1
|
Kojima T, Noguchi Y, Terasaka K, Asakura K, Banno T. Engineering pH-Responsive, Self-Healing Vesicle-Type Artificial Tissues with Higher-Order Cooperative Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311255. [PMID: 38415816 DOI: 10.1002/smll.202311255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Multicellular organisms demonstrate a hierarchical organization where multiple cells collectively form tissues, thereby enabling higher-order cooperative functionalities beyond the capabilities of individual cells. Drawing inspiration from this biological organization, assemblies of multiple protocells are developed to create novel functional materials with emergent higher-order cooperative functionalities. This paper presents new artificial tissues derived from multiple vesicles, which serve as protocellular models. These tissues are formed and manipulated through non-covalent interactions triggered by a salt bridge. Exhibiting pH-sensitive reversible formation and destruction under neutral conditions, these artificial vesicle tissues demonstrate three distinct higher-order cooperative functionalities: transportation of large cargoes, photo-induced contractions, and enhanced survivability against external threats. The rapid assembly and disassembly of these artificial tissues in response to pH variations enable controlled mechanical task performance. Additionally, the self-healing property of these artificial tissues indicates robustness against external mechanical damage. The research suggests that these vesicles can detect specific pH environments and spontaneously assemble into artificial tissues with advanced functionalities. This leads to the possibility of developing intelligent materials with high environmental specificity, particularly for applications in soft robotics.
Collapse
Affiliation(s)
- Tomoya Kojima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yutaro Noguchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Koichi Terasaka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
2
|
Gautam L, Shrivastava P, Yadav B, Jain A, Sharma R, Vyas S, Vyas SP. Multicompartment systems: A putative carrier for combined drug delivery and targeting. Drug Discov Today 2021; 27:1184-1195. [PMID: 34906689 DOI: 10.1016/j.drudis.2021.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
In this review, we discuss recent developments in multicompartment systems commonly referred to as vesosomes, as well as their method of preparation, surface modifications, and clinical potential. Vesosomal systems are able to entrap more than one drug moiety and can be customized for site-specific delivery. We focus in particular on the possible reticuloendothelial system (RES) - mediated accumulation of vesosomes, and their application in tumor targeting, as areas for further investigation.
Collapse
Affiliation(s)
- Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Bhavana Yadav
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Anamika Jain
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Sonal Vyas
- Shri Chaitanya Hospital, Sagar, MP 470003, India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India.
| |
Collapse
|
3
|
In vitro cellular uptake and neuroprotective efficacy of poly-arginine-18 (R18) and poly-ornithine-18 (O18) peptides: critical role of arginine guanidinium head groups for neuroprotection. Mol Cell Biochem 2019; 464:27-38. [DOI: 10.1007/s11010-019-03646-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
|
4
|
MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics. Neurobiol Dis 2018; 121:17-33. [PMID: 30218759 DOI: 10.1016/j.nbd.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023] Open
Abstract
Stroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) have been identified as a novel class of neuroprotective agent with several demonstrated mechanisms of action, including their ability to target mitochondria and exert positive effects on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on mitochondria in the ischaemic brain following stroke.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia.
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Shaw SK, Liu W, Brennan SP, de Lourdes Betancourt-Mendiola M, Smith BD. Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups. Chemistry 2017; 23:12646-12654. [PMID: 28736857 DOI: 10.1002/chem.201702649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/28/2022]
Abstract
A new self-assembly method is used to rapidly functionalize the surface of liposomes without perturbing the membrane integrity or causing leakage of the aqueous contents. The key molecule is a cholesterol-squaraine-PEG conjugate with three important structural elements: a cholesterol membrane anchor, a fluorescent squaraine docking station that allows rapid and high-affinity macrocycle threading, and a long PEG-2000 chain to provide steric shielding of the decorated liposome. The two-step method involves spontaneous insertion of the conjugate into the outer leaflet of pre-formed liposomes followed by squaraine threading with a tetralactam macrocycle that has appended targeting ligands. A macrocycle with six carboxylates permitted immobilization of intact fluorescent liposomes on the surface of cationic polymer beads, whereas a macrocycle with six zinc(II)-dipicolylamine units enabled selective targeting of anionic membranes, including agglutination of bacteria in the presence of human cells.
Collapse
Affiliation(s)
- Scott K Shaw
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Wenqi Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Seamus P Brennan
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | | | - Bradley D Smith
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| |
Collapse
|
6
|
Šekutor M, Štimac A, Mlinarić-Majerski K, Frkanec R. Syntheses and characterization of liposome-incorporated adamantyl aminoguanidines. Org Biomol Chem 2015; 12:6005-13. [PMID: 24988293 DOI: 10.1039/c4ob00592a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of mono and bis-aminoguanidinium adamantane derivatives has been synthesized and incorporated into liposomes. They combine two biomedically significant molecules, the adamantane moiety and the guanidinium group. The adamantane moiety possesses the membrane compatible features while the cationic guanidinium subunit was recognized as a favourable structural feature for binding to complementary molecules comprising phosphate groups. The liposome formulations of adamantyl aminoguanidines were characterized and it was shown that the entrapment efficiency of the examined compounds is significant. In addition, it was demonstrated that liposomes with incorporated adamantyl aminoguanidines effectively recognized the complementary liposomes via the phosphate group. These results indicate that adamantane derivatives bearing guanidinium groups might be versatile tools for biomedical application, from studies of molecular recognition processes to usage in drug formulation and cell targeting.
Collapse
Affiliation(s)
- Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
7
|
Ultrathin core–sheath fibers for liposome stabilization. Colloids Surf B Biointerfaces 2014; 122:630-637. [DOI: 10.1016/j.colsurfb.2014.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022]
|
8
|
Paleos CM, Pantos A. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes. Acc Chem Res 2014; 47:1475-82. [PMID: 24735049 DOI: 10.1021/ar4002679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Researchers have become increasingly interested in the preparation and characterization of artificial cells based on amphiphilic molecules. In particular, artificial cells with multiple compartments are primitive mimics of the structure of eukaryotic cells. Endosymbiotic theory, widely accepted among biologists, states that eukaryotic cells arose from the assembly of prokaryotic cells inside other cells. Therefore, replicating this process in a synthetic system could allow researchers to model molecular and supramolecular processes that occur in living cells, shed light on mass and energy transport through cell membranes, and provide a unique, isolated space for conducting chemical reactions. In addition, such structures can serve as drug delivery systems that encapsulate both bioactive and nonbiocompatible compounds. In this Account, we present various coating, incubation, and electrofusion strategies for forming multicompartment vesicle systems, and we are focusing on strategies that rely on involving molecular recognition of complementary vesicles. All these methods afforded multicompartment systems with similar structures, and these nanoparticles have potential applications as drug delivery systems or nanoreactors for conducting diverse reactions. The complementarity of interacting vesicles allows these artificial cells to form, and the organization and polyvalency of these interacting vesicles further promote their formation. The incorporation of cholesterol in the bilayer membrane and the introduction of PEG chains at the surface of the interacting vesicles also support the structure of these multicompartment systems. PEG chains appear to destabilize the bilayers, which facilitates the fusion and transport of the small vesicles to the larger ones. Potential applications of these well-structured and reproducibly produced multicompartment systems include drug delivery, where researchers could load a cocktail of drugs within the encapsulated vesicles, a process that could enhance the bioavailability of these substances. In addition, the production of artificial cells with multiple compartments provides a platform where researchers could carry out individual reactions in small, isolated spaces. Such a reactive space can avoid problems that occur when the environment can be destructive to reactants or products or when a diverse set of compounds difficult to obtain in a conventional reactor space are produced. Our work on these artificial cells with multicompartment structures also led us to formulate a hypothesis on the processes that possibly generated eukaryotic cells. We hope both that our research efforts will excite interest in these nanoparticles and that this research could lead to systems designed for specific scientific and technological applications and further insights into the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- Constantinos M. Paleos
- National Center For Scientific Research “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - A. Pantos
- National Center For Scientific Research “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| |
Collapse
|
9
|
Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. J Control Release 2013; 170:141-52. [DOI: 10.1016/j.jconrel.2013.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/11/2022]
|
10
|
|
11
|
Paleos CM, Tsiourvas D, Sideratou Z. Preparation of multicompartment lipid-based systems based on vesicle interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2337-2346. [PMID: 21988476 DOI: 10.1021/la2027187] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Various strategies for constructing artificial multicompartment vesicular systems, which primitively mimic the structure of eukaryotic cells, are presented. These model systems are appropriate for addressing several issues such as the understanding of cell processes, the development of nanoreactors and novel multicompartment delivery systems for specific drug applications, the transport through bilayer membranes, and also hypothesizing on the evolution of eukaryotic cells as originating from the symbiotic association of prokaryotes.
Collapse
|
12
|
Paleos CM, Tsiourvas D, Sideratou Z. Interaction of Vesicles: Adhesion, Fusion and Multicompartment Systems Formation. Chembiochem 2011; 12:510-21. [DOI: 10.1002/cbic.201000614] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Indexed: 11/06/2022]
|
13
|
Interfacial properties of a novel pyrimidine derivative and poly(ethylene glycol)-grafted phospholipid floating monolayers. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2010.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka LA. Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 2010; 7:1387-98. [DOI: 10.1517/17425247.2010.534981] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Pang Y, Liu J, Wu J, Li G, Wang R, Su Y, He P, Zhu X, Yan D, Zhu B. Synthesis, characterization, and in vitro evaluation of long-chain hyperbranched poly(ethylene glycol) as drug carrier. Bioconjug Chem 2010; 21:2093-102. [PMID: 20923233 DOI: 10.1021/bc100325a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel long-chain hyperbranched poly(ethylene glycol)s (LHPEGs) with biodegradable connections were designed and synthesized in one pot through proton-transfer polymerization using PEG and commercial glycidyl methacrylate as monomers and potassium hydride as catalyst. The LHPEGs were hydrolyzed at neutral pH resulting in the decrease of molecular weights. In vitro evaluation demonstrated that LHPEGs were biocompatible and displayed negligible hemolytic activity. The efficient cellular uptake of LHPEGs was confirmed by flow cytometry and confocal laser scanning microscopy. Moreover, conjugation of a model hydrophobic anticancer drug methotrexate to LHPEGs inhibited the proliferation of a human cervical carcinoma Hela cell line. MTT assay indicated that the conjugated methotrexate dose required for 50% cellular growth inhibition against Hela cells was 20 μg/mL. By combining the advantages of long-chain hyperbranched structure and PEG, LHPEG provides a promising drug carrier for therapeutic fields.
Collapse
Affiliation(s)
- Yan Pang
- Instrumental Analysis Center, Shanghai Jiao Tong University, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Parimi S, Barnes TJ, Callen DF, Prestidge CA. Mechanistic insight into cell growth, internalization, and cytotoxicity of PAMAM dendrimers. Biomacromolecules 2010; 11:382-9. [PMID: 20038138 DOI: 10.1021/bm9010134] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We report on the role of PAMAM dendrimer concentration and generation (G2, G4, G6) on cell growth and cytotoxicity in HEK293T and HeLa cell lines and make comparisons with dendrimer-induced leakage from liposomes to probe the mechanisms in action. Specifically, we observed a striking transition from cell growth enhancement to a reduction in cell viability at a critical PAMAM dendrimer concentration, that is, approximately 500 nM. Confocal microscopy studies show evidence of a transition from cell membrane adhesion to cell internalization and cell nucleus interaction at equivalent dendrimer concentrations. A dendrimer concentration window of 500-700 nM was identified for effective cell internalization without significant cytotoxicity. Though liposome leakage correlated with cytotoxicity, no quantitative agreement was observed, that is, cells are 100 times (based on surface coverage) more resistant to dendrimers than liposomes. These findings have significant implications in the design of effective drug/gene delivery vehicles based on dendrimers.
Collapse
Affiliation(s)
- Srinivas Parimi
- Ian Wark Research Institute, ARC Special Research Centre for Particle and Material Interfaces, University of South Australia, Mawson Lakes, SA, Australia
| | | | | | | |
Collapse
|
17
|
Sideratou Z, Sterioti N, Tsiourvas D, Paleos CM. Structural Features of Interacting Complementary Liposomes Promoting Formation of Multicompartment Structures. Chemphyschem 2009; 10:3083-9. [DOI: 10.1002/cphc.200900465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Galanou MC, Theodossiou TA, Tsiourvas D, Sideratou Z, Paleos CM. Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition. Photochem Photobiol 2009; 84:1073-83. [PMID: 18627515 DOI: 10.1111/j.1751-1097.2008.00392.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hypericin (HYP), a photocytotoxic phenanthroperylenquinone was encapsulated in liposomes outfitted with guanidinium-bearing lipids to ensure efficient cell binding through molecular recognition with anionic groups resident on the plasma membrane. The uptake of HYP encapsulated in these liposomes by DU145 human prostate cancer cells, was studied employing fluorescence, versus nonguadinylated liposomes and free HYP. The subcellular localization was in all cases studied by confocal microscopy employing specific subcellular organelle probes. The photocytotoxicity of HYP was assessed, 24 h following irradiation with 15 mWcm(-2) light through a GG 495 Schott filter, by a standard tetrazolium to formazan assay (XTT). HYP uptake by DU145 cells was found to be profoundly enhanced by using guanidinylated liposomes. Also the distance of the guanidinium group from the liposomal surface was found to significantly affect HYP loading, subcellular localization and phototoxicity. The two different modes of liposome cell internalization observed, i.e. plasma membrane fusion and endocytosis, were found to greatly affect the phototoxicity of HYP. Molecular recognition was overall appraised as a promising, novel route for photodynamic therapy, profoundly enhancing its efficacy. HYP encapsulated in liposomes-bearing guanidinium groups was more efficiently taken up by cells, leading to enhanced phototoxicity, in contrast to HYP encapsulated in their nonguanidinylated counterparts.
Collapse
Affiliation(s)
- Maria C Galanou
- Institute of Physical Chemistry, NCSR "DEMOKRITOS," Aghia Paraskevi, Attiki, Greece
| | | | | | | | | |
Collapse
|
19
|
Paleos CM, Tziveleka LA, Sideratou Z, Tsiourvas D. Gene delivery using functional dendritic polymers. Expert Opin Drug Deliv 2009; 6:27-38. [DOI: 10.1517/17425240802607345] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Kontoyianni C, Sideratou Z, Theodossiou T, Tziveleka LA, Tsiourvas D, Paleos CM. A novel micellar PEGylated hyperbranched polyester as a prospective drug delivery system for paclitaxel. Macromol Biosci 2008; 8:871-81. [PMID: 18484566 DOI: 10.1002/mabi.200800015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A hyperbranched aliphatic polyester has been functionalized with PEG chains to afford a novel water-soluble BH40-PEG polymer which exhibits unimolecular micellar properties, and is therefore appropriate for application as a drug-delivery system. The solubility of the anticancer drug paclitaxel was enhanced by a factor of 35, 110, 230, and 355 in aqueous solutions of BH40-PEG of 10, 30, 60, and 90 mg x mL(-1), respectively. More than 50% of the drug is released at a steady rate and release is almost complete within 10 h. The toxicity of BH40-PEG was assessed in vitro with A549 human lung carcinoma cells and found to be nontoxic for 3 h incubation up to a 1.75 mg x mL(-1) concentration while LD50 was 3.5 mg x mL(-1). Finally, it was efficiently internalized in cells, primarily in the absence of foetal bovine serum, while confocal microscopy revealed the preferential localization of the compound in cell nuclei. [Figure: see text].
Collapse
Affiliation(s)
- Christina Kontoyianni
- Institute of Physical Chemistry, NCSR "Demokritos", 15310 Aghia Paraskevi, Attiki, Greece
| | | | | | | | | | | |
Collapse
|
21
|
Theodossiou TA, Galanou MC, Paleos CM. Novel amiodarone-doxorubicin cocktail liposomes enhance doxorubicin retention and cytotoxicity in DU145 human prostate carcinoma cells. J Med Chem 2008; 51:6067-74. [PMID: 18783209 DOI: 10.1021/jm800493j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed novel cocktail liposomes bearing doxorubicin in their hydrophilic cores, and amiodarone, a potent multidrug resistance inhibitor, in their lipid bilayers. The efficacy of these liposomes was studied in DU145 human prostate carcinoma cells. Intracellular calcein retention, which is inversely proportional to multidrug resistance activity, significantly increased following cell incubation with amiodarone loaded liposomes. Fluorescence confocal microscopy on cells incubated with the cocktail liposomes revealed enhanced intranuclear doxorubicin accumulation. Two liposomal drug concentration combinations were employed to assess the differential cytotoxicity of the cocktail liposomes, doxorubicin (1.4 microM)-amiodarone (15 microM) and doxorubicin 3 (microM)-amiodarone (45 microM), and two incubation times, 5 and 19 h. Cell toxicity was determined by XTT assays at 24, 48, and 72 h following incubation and was significantly enhanced for incubation with the cocktail liposomes. On the whole, we believe that these liposomes will greatly contribute to the cancer chemotherapy arena.
Collapse
|
22
|
Guanidinium group: A versatile moiety inducing transport and multicompartmentalization in complementary membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:811-23. [DOI: 10.1016/j.bbamem.2007.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 11/20/2022]
|
23
|
Maru N, Shohda KI, Sugawara T. Successive Fusion of Vesicles Aggregated by DNA Duplex Formation in the Presence of Triton X-100. CHEM LETT 2008. [DOI: 10.1246/cl.2008.340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Tsogas I, Theodossiou T, Sideratou Z, Paleos CM, Collet H, Rossi JC, Romestand B, Commeyras A. Interaction and Transport of Poly(l-lysine) Dendrigrafts through Liposomal and Cellular Membranes: The Role of Generation and Surface Functionalization. Biomacromolecules 2007; 8:3263-70. [PMID: 17880235 DOI: 10.1021/bm700668w] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two generations of poly(l-lysine) dendrigrafts (DGLs) were studied with regard to their ability to interact with and translocate through liposomal and cellular membranes. Partial guanidinylation of the surface amino groups of the starting dendrigrafts afforded the guanidinylated derivatives whose membrane translocation properties were also assessed. Mixed liposomes, consisting of dihexadecyl phosphate, phosphatidylcholine, and cholesterol, were employed as model membranes, while A549 human lung carcinoma cells were used for cellular uptake studies. At high surface group/liposomal phosphate molar ratios and depending on the structure of the DGL, the interaction led to aggregation. Dendrigraft liposomal internalization was achieved, however, at low molar ratios. Thus translocation of the second generation dendrigrafts was rather limited at 25 degrees C, which, however, was enhanced when the bilayer was in the liquid-crystalline phase. In contrast, third-generation counterparts exhibited minor translocational ability. Furthermore, the introduction of a guanidinium group to dendrigrafts was found to enhance their transport through liposomal membranes. On the other hand, cellular uptake by A549 cells was monitored up to 3 h incubation time via fluorescence registration employing fluorescein-labeled dendrigrafts. The efficiency of dendrigraft internalization was enhanced by the presence of the guanidinium groups, while DGLs were preferentially localized in the nucleus and nuclear membrane, as revealed by fluorescence microscopy.
Collapse
Affiliation(s)
- Ioannis Tsogas
- Institute of Physical Chemistry, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Paleos CM, Tsiourvas D, Sideratou Z. Molecular engineering of dendritic polymers and their application as drug and gene delivery systems. Mol Pharm 2007; 4:169-88. [PMID: 17222053 DOI: 10.1021/mp060076n] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review discusses the development of functional and multifunctional dendrimeric and hyperbranched polymers, collectively called dendritic polymers, with the objective of being applied as drug and gene delivery systems. In particular, using as starting materials known and well-characterized basic dendritic polymers, the review deals with the type of structural modifications to which these dendritic polymers were subjected for the development of drug carriers with low toxicity, high encapsulating capacity, a specificity for certain biological cells, and the ability to be transported through their membranes. Proceeding from functional to multifunctional dendritic polymers, one is able to prepare products that fulfill one or more of these requirements, which an effective drug carrier should exhibit. A common feature of the dendritic polymers is the exhibition of polyvalent interactions, while for multifunctional derivatives, a number of targeting ligands determine specificity, another type of group secures stability in biological milieu and prolonged circulation, while others facilitate their transport through cell membranes. Furthermore, dendritic polymers employed for gene delivery should be or become cationic in the biological environment for the formation of complexes with the negatively charged genetic material.
Collapse
|
26
|
Wang X, Mart RJ, Webb SJ. Vesicle aggregation by multivalent ligands: relating crosslinking ability to surface affinity. Org Biomol Chem 2007; 5:2498-505. [PMID: 17637972 DOI: 10.1039/b706662g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In an effort to improve the stability of our tissue-mimetic vesicle aggregates, we have investigated how increasing the valency of our multivalent crosslinking ligand, poly-l-histidine, affected both the extent of vesicle aggregation and the affinity of the multivalent ligand for the synthetic receptor Cu(1) embedded in the vesicle membranes. Although increasing ligand valency gave the anticipated increase in the size of the vesicle aggregates, isothermal calorimetric studies did not show the expected increase in the valence-corrected binding constant for the embedded receptors. To explain both observations, we have developed a simple new binding model that encompasses both multivalent binding to receptors on a single vesicle surface (intramembrane binding) and vesicle crosslinking (intermembrane binding).
Collapse
Affiliation(s)
- Xi Wang
- Manchester Interdisciplinary Biocentre and the School of Chemistry, University of Manchester, 131 Princess Street, Manchester, UK
| | | | | |
Collapse
|
27
|
Tziveleka LA, Kontoyianni C, Sideratou Z, Tsiourvas D, Paleos CM. Novel Functional Hyperbranched Polyether Polyols as Prospective Drug Delivery Systems. Macromol Biosci 2006; 6:161-9. [PMID: 16456875 DOI: 10.1002/mabi.200500181] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multifunctional hyperbranched polyether polyols bearing protective poly(ethylene glycol) (PEG) chains with or without the folate targeting ligand at their end have been prepared. Solubilization in these polymers of a fluorescent probe, pyrene, and an anticancer drug, tamoxifen, was physicochemically investigated. It was found that PEG chains attached at the surface of these hyperbranched polymers, in addition to their well-established protective role, enhance the encapsulation efficiency of the polymers. The release of pyrene and tamoxifen observed upon addition of sodium chloride is, in most of the cases, significant only at concentrations exceeding the physiological extracellular concentration. Thus, a significant amount of the probe or drug remains solubilized inside the carriers, which is an encouraging result if the polymers are to be used for drug delivery.
Collapse
|
28
|
Pantos A, Tsiourvas D, Nounesis G, Paleos CM. Interaction of functional dendrimers with multilamellar liposomes: design of a model system for studying drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7483-90. [PMID: 16042483 DOI: 10.1021/la0510331] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multilamellar liposomes consisting of phosphatidylcholine-cholesterol-dihexadecyl phosphate (19:9.5:1 molar ratio) and dispersed in aqueous or phosphate buffer solutions were interacted with poly(propylene imine) dendrimers which were partially functionalized with guanidinium groups. The remaining toxic external primary amino groups of the dendrimers were reacted with propylene oxide, affording the corresponding hydroxylated derivatives. Microscopic, zeta-potential, and dynamic light scattering techniques have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary phosphate and guanidinium groups. Calcein liposomal entrapment experiments demonstrate a limited leakage, i.e., less than 13%, following liposomes interaction with the modified dendrimers. Calorimetric studies indicate that the enthalpy of the interaction is dependent on the number of guanidinium groups present at the dendrimeric surface and the medium. The process is reversible, and redispersion of the aggregates occurs by adding concentrated phosphate buffer. Two corticosteroid drugs, i.e., betamethasone dipropionate and betamethasone valerate, were encapsulated into the functionalized dendrimers. Drug transport from guanidinylated dendrimers to multilamellar liposomes ranges from 40% to 85%, and it is also dependent on the medium and the degree of dendrimer guanidinylation.
Collapse
Affiliation(s)
- Alexandros Pantos
- Institutes of Physical Chemistry and of Radioisotopes and Radiodiagnostic Products, NCSR "Demokritos", 15310 Aghia Paraskevi, Attiki, Greece
| | | | | | | |
Collapse
|
29
|
Pantos A, Tsiourvas D, Paleos CM, Nounesis G. Enhanced drug transport from unilamellar to multilamellar liposomes induced by molecular recognition of their lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:6696-702. [PMID: 16008376 DOI: 10.1021/la050211n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Unilamellar PC-based liposomes bearing a recognizable moiety were loaded either with the hydrophilic drug doxorubicin (DXR) or with the hydrophobic drug tamoxiphen (TMX) and allowed to interact with multilamellar PC-based liposomes bearing complementary recognizable groups. It has been established that, due to molecular recognition of these complementary liposomes, effective and fast transport of the drugs occurs from unilamellar to multilamellar liposomes. The transport of TMX is more effective compared to that of DXR. This behavior was observed for both PEGylated and non-PEGylated unilamellar liposomes, and it was attributed to the different sites of solubilization of the drugs in the unilamellar liposomes. PEGylation reduces the transport of both drugs since it inhibits to some extent the molecular recognition effectiveness of the complementary moieties.
Collapse
Affiliation(s)
- Alexandros Pantos
- Institutes of Physical Chemistry and of Radioisotopes and Radiodiagnostic Products, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece
| | | | | | | |
Collapse
|
30
|
Tsogas I, Tsiourvas D, Nounesis G, Paleos CM. Interaction of poly-L-arginine with dihexadecyl phosphate/phosphatidylcholine liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5997-6001. [PMID: 15952852 DOI: 10.1021/la050475+] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the present study, mixed liposomes of dihexadecyl phosphate sodium salt:phosphatidylcholine:cholesterol at a 1:19:9.5 molar ratio were allowed to interact with poly-L-arginine at temperatures below and above the main phase transition of the liposomal membrane. The interaction led to the formation of aggregates, which gradually increased in size and eventually precipitated. It was, however, possible, during the initial stage of the experiments, when the ratio of guanidinium group relative to phosphate was smaller than ca. 40%, to determine their size and charge and observe their morphology in aqueous dispersion. Fluorescence experiments established that the liposomes are not ruptured during their interaction with poly-L-arginine. Instead, they are attached at the polypeptide chain through the guanidinium-phosphate complementary pair. Fluorescence quenching experiments indicated that the poly-L-arginine chain is accessible for interaction with iodides dissolved in the aqueous phase when the temperature of the liposomal dispersion is below the main lipid phase transition. It is, however, partitioned in the interior of the membrane at temperatures exceeding this main lipid phase transition.
Collapse
Affiliation(s)
- Ioannis Tsogas
- Institutes of Physical Chemistry and Radioisotopes & Radiodiagnostic Products, NCSR "Demokritos", 15310 Aghia Paraskevi, Attiki, Greece
| | | | | | | |
Collapse
|
31
|
Literature alerts. J Microencapsul 2005; 21:911-7. [PMID: 15799545 DOI: 10.1080/02652040412331342161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Tsogas I, Tsiourvas D, Paleos CM, Giatrellis S, Nounesis G. Interaction of l-arginine with dihexadecylphosphate unilamellar liposomes: the effect of the lipid phase organization. Chem Phys Lipids 2005; 134:59-68. [PMID: 15752464 DOI: 10.1016/j.chemphyslip.2004.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/16/2004] [Accepted: 12/20/2004] [Indexed: 11/23/2022]
Abstract
The interaction of L-arginine with unilamellar liposomes of dihexadecylphosphate sodium salt (DHP-Na) has been investigated using calorimetric, light scattering, fluorescence spectroscopy and zeta-potential techniques. Heating from room temperature, the bilayer exhibits a phase transition from a subgel (L(c)) to the gel (L(beta')) phase as well as a pre-transition (L(beta')-P(beta')), which is followed by the main lipid phase transition (P(beta')-L(alpha)). Direct studies of the interaction of L-arginine with the DHP-Na bilayers via isothermal titration calorimetry at 27 degrees C depict significant differences between samples in the L(c) and the L(beta') phases reflecting the effect of molecular organization of the lipids upon the interaction. While L-arginine has only a small impact upon the L(c) to L(beta') phase transition, it affects more significantly the transition temperature as well as the shape of the DSC peaks of the main lipid phase transition. Based on fluorescence and zeta-potential studies, the permeability of L-arginine through the liposomal membrane is higher within the temperature range of the main lipid phase transition. Encapsulated l-arginine obstructs the formation of the subgel phase.
Collapse
Affiliation(s)
- Ioannis Tsogas
- Institute of Physical Chemistry, NCSR Demokritos, 153 10 Aghia Paraskevi, Greece
| | | | | | | | | |
Collapse
|
33
|
Paleos CM, Tsiourvas D. Interaction between complementary liposomes: a process leading to multicompartment systems formation. J Mol Recognit 2005; 19:60-7. [PMID: 16312020 DOI: 10.1002/jmr.758] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interaction of complementary liposomes induces a series of processes, involving reorganization of their membrane lipids, which lead to the formation of large aggregates. In several cases these aggregates exhibit multicompartment structures and only primitively mimic, in some aspects at least, the multicompartmental features of cells. Similar multicompartment structures were repeatedly obtained following the interaction of a diversity of complementary liposomal pairs. Thus, a working hypothesis is proposed, according to which, molecular recognition of liposomes induces the formation of multicompartment structures.
Collapse
Affiliation(s)
- Constantinos M Paleos
- Institute of Physical Chemistry, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece.
| | | |
Collapse
|