perovskites can provide a new avenue for defect control for high-performance perovskite solar cells via surface polarization.
Collapse
Affiliation(s)
- Tian-Yuan Zhu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Da-Jun Shu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Liu Y, Trimby P, Collins L, Ahmadi M, Winkelmann A, Proksch R, Ovchinnikova OS. Correlating Crystallographic Orientation and Ferroic Properties of Twin Domains in Metal Halide Perovskites. ACS NANO 2021; 15:7139-7148. [PMID: 33770442 DOI: 10.1021/acsnano.1c00310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal halide perovskite (MHP) solar cells have attracted worldwide research interest. Although it has been well established that grain, grain boundary, and grain facet affect MHPs optoelectronic properties, less is known about subgrain structures. Recently, MHP twin stripes, a subgrain feature, have stimulated extensive discussion due to the potential for both beneficial and detrimental effects of ferroelectricity on optoelectronic properties. Connecting the ferroic behavior of twin stripes in MHPs with crystal orientation will be a vital step to understand the ferroic nature and the effects of twin stripes. In this work, we studied the crystallographic orientation and ferroic properties of CH3NH3PbI3 twin stripes, using electron backscatter diffraction (EBSD) and advanced piezoresponse force microscopy (PFM), respectively. Using EBSD, we discovered that the orientation relationship across the twin walls in CH3NH3PbI3 is a 90° rotation about ⟨1̅1̅0⟩, with the ⟨030⟩ and ⟨111⟩ directions parallel to the direction normal to the surface. By careful inspection of CH3NH3PbI3 PFM results including in-plane and out-of-plane PFM measurements, we demonstrate some nonferroelectric contributions to the PFM responses of this CH3NH3PbI3 sample, suggesting that the PFM signal in this CH3NH3PbI3 sample is affected by nonferroelectric and nonpiezoelectric forces. If there is piezoelectric response, it is below the detection sensitivity of our interferometric displacement sensor PFM (<0.615 pm/V). Overall, this work offers an integrated picture describing the crystallographic orientations and the origin of PFM signal of MHPs twin stripes, which is critical to understanding the ferroicity in MHPs.
Collapse
Affiliation(s)
- Yongtao Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Patrick Trimby
- Oxford Instruments Nanoanalysis, High Wycombe, Buckinghamshire HP123SE, United Kingdom
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mahshid Ahmadi
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aimo Winkelmann
- Academic Centre for Materials and Nanotechnology (ACMiN), AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Roger Proksch
- Asylum Research, An Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Olga S Ovchinnikova
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
31
|
Bie J, Yang DB, Ju MG, Pan Q, You YM, Fa W, Zeng XC, Chen S. Molecular Design of Three-Dimensional Metal-Free A(NH 4)X 3 Perovskites for Photovoltaic Applications. JACS AU 2021; 1:475-483. [PMID: 34467310 PMCID: PMC8395623 DOI: 10.1021/jacsau.1c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 05/19/2023]
Abstract
The intense research activities on the hybrid organic-inorganic perovskites (HOIPs) have led to the greatly improved light absorbers for solar cells with high power conversion efficiency (PCE). However, it is still challenging to find an alternative lead-free perovskite to replace the organohalide lead perovskites to achieve high PCE. This is because both previous experimental and theoretical investigations have shown that the Pb2+ cations play a dominating role in contributing the desirable frontier electronic bands of the HOIPs for light absorbing. Recent advances in the chemical synthesis of three-dimensional (3D) metal-free perovskites, by replacing Pb2+ with NH4 +, have markedly enriched the family of multifunctionalized perovskites (Ye et al., Science2018, 361, 151-155). These metal-free perovskites possess the chemical formula of A(NH4)X3, where A is divalent organic cations and X denotes halogen atoms. Without involving transition-metal cations, the metal-free A(NH4)X3 perovskites can entail notably different frontier electronic band features from those of the organohalide lead perovskites. Indeed, the valence and conduction bands of A(NH4)X3 perovskites are mainly attributed by the halogen atoms and the divalent A2+ organic cations, respectively. Importantly, a linear relationship between the bandgaps of A(NH4)X3 perovskites and the lowest unoccupied molecular orbital energies of the A2+ cations is identified, suggesting that bandgaps can be tailored via molecular design, especially through a chemical modification of the A2+ cations. Our comprehensive computational study and molecular design predict a metal-free perovskite, namely, 6-ammonio-1-methyl-5-nitropyrimidin-1-ium-(NH4)I3, with a desirable bandgap of ∼1.74 eV and good optical absorption property, both being important requirements for photovoltaic applications. Moreover, the application of strain can further fine-tune the bandgap of this metal-free perovskite. Our proposed design principle not only offers chemical insights into the structure-property relationship of the multifunctional metal-free perovskites but also can facilitate the discovery of highly efficient alternative, lead-free perovskites for potential photovoltaic or optoelectronic applications.
Collapse
Affiliation(s)
- Jie Bie
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Dai-Bei Yang
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, Jiangsu, China
| | - Ming-Gang Ju
- School
of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Pan
- Jiangsu
Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Yu-Meng You
- Jiangsu
Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Wei Fa
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Shuang Chen
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- Institute
for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Portugal GR, Barbosa GG, Arantes JT. NaNbO 3/NaTaO 3 Superlattices: Cation-Ordering Improved Band-Edge Alignment for Water Splitting and CO 2 Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4493-4503. [PMID: 33826351 DOI: 10.1021/acs.langmuir.0c03653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perovskite oxide heterostructures have been extensively investigated for their excellent photocatalytic properties. Here, through hybrid density functional theory calculations, we systematically investigate the formation of NaNbO3-NaTaO3 (NBO-NTO) heterostructures. The sequential cations replacement in the superlattices reveals the Nb-Ta ratio range that allows the effective formation of heterostructures, which occurs through a spontaneous polarization mechanism induced by the electrostatic potential discontinuity in the interface. The resulting cation ordering is responsible for the sawtooth-like potential distribution that spatially separates valence and conduction charges and reduces the heterostructure bandgap. The symmetric NBO5/NTO5 junction has the smallest bandgap (2.50 eV) whose transitions are associated with Nb 5dxy orbitals on the interfacial plane. Such a relaxation mechanism provides the heterostructure with anisotropic optical properties and interface absorption peaks closer to the visible light spectrum. The phenomena strongly suggest the use of these heterostructures in photocatalytic reactions, supported by their coherent band-edge alignment with both water splitting and CO2 reforming potentials.
Collapse
Affiliation(s)
- Guilherme Ribeiro Portugal
- Federal University of ABC - UFABC, Av. dos Estados, 5001, Santo André 09210-580, Brazil
- Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André 09210-580, Brazil
| | - Gabriel Gouveia Barbosa
- Federal University of ABC - UFABC, Av. dos Estados, 5001, Santo André 09210-580, Brazil
- Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André 09210-580, Brazil
| | - Jeverson Teodoro Arantes
- Federal University of ABC - UFABC, Av. dos Estados, 5001, Santo André 09210-580, Brazil
- Center for Engineering, Modeling and Applied Social Science - CECS, Av. dos Estados, 5001, Santo André 09210-580, Brazil
- Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André 09210-580, Brazil
| |
Collapse
|
33
|
Kheralla A, Chetty N. A review of experimental and computational attempts to remedy stability issues of perovskite solar cells. Heliyon 2021; 7:e06211. [PMID: 33644476 PMCID: PMC7895729 DOI: 10.1016/j.heliyon.2021.e06211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/19/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
Photovoltaic technology using perovskite solar cells has emerged as a potential solution in the photovoltaic makings for cost-effective manufacturing solutions deposition/coating solar cells. The hybrid perovskite-based materials possess a unique blend from low bulk snare concentrations, ambipolar, broad optical absorption properties, extended charge carrier diffusion, and charge transport/collection properties, making them favourable for solar cell applications. However, perovskite solar cells devices suffer from the effects of natural instability, leading to their rapid degradation while bared to water, oxygen, as well as ultraviolet rays, are irradiated and in case of high temperatures. It is essential to shield the perovskite film from damage, extend lifetime, and make it suitable for device fabrications. This paper focuses on various device strategies and computational attempts to address perovskite-based solar cells' environmental stability issues.
Collapse
Affiliation(s)
- Adam Kheralla
- School of Physics and Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa
| | - Naven Chetty
- School of Physics and Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
34
|
Lehmann AG, Congiu F, Marongiu D, Mura A, Filippetti A, Mattoni A, Saba M, Pegna G, Sarritzu V, Quochi F, Bongiovanni G. Long-lived electrets and lack of ferroelectricity in methylammonium lead bromide CH 3NH 3PbBr 3 ferroelastic single crystals. Phys Chem Chem Phys 2021; 23:3233-3245. [PMID: 33465210 DOI: 10.1039/d0cp05918h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid lead halides CH3NH3PbX3 (X = I, Br, and Cl) have emerged as a new class of semiconductors for low-cost optoelectronic devices with superior performance. Since their perovskite crystal structure may have lattice instabilities against polar distortions, they are also being considered as potential photo-ferroelectrics. However, so far, research on their ferroelectricity has yielded inconclusive results and the subject is far from being settled. Here, we investigate, using a combined experimental and theoretical approach, the possible presence of electric polarization in tetragonal and orthorhombic CH3NH3PbBr3 (T-MAPB and O-MAPB). We found that T-MAPB does not sustain spontaneous polarization but, under an external electric field, it is projected into a metastable, ionic space-charge electret state. The electret can be frozen on cooling, producing a large and long-lasting polarization in O-MAPB. Molecular dynamics simulations show that the ferroelastic domain boundaries are able to trap charges and segregate ionic point defects, thus playing a favorable role in the stabilization of the electret. At lower temperatures, the lack of ferroelectric behavior is explained using first principles calculations as the result of the tight competition among many metastable states with randomly oriented polarization; this large configurational entropy does not allow a single polar state to dominate at any significant temperature range.
Collapse
|
35
|
Li WH, Lee CH, Ling TY, Ma MH, Wei PC, He JH, Wu CM, Peng JC, Xu G, Zhao Y, Lynn JW. Enhanced lattice perfection by low temperature thermal annealing in photoelectric (CH 3NH 3)PbBr 3. PHYSICAL REVIEW MATERIALS 2021; 5:10.1103/PhysRevMaterials.5.025401. [PMID: 38487078 PMCID: PMC10938366 DOI: 10.1103/physrevmaterials.5.025401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The coupling between the organic CH3NH3+ cations and inorganic perovskite PbBr3- framework in a large single crystal of (CH3NH3)PbBr3 weighting 13 g was studied using neutron diffraction and inelastic neutron scattering. Two lattice incommensurate (ICM) phases were found, one at higher temperatures, marked ICMHT, which appeared between 147 and 135 K. The second one, marked ICMLT, developed below 143 K and remained at 75 K. The transition from the ICMLT to ICMHT phase upon warming gave rise to extremely large lattice shrinking, followed by extremely large lattice expansion of the tetragonal basal plane of the PbBr3 lattice. There was a progressive decrease in the width of the Bragg peaks from the PbBr3 lattice upon warming, which can be described using a critical exponent for each type of Bragg peak to show complete ordering of the atoms into a (CH3NH3)PbBr3 lattice at 194 K. (CH3NH3)PbBr3 exhibits six definitive acoustic-like phonon branches at 75 K. The six branches renormalizes into two at 200 K, with the frequencies of both the transverse and longitudinal modes greatly enhanced. The asymmetric structure of the CH3NH3 ions helps to understand the observed behaviors.
Collapse
Affiliation(s)
- Wen-Hsien Li
- Department of Physics, National Central University, Jhongli 32001, Taiwan
| | - Chi-Hung Lee
- Department of Physics, National Central University, Jhongli 32001, Taiwan
| | - Tsu-Yin Ling
- Department of Physics, National Central University, Jhongli 32001, Taiwan
| | - Ma-Hsuan Ma
- Department of Physics, National Central University, Jhongli 32001, Taiwan
| | - Pai-Chun Wei
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology, Saudi Arabia
| | - Jr-Hau He
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology, Saudi Arabia
| | - Chun-Min Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jen-Chih Peng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Guangyong Xu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Yang Zhao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jeffrey W Lynn
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
36
|
Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H. Photocatalysis Enhanced by External Fields. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Shuchen Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Na Tian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Tianyi Ma
- Discipline of Chemistry University of Newcastle Callaghan NSW 2308 Australia
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| |
Collapse
|
37
|
Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H. Photocatalysis Enhanced by External Fields. Angew Chem Int Ed Engl 2021; 60:16309-16328. [PMID: 32770594 DOI: 10.1002/anie.202009518] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2021] [Indexed: 11/12/2022]
Abstract
The efficient conversion of solar energy by means of photocatalysis shows huge potential to relieve the ongoing energy crisis and increasing environmental pollution. However, unsatisfactory conversion efficiency still hinders its practical application. The introduction of external fields can remarkably enhance the photocatalytic performance of semiconductors from the inside out. This review focuses on recent advances in the application of diverse external fields, including microwaves, mechanical stress, temperature gradient, electric field, magnetic field, and coupled fields, to boost photocatalytic reactions, for applications in, for example, contaminant degradation, water splitting, CO2 reduction, and bacterial inactivation. The relevant reinforcement mechanisms of photoabsorption, the transport and separation of photoinduced charges, and adsorption of reagents by the external fields are highlighted. Finally, the challenges and outlook for the development of external-field-enhanced photocatalysis are presented.
Collapse
Affiliation(s)
- Cheng Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Shuchen Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Na Tian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Tianyi Ma
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
38
|
Wang F, Fu Y, Ziffer ME, Dai Y, Maehrlein SF, Zhu XY. Solvated Electrons in Solids-Ferroelectric Large Polarons in Lead Halide Perovskites. J Am Chem Soc 2021; 143:5-16. [PMID: 33320656 DOI: 10.1021/jacs.0c10943] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvation plays a pivotal role in chemistry and biology. A solid-state analogy of solvation is polaron formation, but the magnitude of Coulomb screening is typically an order of magnitude weaker than that of solvation in aqueous solutions. Here, we describe a new class of polarons, the ferroelectric large polaron, proposed initially by Miyata and Zhu in 2018 (Miyata, K.; Zhu, X.-Y. Ferroelectric Large Polarons. Nat. Mater. 2018, 17 (5), 379-381). This type of polaron allows efficient Coulomb screening of an electron or hole by extended ordering of dipoles from symmetry-broken unit cells. The local ordering is reflected in the ferroelectric-like THz dielectric responses of lead halide perovskites (LHPs) and may be partially responsible for their exceptional optoelectronic performances. Despite the likely absence of long-range ferroelectricity in LHPs, a charge carrier may be localized to and/or induce the formation of nanoscale domain boundaries of locally ordered dipoles. Based on the known planar nature of energetically favorable domain boundaries in ferroelectric materials, we propose that a ferroelectric polaron localizes to planar boundaries of transient polar nanodomains. This proposal is supported by dynamic simulations showing sheet-like transient electron or hole wave functions in LHPs. Thus, the Belgian-waffle-shaped ferroelectric polaron in the three-dimensional LHP crystal structure is a large polaron in two dimensions and a small polaron in the perpendicular direction. The ferroelectric large polaron may form in other crystalline solids characterized by dynamic symmetry breaking and polar fluctuations. We suggest that the ability to form ferroelectric large polarons can be a general principle for the efficient screening of charge carriers from scattering with other charge carriers, with charged defects and with longitudinal optical phonons, thus contributing to enhanced optoelectronic properties.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yongping Fu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Mark E Ziffer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yanan Dai
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sebastian F Maehrlein
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - X-Y Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
39
|
Wright AD, Volonakis G, Borchert J, Davies CL, Giustino F, Johnston MB, Herz LM. Intrinsic quantum confinement in formamidinium lead triiodide perovskite. NATURE MATERIALS 2020; 19:1201-1206. [PMID: 32839586 DOI: 10.1038/s41563-020-0774-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the electronic energy landscape in metal halide perovskites is essential for further improvements in their promising performance in thin-film photovoltaics. Here, we uncover the presence of above-bandgap oscillatory features in the absorption spectra of formamidinium lead triiodide thin films. We attribute these discrete features to intrinsically occurring quantum confinement effects, for which the related energies change with temperature according to the inverse square of the intrinsic lattice parameter, and with peak index in a quadratic manner. By determining the threshold film thickness at which the amplitude of the peaks is appreciably decreased, and through ab initio simulations of the absorption features, we estimate the length scale of confinement to be 10-20 nm. Such absorption peaks present a new and intriguing quantum electronic phenomenon in a nominally bulk semiconductor, offering intrinsic nanoscale optoelectronic properties without necessitating cumbersome additional processing steps.
Collapse
Affiliation(s)
- Adam D Wright
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - George Volonakis
- Department of Materials, University of Oxford, Oxford, UK
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Juliane Borchert
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | | | - Feliciano Giustino
- Department of Materials, University of Oxford, Oxford, UK
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Michael B Johnston
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Laura M Herz
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Duan HG, Tiwari V, Jha A, Berdiyorov GR, Akimov A, Vendrell O, Nayak PK, Snaith HJ, Thorwart M, Li Z, Madjet ME, Miller RJD. Photoinduced Vibrations Drive Ultrafast Structural Distortion in Lead Halide Perovskite. J Am Chem Soc 2020; 142:16569-16578. [PMID: 32869985 PMCID: PMC7586332 DOI: 10.1021/jacs.0c03970] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The success of organic–inorganic
perovskites in optoelectronics
is dictated by the complex interplay between various underlying microscopic
phenomena. The structural dynamics of organic cations and the inorganic
sublattice after photoexcitation are hypothesized to have a direct
effect on the material properties, thereby affecting the overall device
performance. Here, we use ultrafast heterodyne-detected two-dimensional
(2D) electronic spectroscopy to reveal impulsively excited vibrational
modes of methylammonium (MA) lead iodide perovskite, which drive the
structural distortion after photoexcitation. Vibrational analysis
of the measured data allows us to monitor the time-evolved librational
motion of the MA cation along with the vibrational coherences of the
inorganic sublattice. Wavelet analysis of the observed vibrational
coherences reveals the coherent generation of the librational motion
of the MA cation within ∼300 fs complemented with the coherent
evolution of the inorganic skeletal motion. To rationalize this observation,
we employed the configuration interaction singles (CIS), which support
our experimental observations of the coherent generation of librational
motions in the MA cation and highlight the importance of the anharmonic
interaction between the MA cation and the inorganic sublattice. Moreover,
our advanced theoretical calculations predict the transfer of the
photoinduced vibrational coherence from the MA cation to the inorganic
sublattice, leading to reorganization of the lattice to form a polaronic
state with a long lifetime. Our study uncovers the interplay of the
organic cation and inorganic sublattice during formation of the polaron,
which may lead to novel design principles for the next generation
of perovskite solar cell materials.
Collapse
Affiliation(s)
- Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Vandana Tiwari
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,Department of Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Ajay Jha
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Golibjon R Berdiyorov
- Qatar Environment and Energy Research Institute, Qatar Foundation, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Alexey Akimov
- Department of Chemistry, State University of New York at Buffalo, Buffalo New York 14260, United States
| | - Oriol Vendrell
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg 69120, Germany
| | - Pabitra K Nayak
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Zheng Li
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Mohamed E Madjet
- Qatar Environment and Energy Research Institute, Qatar Foundation, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany.,The Departments of Chemistry and Physics, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Li J, Wu T, Zhang J, Haacke S, Teng F, Hu B. Exploring Light Polarization Effects of Photovoltaic Actions in Organic-Inorganic Hybrid Perovskites with Asymmetric and Symmetric Unit Structures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38054-38060. [PMID: 32803963 DOI: 10.1021/acsami.0c09276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid perovskites are known as electrically polarizable semiconductors based on theoretical prediction and experimental information. Here we show the light polarization effects on the photovoltaic actions in perovskite solar cells by optically generating directional and random electronic transition dipoles within asymmetric and symmetric unit structures. In an asymmetric tetragonal unit structure, we observed the stripes with different orientations onto perovskite grains and that the randomly polarized photoexcitation can generate a higher photocurrent (Jsc) by 6.5 ± 0.5% as compared to the linearly polarized photoexcitation at same intensity in the hysteresis-free perovskite solar cells [ITO/PEDOT:PSS/MAPbI3/PC61BM/PEI/Ag]. Clearly, switching the photoexcitation between linear and random polarizations leads to a ΔJsc, which provides an experimental indication that all-directional and one-directional transition dipoles generate higher and lower photocurrents in organic-inorganic hybrid perovskites (MAPbI3) with an asymmetric tetragonal unit structure. This implies that all-directional and one-directional transition dipoles develop stronger and weaker dissociative interactions, consequently giving rise to more and less dissociation toward generating photocurrent. This is confirmed by the experimental observation that the ΔJsc almost disappears when the temperature increases up to 55 °C, where the asymmetric tetragonal structure is changed to a symmetric cubic structure. Furthermore, the ΔJsc is shown to decrease with increasing light intensity. This indicates that the electronic transition dipoles encounter a polarization relaxation caused by mutual interaction. We show that the polarization relaxation time in MAPbI3 is comparable to exciton dissociation time (∼ps). This presents the necessary condition to demonstrate light polarization effects of photovoltaic actions in perovskite solar cells.
Collapse
Affiliation(s)
- Jiantao Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- College of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Ting Wu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jia Zhang
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stefan Haacke
- University of Strasbourg, CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux, 67034 Strasbourg, France
| | - Feng Teng
- College of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Bin Hu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
42
|
Fisicaro G, La Magna A, Alberti A, Smecca E, Mannino G, Deretzis I. Local Order and Rotational Dynamics in Mixed A-Cation Lead Iodide Perovskites. J Phys Chem Lett 2020; 11:1068-1074. [PMID: 31958370 DOI: 10.1021/acs.jpclett.9b03763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Halide perovskites containing a mixture of formamidinium (FA+), methylammonium (MA+) and cesium (Cs+) cations are the actual standard for obtaining record-efficiency perovskite solar cells. Although the compositional tuning that brings to optimal performance of the devices has been largely established, little is understood on the role of even small quantities of MA+ or Cs+ in stabilizing the black phase of FAPbI3 while boosting its photovoltaic yield. In this paper, we use Car-Parrinello molecular dynamics in large supercells containing different ratios of FA+ and either MA+ or Cs+, in order to study the structural and kinetic features of mixed perovskites at room temperature. Our analysis shows that cation mixing relaxes the rotational disorder of FA+ molecules by preferentially aligning their axis toward ⟨100⟩ cubic directions. The phenomenon stems from the introduction of additional local minima in the energetic landscape, which are absent in pure FAPbI3 crystals. As a result, a higher structural order is achieved, characterized by a pronounced octahedral tilting and a lower vibrational activity for the inorganic framework. We show that both MA+ and Cs+ are qualified for this enhancement, with Cs+ being particularly effective when diluted within the FAPbI3 perovskite.
Collapse
Affiliation(s)
- Giuseppe Fisicaro
- Istituto per la Microelettronica e Microsistemi (CNR-IMM) , Z.I. VIII strada 5 , 95121 Catania , Italy
| | - Antonino La Magna
- Istituto per la Microelettronica e Microsistemi (CNR-IMM) , Z.I. VIII strada 5 , 95121 Catania , Italy
| | - Alessandra Alberti
- Istituto per la Microelettronica e Microsistemi (CNR-IMM) , Z.I. VIII strada 5 , 95121 Catania , Italy
| | - Emanuele Smecca
- Istituto per la Microelettronica e Microsistemi (CNR-IMM) , Z.I. VIII strada 5 , 95121 Catania , Italy
| | - Giovanni Mannino
- Istituto per la Microelettronica e Microsistemi (CNR-IMM) , Z.I. VIII strada 5 , 95121 Catania , Italy
| | - Ioannis Deretzis
- Istituto per la Microelettronica e Microsistemi (CNR-IMM) , Z.I. VIII strada 5 , 95121 Catania , Italy
| |
Collapse
|
43
|
Li L, Liu X, He C, Wang S, Ji C, Zhang X, Sun Z, Zhao S, Hong M, Luo J. A Potential Sn-Based Hybrid Perovskite Ferroelectric Semiconductor. J Am Chem Soc 2020; 142:1159-1163. [DOI: 10.1021/jacs.9b11341] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chao He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Sasa Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
44
|
Uratani H, Chou CP, Nakai H. Quantum mechanical molecular dynamics simulations of polaron formation in methylammonium lead iodide perovskite. Phys Chem Chem Phys 2020; 22:97-106. [DOI: 10.1039/c9cp04739e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polaron formation in a halide perovskite is analyzed via nanometre-scale quantum mechanical molecular dynamics simulations.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry
- School of Advanced Science and Engineering
- Waseda University
- Shinjuku-ku
- Japan
| | - Chien-Pin Chou
- Waseda Research Institute for Science and Engineering (WISE)
- Tokyo 169-8555
- Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry
- School of Advanced Science and Engineering
- Waseda University
- Shinjuku-ku
- Japan
| |
Collapse
|
45
|
Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu XH. Halide Perovskites for Nonlinear Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806736. [PMID: 30883987 DOI: 10.1002/adma.201806736] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/20/2019] [Indexed: 05/04/2023]
Abstract
Halide perovskites provide an ideal platform for engineering highly promising semiconductor materials for a wide range of applications in optoelectronic devices, such as photovoltaics, light-emitting diodes, photodetectors, and lasers. More recently, increasing research efforts have been directed toward the nonlinear optical properties of halide perovskites because of their unique chemical and electronic properties, which are of crucial importance for advancing their applications in next-generation photonic devices. Here, the current state of the art in the field of nonlinear optics (NLO) in halide perovskite materials is reviewed. Halide perovskites are categorized into hybrid organic/inorganic and pure inorganic ones, and their second-, third-, and higher-order NLO properties are summarized. The performance of halide perovskite materials in NLO devices such as upconversion lasers and ultrafast laser modulators is analyzed. Several potential perspectives and research directions of these promising materials for nonlinear optics are presented.
Collapse
Affiliation(s)
- Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xinyue Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Jianbo Xiong
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Chunqing Yuan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Sergey Semin
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Theo Rasing
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| |
Collapse
|
46
|
Recent advances in atomic imaging of organic-inorganic hybrid perovskites. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Qiao L, Fang WH, Long R. Ferroelectric Polarization Suppresses Nonradiative Electron-Hole Recombination in CH 3NH 3PbI 3 Perovskites: A Time-Domain ab Initio Study. J Phys Chem Lett 2019; 10:7237-7244. [PMID: 31694370 DOI: 10.1021/acs.jpclett.9b02931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ordered alignment of polar organic cations in hybrid organic-inorganic perovskites causes a ferroelectric phase, which is believed to be benign for photovoltaic devices. Using a combination of time-domain density functional theory and nonadiabatic molecular dynamics, we study the influence of the interactions of polar MA (CH3NH3+) cations and between their inorganic counterparts on the nonradiative electron-hole recombination in the room-temperature ferroelectric MAPbI3 perovskite. We show that ferroelectric alignment of the polar C-N bonds favors charge separation and reduces nonadiabatic coupling. Symmetry breaking enhances low-frequency collective motions and introduces additional high-frequency vibrations, thus accelerating quantum decoherence. Both factors contribute to suppressing the nonradiative electron-hole recombination, extending the charge carrier lifetimes to several nanoseconds and showing a factor of 3 increase compared to the pristine system. Consequently, ferroelectric engineering provides an excellent route to improve hybrid perovskite device performance as a result of long-range charge separation and slow charge recombination.
Collapse
Affiliation(s)
- Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| |
Collapse
|
48
|
Pandey R, Vats G, Yun J, Bowen CR, Ho-Baillie AWY, Seidel J, Butler KT, Seok SI. Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807376. [PMID: 31441161 DOI: 10.1002/adma.201807376] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/23/2019] [Indexed: 06/10/2023]
Abstract
An insight into the analogies, state-of-the-art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic-organic hybrid halide perovskites and ferroelectric perovskites) for future multifunctional energy conversion and storage devices is provided. Often, these are considered entirely different branches of research; however, considering them simultaneously and holistically can provide several new opportunities. Recent advancements have highlighted the potential of hybrid perovskites for high-efficiency solar cells. The intrinsic polar properties of these materials, including the potential for ferroelectricity, provide additional possibilities for simultaneously exploiting several energy conversion mechanisms such as the piezoelectric, pyroelectric, and thermoelectric effect and electrical energy storage. The presence of these phenomena can support the performance of perovskite solar cells. The energy conversion using these effects (piezo-, pyro-, and thermoelectric effect) can also be enhanced by a change in the light intensity. Thus, there lies a range of possibilities for tuning the structural, electronic, optical, and magnetic properties of perovskites to simultaneously harvest energy using more than one mechanism to realize an improved efficiency. This requires a basic understanding of concepts, mechanisms, corresponding material properties, and the underlying physics involved with these effects.
Collapse
Affiliation(s)
- Richa Pandey
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, 400076, India
| | - Gaurav Vats
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jae Yun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Chris R Bowen
- Materials Research Centre, Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Anita W Y Ho-Baillie
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jan Seidel
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Keith Tobias Butler
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford Didcot, Oxfordshire, OX11 0QX, UK
| | - Sang Il Seok
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) UNIST-gil 50, Ulsan, 44919, South Korea
| |
Collapse
|
49
|
Functional Ferroic Domain Walls for Nanoelectronics. MATERIALS 2019; 12:ma12182927. [PMID: 31510049 PMCID: PMC6766344 DOI: 10.3390/ma12182927] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022]
Abstract
A prominent challenge towards novel nanoelectronic technologies is to understand and control materials functionalities down to the smallest scale. Topological defects in ordered solid-state (multi-)ferroic materials, e.g., domain walls, are a promising gateway towards alternative sustainable technologies. In this article, we review advances in the field of domain walls in ferroic materials with a focus on ferroelectric and multiferroic systems and recent developments in prototype nanoelectronic devices.
Collapse
|
50
|
Dong Y, Zhang Y, Li X, Feng Y, Zhang H, Xu J. Chiral Perovskites: Promising Materials toward Next-Generation Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902237. [PMID: 31389174 DOI: 10.1002/smll.201902237] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/20/2019] [Indexed: 05/25/2023]
Abstract
Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.
Collapse
Affiliation(s)
- Yuze Dong
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Yupeng Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinyue Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jialiang Xu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| |
Collapse
|