1
|
Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - From membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 2022; 299:102526. [PMID: 34610862 DOI: 10.1016/j.cis.2021.102526] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
As a result of increasing resistance among pathogens against antibiotics and anti-viral therapeutics, nanomaterials are attracting current interest as antimicrobial agents. Such materials offer triggered functionalities to combat challenging infections, based on either direct membrane action, effects of released ions, thermal shock induced by either light or magnetic fields, or oxidative photocatalysis. In the present overview, we focus on photocatalytic antimicrobial effects, in which light exposure triggers generation of reactive oxygen species. These, in turn, cause oxidative damage to key components in bacteria and viruses, including lipid membranes, lipopolysaccharides, proteins, and DNA/RNA. While an increasing body of studies demonstrate that potent antimicrobial effects can be achieved by photocatalytic nanomaterials, understanding of the mechanistic foundation underlying such effects is still in its infancy. Addressing this, we here provide an overview of the current understanding of the interaction of photocatalytic nanomaterials with pathogen membranes and membrane components, and how this translates into antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| |
Collapse
|
2
|
Grebowski J, Konopko A, Krokosz A, DiLabio GA, Litwinienko G. Antioxidant activity of highly hydroxylated fullerene C 60 and its interactions with the analogue of α-tocopherol. Free Radic Biol Med 2020; 160:734-744. [PMID: 32871231 DOI: 10.1016/j.freeradbiomed.2020.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Polyhydroxylated fullerenes (fullerenols) are excellent free radical scavengers. Despite the large number of reports on their reactions with reactive oxygen species, there is no report on their ability to trap lipid peroxyl radicals and act as chain-breaking antioxidants. In this work we studied the effect of fullerenol C60(OH)36 on the kinetics of peroxidation of polyunsaturated fatty acid ester (methyl linoleate) dispersed in two model systems that mimic biological systems: Triton X-100 micelles and Large Unilamellar Vesicles, at pH 4, 7 and 10. As a control antioxidant 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMHC, an analog of α-tocopherol) was used. In micellar systems at pH 4.0, C60(OH)36 reacts with peroxyl radicals with kinh= (5.8 ± 0.3) × 103 M-1s-1 (for PMHC kinh = 22 × 103 M-1s-1). Surprisingly, at pH 7 a retardation instead of inhibition was recorded, and at pH 10 no effect on the kinetics of the process was observed. In liposomal systems fullerenol was not active at pH 4.0 but at pH 7.0 kinh = (8.8 ± 2.6) × 103 M-1s-1 for fullerenol was 30% lower than kinh for PMHC. Using two fluorescent probes we confirmed that at pH 7.4 fullerenol/fullerenol anions are incorporated into the phospholipid heads of the bilayer. We also studied the cooperation of C60(OH)36 with PMHC: both compounds seem to contribute their peroxyl radical trapping abilities independently at pH 4 whereas at pH 7 and 10 a hyper-synergy was observed. The antioxidant action of C60(OH)36 and its synergy with PMHC was also confirmed for peroxidation of human erythrocytes at pH 7.4. Assuming the simplified structural model of fullerenol limited to 36 hydroxyls as the only functional groups attached to C60 core we found by density-functional theory a low energy structure with OH groups distributed in the form of two polyhydroxyl regions separating two unsubstituted carbon regions with biphenyl-like structure. Our calculations indicate that abstraction of hydrogen atom from fullerenol by peroxyl or tocopheroxyl radical is endoergic. As the electron transfer from fullerenol polyanion to the radicals is also energetically disfavoured, the most probable mechanism of reaction with radicals is subsequent addition of peroxyl/tocopheroxyl radicals to biphenyl moieties surrounded by OH groups.
Collapse
Affiliation(s)
- Jacek Grebowski
- Department of Molecular Biophysics, Division of Radiobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland; The Military Medical Training Center, 6-Sierpnia 92, 90-646, Lodz, Poland; University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| | - Adrian Konopko
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| | - Anita Krokosz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Gino A DiLabio
- Department of Chemistry and Faculty of Management, The University of British Columbia, 3247 University Way, Kelowna British Columbia, V1V 1V7, Canada
| | | |
Collapse
|
3
|
V. Mikheev I, M. Sozarukova M, V. Proskurnina E, E. Kareev I, A. Proskurnin M. Non-Functionalized Fullerenes and Endofullerenes in Aqueous Dispersions as Superoxide Scavengers. Molecules 2020; 25:molecules25112506. [PMID: 32481516 PMCID: PMC7321068 DOI: 10.3390/molecules25112506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Endohedral metal fullerene are potential nanopharmaceuticals for MRI; thus, it is important to study their effect on reactive oxygen species (ROS) homeostasis. Superoxide anion radical is one of the key ROS. The reactivity of aqueous dispersions of pristine (non-functionalized) fullerenes and Gd@C82 endofullerene have been studied with respect to superoxide in the xanthine/xanthine oxidase chemiluminescence system. It was found that C60 and C70 in aqueous dispersions react with superoxide as scavengers by a similar mechanism; differences in activity are determined by cluster parameters, primarily the concentration of available, acting molecules at the surface. Gd endofullerene is characterized by a significantly (one-and-a-half to two orders of magnitude) higher reactivity with respect to C60 and C70 and is likely to exhibit nanozyme (SOD-mimic) properties, which can be accounted for by the nonuniform distribution of electron density of the fullerene cage due to the presence of the endohedral atom; however, in the cell model, Gd@C82 showed the lowest activity compared to C60 and C70, which can be accounted for by its higher affinity for the lipid phase.
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | | | - Ivan E. Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia;
| | - Mikhail A. Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-939-4648
| |
Collapse
|
4
|
Interaction of particles with mucosae and cell membranes. Colloids Surf B Biointerfaces 2020; 186:110657. [DOI: 10.1016/j.colsurfb.2019.110657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
|
5
|
Nalakarn P, Boonnoy P, Nisoh N, Karttunen M, Wong-Ekkabut J. Dependence of fullerene aggregation on lipid saturation due to a balance between entropy and enthalpy. Sci Rep 2019; 9:1037. [PMID: 30705323 PMCID: PMC6355782 DOI: 10.1038/s41598-018-37659-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
It is well-known that fullerenes aggregate inside lipid membranes and that increasing the concentration may lead to (lethal) membrane rupture. It is not known, however, how aggregation and rupture depend on the lipid type, what physical mechanisms control this behavior and what experimental signatures detect such changes in membranes. In this paper, we attempt to answer these questions with molecular simulations, and we show that aggregation and membrane damage depend critically on the degree of saturation of the lipid acyl chains: unsaturated bonds, or "kinks", impose a subtle but crucial compartmentalization of the bilayer into core and surface regions leading to three distinct fullerene density maxima. In contrast, when the membrane has only fully saturated lipids, fullerenes prefer to be located close to the surface under the head groups until the concentration becomes too large and the fullerenes begin clustering. No clustering is observed in membranes with unsaturated lipids. The presence of "kinks" reverses the free energy balance; although the overall free energy profiles are similar, entropy is the dominant component in unsaturated bilayers whereas enthalpy controls the fully saturated ones. Fully saturated systems show two unique signatures: 1) membrane thickness behaves non-monotonously while the area per lipid increases monotonously. We propose this as a potential reason for the observations of low fullerene concentrations being effective against bacteria. 2) The fullerene-fullerene radial distribution function (RDF) shows splitting of the second peak indicating the emergence short-range order and the importance of the second-nearest neighbor interactions. Similar second peak splitting has been reported in metal glasses.
Collapse
Affiliation(s)
- Pornkamon Nalakarn
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand
| | - Phansiri Boonnoy
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Nililla Nisoh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand
| | - Mikko Karttunen
- Department of Chemistry and Department of Applied Mathematics, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand.
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
6
|
Utembe W, Wepener V, Yu IJ, Gulumian M. An assessment of applicability of existing approaches to predicting the bioaccumulation of conventional substances in nanomaterials. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2972-2988. [PMID: 30117187 DOI: 10.1002/etc.4253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/24/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
The experimental determination of bioaccumulation is challenging, and a number of approaches have been developed for its prediction. It is important to assess the applicability of these predictive approaches to nanomaterials (NMs), which have been shown to bioaccumulate. The octanol/water partition coefficient (KOW ) may not be applicable to some NMs that are not found in either the octanol or water phases but rather are found at the interface. Thus the KOW values obtained for certain NMs are shown not to correlate well with the experimentally determined bioaccumulation. Implementation of quantitative structure-activity relationships (QSARs) for NMs is also challenging because the bioaccumulation of NMs depends on nano-specific properties such as shape, size, and surface area. Thus there is a need to develop new QSAR models based on these new nanodescriptors; current efforts appear to focus on digital processing of NM images as well as the conversion of surface chemistry parameters into adsorption indices. Water solubility can be used as a screening tool for the exclusion of NMs with short half-lives. Adaptation of fugacity/aquivalence models, which include physicochemical properties, may give some insights into the bioaccumulation potential of NMs, especially with the addition of a biota component. The use of kinetic models, including physiologically based pharmacokinetic models, appears to be the most suitable approach for predicting bioaccumulation of NMs. Furthermore, because bioaccumulation of NMs depends on a number of biotic and abiotic factors, it is important to take these factors into account when one is modeling bioaccumulation and interpreting bioaccumulation results. Environ Toxicol Chem 2018;37:2972-2988. © 2018 SETAC.
Collapse
Affiliation(s)
- Wells Utembe
- National Institute for Occupational Health, Johannesburg, South Africa
| | - Victor Wepener
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
| | | | - Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
7
|
Joo SH, Aggarwal S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:62-74. [PMID: 30071367 DOI: 10.1016/j.jenvman.2018.07.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/19/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Since their advent a few decades ago, engineered nanoparticles (ENPs) have been extensively used in consumer products and industrial applications and their use is expected to continue at the rate of thousands of tons per year in the next decade. The widespread use of ENPs poses a potential risk of large scale environmental proliferation of ENPs which can impact and endanger environmental health and safety. Recent studies have shown that microbial biofilms can serve as an important biotic component for partitioning and perhaps storage of ENPs released into aqueous systems. Considering that biofilms can be one of the major sinks for ENPs in the environment, and that the field of biofilms itself is only three to four decades old, there is a recent and growing body of literature investigating the ENP-biofilm interactions. While looking at biofilms, it is imperative to consider the interactions of ENPs with the planktonic microbial cells inhabiting the bulk systems in the vicinity of surface-attached biofilms. In this review article, we attempt to establish the state of current knowledge regarding the interactions of ENPs with bacterial cells and biofilms, identifying key governing factors and interaction mechanisms, as well as prominent knowledge gaps. Since the context of ENP-biofilm interactions can be multifarious-ranging from ecological systems to water and wastewater treatment to dental/medically relevant biofilms- and includes devising novel strategies for biofilm control, we believe this review will serve an interdisciplinary audience. Finally, the article also touches upon the future directions that the research in the ENP-microbial cells/biofilm interactions could take. Continued research in this area is important to not only enhance our scientific knowledge and arsenal for biofilm control, but to also support environmental health while reaping the benefits of the 'nanomaterial revolution'.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Srijan Aggarwal
- Department of Civil and Environmental Engineering, University of Alaska Fairbanks, 1760 Tanana Loop, Duckering Building, Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Mikheev IV, Kareev IE, Bubnov VP, Volkov DS, Korobov MV, Proskurnin MA. Development of Standard Reference Samples of Aqueous Fullerene Dispersions. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s106193481809006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Fu W, Zhang W. Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope. Phys Chem Chem Phys 2018; 20:24434-24443. [DOI: 10.1039/c8cp04676j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A scanning probe method based on atomic force microscopy (AFM) was used to probe the nanoscale hydrophobicity of nanomaterials in liquid environments.
Collapse
Affiliation(s)
- Wanyi Fu
- John A. Reif, Jr. Department of Civil and Environmental Engineering
- New Jersey Institute of Technology
- Newark
- USA
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering
- New Jersey Institute of Technology
- Newark
- USA
| |
Collapse
|
10
|
Malekkhaiat Häffner S, Malmsten M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv Colloid Interface Sci 2017; 248:105-128. [PMID: 28807368 DOI: 10.1016/j.cis.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections. Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological response. In the present overview, the current understanding of inorganic nanomaterials as antimicrobial agents is outlined, with special focus on the interplay between antimicrobial effects and membrane interactions, and how membrane interactions and antimicrobial effects of such materials depend on nanoparticle properties, membrane composition, and external (e.g., light and magnetic) fields.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
11
|
Sastre J, Mannelli I, Reigada R. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study. Biochim Biophys Acta Gen Subj 2017; 1861:2872-2882. [PMID: 28780125 DOI: 10.1016/j.bbagen.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The toxic effects and environmental impact of nanomaterials, and in particular of Fullerene particles, are matters of serious concern. It has been reported that fullerene molecules enter the cell membrane and occupy its hydrophobic region. Understanding the effects of carbon-based nanoparticles on biological membranes is therefore of critical importance to determine their exposure risks. METHODS We report on a systematic coarse-grained molecular dynamics study of the interaction of fullerene molecules with simple model cell membranes. We have analyzed bilayers consisting of lipid species with different degrees of unsaturation and a variety of cholesterol fractions. Addition of fullerene particles to phase-segregated ternary membranes is also investigated in the context of the lipid raft model for the organization of the cell membrane. RESULTS Fullerene addition to lipid membranes modifies their structural properties like thickness, area and internal ordering of the lipid species, as well as dynamical aspects such as molecular diffusion and cholesterol flip-flop. Interestingly, we show that phase-segregating ternary lipid membranes accumulate fullerene molecules preferentially in the liquid-disordered domains promoting phase-segregation and domain alignment across the membrane. CONCLUSIONS Lipid membrane internal ordering determines the behavior and distribution of fullerene particle, and this, in turn, determines the influence of fullerene on the membrane. Lipid membranes are good solvents of fullerene molecules, and in particular those with low internal ordering. GENERAL SIGNIFICANCE Preference of fullerene molecules to be dissolved in the more disordered hydrophobic regions of a lipid bilayer and the consequent alteration of its phase behavior may have important consequences on the activity of biological cell membranes and on the bioconcentration of fullerene in living organisms.
Collapse
Affiliation(s)
- Judit Sastre
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, c/Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain
| | - Ilaria Mannelli
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Ramon Reigada
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, c/Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain; Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Gupta R, Rai B. Molecular dynamics simulation study of translocation of fullerene C 60 through skin bilayer: effect of concentration on barrier properties. NANOSCALE 2017; 9:4114-4127. [PMID: 28280822 DOI: 10.1039/c6nr09186e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The molecular level permeation mechanism of fullerenes and its derivatives through human skin could open a vast area for designing novel nanoparticles for cosmetics and drug delivery applications. In this study, we report the permeation mechanism of pristine fullerene C60 for the first time through the skin lipid layer, as determined via prolonged unconstrained and constrained coarse-grained molecular dynamics simulations. The skin layer was modelled as an equimolar ratio of ceramides, cholesterol and free fatty acids. It was observed that at lower concentrations fullerenes formed small clusters (3 or 5 molecules) in the aqueous phase, which further spontaneously permeated inside the bilayer and remained dispersed inside the bilayer interior. On the other hand, at higher concentrations fullerenes aggregated in the aqueous layer, penetrated in that form and remained aggregated in the bilayer interior. Lower concentrations of fullerenes did not induce significant structural changes in the bilayer, whereas at higher concentrations undulations were observed. The permeability of fullerene molecules was found to be concentration-dependent and was explained in terms of their free energy of permeation (thermodynamics) and diffusivity (dynamics). On the basis of the aggregation and dispersion of fullerenes, an optimum fullerene concentration was determined, which could be used for drug delivery and cosmetic applications.
Collapse
Affiliation(s)
- Rakesh Gupta
- Physical Science Research Area, TCS™ Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India.
| | - Beena Rai
- Physical Science Research Area, TCS™ Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India.
| |
Collapse
|
13
|
He Y, Del Valle A, Qian Y, Huang YF. Near infrared light-mediated enhancement of reactive oxygen species generation through electron transfer from graphene oxide to iron hydroxide/oxide. NANOSCALE 2017; 9:1559-1566. [PMID: 28067928 DOI: 10.1039/c6nr08784a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clinical applications of current photodynamic therapy (PDT) agents are often restricted to be activated only by UV and visible light, which have very poor tissue penetration depths. In this study, a new near infrared (NIR)-absorbing nanoagent based on graphene oxide decorated with iron hydroxide/oxide (GO-FeOxH) was developed for light-activated nanomaterial-mediated PDT. This nanocomposite, GO-FeOxH was prepared via the one-step electrooxidation of iron nails in an aqueous GO solution. The as-prepared GO-FeOxH showed a much higher reactive oxygen species (ROS) activity under NIR light irradiation than GO. Through a variety of spectroscopic analyses, the mechanism involved in the enhancement of ROS activity of GO by FeOxH was systematically investigated. We observed that NIR light irradiation promotes electron transfer from GO to the Fe(iii) of FeOxH and accelerates their reaction with O2, forming superoxide anion radicals, which then undergo a disproportionation reaction to produce H2O2. H2O2 then reacts with Fe(ii) in FeOxH to mediate Fenton reactions, producing amplified hydroxyl radicals. Using in vitro studies, we demonstrated that GO-FeOxH can be used as a NIR activatable PDT nanoagent, providing efficient cancer therapy.
Collapse
Affiliation(s)
- Yue He
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China. and Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Andrea Del Valle
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China.
| | - Yu Qian
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China.
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China.
| |
Collapse
|
14
|
Lopez H, Brandt EG, Mirzoev A, Zhurkin D, Lyubartsev A, Lobaskin V. Multiscale Modelling of Bionano Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:173-206. [PMID: 28168669 DOI: 10.1007/978-3-319-47754-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a framework for coarse-grained modelling of the interface between foreign nanoparticles (NP) and biological fluids and membranes. Our model includes united-atom presentations of membrane lipids and globular proteins in implicit solvent, which are based on all-atom structures of the corresponding molecules and parameterised using experimental data or atomistic simulation results. The NPs are modelled by homogeneous spheres that interact with the beads of biomolecules via a central force that depends on the NP size. The proposed methodology is used to predict the adsorption energies for human blood plasma proteins on NPs of different sizes as well as the preferred orientation of the molecules upon adsorption. Our approach allows one to rank the proteins by their binding affinity to the NP, which can be used for predicting the composition of the NP-protein corona for the corresponding material. We also show how the model can be used for studying NP interaction with a lipid bilayer membrane and thus can provide a mechanistic insight for modelling NP toxicity.
Collapse
Affiliation(s)
- Hender Lopez
- School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland
| | - Erik G Brandt
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Alexander Mirzoev
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Dmitry Zhurkin
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Alexander Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Vladimir Lobaskin
- School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Chen Q, Xu S, Liu Q, Masliyah J, Xu Z. QCM-D study of nanoparticle interactions. Adv Colloid Interface Sci 2016; 233:94-114. [PMID: 26546115 DOI: 10.1016/j.cis.2015.10.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Quartz crystal microbalance with dissipation monitoring (QCM-D) has been proven to be a powerful research tool to investigate in situ interactions between nanoparticles and different functionalized surfaces in liquids. QCM-D can also be used to quantitatively determine adsorption kinetics of polymers, DNA and proteins from solutions on various substrate surfaces while providing insights into conformations of adsorbed molecules. This review aims to provide a comprehensive overview on various important applications of QCM-D, focusing on deposition of nanoparticles and attachment-detachment of nanoparticles on model membranes in complex fluid systems. We will first describe the working principle of QCM-D and DLVO theory pertinent to understanding nanoparticle deposition phenomena. The interactions between different nanoparticles and functionalized surfaces for different application areas are then critically reviewed. Finally, the potential applications of QCM-D in other important fields are proposed and knowledge gaps are identified.
Collapse
|
16
|
Gilbertson LM, Albalghiti EM, Fishman ZS, Perreault F, Corredor C, Posner JD, Elimelech M, Pfefferle LD, Zimmerman JB. Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3975-3984. [PMID: 26943499 DOI: 10.1021/acs.est.5b05734] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape of engineered nanomaterials (ENMs) can be used as a design handle to achieve controlled manipulation of physicochemical properties. This tailored material property approach necessitates the establishment of relationships between specific ENM properties that result from such manipulations (e.g., surface area, reactivity, or charge) and the observed trend in behavior, from both a functional performance and hazard perspective. In this study, these structure-property-function (SPF) and structure-property-hazard (SPH) relationships are established for nano-cupric oxide (n-CuO) as a function of shape, including nanospheres and nanosheets. In addition to comparing these shapes at the nanoscale, bulk CuO is studied to compare across length scales. The results from comprehensive material characterization revealed correlations between CuO surface reactivity and bacterial toxicity with CuO nanosheets having the highest surface reactivity, electrochemical activity, and antimicrobial activity. While less active than the nanosheets, CuO nanoparticles (sphere-like shape) demonstrated enhanced reactivity compared to the bulk CuO. This is in agreement with previous studies investigating differences across length-scales. To elucidate the underlying mechanisms of action to further explain the shape-dependent behavior, kinetic models applied to the toxicity data. In addition to revealing different CuO material kinetics, trends in observed response cannot be explained by surface area alone. The compiled results contribute to further elucidate pathways toward controlled design of ENMs.
Collapse
Affiliation(s)
- Leanne M Gilbertson
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | |
Collapse
|
17
|
Rokitskaya TI, Antonenko YN. Fullerenol C60(OH)24 increases ion permeability of lipid membranes in a pH-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1165-74. [PMID: 26874205 DOI: 10.1016/j.bbamem.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/07/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Fullerenols are water-soluble analogs of fullerene exhibiting both antioxidant and prooxidant activities in vitro and in vivo. Here we report, for the first time, that fullerenol C60(OH)24 can induce ion permeability of a planar lipid bilayer membrane via the formation of ion pores or conductive defects with a preference for cations over anions. The fullerenol-mediated electrical current displayed non-linear concentration dependence and was reversibly enhanced by alkalinization. Calcium and magnesium ions decreased the fullerenol-induced potassium ion permeability. Voltage dependence of the current was sensitive to membrane composition, with the conductance being well pronounced in fully saturated diphytanoylphosphatidylcholine. Fullerenol did not induce carboxyfluorescein leakage from liposomes, suggesting a small size of fullerenol-induced pores. In contrast to ion permeability, the binding of C60(OH)24 to liposomes increased at acidic pH, as measured by fluorescence quenching of pyrene-labeled lipid. In line with this, the photodynamic action of fullerenol on the peptide gramicidin A also increased at low pH. It is hypothesized that aggregates of fullerenol may stabilize transient conductive lipid defects or pores formed under a variety of stress conditions.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
18
|
Wu J, Benoit D, Lee SS, Li W, Fortner JD. Ground State Reactions of nC60 with Free Chlorine in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:721-731. [PMID: 26651395 DOI: 10.1021/acs.est.5b04368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Facile, photoenhanced transformations of water-stable C60 aggregates (nC60) to oxidized, soluble fullerene derivatives, have been described as key processes in understanding the ultimate environmental fate of fullerene based materials. In contrast, fewer studies have evaluated the aqueous reactivity of nC60 during ground-state conditions (i.e., dark conditions). Herein, this study identifies and characterizes the physicochemical transformations of C60 (as nC60 suspensions) in the presence of free chlorine, a globally used chemical oxidant, in the absence of light under environmentally relevant conditions. Results show that nC60 undergoes significant oxidation in the presence of free chlorine and the oxidation reaction rates increase with free chlorine concentration while being inversely related to solution pH. Product characterization by FTIR, XPS, Raman Spectroscopy, TEM, XRD, TOC, collectively demonstrates that oxidized C60 derivatives are readily formed in the presence of free chlorine with extensive covalent oxygen and even chlorine additions, and behave as soft (or loose) clusters in solution. Aggregation kinetics, as a function of pH and ionic strength/type, show a significant increase in product stabilities for all cases evaluated, even at pH values approaching 1. As expected with increased (surface) oxidation, classic Kow partitioning studies indicate that product clusters are relatively more hydrophilic than parent (reactant) nC60. Taken together, this work highlights the importance of understanding nanomaterial reactivity and the identification of corresponding stable daughter products, which are likely to differ significantly from parent material properties and behaviors.
Collapse
Affiliation(s)
- Jiewei Wu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Denise Benoit
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Seung Soo Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Wenlu Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - John D Fortner
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
19
|
Ha Y, Katz LE, Liljestrand HM. Distribution of Fullerene Nanoparticles between Water and Solid Supported Lipid Membranes: Thermodynamics and Effects of Membrane Composition on Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14546-53. [PMID: 26569041 DOI: 10.1021/acs.est.5b03339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The distribution coefficient (Klipw) of fullerene between solid supported lipid membranes (SSLMs) and water was examined using different lipid membrane compositions. Klipw of fullerene was significantly higher with a cationic lipid membrane compared to that with a zwitterionic or anionic lipid membrane, potentially due to the strong interactions between negative fullerene dispersions and positive lipid head groups. The higher Klipw for fullerene distribution to ternary lipid mixture membranes was attributed to an increase in the interfacial surface area of the lipid membrane resulting from phase separation. These results imply that lipid composition can be a critical factor that affects bioconcentration of fullerene. Distribution of fullerene into zwitterionic unsaturated lipid membranes was dominated by the entropy contribution (ΔS) and the process was endothermic (ΔH > 0). This result contrasts the partitioning thermodynamics of highly and moderately hydrophobic chemicals indicating that the lipid-water distribution mechanism of fullerene may be different from that of molecular level chemicals. Potential mechanisms for the distribution of fullerene that may explain these differences include adsorption on the lipid membrane surfaces and partitioning into the center of lipid membranes (i.e., absorption).
Collapse
Affiliation(s)
- Yeonjeong Ha
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Lynn E Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Howard M Liljestrand
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
20
|
He XC, Lin M, Li F, Sha BY, Xu F, Qu ZG, Wang L. Advances in studies of nanoparticle–biomembrane interactions. Nanomedicine (Lond) 2015; 10:121-41. [DOI: 10.2217/nnm.14.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) are widely applied in nanomedicine and diagnostics based on the interactions between NPs and the basic barrier (biomembrane). Understanding the underlying mechanism of these interactions is important for enhancing their beneficial effects and avoiding potential nanotoxicity. Experimental, mathematical and numerical modeling techniques are involved in this field. This article reviews the state-of-the-art techniques in studies of NP–biomembrane interactions with a focus on each technology's advantages and disadvantages. The aim is to better understand the mechanism of NP–biomembrane interactions and provide significant guidance for various fields, such as nanomedicine and diagnosis.
Collapse
Affiliation(s)
- Xiao Cong He
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Min Lin
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Fei Li
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Department of Chemistry, School of Sciences, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Bao Yong Sha
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Institute of Basic Medical Science, Xi’an Medical University, Xi’an 710021, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Zhi Guo Qu
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Lin Wang
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| |
Collapse
|
21
|
Dsouza R, Valiyaveettil S. Aminoparticles – synthesis, characterisation and application in water purification. RSC Adv 2015. [DOI: 10.1039/c5ra01675d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A convenient synthesis of processable aminoparticles is demonstrated with potential applications in water purification.
Collapse
Affiliation(s)
- Roshan Dsouza
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|
22
|
Barry MC, Hristovski K, Westerhoff P. Membrane fouling by vesicles and prevention through ozonation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7349-7356. [PMID: 24911399 DOI: 10.1021/es500435e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Membrane fouling is a major challenge in water and wastewater treatment. Recent observations that ozone mitigates membrane fouling during filtration of secondary effluent prompted this study into the impact of preozonation on membrane fouling caused by biogenic colloids. The focus of this study was on liposomes, synthetic vesicles composed of (phospho)lipid bilayers, which are representative of the diverse cellular vesicles present in all biologically impacted waters. The overarching hypothesis was that these biologically produced, nonrigid or "soft" colloids (e.g., vesicles) present in wastewater give rise to unique fouling behavior that can be mitigated by preozonation. Using dead-end ultrafiltration (UF) and batch ozonation tests, the key findings of this study were (1) liposomes fouled UF membranes faster (4-13 times membrane cake resistance (RC) per mgC filtered) than polysaccharides, fatty acids, and NOM on a DOC-normalized basis; (2) based on the estimated carbon distribution of secondary effluent, liposome-like biogenic nanomaterials could be responsible for 20-60% of fouling during UF; and (3) preozonation reduces liposomal fouling during UF, likely due to the disruption of the liposome structure through cleavage of the fatty acid tails at carbon-carbon double bonds.
Collapse
Affiliation(s)
- Michelle C Barry
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States
| | | | | |
Collapse
|
23
|
Wu J, Alemany LB, Li W, Petrie L, Welker C, Fortner JD. Reduction of hydroxylated fullerene (fullerol) in water by zinc: reaction and hemiketal product characterization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7384-7392. [PMID: 24892381 DOI: 10.1021/es5012912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Water-soluble, hydroxylated fullerene (fullerol) materials have recently gained increasing attention as they have been identified as the primary product(s) during the exposure of fullerenes (as water stable, nanoscale aggregated C60) to UV light in water. The physical properties and chemical reactivity of resulting fullerols, however, have not been thoroughly studied. In this paper, we identified and characterized the reductive transformation of fullerol (C60(OH)x(ONa)y) by solid zinc metal (Zn(0)) through a series of batch reaction experiments and product characterization, including (13)C NMR, FTIR, XPS, UV-vis, DLS, and TEM. Results indicated the facile formation of water stable, pH sensitive hemiketal functionality as part of a relatively reduced fullerol product. Further, aqueous physical behavior of the product fullerol, as measured by octanol partitioning and surface deposition rates, was observed to significantly differ from the parent material and is consistent with a relative increase in molecular (product) hydrophobicity.
Collapse
Affiliation(s)
- Jiewei Wu
- Shared Equipment Authority and Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | | | | | | | | | | |
Collapse
|
24
|
Chen KL, Bothun GD. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:873-80. [PMID: 24341906 DOI: 10.1021/es403864v] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanotoxicity studies have shown that both carbon-based and inorganic engineered nanoparticles can be toxic to microorganisms. Although the pathways for cytotoxicity are diverse and dependent upon the nature of the engineered nanoparticle and the chemical environment, numerous studies have provided evidence that direct contact between nanoparticles and bacterial cell membranes is necessary for cell inactivation or damage, and may in fact be a primary mechanism for cytotoxicity. The propensities for nanoparticles to attach to and disrupt cell membranes are still not well understood due to the heterogeneous and dynamic nature of biological membranes. Model biological membranes can be employed for systematic investigations of nanoparticle-membrane interactions. In this article, current and emerging experimental approaches to identify the key parameters that control the attachment of ENPs on model membranes and the disruption of membranes by ENPs will be discussed. This critical information will help enable the "safe-by-design" production of engineered nanoparticles that are nontoxic or biocompatible, and also allow for the design of antimicrobial nanoparticles for environmental and biomedical applications.
Collapse
Affiliation(s)
- Kai Loon Chen
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686
| | | |
Collapse
|
25
|
Navarro DA, Kookana RS, Kirby JK, Martin SM, Shareef A, Du J, McLaughlin MJ. Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:496-503. [PMID: 24076573 DOI: 10.1016/j.jhazmat.2013.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Owing of their wide-range of commercial applications, fullerene (C60) nanoparticles, are likely to reach environments through the application of treated sludge (biosolids) from wastewater treatment plants to soils. We examined the release behaviour of C60 from contaminated biosolids added to soils with varying physicochemical characteristics. Incubation studies were carried out in the dark for up to 24 weeks, by adding biosolids spiked (1.5mg/kg) with three forms of C60 (suspended in water, in humic acid, and precipitated/particulate) to six contrasting soils. Leaching of different biosolids+soil systems showed that only small fractions of C60 (<5% of applied amount) were released, depending on incubation time and soil properties (particularly dissolved organic carbon content). Release of C60 from unamended soils was greater (at least twice as much) than from biosolids-amended soils. The form of C60 used to spike the biosolids had no significant effect on the release of C60 from the different systems. Contact time of C60 in these systems only slightly increased the apparent release up to 8 weeks, followed by a decrease to 24 weeks. Mass balance analysis at the completion of the experiment revealed that 20-60% of the initial C60 applied could not be accounted for in these systems; the reasons for this are discussed.
Collapse
Affiliation(s)
- Divina A Navarro
- CSIRO Land and Water, Advanced Materials Transformational Capability Platform-Nanosafety, Contaminant Chemistry and Ecotoxicology Program, PMB 2, Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhang S, Mu Y, Zhang JZH, Xu W. Effect of self-assembly of fullerene nano-particles on lipid membrane. PLoS One 2013; 8:e77436. [PMID: 24204827 PMCID: PMC3812269 DOI: 10.1371/journal.pone.0077436] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022] Open
Abstract
Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC) model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1) assembly process is completely finished before penetration; 2) assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron) of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity.
Collapse
Affiliation(s)
- Saiqun Zhang
- Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - John Z. H. Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Weixin Xu
- Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
27
|
Corredor C, Hou WC, Klein SA, Moghadam BY, Goryll M, Doudrick K, Westerhoff P, Posner JD. Disruption of Model Cell Membranes by Carbon Nanotubes. CARBON 2013; 60:67-75. [PMID: 31007268 PMCID: PMC6474754 DOI: 10.1016/j.carbon.2013.03.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Carbon nanotubes (CNTs) have one of the highest production volumes among carbonaceous engineered nanoparticles (ENPs) worldwide and are have potential uses in applications including biomedicine, nanocomposites, and energy conversion. However, CNTs possible widespread usage and associated likelihood for biological exposures have driven concerns regarding their nanotoxicity and ecological impact. In this work, we probe the responses of planar suspended lipid bilayer membranes, used as model cell membranes, to functionalized multi-walled carbon nanotubes (MWCNT), CdSe/ZnS quantum dots, and a control organic compound, melittin, using an electrophysiological measurement platform. The electrophysiological measurements show that MWCNTs in a concentration range of 1.6 to 12 ppm disrupt lipid membranes by inducing significant transmembrane current fluxes, which suggest that MWCNTs insert and traverse the lipid bilayer membrane, forming transmembrane carbon nanotubes channels that allow the transport of ions. This paper demonstrates a direct measurement of ion migration across lipid bilayers induced by CNTs. Electrophysiological measurements can provide unique insights into the lipid bilayer-ENPs interactions and have the potential to serve as a preliminary screening tool for nanotoxicity.
Collapse
Affiliation(s)
- Charlie Corredor
- Chemical Engineering, University of Washington, Seattle, WA 98115
| | - Wen-Che Hou
- Environmental Engineering, Arizona State University, Tempe, Arizona 85287-6106
| | - Steven A. Klein
- Mechanical Engineering, Arizona State University, Tempe, Arizona 85287-6106
| | | | - Michael Goryll
- Electrical Engineering, Arizona State University, Tempe, Arizona 85287-6106
| | - Kyle Doudrick
- Environmental Engineering, Arizona State University, Tempe, Arizona 85287-6106
| | - Paul Westerhoff
- Environmental Engineering, Arizona State University, Tempe, Arizona 85287-6106
| | - Jonathan D. Posner
- Chemical Engineering, University of Washington, Seattle, WA 98115
- Mechanical Engineering, University of Washington, Seattle, WA 98115
| |
Collapse
|
28
|
Zhu R, Molinari M, Shapley TV, Parker SC. Modeling the Interaction of Nanoparticles with Mineral Surfaces: Adsorbed C60 on Pyrophyllite. J Phys Chem A 2013; 117:6602-11. [DOI: 10.1021/jp402835v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Marco Molinari
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Thomas V. Shapley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Stephen C. Parker
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
29
|
Yi P, Chen KL. Interaction of multiwalled carbon nanotubes with supported lipid bilayers and vesicles as model biological membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5711-5719. [PMID: 23647313 DOI: 10.1021/es4002604] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The influence of solution chemistry on the kinetics and reversibility of the deposition of multiwalled carbon nanotubes (MWNTs) on model biological membranes was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Supported lipid bilayers (SLBs) comprised of zwitterionic 1,2-dioleoyl-sn-glyero-3-phosphocholine (DOPC), as well as DOPC vesicles, were used as model cell membranes. Under neutral pH conditions, the deposition kinetics of MWNTs on SLBs increased with increasing electrolyte (NaCl and CaCl2) concentrations. In the presence of NaCl, favorable deposition was not achieved even at a concentration of 1 M, which is attributed to the presence of strong repulsive hydration forces due to the highly hydrophilic headgroups of SLBs. Conversely, favorable deposition was observed at CaCl2 concentrations above 0.5 mM when the charge of SLBs was reversed from negative to positive through the binding of Ca(2+) cations to the exposed phosphate headgroups. Favorable nanotube deposition was also observed at pH 2, at which the DOPC SLBs exhibited positive surface charge, since the isoelectric point of DOPC is ca. 4. When MWNTs on SLBs were rinsed with low ionic strength solutions at pH 7.3, only ca. 20% of deposited nanotubes were released, indicating that nanotube deposition was mostly irreversible. The deposition of MWNTs on DOPC vesicles under favorable deposition conditions did not result in any detectable leakage of solution from the vesicles, indicating that MWNTs did not severely disrupt the DOPC bilayers upon attachment.
Collapse
Affiliation(s)
- Peng Yi
- Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2686, United States
| | | |
Collapse
|
30
|
Shi L, Shi D, Nollert MU, Resasco DE, Striolo A. Single-Walled Carbon Nanotubes Do Not Pierce Aqueous Phospholipid Bilayers at Low Salt Concentration. J Phys Chem B 2013; 117:6749-58. [DOI: 10.1021/jp4039336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Liu Shi
- The University of Oklahoma School of Chemical, Biological and Materials Engineering, Norman, Oklahoma
73019, United States
| | - Dachuan Shi
- The University of Oklahoma School of Chemical, Biological and Materials Engineering, Norman, Oklahoma
73019, United States
| | - Matthias U. Nollert
- The University of Oklahoma School of Chemical, Biological and Materials Engineering, Norman, Oklahoma
73019, United States
| | - Daniel E. Resasco
- The University of Oklahoma School of Chemical, Biological and Materials Engineering, Norman, Oklahoma
73019, United States
| | - Alberto Striolo
- The University of Oklahoma School of Chemical, Biological and Materials Engineering, Norman, Oklahoma
73019, United States
| |
Collapse
|
31
|
Westerhoff P, Nowack B. Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc Chem Res 2013; 46:844-53. [PMID: 22950943 PMCID: PMC3553244 DOI: 10.1021/ar300030n] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered nanomaterials (ENMs) are a new class of environmental pollutants. Researchers are beginning to debate whether new modeling paradigms and experimental tests to obtain model parameters are required for ENMs or if approaches for existing pollutants are robust enough to predict ENM distribution between environmental compartments. This Account outlines how experimental research can yield quantitative data for use in ENM fate and exposure models. We first review experimental testing approaches that are employed with ENMs. Then we compare and contrast ENMs against other pollutants. Finally, we summarize the findings and identify research needs that may yield global descriptors for ENMs that are suitable for use in fate and transport modeling. Over the past decade, researchers have made significant progress in understanding factors that influence the fate and transport of ENMs. In some cases, researchers have developed approaches toward global descriptor models (experimental, conceptual, and quantitative). We suggest the following global descriptors for ENMs: octanol-water partition coefficients, solid-water partition coefficients, attachment coefficients, and rate constants describing reactions such as dissolution, sedimentation, and degradation. ENMs appear to accumulate at the octanol-water interface and readily interact with other interfaces, such as lipid-water interfaces. Batch experiments to investigate factors that influence retention of ENMs on solid phases are very promising. However, ENMs probably do not behave in the same way as dissolved chemicals, and therefore, researchers need to use measurement techniques and concepts more commonly associated with colloids. Despite several years of research with ENMs in column studies, available summaries tend to discuss the effects of ionic strength, pH, organic matter, ENM type, packing media, or other parameters qualitatively rather than reporting quantitative values, such as attachment efficiencies, that would facilitate comparison across studies. Only a few structure-activity relationships have been developed for ENMs so far, but such evaluations will facilitate the understanding of the reactivities of different forms of a single ENM. The establishment of predictive capabilities for ENMs in the environment would enable accurate exposure assessments that would assist in ENM risk management. Such information is also critical for understanding the ultimate disposition of ENMs and may provide a framework for improved engineering of nanomaterials that are more environmentally benign.
Collapse
Affiliation(s)
- Paul Westerhoff
- School of Sustainable Engineering and The Built Environment Civil, Environmental and Sustainable Engineering Program Ira A. Fulton School of Engineering Senior Sustainability Scientist - Global Institute of Sustainability Arizona State University Engineering Center, G-Wing Room ECG252 Box 5306 Tempe, AZ 85287-5306 Phone: 480-965-2885 Fax: 480-965-0557
| | - Bernd Nowack
- Environmental Risk Assessment and Management Group Empa-Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 CH - 9014 St. Gallen Switzerland Phone: +41 (0)58 765 76 92 Fax: +41 (0)58 765 78 62
| |
Collapse
|
32
|
Hou WC, Westerhoff P, Posner JD. Biological accumulation of engineered nanomaterials: a review of current knowledge. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:103-122. [PMID: 24592431 DOI: 10.1039/c2em30686g] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Due to the widespread use of engineered nanomaterials (ENMs) in consumer and industrial products, concerns have been raised over their impacts once released into the ecosystems. While there has been a wealth of studies on the short-term acute toxic effects of ENMs over the past decade, work on the chronic endpoints, such as biological accumulation, has just begun to increase in last 2–3 years. Here, we comprehensively review over 65 papers on the biological accumulation of ENMs under a range of ecologically relevant exposure conditions in water, soil or sediment with the focus on quantitative comparison among these existing studies. We found that daphnid, fish, and earthworm are the most commonly studied ecological receptors. Current evidence suggests that ENM accumulation level is generally low in fish and earthworms with logarithmic bioconcentration concentration factor and biota-sediment accumulation factor ranging from 0.85–3.43 (L kg−1) and −2.21–0.4 (kg kg−1), respectively. ENMs accumulated in organisms at the lower trophic level can transfer to higher trophic level animals with the occurrence of biomagnification varying depending on the specific food chain studied. We conclude the review by identifying the challenges and knowledge gaps and propose paths forward.
Collapse
|
33
|
Moghadam BY, Hou WC, Corredor C, Westerhoff P, Posner JD. Role of nanoparticle surface functionality in the disruption of model cell membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16318-26. [PMID: 22921268 PMCID: PMC3508167 DOI: 10.1021/la302654s] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of engineered nanomaterials (ENMs) with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assess the effect of varying the surface functionality and concentration of 10-nm-diameter gold (Au) and titanium dioxide (TiO(2)) ENMs on the disruption of negatively charged lipid bilayer vesicles (liposomes) using a dye-leakage assay. Our findings show that Au ENMs having both positive and negative surface charge induce leakage that reaches a steady state after several hours. Positively charged particles with identical surface functionality and different core compositions show similar leakage effects and result in faster and greater leakage than negatively charged particles, which suggests that surface functionality, not particle core composition, is a critical factor in determining the interaction between ENMs and lipid bilayers. The results suggest that particles permanently adsorb to bilayers and that only one positively charged particle is required to disrupt a liposome and trigger the leakage of its entire contents in contrast to mellitin molecules, the most widely studied membrane lytic peptide, which requires hundred of molecules to generate leakage.
Collapse
Affiliation(s)
- Babak Y. Moghadam
- Mechanical Engineering, Chemical Engineering, University of Washington, Seattle, WA 98195
| | - Wen-Che Hou
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-5306
| | - Charlie Corredor
- Mechanical Engineering, Chemical Engineering, University of Washington, Seattle, WA 98195
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-5306
| | - Jonathan D. Posner
- Mechanical Engineering, Chemical Engineering, University of Washington, Seattle, WA 98195
- Corresponding Author: (J.D.P). Tel: +1 (206) 543-9834. Fax: +1 (206) 685-8047
| |
Collapse
|
34
|
Parthasarathi R, Tummala NR, Striolo A. Embedded Single-Walled Carbon Nanotubes Locally Perturb DOPC Phospholipid Bilayers. J Phys Chem B 2012; 116:12769-82. [DOI: 10.1021/jp306299x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- R. Parthasarathi
- The School of Chemical, Biological
and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - N. R. Tummala
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - A. Striolo
- The School of Chemical, Biological
and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
35
|
Hou WC, Moghadam BY, Corredor C, Westerhoff P, Posner JD. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1869-76. [PMID: 22242832 DOI: 10.1021/es203661k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of nanoparticles with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assessed the affinity of functionalized gold nanoparticles (Au NPs) with sizes from 5 to 100 nm to lipid bilayers by determining the Au NP distribution between aqueous electrolytes and lipid bilayers. The Au NP distribution to lipid bilayers reached an apparent steady state in 24 h with smaller Au NPs distributing onto lipid bilayers more rapidly than larger ones. Au NPs distributed to lipid bilayers to a larger extent at lower pH. Tannic acid-functionalized Au NPs exhibited greater distribution to lipid bilayers than polyvinylpyrrolidone-functionalized Au NPs of the same size. Across the various Au NP sizes, we measure the lipid bilayer-water distribution coefficient (K(lipw) = C(lip)/C(w)) as 450 L/kg lipid, which is independent of dosimetric units. This work suggests that the nanoparticle-cell membrane interaction is dependent on solution chemistry and nanoparticle surface functionality. The K(lipw) value may be used to predict the affinity of spherical Au NPs across a certain size range toward lipid membranes.
Collapse
Affiliation(s)
- Wen-Che Hou
- Mechanical Engineering, Chemical Engineering, University of Washington, Seattle, Washington 98195-2600, United States.
| | | | | | | | | |
Collapse
|