1
|
Gentili D, Cavallini M. Opportunity of Patterning in Chemistry. Chemistry 2024; 30:e202401219. [PMID: 38629243 DOI: 10.1002/chem.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 05/23/2024]
Abstract
Patterning offers an efficient way to quantitatively enhance and enlarge material properties and functionalities, offering unprecedented opportunities for innovation in various scientific domains. By precisely controlling the spatial arrangement of materials at the micro- and nanoscale, patterning enables the exploitation of inherent material properties in novel ways. In addition, it generates new properties, leading to the development of advanced devices and applications. This article highlights the significant contributions of spatially controlled patterning in chemistry, particularly in generating new functional properties and devices, discussing some representative articles. Examples include the use of unconventional patterning techniques for surface functionalization, as well as the application of spatial confinement in improving material properties and controlling crystallization processes. Furthermore, the discussion extends to creating new devices, such as optical storage media and sensors, through spatial organization of materials.
Collapse
Affiliation(s)
- Denis Gentili
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129, Bologna, IT
| | - Massimiliano Cavallini
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129, Bologna, IT
| |
Collapse
|
2
|
Juste-Dolz A, Fernández E, Puchades R, Avella-Oliver M, Maquieira Á. Patterned Biolayers of Protein Antigens for Label-Free Biosensing in Cow Milk Allergy. BIOSENSORS 2023; 13:214. [PMID: 36831980 PMCID: PMC9953870 DOI: 10.3390/bios13020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
This paper focuses on creating one-dimensional diffractive grooved structures of antigen proteins on glass substrates for the label-free detection of antibodies to dairy allergens. In particular, the fabrication of protein structures is carried out by combining microcontact printing with physisorption, imines coupling, and thiol-ene click chemistry. The work first sets up these patterning methods and discusses and compares the main aspects involved in them (structure, biolayer thickness, functionality, stability). Homogeneous periodic submicron structures of proteins are created and characterized by diffractive measurements, AFM, FESEM, and fluorescence scanning. Then, this patterning method is applied to proteins involved in cow milk allergy, and the resulting structures are implemented as optical transducers to sense specific immunoglobulins G. In particular, gratings of bovine serum albumin, casein, and β-lactoglobulin are created and assessed, reaching limits of detection in the range of 30-45 ng·mL-1 of unlabeled antibodies by diffractive biosensing.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Rosa Puchades
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
3
|
Yu X, Li H, Song Y. Ink-Drop Dynamics on Chemically Modified Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15453-15462. [PMID: 36502385 DOI: 10.1021/acs.langmuir.2c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inkjet printing provides an efficient routine for distributing functional materials into locations with well-designed arrangements. As one of the most critical factors in determining the printing quality, the impacting and depositing behaviors of ink drops largely depend on the wettability of the target surface. In addition to printing on solids with intrinsic wettability, various ink-drop impact dynamics and deposition morphologies have been reported through modifying the surface wettability including both homogeneous and heterogeneous, which opens up possibilities for applications such as advanced optic/electric device fabrication and highly sensitive detection. In this Perspective, we summarize recent progress in the modification methods of solid surface wettability and their capability in modulating the ink-drop impacting and depositing dynamics. The challenges facing ink-drop regulation by chemical modification methodologies are also envisaged at the end of the Perspective.
Collapse
Affiliation(s)
- Xinye Yu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Si J, Zhao P, Guan J, Ji S, Xu H. Dynamic Fluorescent Patterning Based on Visible-Light-Responsive Diselenide Metathesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13272-13278. [PMID: 36254851 DOI: 10.1021/acs.langmuir.2c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A diselenide bond, as a dynamic covalent bond, is a versatile tool to construct smart interfaces, which can respond to visible light. In this work, we used microcontact printing (μCP) to construct diselenide patterns on quartz substrates. Fluorescent patterns were obtained on the modified surfaces via the visible-light-induced diselenide metathesis reaction, which allowed the patterning process to be fast, dynamically erasable, and compatible with different fluorescent molecules including rhodamine B and boron-dipyrromethene (BODIPY) used in this work. A variety of analytical methods offered comprehensive evidence for the success of the printing of diselenides here. We further printed diselenide and disulfide intersecting stripes on one single quartz substrate layer by layer and introduced rhodamine B and BODIPY to obtain a multicolored pattern simultaneously. By taking advantage of their responsiveness to different wavelengths, the composite pattern of disulfides and diselenides could be erased by two stepwise stages. The fluorescent images of the modified substrate showed a good agreement with the pattern of the poly(dimethylsiloxane) (PDMS) stamp, indicating the methodology with a potential application for information storage.
Collapse
Affiliation(s)
- Jinyan Si
- Key Laboratory of Organic Optoelectronic & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Peng Zhao
- Key Laboratory of Organic Optoelectronic & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jun Guan
- Key Laboratory of Organic Optoelectronic & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shaobo Ji
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, People's Republic of China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronic & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Gil Y, Gimeno-Muñoz R, Santana RCD, Aliaga-Alcalde N, Fuentealba P, Aravena D, González-Campo A, Spodine E. Luminescence of Macrocyclic Mononuclear Dy III Complexes and Their Immobilization on Functionalized Silicon-Based Surfaces. Inorg Chem 2022; 61:16347-16355. [PMID: 36198146 DOI: 10.1021/acs.inorgchem.2c02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two mononuclear DyIII complexes, [Dy(L1)(NCS)3] (Dy-EDA) and [Dy(L2)(NCS)3] (Dy-DAP), where Ln (n = 1-2) corresponds to a macrocyclic ligand derived from 2,6-pyridinedicarboxaldehyde and ethylenediamine (L1) and 1,3-diaminepropane (L2) were immobilized on functionalized silicon-based surfaces. This was achieved by the microcontact printing (μCP) technique, generating patterns on a functionalized surface via covalent bond formation through the auxiliary -NCS ligands present in the macrocyclic complex species. With this strategy, it was possible to control the position of the immobilized molecules on the surface. Water contact angle measurements, X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectra (IRRAS), and atomic force microscopy (AFM) confirmed that the surfaces were successfully functionalized. Furthermore, the optical properties in a broad temperature range were investigated for the as-prepared compounds. At room temperature, Dy-EDA was shown to emit in the deep blue region (Commission Internationald'Eclairage (CIE): (0.175, 0.128)), while Dy-DAP in the white region (CIE: (0.252, 0.312)). The different CIE values were due to the contribution of the strong emission of the ligand in the case of Dy-EDA. Besides, surface photoluminescence measurements showed that the immobilized complexes retained their bulk emissive properties.
Collapse
Affiliation(s)
- Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8380544, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago 9170022, Chile
| | - Raquel Gimeno-Muñoz
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ricardo Costa de Santana
- Instituto de Física, Universidade Federal de Goiás, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Núria Aliaga-Alcalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain.,ICREA─Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Pablo Fuentealba
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8380544, Chile
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Arántzazu González-Campo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Evgenia Spodine
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8380544, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago 9170022, Chile
| |
Collapse
|
6
|
Javorskis T, Rakickas T, Jankūnaitė A, Talaikis M, Niaura G, Ulčinas A, Orentas E. Meso-scale surface patterning of self-assembled monolayers with water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Akarsu P, Grobe R, Nowaczyk J, Hartlieb M, Reinicke S, Böker A, Sperling M, Reifarth M. Solid-Phase Microcontact Printing for Precise Patterning of Rough Surfaces: Using Polymer-Tethered Elastomeric Stamps for the Transfer of Reactive Silanes. ACS APPLIED POLYMER MATERIALS 2021; 3:2420-2431. [PMID: 34056615 PMCID: PMC8154209 DOI: 10.1021/acsapm.1c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/02/2023]
Abstract
We present a microcontact printing (μCP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (1H-1H-NOESY-NMR). We analyze the μCP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates.
Collapse
Affiliation(s)
- Pinar Akarsu
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Richard Grobe
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Julius Nowaczyk
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Matthias Hartlieb
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Stefan Reinicke
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Alexander Böker
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Marcel Sperling
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Martin Reifarth
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Zhao JJ, Wang W, Wang F, Zhao Y, Cai QW, Xie R, Ju XJ, Liu Z, Faraj Y, Chu LY. Smart Hydrogel Grating Immunosensors for Highly Selective and Sensitive Detection of Human-IgG. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Jia Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Quan-Wei Cai
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yousef Faraj
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
9
|
Lamping S, Buten C, Ravoo BJ. Functionalization and Patterning of Self-Assembled Monolayers and Polymer Brushes Using Microcontact Chemistry. Acc Chem Res 2019; 52:1336-1346. [PMID: 30969751 DOI: 10.1021/acs.accounts.9b00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because the surface connects a material to its environment, the functionalization, modification, and patterning of surfaces is key to a wide range of materials applied in microelectronics, displays, sensing, microarrays, photovoltaics, catalysis, and other fields. Self-assembled monolayers (SAMs), which can be deposited on a wide range of inorganic materials, are only a few nanometers thick, yet they can radically change the properties of the resulting interface. Alternatively, thin polymer films composed of polymer brushes grown from the surface provide a more robust molecular modification of inorganic materials. For many applications, patterned SAMs or polymer brushes are desired. Over the past decade, our group has shown that both SAMs as well as polymer brushes can be patterned very efficiently using microcontact printing. In microcontact printing, a molecular "ink" is deposited on a suitable substrate using a microstructured elastomer stamp, which delivers the ink exclusively in the area of contact between stamp and substrate. In contrast to most types of lithography, microcontact printing does not require expensive equipment. Our work has shown that "microcontact chemistry" is a powerful additive surface patterning method, in which molecular inks react with a precursor SAM during printing so that surfaces can be modified with various orthogonal functional groups or molecular recognition sites in microscale patterns. Functional groups include reactive groups for click chemistry or photochemistry and initiators for radical polymerization. Molecular recognition sites include host-guest chemistry as well as biochemical ligands such as carbohydrates and biotin. In this Account, we present an overview of our research in this area including selected examples of work by other groups. In the first part, we review our work on the patterning of SAMs using microcontact chemistry, with a focus on click chemistry and photochemistry. We will show how cycloadditions, thiol-ene reactions, and tetrazole chemistry can be used to obtain versatile surface patterns. In the second part, we demonstrate that microcontact chemistry can be used to pattern polymer brushes. Among others, initiators for surface-induced nitroxide-mediated polymerization and atom transfer polymerization were printed and used to grow patterned polymer brushes with molecular recognition groups suitable for responsive surface adhesion. In the third part, we describe how SAMs and polymer brushes can be printed on microparticles instead of flat substrates so that Janus particles with functional patches can be obtained. Finally, we present a brief outlook on further developments expected in this field.
Collapse
Affiliation(s)
- Sebastian Lamping
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Christoph Buten
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
10
|
Hung TY, Liu JAC, Lee WH, Li JR. Hierarchical Nanoparticle Assemblies Formed via One-Step Catalytic Stamp Pattern Transfer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4667-4677. [PMID: 30607942 DOI: 10.1021/acsami.8b19807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The one-step catalytic stamp pattern transfer process is described for producing arrays of hierarchical nanoparticle assemblies. The method simply combines in situ nanoparticle synthesis triggered by free residual Si-H groups on PDMS stamps and the lift-off pattern transfer technique. No additional nanoparticle synthesis procedure is required before the pattern transfer process. Exquisitely uniform and precisely spaced hierarchical nanoparticle assemblies with designed geometry can be rapidly produced using the catalytic stamp pattern transfer process. Sequential catalytic stamp pattern transfer also is described to generate multilayered, hierarchical nanoparticle assemblies with various geometries. The hierarchical nanoparticle assemblies catalytically transferred onto the surface are not just nanoparticles but nanoparticle-polydimethylsiloxane residue composites. The in situ-synthesized nanoparticles retain optical properties. The hierarchical nanoparticle assemblies with precisely controlled geometry further show potential in the application of surface-enhanced Raman scattering. The capability of one-step catalytic stamp pattern transfer allows the scalable and reproducible fabrication of well-defined hierarchical nanoparticle assemblies.
Collapse
Affiliation(s)
- Tzu-Yi Hung
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Jessica An-Chieh Liu
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Wen-Hsiu Lee
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Jie-Ren Li
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| |
Collapse
|
11
|
Müller R, Feuerstein TJ, Trouillet V, Bestgen S, Roesky PW, Barner-Kowollik C. Spatially-Resolved Multiple Metallopolymer Surfaces by Photolithography. Chemistry 2018; 24:18933-18943. [PMID: 30357939 DOI: 10.1002/chem.201803966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/19/2022]
Abstract
A tetrazole-based photoligation protocol for the spatially-resolved encoding of various defined metallopolymers onto solid surfaces is introduced. By using this approach, fabrication of bi- and trifunctional metallopolymer surfaces with different metal combinations were achieved. Specifically, α-ω-functional copolymers containing bipyridine as well as triphenylphosphine ligands were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization, and subsequently metal loaded to afford metallopolymers of the widely-used metals gold, palladium, and platinum. Spatially-resolved surface attachment was achieved by means of a nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) based photoligation protocol, exploiting tethered tetrazoles and metallopolymers equipped with a maleimide chain terminus. Metallopolymer coated surfaces with three different metals were prepared and characterized by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and spatially-resolved X-ray photoelectron spectroscopy (XPS) mapping, supporting the preserved chemical composition of the surface-bound metallopolymers. The established photochemical technology platform for arbitrary spatially-resolved metallopolymer surface designs enables the patterning of multiple metallopolymers onto solid substrates. This allows for the assembly of designer metallopolymer substrates.
Collapse
Affiliation(s)
- Rouven Müller
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany
| | - Thomas J Feuerstein
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sebastian Bestgen
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
12
|
Abstract
A micro-level technique so-called “microfluidic technology or simply microfluidic” has gained a special place as a powerful tool in bioengineering and biomedical engineering research due to its core advantages in modern science and engineering. Microfluidic technology has played a substantial role in numerous applications with special reference to bioscience, biomedical and biotechnological research. It has facilitated noteworthy development in various sectors of bio-research and upsurges the efficacy of research at the molecular level, in recent years. Microfluidic technology can manipulate sample volumes with precise control outside cellular microenvironment, at micro-level. Thus, enable the reduction of discrepancies between in vivo and in vitro environments and reduce the overall reaction time and cost. In this review, we discuss various integrations of microfluidic technologies into biotechnology and its paradigmatic significance in bio-research, supporting mechanical and chemical in vitro cellular microenvironment. Furthermore, specific innovations related to the application of microfluidics to advance microbial life, solitary and co-cultures along with a multiple-type cell culturing, cellular communications, cellular interactions, and population dynamics are also discussed.
Collapse
|
13
|
Juste-Dolz A, Avella-Oliver M, Puchades R, Maquieira A. Indirect Microcontact Printing to Create Functional Patterns of Physisorbed Antibodies. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3163. [PMID: 30235856 PMCID: PMC6164925 DOI: 10.3390/s18093163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Microcontact printing (µCP) is a practical and versatile approach to create nanostructured patterns of biomolecular probes, but it involves conformational changes on the patterned bioreceptors that often lead to a loss on the biological activity of the resulting structures. Herein we introduce indirect µCP to create functional patterns of bioreceptors on solid substrates. This is a simple strategy that relies on physisorbing biomolecular probes of interest in the nanostructured gaps that result after patterning backfilling agents by standard µCP. This study presents the approach, assesses bovine serum albumin as backfilling agent for indirect µCP on different materials, reports the limitations of standard µCP on the functionality of patterned antibodies, and demonstrates the capabilities of indirect µCP to solve this issue. Bioreceptors were herein structured as diffractive gratings and used to measure biorecognition events in label-free conditions. Besides, as a preliminary approach towards sensing biomarkers, this work also reports the implementation of indirect µCP in an immunoassay to detect human immunoglobulin E.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
| | - Rosa Puchades
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
14
|
Avella-Oliver M, Ferrando V, Monsoriu JA, Puchades R, Maquieira A. A label-free diffraction-based sensing displacement immunosensor to quantify low molecular weight organic compounds. Anal Chim Acta 2018; 1033:173-179. [PMID: 30172323 DOI: 10.1016/j.aca.2018.05.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Herein we present a diffractometric immunosensor to quantify low molecular weight organic compounds in a label-free, simple, and sensitive fashion. The approach is based on patterning analyte analogues (haptens) on solid surfaces according to a diffractive structure, and then loading specific antibodies on them to be subsequently displaced by free analytes in solution. This displacement generates a measurable change in the diffractive response that enables to quantify the analyte concentration. In this study we address the fabrication, optimization, and assessment of these diffractive structures of biological probes and their application to the analysis of atrazine, an organic compound extensively used as pesticide. This immunosensor displays well-correlated dose-response curves that reach a detection limit of 1.1 ng mL-1 of atrazine in label-free conditions. From a general viewpoint, this study also aims to provide insights into exploiting this approach towards prospective in-field analysis and screening strategies to sense multiple low molecular weight compounds in label-free conditions.
Collapse
Affiliation(s)
- Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Vicente Ferrando
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Juan A Monsoriu
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Rosa Puchades
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
15
|
John D, Zimmermann M, Böker A. Generation of 3-dimensional multi-patches on silica particles via printing with wrinkled stamps. SOFT MATTER 2018; 14:3057-3062. [PMID: 29658034 PMCID: PMC5944390 DOI: 10.1039/c8sm00224j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/25/2018] [Indexed: 05/13/2023]
Abstract
A simple route towards patchy particles with anisotropic patches with respect to a different functionality and directionality is presented. This method is based on microcontact printing of positively charged polyethylenimine (PEI) on silica particles using wrinkled stamps. Due to the wrinkled surface, the number of patches on the particles as well as the distance between two patches can be controlled.
Collapse
Affiliation(s)
- D. John
- Saint Gobain Glass Deutschland , Poststraße 103 , 51143 Köln , Germany .
| | - M. Zimmermann
- Fraunhofer-Institut für Angewandte Polymerforschung IAP , Geiselbergstraße 69 , 14476 Potsdam-Golm , Germany . ;
- Lehrstuhl für Polymermaterialien und Polymertechnologien , Universität Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany
| | - A. Böker
- Fraunhofer-Institut für Angewandte Polymerforschung IAP , Geiselbergstraße 69 , 14476 Potsdam-Golm , Germany . ;
- Lehrstuhl für Polymermaterialien und Polymertechnologien , Universität Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany
| |
Collapse
|
16
|
Buten C, Lamping S, Körsgen M, Arlinghaus HF, Jamieson C, Ravoo BJ. Surface Functionalization with Carboxylic Acids by Photochemical Microcontact Printing and Tetrazole Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2132-2138. [PMID: 29334733 DOI: 10.1021/acs.langmuir.7b03678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, we show that carboxylic acid-functionalized molecules can be patterned by photochemical microcontact printing on tetrazole-terminated self-assembled monolayers. Upon irradiation, tetrazoles eliminate nitrogen to form highly reactive nitrile imines, which can be ligated with several different nucleophiles, carboxylic acids being the most reactive. As a proof of concept, we immobilized trifluoroacetic acid to monitor the reaction with X-ray photoelectron spectroscopy. Moreover, we also immobilized peptides and fabricated carbohydrate-lectin as well as biotin-streptavidin microarrays using this method. Surface-patterning was demonstrated by fluorescence microscopy and time-of-flight secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Christoph Buten
- Organic-Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Sebastian Lamping
- Organic-Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Martin Körsgen
- Physics Institute, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Physics Institute, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Bart Jan Ravoo
- Organic-Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
17
|
Laun J, De Smet Y, Van de Reydt E, Krivcov A, Trouillet V, Welle A, Möbius H, Barner-Kowollik C, Junkers T. 2D laser lithography on silicon substrates via photoinduced copper-mediated radical polymerization. Chem Commun (Camb) 2018; 54:751-754. [DOI: 10.1039/c7cc08444g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A 2D laser lithography protocol for controlled grafting of polymer brushes in a single-step is presented.
Collapse
Affiliation(s)
- Joachim Laun
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Yana De Smet
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Emma Van de Reydt
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Alexander Krivcov
- University of Applied Sciences Kaiserslautern
- 66482 Zweibrücken
- Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM)
- Karlsruhe Institute of Technology (KIT)
- Germany
- Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
| | - Alexander Welle
- Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute of Functional Interfaces
| | - Hildegard Möbius
- University of Applied Sciences Kaiserslautern
- 66482 Zweibrücken
- Germany
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Tanja Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| |
Collapse
|
18
|
Nishiyabu R, Tomura M, Okade T, Kubo Y. Boronic acids as molecular inks for surface functionalization of polyvinyl alcohol substrates. NEW J CHEM 2018. [DOI: 10.1039/c8nj00992a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boronic acids are proposed to be used as molecular inks for surface functionalization of polyvinyl alcohol substrates using marker pen applicators.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Miku Tomura
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Tomo Okade
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
19
|
Avella-Oliver M, Carrascosa J, Puchades R, Maquieira Á. Diffractive Protein Gratings as Optically Active Transducers for High-Throughput Label-free Immunosensing. Anal Chem 2017; 89:9002-9008. [DOI: 10.1021/acs.analchem.7b01649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Miquel Avella-Oliver
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
| | - Javier Carrascosa
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
| | - Rosa Puchades
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
- Departmento
de Quı́mica, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
- Departmento
de Quı́mica, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
20
|
Yaakov N, Chaikin Y, Wexselblatt E, Tor Y, Vaskevich A, Rubinstein I. Application of Surface Click Reactions to Localized Surface Plasmon Resonance (LSPR) Biosensing. Chemistry 2017; 23:10148-10155. [DOI: 10.1002/chem.201701511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Noga Yaakov
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yulia Chaikin
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry University of California San Diego, La Jolla California 92093 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry University of California San Diego, La Jolla California 92093 USA
| | - Alexander Vaskevich
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Israel Rubinstein
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
21
|
Xu X, Yang Q, Cheung KM, Zhao C, Wattanatorn N, Belling JN, Abendroth JM, Slaughter LS, Mirkin CA, Andrews AM, Weiss PS. Polymer-Pen Chemical Lift-Off Lithography. NANO LETTERS 2017; 17:3302-3311. [PMID: 28409640 DOI: 10.1021/acs.nanolett.7b01236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We designed and fabricated large arrays of polymer pens having sub-20 nm tips to perform chemical lift-off lithography (CLL). As such, we developed a hybrid patterning strategy called polymer-pen chemical lift-off lithography (PPCLL). We demonstrated PPCLL patterning using pyramidal and v-shaped polymer-pen arrays. Associated simulations revealed a nanometer-scale quadratic relationship between contact line widths of the polymer pens and two other variables: polymer-pen base line widths and vertical compression distances. We devised a stamp support system consisting of interspersed arrays of flat-tipped polymer pens that are taller than all other sharp-tipped polymer pens. These supports partially or fully offset stamp weights thereby also serving as a leveling system. We investigated a series of v-shaped polymer pens with known height differences to control relative vertical positions of each polymer pen precisely at the sub-20 nm scale mimicking a high-precision scanning stage. In doing so, we obtained linear-array patterns of alkanethiols with sub-50 nm to sub-500 nm line widths and minimum sub-20 nm line width tunable increments. The CLL pattern line widths were in agreement with those predicted by simulations. Our results suggest that through informed design of a stamp support system and tuning of polymer-pen base widths, throughput can be increased by eliminating the need for a scanning stage system in PPCLL without sacrificing precision. To demonstrate functional microarrays patterned by PPCLL, we inserted probe DNA into PPCLL patterns and observed hybridization by complementary target sequences.
Collapse
Affiliation(s)
- Xiaobin Xu
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Qing Yang
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Kevin M Cheung
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Chuanzhen Zhao
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Natcha Wattanatorn
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Jason N Belling
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - John M Abendroth
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Liane S Slaughter
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Anne M Andrews
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Paul S Weiss
- California NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Materials Science and Engineering, and ∥Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and International Institute for Nanotechnology and #Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Buhl M, Tesch M, Lamping S, Moratz J, Studer A, Ravoo BJ. Preparation of Functional Alternating Polymer Brushes and Their Orthogonal Surface Modification through Microcontact Printing. Chemistry 2016; 23:6042-6047. [PMID: 27797131 DOI: 10.1002/chem.201603565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 11/11/2022]
Abstract
This paper reports microcontact printing (μCP) to immobilize an alkoxyamine initiator (regulator) on glass and silicon substrates and subsequent surface-initiated alternating nitroxide-mediated copolymerization (siNMP) of hexafluoroisopropyl acrylate (HFIPA) and 7-octenylvinyl ether (OVE). The resulting patterned polymer brushes are analyzed by using atomic force microscopy (AFM). In addition, site-specific post-functionalization of the alternating polymer brushes by applying two orthogonal surface reactions is achieved with thiols and amines through μCP. The versatility of this post-polymerization modification approach is demonstrated by site-selective immobilization of small organic molecules, fluorophores, and ligands providing a binary bioactive surface. The successful side-by-side orthogonal immobilization is verified by using X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy.
Collapse
Affiliation(s)
- Moritz Buhl
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Matthias Tesch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Sebastian Lamping
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Johanna Moratz
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
23
|
McKenas CG, Fehr JM, Donley CL, Lockett MR. Thiol-Ene Modified Amorphous Carbon Substrates: Surface Patterning and Chemically Modified Electrode Preparation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10529-10536. [PMID: 27657877 DOI: 10.1021/acs.langmuir.6b02961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Amorphous carbon (aC) films are chemically stable under ambient conditions or when interfaced with aqueous solutions, making them a promising material for preparing biosensors and chemically modified electrodes. There are a number of wet chemical methods capable of tailoring the reactivity and wettability of aC films, but few of these chemistries are compatible with photopatterning. Here, we introduce a method to install thiol groups directly onto the surface of aC films. These terminal thiols are compatible with thiol-ene click reactions, which allowed us to rapidly functionalize and pattern the surface of the aC films. We thoroughly characterized the aC films and confirmed the installation of surface-bound thiols does not significantly oxidize the surface or change its topography. We also determined the conditions needed to selectively attach alkene-containing molecules to these films and show the reaction is proceeding through a thiol-mediated reaction. Lastly, we demonstrate the utility of our approach by photopatterning the aC films and preparing ferrocene-modified aC electrodes. The chemistry described here provides a rapid means of fabricating sensors and preparing photoaddressable arrays of (bio)molecules on stable carbon interfaces.
Collapse
Affiliation(s)
- Catherine G McKenas
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Julia M Fehr
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory, University of North Carolina at Chapel Hill , Chapman Hall, 205 South Columbia Street, Chapel Hill, North Carolina 27599-3216, United States
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
24
|
Chang T, Du B, Huang H, He T. Highly Tunable Complementary Micro/Submicro-Nanopatterned Surfaces Combining Block Copolymer Self-Assembly and Colloidal Lithography. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22705-22713. [PMID: 27509255 DOI: 10.1021/acsami.6b07730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two kinds of large-area ordered and highly tunable micro/submicro-nanopatterned surfaces in a complementary manner were successfully fabricated by elaborately combining block copolymer self-assembly and colloidal lithography. Employing a monolayer of polystyrene (PS) colloidal spheres assembled on top as etching mask, polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) or polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micelle films were patterned into micro/submicro patches by plasma etching, which could be further transferred into micropatterned metal nanoarrays by subsequent metal precursor loading and a second plasma etching. On the other hand, micro/submicro-nanopatterns in a complementary manner were generated via preloading a metal precursor in initial micelle films before the assembly of PS colloidal spheres on top. Both kinds of micro/submicro-nanopatterns showed good fidelity at the micro/submicroscale and nanoscale; meanwhile, they could be flexibly tuned by the sample and processing parameters. Significantly, when the PS colloidal sphere size was reduced to 250 nm, a high-resolution submicro-nanostructured surface with 3-5 metal nanoparticles in each patch or a single-nanoparticle interconnected honeycomb network was achieved. Moreover, by applying gold (Au) nanoparticles as anchoring points, micronanopatterned Au arrays can serve as a flexible template to pattern bovine serum albumin (BSA) molecules. This facile and cost-effective approach may provide a novel platform for fabrication of micropatterned nanoarrays with high tunability and controllability, which are promising in the applications of biological and microelectronic fields.
Collapse
Affiliation(s)
- Tongxin Chang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, and Department of Chemistry, Zhejiang University , Hangzhou 310027, P. R. China
| | - Haiying Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Tianbai He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| |
Collapse
|
25
|
Albers J, Offenhäusser A. Signal Propagation between Neuronal Populations Controlled by Micropatterning. Front Bioeng Biotechnol 2016; 4:46. [PMID: 27379230 PMCID: PMC4908115 DOI: 10.3389/fbioe.2016.00046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/20/2016] [Indexed: 11/13/2022] Open
Abstract
The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades.
Collapse
Affiliation(s)
- Jonas Albers
- Institute of Complex Systems, Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Offenhäusser
- Peter Grünberg Institute/Institute of Complex Systems, Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
26
|
Coyle BL, Baneyx F. Direct and reversible immobilization and microcontact printing of functional proteins on glass using a genetically appended silica-binding tag. Chem Commun (Camb) 2016; 52:7001-4. [PMID: 27157272 DOI: 10.1039/c6cc02660e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fusion of disulfide-constrained or linear versions of the Car9 dodecapeptide to model fluorescent proteins support their on-contact and oriented immobilization onto unmodified glass. Bound proteins can be released and the surface regenerated by incubation with l-lysine. This noncovalent chemistry enables rapid and reversibe microcontact printing of tagged proteins and speeds up the production of bicontinuous protein patterns.
Collapse
Affiliation(s)
- Brandon L Coyle
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, USA
| |
Collapse
|
27
|
Castagna R, Bertucci A, Prasetyanto EA, Monticelli M, Conca DV, Massetti M, Sharma PP, Damin F, Chiari M, De Cola L, Bertacco R. Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3308-3313. [PMID: 26972953 DOI: 10.1021/acs.langmuir.5b04669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High-performing hybridization platforms fabricated by reactive microcontact printing of DNA probes are presented. Multishaped PDMS molds are used to covalently bind oligonucleotides over a functional copolymer (DMA-NAS-MAPS) surface. Printed structures with minimum width of about 1.5 μm, spaced by 10 μm, are demonstrated, with edge corrugation lower than 300 nm. The quantification of the immobilized surface probes via fluorescence imaging gives a remarkable concentration of 3.3 × 10(3) oligonucleotides/μm(2), almost totally active when used as probes in DNA-DNA hybridization assays. Indeed, fluorescence and atomic force microscopy show a 95% efficiency in target binding and uniform DNA hybridization over printed areas.
Collapse
Affiliation(s)
- Rossella Castagna
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | - Alessandro Bertucci
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg , 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Eko Adi Prasetyanto
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg , 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Marco Monticelli
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | - Dario Valter Conca
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | - Matteo Massetti
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | | | - Francesco Damin
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , Via Mario Bianco 9, 20131, Milano, Italy
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , Via Mario Bianco 9, 20131, Milano, Italy
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg , 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Riccardo Bertacco
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
- IFN-CNR Via Colombo 81, 20133 Milano, Italy
| |
Collapse
|
28
|
Vonhören B, Roling O, Buten C, Körsgen M, Arlinghaus HF, Ravoo BJ. Photochemical Microcontact Printing by Tetrazole Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2277-2282. [PMID: 26886297 DOI: 10.1021/acs.langmuir.6b00059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We developed a simple method to pattern self-assembled monolayers of tetrazole triethoxylsilane with a variety of different molecules by photochemical microcontact printing. Under irradiation, tetrazoles form highly reactive nitrile imines, which react with alkenes, alkynes, and thiols. The covalent linkage to the surface could be unambiguously demonstrated by fluorescence microscopy, because the reaction product is fluorescent in contrast to tetrazole. The modified surfaces were further analyzed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM), and contact angle goniometry. Protein-repellent micropatterns, a biotin-streptavidin array, and structured polymer brushes could be fabricated with this straightforward method for surface functionalization.
Collapse
Affiliation(s)
- Benjamin Vonhören
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Oliver Roling
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Christoph Buten
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Martin Körsgen
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
29
|
Claus TK, Richter B, Hahn V, Welle A, Kayser S, Wegener M, Bastmeyer M, Delaittre G, Barner-Kowollik C. Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation. Angew Chem Int Ed Engl 2016; 55:3817-22. [PMID: 26891070 DOI: 10.1002/anie.201509937] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Indexed: 12/22/2022]
Abstract
A highly efficient strategy for the simultaneous dual surface encoding of 2D and 3D microscaffolds is reported. The combination of an oligo(ethylene glycol)-based network with two novel and readily synthesized monomers with photoreactive side chains yields two new photoresists, which can be used for the fabrication of microstructures (by two-photon polymerization) that exhibit a dual-photoreactive surface. By combining both functional photoresists into one scaffold, a dual functionalization pattern can be obtained by a single irradiation step in the presence of adequate reaction partners based on a self-sorting mechanism. The versatility of the approach is shown by the dual patterning of halogenated and fluorescent markers as well as proteins. Furthermore, we introduce a new ToF-SIMS mode ("delayed extraction") for the characterization of the obtained microstructures that combines high mass resolution with improved lateral resolution.
Collapse
Affiliation(s)
- Tanja K Claus
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany.,Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Benjamin Richter
- Cell- and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Vincent Hahn
- Institute of Applied Physics and Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131, Karlsruhe, Germany
| | - Alexander Welle
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany. .,Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Sven Kayser
- ION-TOF GmbH, Heisenbergstrasse 15, 48149, Münster, Germany
| | - Martin Wegener
- Institute of Applied Physics and Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131, Karlsruhe, Germany
| | - Martin Bastmeyer
- Cell- and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany.,Institut für Funktionelle Grenzflächen (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Guillaume Delaittre
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany. .,Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany. .,Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
30
|
Claus TK, Richter B, Hahn V, Welle A, Kayser S, Wegener M, Bastmeyer M, Delaittre G, Barner-Kowollik C. Zweifache, simultane Oberflächenmodifikation von dreidimensionalen Mikrostrukturen mittels Photochemie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tanja K. Claus
- Präparative Makromolekulare Chemie; Institut für Technische Chemie und Polymerchemie; Karlsruher Institut für Technologie (KIT); Engesserstraße 18 76131 Karlsruhe Deutschland
- Institut für Biologische Grenzflächen (IBG); Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Benjamin Richter
- Zell- und Neurobiologie, Zoologisches Institut; Karlsruher Institut für Technologie (KIT); Haid-und-Neu-Straße 9 76131 Karlsruhe Deutschland
| | - Vincent Hahn
- Institut für Angewandte Physik und Institut für Nanotechnologie; Karlsruher Institut für Technologie (KIT); Wolfgang-Gaede-Straße 1 76131 Karlsruhe Deutschland
| | - Alexander Welle
- Präparative Makromolekulare Chemie; Institut für Technische Chemie und Polymerchemie; Karlsruher Institut für Technologie (KIT); Engesserstraße 18 76131 Karlsruhe Deutschland
- Institut für Biologische Grenzflächen (IBG); Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Sven Kayser
- ION-TOF GmbH; Heisenbergstraße 15 48149 Münster Deutschland
| | - Martin Wegener
- Institut für Angewandte Physik und Institut für Nanotechnologie; Karlsruher Institut für Technologie (KIT); Wolfgang-Gaede-Straße 1 76131 Karlsruhe Deutschland
| | - Martin Bastmeyer
- Zell- und Neurobiologie, Zoologisches Institut; Karlsruher Institut für Technologie (KIT); Haid-und-Neu-Straße 9 76131 Karlsruhe Deutschland
- Institut für Funktionelle Grenzflächen (IFG); Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Guillaume Delaittre
- Präparative Makromolekulare Chemie; Institut für Technische Chemie und Polymerchemie; Karlsruher Institut für Technologie (KIT); Engesserstraße 18 76131 Karlsruhe Deutschland
- Institut für Toxikologie und Genetik (ITG); Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Christopher Barner-Kowollik
- Präparative Makromolekulare Chemie; Institut für Technische Chemie und Polymerchemie; Karlsruher Institut für Technologie (KIT); Engesserstraße 18 76131 Karlsruhe Deutschland
- Institut für Biologische Grenzflächen (IBG); Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
31
|
Peter M, Tayalia P. An alternative technique for patterning cells on poly(ethylene glycol) diacrylate hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra08852j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this work, a poly(ethylene glycol) diacrylate (PEGDA) hydrogel is patterned with a cell adhesive ligand, that was functionalized with an acrylate group using Michael type addition reaction, thus, circumventing the need for proprietary reagents.
Collapse
Affiliation(s)
- Mathew Peter
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Prakriti Tayalia
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| |
Collapse
|
32
|
Bordoni AV, Lombardo MV, Wolosiuk A. Photochemical radical thiol–ene click-based methodologies for silica and transition metal oxides materials chemical modification: a mini-review. RSC Adv 2016. [DOI: 10.1039/c6ra10388j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The photochemical radical thiol–ene addition reaction (PRTEA) is a highly powerful synthetic technique for surface modification.
Collapse
Affiliation(s)
- Andrea V. Bordoni
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| | - M. Verónica Lombardo
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| | - Alejandro Wolosiuk
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| |
Collapse
|
33
|
Bong KW, Kim JJ, Cho H, Lim E, Doyle PS, Irimia D. Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13165-71. [PMID: 26545155 PMCID: PMC4820324 DOI: 10.1021/acs.langmuir.5b03501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin-biotin chemistry to adjust the localization of conjugated collagen and poly-L-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates.
Collapse
Affiliation(s)
- Ki Wan Bong
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
| | - Jae Jung Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hansang Cho
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Eugene Lim
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Corresponding Authors: .,
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Corresponding Authors: .,
| |
Collapse
|
34
|
Roling O, De Bruycker K, Vonhören B, Stricker L, Körsgen M, Arlinghaus HF, Ravoo BJ, Du Prez FE. Herstellung mikrostrukturierter Polymerbürsten auf wiederbeschreibbaren Oberflächen durch Triazolindion-Click-Chemie. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Roling O, De Bruycker K, Vonhören B, Stricker L, Körsgen M, Arlinghaus HF, Ravoo BJ, Du Prez FE. Rewritable Polymer Brush Micropatterns Grafted by Triazolinedione Click Chemistry. Angew Chem Int Ed Engl 2015; 54:13126-9. [DOI: 10.1002/anie.201506361] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/10/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Oliver Roling
- Organisch‐Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms‐Universität Münster, Corrensstrasse 40, 48149 Münster (Germany)
| | - Kevin De Bruycker
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4‐bis, B‐9000 Gent (Belgium)
| | - Benjamin Vonhören
- Organisch‐Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms‐Universität Münster, Corrensstrasse 40, 48149 Münster (Germany)
| | - Lucas Stricker
- Organisch‐Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms‐Universität Münster, Corrensstrasse 40, 48149 Münster (Germany)
| | - Martin Körsgen
- Physikalisches Institut, Westfälische Wilhelms‐Universität Münster, Wilhelm‐Klemm‐Strasse 10, 48149 Münster (Germany)
| | - Heinrich F. Arlinghaus
- Physikalisches Institut, Westfälische Wilhelms‐Universität Münster, Wilhelm‐Klemm‐Strasse 10, 48149 Münster (Germany)
| | - Bart Jan Ravoo
- Organisch‐Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms‐Universität Münster, Corrensstrasse 40, 48149 Münster (Germany)
| | - Filip E. Du Prez
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4‐bis, B‐9000 Gent (Belgium)
| |
Collapse
|
36
|
Laun J, Vorobii M, de los Santos Pereira A, Pop-Georgievski O, Trouillet V, Welle A, Barner-Kowollik C, Rodriguez-Emmenegger C, Junkers T. Surface Grafting via Photo-Induced Copper-Mediated Radical Polymerization at Extremely Low Catalyst Concentrations. Macromol Rapid Commun 2015; 36:1681-6. [DOI: 10.1002/marc.201500322] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Joachim Laun
- Institute for Materials Research; Hasselt University; Martelarenlaan 42 3500 Hasselt Belgium
| | - Mariia Vorobii
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic v.v.i; Heyrovsky sq. 2 162 06 Prague Czech Republic
| | - Andres de los Santos Pereira
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic v.v.i; Heyrovsky sq. 2 162 06 Prague Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic v.v.i; Heyrovsky sq. 2 162 06 Prague Czech Republic
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Alexander Welle
- Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstraße 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen (IBG); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstraße 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen (IBG); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic v.v.i; Heyrovsky sq. 2 162 06 Prague Czech Republic
| | - Thomas Junkers
- Institute for Materials Research; Hasselt University; Martelarenlaan 42 3500 Hasselt Belgium
- IMEC Associated Lab; IMOMEC; Wetenschapspark 1 3590 Diepenbeek Belgium
| |
Collapse
|
37
|
Buhl M, Vonhören B, Ravoo BJ. Immobilization of enzymes via microcontact printing and thiol-ene click chemistry. Bioconjug Chem 2015; 26:1017-20. [PMID: 26030726 DOI: 10.1021/acs.bioconjchem.5b00282] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Communication describes a bioconjugation method for the generation of enzyme microarrays on surfaces using photochemical thiol-ene chemistry in combination with microcontact printing. Glucose oxidase and lactase were readily immobilized (i.e., printing time 2 min) on alkene terminated self-assembled monolayers on glass as demonstrated by X-ray photoelectron spectroscopy and fluorescence microscopy. Furthermore, the activity of both immobilized enzymes was confirmed in single enzyme as well as cascade transformations.
Collapse
Affiliation(s)
- Moritz Buhl
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Benjamin Vonhören
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
38
|
Stolar RB, Guerra E, Shepherd JL. The influence of thiolate readsorption on the quality of mixed monolayers formed through an electrochemcial method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2157-2166. [PMID: 25625688 DOI: 10.1021/la5046767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lateral Force Microscopy (LFM) was used to probe the quality of binary mixed monolayers formed on planar polycrystalline gold through an electrochemical method. In the approach, portions of a self-assembled monolayer (SAM) composed of 2-aminoethanethiol (AET) were removed from the Au(111) surface facets by selective reductive desorption which maintained undisrupted regions of AET elsewhere on the polycrystalline surface. Monolayer voids created by this method were backfilled with 11-mercaptoundecanoic acid (MUA) and the interface characterized with ex situ LFM. This produced images with domains of high and low friction corresponding to isolated zones of MUA and AET respectively. Reverse sequence mixed monolayers were also prepared with MUA as the starting layer and rendered LFM images that mirrored the AET based layers. This demonstrates flexibility of the electrochemical method to produce heterogeneous binary SAMs, and to further probe the quality of mixed monolayers, a number of experimental conditions including desorption time, electrode configuration, and initial incubation period were studied. AET/MUA layers that produced the most enhanced LFM images were formed on a planar electrode that was vertically submerged into the electrolyte while maintaining a selective desorption potential for 5 min before backfilling with MUA. This condition allowed for the effective diffusion of AET away from the interface and created well-defined monolayer voids for backfilling. At desorption times lower than 1 min, some of the AET molecules that remained near the interface would readsorb onto the surface and interfere with the backfilling process thereby creating lower contrast LFM images. Structural features of these layers were independent of initial incubation time (10 min and 16 h); however, the contrast between domains was improved when using AET layers formed over a longer incubation period. Interestingly, the contrast was significantly reduced when mixed layers were created on electrodes set in a hanging meniscus with the electrolyte. Here, electrochemical evidence pointed to prolonged readsorption of thiolates creating less well-defined voids for backfilling, and the event was most pronounced for MUA based layers.
Collapse
Affiliation(s)
- Rylan B Stolar
- Chemistry & Biochemistry Department, Laurentian University , Sudbury, ON, Canada , P3E 2C6
| | | | | |
Collapse
|
39
|
Albers J, Toma K, Offenhäusser A. Engineering connectivity by multiscale micropatterning of individual populations of neurons. Biotechnol J 2015; 10:332-8. [DOI: 10.1002/biot.201400609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/12/2022]
|
40
|
Kettling F, Vonhören B, Krings JA, Saito S, Ravoo BJ. One-step synthesis of patterned polymer brushes by photocatalytic microcontact printing. Chem Commun (Camb) 2015; 51:1027-30. [DOI: 10.1039/c4cc08646e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel method to prepare microstructured polymer brushes using TiO2 nanoparticles and photocatalytic microcontact printing is described.
Collapse
Affiliation(s)
- Friederike Kettling
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Benjamin Vonhören
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jennifer A. Krings
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Susumu Saito
- Graduate School of Science and Institute for Advanced Research
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Bart Jan Ravoo
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
41
|
Structure and blood compatibility of highly oriented poly(l-lactic acid) chain extended by ethylene glycol diglycidyl ether. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.11.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Li Y, Wang X, Jing J, Xie B, Zhan S. Optimal Conditions for Existence of Vesicles Under Electric Field. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2014.975817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Meng Y, Fenoli CR, Aguirre-Soto A, Bowman CN, Anthamatten M. Photoinduced diffusion through polymer networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6497-502. [PMID: 25155441 DOI: 10.1002/adma.201402097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/25/2014] [Indexed: 05/27/2023]
Abstract
Photomediated addition-fragmentation chemistry is applied to demonstrate the precisely controlled diffusion of chemical species through polymer networks. Fluorescent groups connected to polymer networks by allyl sulfide moieties become mobile upon irradiation with UV light due to radical-mediated addition-fragmentation bond exchange. Photoinduced transport through the bulk, into solution, and across film interfaces is demonstrated.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Chemical Engineering, University of Rochester, 206 Gavett Hall, Rochester, New York, 14627, USA
| | | | | | | | | |
Collapse
|
44
|
Rauschenberg M, Fritz EC, Schulz C, Kaufmann T, Ravoo BJ. Molecular recognition of surface-immobilized carbohydrates by a synthetic lectin. Beilstein J Org Chem 2014; 10:1354-64. [PMID: 24991289 PMCID: PMC4077543 DOI: 10.3762/bjoc.10.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/22/2014] [Indexed: 12/23/2022] Open
Abstract
The molecular recognition of carbohydrates and proteins mediates a wide range of physiological processes and the development of synthetic carbohydrate receptors (“synthetic lectins”) constitutes a key advance in biomedical technology. In this article we report a synthetic lectin that selectively binds to carbohydrates immobilized in a molecular monolayer. Inspired by our previous work, we prepared a fluorescently labeled synthetic lectin consisting of a cyclic dimer of the tripeptide Cys-His-Cys, which forms spontaneously by air oxidation of the monomer. Amine-tethered derivatives of N-acetylneuraminic acid (NANA), β-D-galactose, β-D-glucose and α-D-mannose were microcontact printed on epoxide-terminated self-assembled monolayers. Successive prints resulted in simple microarrays of two carbohydrates. The selectivity of the synthetic lectin was investigated by incubation on the immobilized carbohydrates. Selective binding of the synthetic lectin to immobilized NANA and β-D-galactose was observed by fluorescence microscopy. The selectivity and affinity of the synthetic lectin was screened in competition experiments. In addition, the carbohydrate binding of the synthetic lectin was compared with the carbohydrate binding of the lectins concanavalin A and peanut agglutinin. It was found that the printed carbohydrates retain their characteristic selectivity towards the synthetic and natural lectins and that the recognition of synthetic and natural lectins is strictly orthogonal.
Collapse
Affiliation(s)
- Melanie Rauschenberg
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Eva-Corrina Fritz
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Christian Schulz
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Tobias Kaufmann
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
45
|
Roling O, Mardyukov A, Lamping S, Vonhören B, Rinnen S, Arlinghaus HF, Studer A, Ravoo BJ. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels–Alder reaction employing microcontact chemistry. Org Biomol Chem 2014; 12:7828-35. [DOI: 10.1039/c4ob01379d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules.
Collapse
Affiliation(s)
- Oliver Roling
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Artur Mardyukov
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Sebastian Lamping
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Benjamin Vonhören
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Stefan Rinnen
- Physikalisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| |
Collapse
|
46
|
Osada K, Hosokawa M, Yoshino T, Tanaka T. Monitoring of cellular behaviors by microcavity array-based single-cell patterning. Analyst 2014; 139:425-30. [DOI: 10.1039/c3an01698f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Wijdeven MA, Nicosia C, Borrmann A, Huskens J, van Delft FL. Biomolecular patterning of glass surfaces via strain-promoted cycloaddition of azides and cyclooctynes. RSC Adv 2014. [DOI: 10.1039/c3ra46121a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
48
|
Richter B, Pauloehrl T, Kaschke J, Fichtner D, Fischer J, Greiner AM, Wedlich D, Wegener M, Delaittre G, Barner-Kowollik C, Bastmeyer M. Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6117-22. [PMID: 24038437 DOI: 10.1002/adma.201302678] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 05/08/2023]
Abstract
Spatial control over the surface chemistry of 3D organic-inorganic hybrid microscaffolds is achieved by a two-photon-triggered cycloaddition. Following a coating step with photoactivatable dienes via silanization, surface irradiation with a femtosecond-pulsed laser in the presence of functional dienophiles enables a site-selective alteration of the surface chemistry. Bioconjugation with fluorescent protein tags is employed to reveal the 3D molecular patterns.
Collapse
Affiliation(s)
- Benjamin Richter
- Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany and Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bally F, Cheng K, Nandivada H, Deng X, Ross AM, Panades A, Lahann J. Co-immobilization of biomolecules on ultrathin reactive chemical vapor deposition coatings using multiple click chemistry strategies. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9262-9268. [PMID: 23888837 DOI: 10.1021/am401875x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Immobilization of biomolecules, such as proteins or sugars, is a key issue in biotechnology because it enables the understanding of cellular behavior in more biological relevant environment. Here, poly(4-ethynyl-p-xylylene-co-p-xylylene) coatings have been fabricated by chemical vapor deposition (CVD) polymerization in order to bind bioactive molecules onto the surface of the material. The control of the thickness of the CVD films has been achieved by tuning the amount of precursor used for deposition. Copper-catalyzed Huisgen cycloaddition has then been performed via microcontact printing to immobilize various biomolecules on the reactive coatings. The selectivity of this click chemistry reaction has been confirmed by spatially controlled conjugation of fluorescent sugar recognizing molecules (lectins) as well as cell adhesion onto the peptide pattern. In addition, a microstructured coating that may undergo multiple click chemistry reactions has been developed by two sequential CVD steps. Poly(4-ethynyl-p-xylylene-co-p-xylylene) and poly(4-formyl-p-xylylene-co-p-xylylene) have been patterned via vapor-assisted micropatterning in replica structures (VAMPIR). A combination of Huisgen cycloaddition and carbonyl-hydrazide coupling was used to spatially direct the immobilization of sugars on a patterned substrate. This work opens new perspectives in tailoring microstructured, multireactive interfaces that can be decorated via bio-orthogonal chemistry for use as mimicking the biological environment of cells.
Collapse
Affiliation(s)
- Florence Bally
- Institute of Functional Interfaces, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, 76344, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Schroll P, Fehl C, Dankesreiter S, König B. Photocatalytic surface patterning of cellulose using diazonium salts and visible light. Org Biomol Chem 2013; 11:6510-4. [PMID: 23963264 DOI: 10.1039/c3ob40990b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coumarin-functionalized cellulose sheets were chemically modified using a visible light catalyzed "Photo-Meerwein" arylation. Use of a photomask to pattern the surface resulted in directly visible images.
Collapse
Affiliation(s)
- Peter Schroll
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | | | | | | |
Collapse
|