1
|
Bespalova M, Öz R, Westerlund F, Krishnan M. Single-Molecule Trapping and Measurement in a Nanostructured Lipid Bilayer System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13923-13934. [PMID: 36326814 PMCID: PMC9671048 DOI: 10.1021/acs.langmuir.2c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The repulsive electrostatic force between a biomolecule and a like-charged surface can be geometrically tailored to create spatial traps for charged molecules in solution. Using a parallel-plate system composed of silicon dioxide surfaces, we recently demonstrated single-molecule trapping and high precision molecular charge measurements in a nanostructured free energy landscape. Here we show that surfaces coated with charged lipid bilayers provide a system with tunable surface properties for molecular electrometry experiments. Working with molecular species whose effective charge and geometry are well-defined, we demonstrate the ability to quantitatively probe the electrical charge density of a supported lipid bilayer. Our findings indicate that the fraction of charged lipids in nanoslit lipid bilayers can be significantly different from that in the precursor lipid mixtures used to generate them. We also explore the temporal stability of bilayer properties in nanofluidic systems. Beyond their relevance in molecular measurement, such experimental systems offer the opportunity to examine lipid bilayer formation and wetting dynamics on nanostructured surfaces.
Collapse
Affiliation(s)
- Maria Bespalova
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OxfordOX1 3QZ, United Kingdom
| | - Robin Öz
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96Gothenburg, Sweden
| | - Fredrik Westerlund
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96Gothenburg, Sweden
| | - Madhavi Krishnan
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OxfordOX1 3QZ, United Kingdom
- The
Kavli Institute for Nanoscience Discovery, Sherrington Road, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
2
|
Nanoparticle-blockage-enabled rapid and reversible nanopore gating with tunable memory. Proc Natl Acad Sci U S A 2022; 119:e2200845119. [PMID: 35759673 PMCID: PMC9271175 DOI: 10.1073/pnas.2200845119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gated protein channels act as rapid, reversible, and fully-closeable nanoscale valves to gate chemical transport across the cell membrane. Replicating or outperforming such a high-performance gating and valving function in artificial solid-state nanopores is considered an important yet unsolved challenge. Here we report a bioinspired rapid and reversible nanopore gating strategy based on controlled nanoparticle blockage. By using rigid or soft nanoparticles, we respectively achieve a trapping blockage gating mode with volatile memory where gating is realized by electrokinetically trapped nanoparticles near the pore and contact blockage gating modes with nonvolatile memory where gating is realized by a nanoparticle physically blocking the pore. This gating strategy can respond to an external voltage stimulus (∼200 mV) or pressure stimulus (∼1 atm) with response time down to milliseconds. In particular, when 1,2-diphytanoyl-sn-glycero-3-phosphocholine liposomes are used as the nanoparticles, the gating efficiency, defined as the extent of nanopore closing compared to the opening state, can reach 100%. We investigate the mechanisms for this nanoparticle-blockage-enabled nanopore gating and use it to demonstrate repeatable controlled chemical releasing via single nanopores. Because of the exceptional spatial and temporal control offered by this nanopore gating strategy, we expect it to find applications for drug delivery, biotic-abiotic interfacing, and neuromorphic computing.
Collapse
|
3
|
Diederichs T, Tampé R. Membrane-Suspended Nanopores in Microchip Arrays for Stochastic Transport Recording and Sensing. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.703673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transport of nutrients, xenobiotics, and signaling molecules across biological membranes is essential for life. As gatekeepers of cells, membrane proteins and nanopores are key targets in pharmaceutical research and industry. Multiple techniques help in elucidating, utilizing, or mimicking the function of biological membrane-embedded nanodevices. In particular, the use of DNA origami to construct simple nanopores based on the predictable folding of nucleotides provides a promising direction for innovative sensing and sequencing approaches. Knowledge of translocation characteristics is crucial to link structural design with function. Here, we summarize recent developments and compare features of membrane-embedded nanopores with solid-state analogues. We also describe how their translocation properties are characterized by microchip systems. The recently developed silicon chips, comprising solid-state nanopores of 80 nm connecting femtoliter cavities in combination with vesicle spreading and formation of nanopore-suspended membranes, will pave the way to characterize translocation properties of nanopores and membrane proteins in high-throughput and at single-transporter resolution.
Collapse
|
4
|
Structure, Formation, and Biological Interactions of Supported Lipid Bilayers (SLB) Incorporating Lipopolysaccharide. COATINGS 2020. [DOI: 10.3390/coatings10100981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomimetic membrane systems play a crucial role in the field of biosensor engineering. Over the years, significant progress has been achieved creating artificial membranes by various strategies from vesicle fusion to Langmuir transfer approaches to meet an ever-growing demand for supported lipid bilayers on various substrates such as glass, mica, gold, polymer cushions, and many more. This paper reviews the diversity seen in the preparation of biologically relevant model lipid membranes which includes monolayers and bilayers of phospholipid and other crucial components such as proteins, characterization techniques, changes in the physical properties of the membranes during molecular interactions and the dynamics of the lipid membrane with biologically active molecules with special emphasis on lipopolysaccharides (LPS).
Collapse
|
5
|
Knoll W, Azzaroni O, Duran H, Kunze-Liebhäuser J, Lau KHA, Reimhult E, Yameen B. Nanoporous thin films in optical waveguide spectroscopy for chemical analytics. Anal Bioanal Chem 2020; 412:3299-3315. [PMID: 32107572 PMCID: PMC7214501 DOI: 10.1007/s00216-020-02452-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/03/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023]
Abstract
Spectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. Graphical abstract.
Collapse
Affiliation(s)
- Wolfgang Knoll
- Competence Centre for Electrochemical Surface Technology, 2700, Wiener Neustadt, Austria.
- AIT Austrian Institute of Technology GmbH, 3430, Tulln an der Donau, Austria.
| | - Omar Azzaroni
- Competence Centre for Electrochemical Surface Technology, 2700, Wiener Neustadt, Austria
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de LaPlata - CONICET, 1900, La Plata, Argentina
| | - Hatice Duran
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560, Ankara, Turkey
| | - Julia Kunze-Liebhäuser
- Institute for Physical Chemistry, Leopold-Franzens-Universität Innsbruck, 6020, Innsbruck, Austria
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Basit Yameen
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54762, Pakistan
| |
Collapse
|
6
|
Sun Y, Zang X, Sun Y, Wang L, Gao Z. Lipid membranes supported by planar porous substrates. Chem Phys Lipids 2020; 228:104893. [PMID: 32097619 DOI: 10.1016/j.chemphyslip.2020.104893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
Biological membranes play key roles in cell life, but their intrinsic complexity motivated the study and development of artificial lipid membranes with the primary aim to reconstitute and understand the natural functions in vitro. Porous-supported lipid membrane (pSLM) has emerged as a flexible platform for studying the surface chemistry of the cell due to their high stability and fluidity, and their ability to study the transmembrane process of the molecules. In this review, the pSLM, for the first time, to our knowledge, was divided into three types according to the way of the porous materials support the lipid membrane, containing the lipid membrane on the pores of the porous materials, the lipid membrane on both sides of the porous materials, the lipid membrane in the pores of the porous materials. All of these pSLMs were systematically elaborated from several aspects, including the substrates, formation, and characterization. Meanwhile, the advantages and disadvantages of each model membranes were summarized. Finally, suggestions for selecting appropriate pSLM and future directions in this area are discussed.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xianghuan Zang
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Long Wang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China; Department of Family and Consumer Sciences, California State University, Long Beach, CA, 90840, USA.
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
7
|
Sibold J, Tewaag VE, Vagedes T, Mey I, Steinem C. Phase separation in pore-spanning membranes induced by differences in surface adhesion. Phys Chem Chem Phys 2020; 22:9308-9315. [DOI: 10.1039/d0cp00335b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A porous scaffold providing different adhesion energies alters the behaviour of coexisting phases in lipid membranes considerably.
Collapse
Affiliation(s)
- Jeremias Sibold
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Vera E. Tewaag
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Thomas Vagedes
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
- Max Planck Institute for Dynamics and Self-Organization
| |
Collapse
|
8
|
Poltorak L, Verheijden ML, Bosma D, Jonkheijm P, de Smet LC, Sudhölter EJ. Lipid bilayers cushioned with polyelectrolyte-based films on doped silicon surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2669-2680. [DOI: 10.1016/j.bbamem.2018.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
9
|
Teske N, Sibold J, Schumacher J, Teiwes NK, Gleisner M, Mey I, Steinem C. Continuous Pore-Spanning Lipid Bilayers on Silicon Oxide-Coated Porous Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14175-14183. [PMID: 29148811 DOI: 10.1021/acs.langmuir.7b02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A number of techniques has been developed and analyzed in recent years to generate pore-spanning membranes (PSMs). While quite a number of methods rely on nanoporous substrates, only a few use micrometer-sized pores to be able to individually resolve suspending membranes by means of fluorescence microscopy. To be able to produce PSMs on pores that are micrometer in size, an orthogonal functionalization strategy resulting in a hydrophilic surface is highly desirable. Here, we report on a method to prepare PSMs based on the evaporation of a thin layer of silicon monoxide on top of the porous substrate. PM-IRRAS experiments demonstrate that the final surface is composed of SiOx with 1 < x < 2. The hydrophilic surface turned out to be well suited to spread giant unilamellar vesicles forming PSMs. As the method does not rely on a gold coating as frequently used for orthogonal functionalization, fluorescence micrographs provide information not only from the freestanding membrane areas but also from the supported ones. The observation of the entire PSM area enabled us to observe phase-separation in these membranes on the freestanding and supported parts as well as protein binding and possible lipid reorganization of the membranes induced by binding of the protein Shiga toxin.
Collapse
Affiliation(s)
- Nelli Teske
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Jeremias Sibold
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Johannes Schumacher
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolas K Teiwes
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Martin Gleisner
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Gu LQ, Gates KS, Wang MX, Li G. What is the potential of nanolock- and nanocross-nanopore technology in cancer diagnosis? Expert Rev Mol Diagn 2017; 18:113-117. [PMID: 29171309 DOI: 10.1080/14737159.2018.1410060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Qun Gu
- a Department of Bioengineering and Dalton Cardiovascular Research Center , University of Missouri , Columbia , MO , USA
| | - Kent S Gates
- b Department of Chemistry and Department of Biochemistry , University of Missouri , Columbia , MO , USA
| | - Michael X Wang
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Guangfu Li
- d Department of Surgery and Ellis Fischel Cancer Center , University of Missouri , Columbia , MO , USA
| |
Collapse
|
11
|
Khan MS, Dosoky NS, Mustafa G, Patel D, Berdiev B, Williams JD. Electrophysiology of Epithelial Sodium Channel (ENaC) Embedded in Supported Lipid Bilayer Using a Single Nanopore Chip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13680-13688. [PMID: 29131643 DOI: 10.1021/acs.langmuir.7b02404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanopore-based technologies are highly adaptable supports for developing label-free sensor chips to characterize lipid bilayers, membrane proteins, and nucleotides. We utilized a single nanopore chip to study the electrophysiology of the epithelial Na+ channel (ENaC) incorporated in supported lipid membrane (SLM). An isolated nanopore was developed inside the silicon cavity followed by fusing large unilamellar vesicles (LUVs) of DPPS (1,2-dipalmitoyl-sn-glycero-3-phosphoserine) and DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine) to produce a solvent-free SLM with giga-ohm (GΩ) sealed impedance. The presence and thickness of SLM on the nanopore chip were confirmed using atomic force spectroscopy. The functionality of SLM with and without ENaC was verified in terms of electrical impedance and capacitance by sweeping the frequency from 0.01 Hz to 100 kHz using electrochemical impedance spectroscopy. The nanopore chip exhibits long-term stability for the lipid bilayer before (144 h) and after (16 h) incorporation of ENaC. Amiloride, an inhibitor of ENaC, was utilized at different concentrations to test the integrity of fused ENaC in the lipid bilayer supported on a single nanopore chip. The developed model presents excellent electrical properties and improved mechanical stability of SLM, making this technology a reliable platform to study ion channel electrophysiology.
Collapse
Affiliation(s)
- Muhammad Shuja Khan
- Electrical and Computer Engineering Department, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Noura Sayed Dosoky
- Biotechnology Science and Engineering Program, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Ghulam Mustafa
- Department of Nuclear Medicine, The State University of New York at Buffalo , Buffalo, New York 14214, United States
| | - Darayas Patel
- Department of Mathematics and Computer Science, Oakwood University , Huntsville, Alabama 35896, United States
| | - Bakhrom Berdiev
- Department of Biomedical Sciences, Nazarbayev University School of Medicine , Astana 010000, Kazakhstan
| | - John Dalton Williams
- Electrical and Computer Engineering Department, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| |
Collapse
|
12
|
Tunuguntla RH, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017; 357:792-796. [DOI: 10.1126/science.aan2438] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
|
13
|
Ferhan AR, Ma GJ, Jackman JA, Sut TN, Park JH, Cho NJ. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1484. [PMID: 28644423 PMCID: PMC5539686 DOI: 10.3390/s17071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022]
Abstract
The integration of supported lipid membranes with surface-based nanoplasmonic arrays provides a powerful sensing approach to investigate biointerfacial phenomena at membrane interfaces. While a growing number of lipid vesicles, protein, and nucleic acid systems have been explored with nanoplasmonic sensors, there has been only very limited investigation of the interactions between solution-phase nanomaterials and supported lipid membranes. Herein, we established a surface-based localized surface plasmon resonance (LSPR) sensing platform for probing the interaction of dielectric nanoparticles with supported lipid bilayer (SLB)-coated, plasmonic nanodisk arrays. A key emphasis was placed on controlling membrane functionality by tuning the membrane surface charge vis-à-vis lipid composition. The optical sensing properties of the bare and SLB-coated sensor surfaces were quantitatively compared, and provided an experimental approach to evaluate nanoparticle-membrane interactions across different SLB platforms. While the interaction of negatively-charged silica nanoparticles (SiNPs) with a zwitterionic SLB resulted in monotonic adsorption, a stronger interaction with a positively-charged SLB resulted in adsorption and lipid transfer from the SLB to the SiNP surface, in turn influencing the LSPR measurement responses based on the changing spatial proximity of transferred lipids relative to the sensor surface. Precoating SiNPs with bovine serum albumin (BSA) suppressed lipid transfer, resulting in monotonic adsorption onto both zwitterionic and positively-charged SLBs. Collectively, our findings contribute a quantitative understanding of how supported lipid membrane coatings influence the sensing performance of nanoplasmonic arrays, and demonstrate how the high surface sensitivity of nanoplasmonic sensors is well-suited for detecting the complex interactions between nanoparticles and lipid membranes.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Tun Naw Sut
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Jae Hyeon Park
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
14
|
Elahipanah S, O'Brien PJ, Rogozhnikov D, Yousaf MN. General Dialdehyde Click Chemistry for Amine Bioconjugation. Bioconjug Chem 2017; 28:1422-1433. [PMID: 28436674 DOI: 10.1021/acs.bioconjchem.7b00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click-conjugation strategy, we designed a straightforward scheme to synthesize a suite of dialdehyde reagents. The dialdehyde molecules were used for applications in cell-surface engineering and for tailoring surfaces for material science applications. We anticipate the broad utility of the general dialdehyde click chemistry to primary amines in all areas of chemical research, ranging from polymers and bioconjugation to material science and nanoscience.
Collapse
Affiliation(s)
- Sina Elahipanah
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3
| | - Paul J O'Brien
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3
| | - Dmitry Rogozhnikov
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3
| | - Muhammad N Yousaf
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3.,OrganoLinX Inc. , Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
15
|
Darvish A, Goyal G, Aneja R, Sundaram RVK, Lee K, Ahn CW, Kim KB, Vlahovska PM, Kim MJ. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing. NANOSCALE 2016; 8:14420-14431. [PMID: 27321911 DOI: 10.1039/c6nr03371g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.
Collapse
Affiliation(s)
- Armin Darvish
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:843-852. [DOI: 10.1007/s00249-016-1156-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023]
|
17
|
Chude-Okonkwo UAK, Malekian R, Maharaj BTS. Molecular Communication Model for Targeted Drug Delivery in Multiple Disease Sites_newline With Diversely Expressed Enzymes. IEEE Trans Nanobioscience 2016; 15:230-45. [DOI: 10.1109/tnb.2016.2526783] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Hu T, Cao H, Yang C, Zhang L, Jiang X, Gao X, Yang F, He G, Song X, Tong A, Guo G, Gong C, Li R, Zhang X, Wang X, Zheng Y. LHD-Modified Mechanism-Based Liposome Coencapsulation of Mitoxantrone and Prednisolone Using Novel Lipid Bilayer Fusion for Tissue-Specific Colocalization and Synergistic Antitumor Effects. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6586-601. [PMID: 26907854 DOI: 10.1021/acsami.5b10598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coencapsulation liposomes are of interest to researchers because they maximize the synergistic effect of loaded drugs. A combination regimen of mitoxantrone (MTO) and prednisolone (PLP) has been ideal for tumor therapy. MTO and PLP offer synergistic antitumor effects confirmed by several experiments in this research. The deduced synergistic mechanism is regulation of Akt signaling pathway including the targets of p-Akt, p-GSK-3β, p-s6 ribosomal protein, and p-AMPK by MTO reactivating PLP-induced apoptosis. The liposome fusion method is adopted to create coencapsulation liposomes (PLP-MTO-YM). Low molecular weight heparin-sodium deoxycholate conjugate (LHD) then is used as a targeting ligand to prove target binding and inhibition of angiogenesis. LHD-modified liposomes (PLP-MTO-HM) have a high entrapment efficiency around 95% for both MTO and PLP. DSC results indicate that both drugs interacted with liposomes to prevent drug leak during liposome fusion. DiD-C6-HM dyes colocalize well to tumor tissue, and coadministration of DiD-HM and C6-CM did not achieve dye colocalization until 24 h after administration. In both CT26 and B16F10 mouse model, PLP-MTO-HM shows a significantly higher tumor inhibition rate relative to the coadministration of MTO-HM and PLP-CM (p < 0.05 or p < 0.01). Thus, the coencapsulation system (PLP-MTO-HM) offers ideal antitumor effects relative to coadministration therapy due to enhanced synergistic effect, and this suggests a promising future for the tumor targeting vectors.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Hua Cao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Chengli Yang
- School of Pharmacy, Zunyi Medical University , 201#, Dalian Road, Zunyi, Guizhou 563000, People's Republic of China
| | - Lijing Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Fan Yang
- Department of Gynecology, West China Second University Hospital, Sichuan University , Chengdu 610041, People's Republic of China
| | - Gu He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Aiping Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Rui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaoning Zhang
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University , 30#, Shuangqing Road, Haidian Dist, Beijing 100084, People's Republic of China
| | - Xinchun Wang
- School of Pharmacy, Shihezi University , No. 221, North Fourth Road, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
19
|
|
20
|
Bilayer membrane interactions with nanofabricated scaffolds. Chem Phys Lipids 2015; 192:75-86. [DOI: 10.1016/j.chemphyslip.2015.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/17/2023]
|
21
|
Junesch J, Emilsson G, Xiong K, Kumar S, Sannomiya T, Pace H, Vörös J, Oh SH, Bally M, Dahlin AB. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. NANOSCALE 2015; 7:15080-15085. [PMID: 26351000 DOI: 10.1039/c5nr04208a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic "nanowells" provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids.
Collapse
Affiliation(s)
- Juliane Junesch
- Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tanaka A, Nakashima H, Kashimura Y, Sumitomo K. Electrostatically induced planar lipid membrane formation on a cationic hydrogel array by the fusion of small negatively charged unilamellar vesicles. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Pla-Roca M, Isa L, Kumar K, Reimhult E. Selective (bio)functionalization of solid-state nanopores. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6030-5. [PMID: 25761465 DOI: 10.1021/acsami.5b00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a method to selectively (bio)functionalize nanoscale features with the same materials chemistry. It was successfully combined with nanosphere lithography to fabricate and functionalize solid-state nanopores with PEG-brushes, supported lipid membranes, and functional proteins over large areas. The method is inexpensive, can be performed without specialized equipment, and can be applied to both topographic and planar surface modification.
Collapse
Affiliation(s)
- Mateu Pla-Roca
- †Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Lucio Isa
- †Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Karthik Kumar
- †Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Erik Reimhult
- †Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
- ∥Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| |
Collapse
|
24
|
Reimhult E, Höök F. Design of surface modifications for nanoscale sensor applications. SENSORS (BASEL, SWITZERLAND) 2015; 15:1635-75. [PMID: 25594599 PMCID: PMC4327096 DOI: 10.3390/s150101635] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.
Collapse
Affiliation(s)
- Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Fredrik Höök
- Biological Physics, Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-411 33 Göteborg, Sweden.
| |
Collapse
|
25
|
Basit H, Gaul V, Maher S, Forster RJ, Keyes TE. Aqueous-filled polymer microcavity arrays: versatile & stable lipid bilayer platforms offering high lateral mobility to incorporated membrane proteins. Analyst 2015; 140:3012-8. [DOI: 10.1039/c4an02317j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A robust new supported cell membrane model is described comprising lipid bilayers supported on aqueous filled spherical cap pores in PDMS, both lipid and reconstituted membrane proteins diffuse unhindered by the underlying support.
Collapse
Affiliation(s)
- Hajra Basit
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Vinnie Gaul
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Sean Maher
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Robert J. Forster
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Tia E. Keyes
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
26
|
Urban PL. Compartmentalised chemistry: from studies on the origin of life to engineered biochemical systems. NEW J CHEM 2014. [DOI: 10.1039/c4nj00894d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Peng PY, Chiang PC, Chao L. Controllable occurrence of free-standing lipid membranes on nanograting structured supports. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12261-12269. [PMID: 24988277 DOI: 10.1021/am501861a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Supported lipid bilayers (SLBs) have been widely used to study protein-lipid membrane interactions because their planar geometry is suitable for many surface analysis tools. However, the friction coupling between the support and the membrane can influence the properties of biomolecules in the membrane. Many studies have attempted to span SLBs over nanostructured supports to create free-standing regions in SLBs for biosensor applications. However, membranes following the support surface contour are more frequently observed than are free-standing membranes on structured supports, indicating that the parameter range suitable for formation of free-standing SLBs might be narrow and more information is necessary to understand the required conditions. The objective of this study was to estimate the system energies of free-standing and contour-following membrane states and determine which state is the most energetically favorable under various conditions. For a lipid membrane preferring to stay close to the support, an energy reward occurs when they are in close proximity; however, increasing the contact area on a structured surface can result in an energy penalty because of the bending of the lipid bilayer. Whether the energy reward or the energy penalty dominates could determine the membrane state. We used the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and the Helfrich bending theory to relate the energy sizes to experimentally controllable parameters. We experimentally examined whether the membrane state followed the model prediction when we used various buffer ionic strengths, various lipid types, and nanograting supports with three different geometries. Because it is difficult to observe the experimental membrane state directly at the nanoscale, we developed a method to use the fluorescence recovery shape change after photobleaching to distinguish experimental membrane states at the micrometer scale. Our experimental results closely matched the theoretical predictions, suggesting that the developed model can be used to predict suitable conditions for formation of free-standing bilayers on nanostructured solid supports.
Collapse
Affiliation(s)
- Po-Yu Peng
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | | | | |
Collapse
|
28
|
Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations. Biochimie 2014; 107 Pt A:135-42. [PMID: 24998327 DOI: 10.1016/j.biochi.2014.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/25/2014] [Indexed: 01/19/2023]
Abstract
Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes.
Collapse
|
29
|
Kalsi S, Powl AM, Wallace BA, Morgan H, de Planque MRR. Shaped apertures in photoresist films enhance the lifetime and mechanical stability of suspended lipid bilayers. Biophys J 2014; 106:1650-9. [PMID: 24739164 PMCID: PMC4008792 DOI: 10.1016/j.bpj.2014.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/12/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022] Open
Abstract
Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 μm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 μm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms.
Collapse
Affiliation(s)
- Sumit Kalsi
- Electronics and Computer Science, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Andrew M Powl
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Hywel Morgan
- Electronics and Computer Science, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Maurits R R de Planque
- Electronics and Computer Science, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
30
|
Kumar K, Dahlin AB, Sannomiya T, Kaufmann S, Isa L, Reimhult E. Embedded plasmonic nanomenhirs as location-specific biosensors. NANO LETTERS 2013; 13:6122-6129. [PMID: 24188470 DOI: 10.1021/nl403445f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We introduce a novel optical biosensing platform that exploits the asymmetry of nanostructures embedded in nanocavities, termed nanomenhirs. Upon oblique illumination using plane polarized white light, two plasmonic resonances attributable to the bases and the axes of the nanomenhirs emerge; these are used for location-specific sensing of membrane-binding events. Numerical simulations of the near field distributions confirmed the experimental results. As a proof-of-concept, we present a model biosensing experiment that exploits the dual-sensing capability, the size selectivity offered by the sensor geometry, and the possibility to separately biochemically modify the nanomenhirs and the nanocavities for the specific binding of lipid membrane structures to the nanomenhirs.
Collapse
Affiliation(s)
- Karthik Kumar
- Department of Materials, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH Zürich) , CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Simon A, Gounou C, Tan S, Tiefenauer L, Di Berardino M, Brisson AR. Free-standing lipid films stabilized by Annexin-A5. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2739-44. [DOI: 10.1016/j.bbamem.2013.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
|
32
|
Korman CE, Megens M, Ajo-Franklin CM, Horsley DA. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4421-4425. [PMID: 23528109 DOI: 10.1021/la305064j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the formation of POPC lipid bilayers that span 130 nm pores in a freestanding silicon nitride film supported on a silicon substrate. These solvent-free lipid membranes self-assemble on organosilane-treated Si3N4 via the fusion of 200 nm unilamellar vesicles. Membrane fluidity is verified by fluorescence recovery after photobleaching (FRAP), and membrane resistance in excess of 1 GΩ is demonstrated using electrical impedance spectroscopy (EIS). An array of 40,000 membranes maintained high impedance over 72 h, followed by rupture of most of the membranes by 82 h. Membrane incorporation of gramicidin, a model ion channel, resulted in increased membrane conductance. This membrane conductance was diminished when the gramicidin channels were blocked with CaCl2, indicating that the change in membrane conductance results from gramicidin-mediated ion transport. These very stable, biologically functional pore-spanning membranes open many possibilities for silicon-based ion-channel devices for applications such as biosensors and high-throughput drug screening.
Collapse
Affiliation(s)
- Christopher E Korman
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
33
|
Mashaghi S, Jadidi T, Koenderink G, Mashaghi A. Lipid nanotechnology. Int J Mol Sci 2013; 14:4242-82. [PMID: 23429269 PMCID: PMC3588097 DOI: 10.3390/ijms14024242] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.
Collapse
Affiliation(s)
- Samaneh Mashaghi
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, Nijenborgh 4, 9747 AG Groningen, The Netherlands; E-Mail:
| | - Tayebeh Jadidi
- Department of Physics, University of Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany; E-Mail:
| | - Gijsje Koenderink
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
| | - Alireza Mashaghi
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
34
|
de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vörös J, Vancso GJ. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1400-1407. [PMID: 23360664 DOI: 10.1021/am302820y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Several nanoporous platforms were functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). The growth of the PMAA brush and its pH-responsive behavior from the nanoporous platforms were confirmed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The swelling behavior of the pH-responsive PMAA brushes grafted only from the nanopore walls was investigated by AFM in aqueous liquid environment with pH values of 4 and 8. AFM images displayed open nanopores at pH 4 and closed ones at pH 8, which rationalizes their use as gating platforms. Ion conductivity across the nanopores was investigated with current-voltage measurements at various pH values. Enhanced higher resistance across the nanopores was observed in a neutral polymer brush state (lower pH values) and lower resistance when the brush was charged (higher pH values). By adding a fluorescent dye in an environment of pH 4 or pH 8 at one side of the PMAA-brush functionalized nanopore array chips, diffusion across the nanopores was followed. These experiments displayed faster diffusion rates of the fluorescent molecules at pH 4 (PMAA neutral state, open pores) and slower diffusion at pH 8 (PMAA charged state, closed pores) showing the potential of this technology toward nanoscale valve applications.
Collapse
Affiliation(s)
- G Wilhelmina de Groot
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.
Collapse
|
36
|
Zhong PS, Chung TS, Jeyaseelan K, Armugam A. Aquaporin-embedded biomimetic membranes for nanofiltration. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.03.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Wang H, Drazenovic J, Luo Z, Zhang J, Zhou H, Wunder SL. Mechanism of supported bilayer formation of zwitterionic lipids on SiO2 nanoparticles and structure of the stable colloids. RSC Adv 2012. [DOI: 10.1039/c2ra22127f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|