1
|
Vesga-Castro C, Mosqueira-Martín L, Ubiria-Urkola P, Marco-Moreno P, González-Imaz K, Rendon-Hinestroza J, Vallejo-Illarramendi A, Paredes J. Development of an in vitro platform for the analysis of contractile and calcium dynamics in single human myotubes. LAB ON A CHIP 2024; 24:4741-4754. [PMID: 39264341 DOI: 10.1039/d3lc00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In vitro myotube cultures are widely used as models for studying muscle pathophysiology, but their limited maturation and heterogeneity pose significant challenges for functional analyses. While they remain the gold standard for studying muscle function in vitro, myotube cultures do not fully recapitulate the complexity and native features of muscle fibers, which may compromise their ability to predict in vivo outcomes. To promote maturation and decrease heterogeneity, we have incorporated engineered structures into myotube cultures, based on a PDMS thin layer with micrometer-sized grooves (μGrooves) placed over a glass substrate. Different sizes and shapes of μGrooves were tested for their ability to promote alignment and fusion of myoblasts and enhance their differentiation into myotubes. A 24 hour electrical field stimulation protocol (4 V, 6 ms, 0.1 Hz) was used to further promote myotube maturation, after which several myotube features were assessed, including myotube alignment, width, fusion index, contractile function, and calcium handling. Our results indicate superior calcium and contractile performance in μGrooved myotubes, particularly with the 100 μm-width 700 μm-long geometry (7 : 1). This platform generated homogeneous and isolated myotubes that reproduced native muscle features, such as excitation-contraction coupling and force-frequency responses. Overall, our 2D muscle platform enables robust high-content assays of calcium dynamics and contractile readouts with increased sensitivity and reproducibility compared to traditional myotube cultures, making it particularly suitable for screening therapeutic candidates for different muscle pathologies.
Collapse
Affiliation(s)
- Camila Vesga-Castro
- Tecnun School of Engineering, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain.
- Biomedical Engineering Center, University of Navarra, Campus Universitario, 31080, Pamplona, Spain
| | - Laura Mosqueira-Martín
- Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, Donostia Hospital, UPV/EHU, 20014 San Sebastian, Spain.
- Group of Neuromuscular Diseases, IIS Biogipuzkoa, 20014 San Sebastian, Spain
- CIBERNED, Ministry of Science and Innovation, Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Paul Ubiria-Urkola
- Tecnun School of Engineering, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain.
- Biomedical Engineering Center, University of Navarra, Campus Universitario, 31080, Pamplona, Spain
| | - Pablo Marco-Moreno
- Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, Donostia Hospital, UPV/EHU, 20014 San Sebastian, Spain.
- Group of Neuromuscular Diseases, IIS Biogipuzkoa, 20014 San Sebastian, Spain
- CIBERNED, Ministry of Science and Innovation, Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Klaudia González-Imaz
- Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, Donostia Hospital, UPV/EHU, 20014 San Sebastian, Spain.
- Group of Neuromuscular Diseases, IIS Biogipuzkoa, 20014 San Sebastian, Spain
- CIBERNED, Ministry of Science and Innovation, Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Jorge Rendon-Hinestroza
- Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, Donostia Hospital, UPV/EHU, 20014 San Sebastian, Spain.
- Group of Neuromuscular Diseases, IIS Biogipuzkoa, 20014 San Sebastian, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, Donostia Hospital, UPV/EHU, 20014 San Sebastian, Spain.
- Group of Neuromuscular Diseases, IIS Biogipuzkoa, 20014 San Sebastian, Spain
- CIBERNED, Ministry of Science and Innovation, Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Jacobo Paredes
- Tecnun School of Engineering, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain.
- Biomedical Engineering Center, University of Navarra, Campus Universitario, 31080, Pamplona, Spain
| |
Collapse
|
2
|
Najm A, Niculescu AG, Grumezescu AM, Beuran M. Emerging Therapeutic Strategies in Sarcopenia: An Updated Review on Pathogenesis and Treatment Advances. Int J Mol Sci 2024; 25:4300. [PMID: 38673885 PMCID: PMC11050002 DOI: 10.3390/ijms25084300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia is a prevalent degenerative skeletal muscle condition in the elderly population, posing a tremendous burden on diseased individuals and healthcare systems worldwide. Conventionally, sarcopenia is currently managed through nutritional interventions, physical therapy, and lifestyle modification, with no pharmaceutical agents being approved for specific use in this disease. As the pathogenesis of sarcopenia is still poorly understood and there is no treatment recognized as universally effective, recent research efforts have been directed at better comprehending this illness and diversifying treatment strategies. In this respect, this paper overviews the new advances in sarcopenia treatment in correlation with its underlying mechanisms. Specifically, this review creates an updated framework for sarcopenia, describing its etiology, pathogenesis, risk factors, and conventional treatments, further discussing emerging therapeutic approaches like new drug formulations, drug delivery systems, stem cell therapies, and tissue-engineered scaffolds in more detail.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| |
Collapse
|
3
|
Spedicati M, Zoso A, Mortati L, Chiono V, Marcello E, Carmagnola I. Three-Dimensional Microfibrous Scaffold with Aligned Topography Produced via a Combination of Melt-Extrusion Additive Manufacturing and Porogen Leaching for In Vitro Skeletal Muscle Modeling. Bioengineering (Basel) 2024; 11:332. [PMID: 38671754 PMCID: PMC11047940 DOI: 10.3390/bioengineering11040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Skeletal muscle tissue (SMT) has a highly hierarchical and anisotropic morphology, featuring aligned and parallel structures at multiple levels. Various factors, including trauma and disease conditions, can compromise the functionality of skeletal muscle. The in vitro modeling of SMT represents a useful tool for testing novel drugs and therapies. The successful replication of SMT native morphology demands scaffolds with an aligned anisotropic 3D architecture. In this work, a 3D PCL fibrous scaffold with aligned morphology was developed through the synergistic combination of Melt-Extrusion Additive Manufacturing (MEAM) and porogen leaching, utilizing PCL as the bulk material and PEG as the porogen. PCL/PEG blends with different polymer ratios (60/40, 50/50, 40/60) were produced and characterized through a DSC analysis. The MEAM process parameters and porogen leaching in bi-distilled water allowed for the development of a micrometric anisotropic fibrous structure with fiber diameters ranging from 10 to 100 µm, depending on PCL/PEG blend ratios. The fibrous scaffolds were coated with Gelatin type A to achieve a biomimetic coating for an in vitro cell culture and mechanically characterized via AFM. The 40/60 PCL/PEG scaffolds yielded the most homogeneous and smallest fibers and the greatest physiological stiffness. In vitro cell culture studies were performed by seeding C2C12 cells onto a selected scaffold, enabling their attachment, alignment, and myotube formation along the PCL fibers during a 14-day culture period. The resultant anisotropic scaffold morphology promoted SMT-like cell conformation, establishing a versatile platform for developing in vitro models of tissues with anisotropic morphology.
Collapse
Affiliation(s)
- Mattia Spedicati
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Alice Zoso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Leonardo Mortati
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino, Italy;
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| |
Collapse
|
4
|
Cheng YW, Shiwarski DJ, Ball RL, Whitehead KA, Feinberg AW. Engineering Aligned Skeletal Muscle Tissue Using Decellularized Plant-Derived Scaffolds. ACS Biomater Sci Eng 2020; 6:3046-3054. [PMID: 33463300 DOI: 10.1021/acsbiomaterials.0c00058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To achieve organization and function, engineered tissues require a scaffold that supports cell adhesion, alignment, growth, and differentiation. For skeletal muscle tissue engineering, decellularization has been an approach for fabricating 3D scaffolds that retain biological architecture. While many decellularization approaches are focused on utilizing animal muscle as the starting material, decellularized plants are a potential source of highly structured cellulose-rich scaffolds. Here, we assessed the potential for a variety of decellularized plant scaffolds to promote mouse and human muscle cell alignment and differentiation. After decellularizing a range of fruits and vegetables, we identified the green-onion scaffold to have appropriate surface topography for generating highly confluent and aligned C2C12 and human skeletal muscle cells (HSMCs). The topography of the green-onion cellulose scaffold contained a repeating pattern of grooves that are approximately 20 μm wide by 10 μm deep. The outer white section of the green onion had a microstructure that guided C2C12 cell differentiation into aligned myotubes. Quantitative analysis of C2C12 and HSMC alignment revealed an almost complete anisotropic organization compared to 2D isotropic controls. Our results demonstrate that the decellularized green onion cellulose scaffolds, particularly from the outer white bulb segment, provide a simple and low-cost substrate to engineer aligned human skeletal muscle.
Collapse
|
5
|
Vajanthri K, Sidu R, Mahto S. Micropatterning and Alignment of Skeletal Muscle Myoblasts Using Microflowed Plasma Process. Ing Rech Biomed 2020. [DOI: 10.1016/j.irbm.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.3126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Appiah C, Arndt C, Siemsen K, Heitmann A, Staubitz A, Selhuber-Unkel C. Living Materials Herald a New Era in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807747. [PMID: 31267628 DOI: 10.1002/adma.201807747] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Indexed: 05/22/2023]
Abstract
Living beings have an unsurpassed range of ways to manipulate objects and interact with them. They can make autonomous decisions and can heal themselves. So far, a conventional robot cannot mimic this complexity even remotely. Classical robots are often used to help with lifting and gripping and thus to alleviate the effects of menial tasks. Sensors can render robots responsive, and artificial intelligence aims at enabling autonomous responses. Inanimate soft robots are a step in this direction, but it will only be in combination with living systems that full complexity will be achievable. The field of biohybrid soft robotics provides entirely new concepts to address current challenges, for example the ability to self-heal, enable a soft touch, or to show situational versatility. Therefore, "living materials" are at the heart of this review. Similarly to biological taxonomy, there is a recent effort for taxonomy of biohybrid soft robotics. Here, an expansion is proposed to take into account not only function and origin of biohybrid soft robotic components, but also the materials. This materials taxonomy key demonstrates visually that materials science will drive the development of the field of soft biohybrid robotics.
Collapse
Affiliation(s)
- Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Christine Arndt
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Katharina Siemsen
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
- Otto-Diels-Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, D-24118, Kiel, Germany
| | | |
Collapse
|
8
|
Jiwlawat N, Lynch EM, Napiwocki BN, Stempien A, Ashton RS, Kamp TJ, Crone WC, Suzuki M. Micropatterned substrates with physiological stiffness promote cell maturation and Pompe disease phenotype in human induced pluripotent stem cell-derived skeletal myocytes. Biotechnol Bioeng 2019; 116:2377-2392. [PMID: 31131875 DOI: 10.1002/bit.27075] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
Recent advances in bioengineering have enabled cell culture systems that more closely mimic the native cellular environment. Here, we demonstrated that human induced pluripotent stem cell (iPSC)-derived myogenic progenitors formed highly-aligned myotubes and contracted when seeded on two-dimensional micropatterned platforms. The differentiated cells showed clear nuclear alignment and formed elongated myotubes dependent on the width of the micropatterned lanes. Topographical cues from micropatterning and physiological substrate stiffness improved the formation of well-aligned and multinucleated myotubes similar to myofibers. These aligned myotubes exhibited spontaneous contractions specifically along the long axis of the pattern. Notably, the micropatterned platforms developed bundle-like myotubes using patient-derived iPSCs with a background of Pompe disease (glycogen storage disease type II) and even enhanced the disease phenotype as shown through the specific pathology of abnormal lysosome accumulations. A highly-aligned formation of matured myotubes holds great potential in further understanding the process of human muscle development, as well as advancing in vitro pharmacological studies for skeletal muscle diseases.
Collapse
Affiliation(s)
- Nunnapas Jiwlawat
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Eileen M Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Brett N Napiwocki
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Alana Stempien
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin
| | - Wendy C Crone
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin.,Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
9
|
Vajanthri KY, Sidu RK, Poddar S, Singh AK, Mahto SK. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance. Cytoskeleton (Hoboken) 2019; 76:269-285. [DOI: 10.1002/cm.21527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiran Yellappa Vajanthri
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Rakesh Kumar Sidu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Suruchi Poddar
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Ashish Kumar Singh
- School of Biochemical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
- Center for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| |
Collapse
|
10
|
Del Carmen Ortuño-Costela M, García-López M, Cerrada V, Gallardo ME. iPSCs: A powerful tool for skeletal muscle tissue engineering. J Cell Mol Med 2019; 23:3784-3794. [PMID: 30933431 PMCID: PMC6533516 DOI: 10.1111/jcmm.14292] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Both volumetric muscle loss (VML) and muscle degenerative diseases lead to an important decrease in skeletal muscle mass, condition that nowadays lacks an optimal treatment. This issue has driven towards an increasing interest in new strategies in tissue engineering, an emerging field that can offer very promising approaches. In addition, the discovery of induced pluripotent stem cells (iPSCs) has completely revolutionized the actual view of personalized medicine, and their utilization in skeletal muscle tissue engineering could, undoubtedly, add myriad benefits. In this review, we want to provide a general vision of the basic aspects to consider when engineering skeletal muscle tissue using iPSCs. Specifically, we will focus on the three main pillars of tissue engineering: the scaffold designing, the selection of the ideal cell source and the addition of factors that can enhance the resemblance with the native tissue.
Collapse
Affiliation(s)
- María Del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid, Spain, (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta García-López
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Victoria Cerrada
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBERER), Madrid, Spain
| |
Collapse
|
11
|
Low ZWK, Li Z, Owh C, Chee PL, Ye E, Kai D, Yang DP, Loh XJ. Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805453. [PMID: 30690897 DOI: 10.1002/smll.201805453] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Artificial skin devices are able to mimic the flexibility and sensory perception abilities of the skin. They have thus garnered attention in the biomedical field as potential skin replacements. This Review delves into issues pertaining to these skin-deep devices. It first elaborates on the roles that these devices have to fulfill as skin replacements, and identify strategies that are used to achieve such functionality. Following which, a comparison is done between the current state of these skin-deep devices and that of natural skin. Finally, an outlook on artificial skin devices is presented, which discusses how complementary technologies can create skin enhancements, and what challenges face such devices.
Collapse
Affiliation(s)
- Zhi Wei Kenny Low
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, Fujian Province, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
12
|
Capel AJ, Rimington RP, Fleming JW, Player DJ, Baker LA, Turner MC, Jones JM, Martin NRW, Ferguson RA, Mudera VC, Lewis MP. Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. Front Bioeng Biotechnol 2019; 7:20. [PMID: 30838203 PMCID: PMC6383409 DOI: 10.3389/fbioe.2019.00020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 12/04/2022] Open
Abstract
Tissue engineered skeletal muscle allows investigation of the cellular and molecular mechanisms that regulate skeletal muscle pathology. The fabricated model must resemble characteristics of in vivo tissue and incorporate cost-effective and high content primary human tissue. Current models are limited by low throughput due to the complexities associated with recruiting tissue donors, donor specific variations, as well as cellular senescence associated with passaging. This research presents a method using fused deposition modeling (FDM) and laser sintering (LS) 3D printing to generate reproducible and scalable tissue engineered primary human muscle, possessing aligned mature myotubes reminiscent of in vivo tissue. Many existing models are bespoke causing variability when translated between laboratories. To this end, a scalable model has been developed (25–500 μL construct volumes) allowing fabrication of mature primary human skeletal muscle. This research provides a strategy to overcome limited biopsy cell numbers, enabling high throughput screening of functional human tissue.
Collapse
Affiliation(s)
- Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Rowan P Rimington
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jacob W Fleming
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Luke A Baker
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark C Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Julia M Jones
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Vivek C Mudera
- Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
13
|
Morimoto Y, Onoe H, Takeuchi S. Biohybrid device with antagonistic skeletal muscle tissue for measurement of contractile force. Adv Robot 2019. [DOI: 10.1080/01691864.2019.1567382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuya Morimoto
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan
| | - Hiroaki Onoe
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Keio University, Kanagawa, Japan
| | - Shoji Takeuchi
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
15
|
Zoso A, Zambon A, Gagliano O, Giulitti S, Prevedello L, Fadini GP, Luni C, Elvassore N. Cross-talk of healthy and impaired human tissues for dissection of disease pathogenesis. Biotechnol Prog 2018; 35:e2766. [PMID: 30548838 DOI: 10.1002/btpr.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/11/2022]
Abstract
Systemic diseases affect multiple tissues that interact with each other within a network difficult to explore at the body level. However, understanding the interdependences between tissues could be of high relevance for drug target identification, especially at the first stages of disease development. In vitro systems have the advantages of accessibility to measurements and precise controllability of culture conditions, but currently have limitations in mimicking human in vivo systemic tissue response. In this work, we present an in vitro model of cross-talk between an ex vivo culture of adipose tissue from an obese donor and a skeletal muscle in vitro model from a healthy donor. This is relevant to understand type 2 diabetes mellitus pathogenesis, as obesity is one of its main risk factors. The human adipose tissue biopsy was maintained as a three-dimensional culture for 48 h. Its conditioned culture medium was used to stimulate a human skeletal muscle-on-chip, developed by differentiating primary cells of a patient's biopsy under topological cues and molecular self-regulation. This system has been characterized to demonstrate its ability to mimic important features of the normal skeletal muscle response in vivo. We then found that the conditioned medium from a diseased adipose tissue is able to perturb the normal insulin sensitivity of a healthy skeletal muscle, as reported in the early stages of diabetes onset. In perspective, this work represents an important step toward the development of technological platforms that allow to study and dissect the systemic interaction between unhealthy and healthy tissues in vitro. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2766, 2019.
Collapse
Affiliation(s)
- Alice Zoso
- Venetian Inst. of Molecular Medicine, Via Orus 2, Padova, 35129, Italy.,Dept. of Industrial Engineering, University of Padova, Via Marzolo 9, Padova, 35131, Italy
| | - Alessandro Zambon
- Venetian Inst. of Molecular Medicine, Via Orus 2, Padova, 35129, Italy.,Dept. of Industrial Engineering, University of Padova, Via Marzolo 9, Padova, 35131, Italy
| | - Onelia Gagliano
- Venetian Inst. of Molecular Medicine, Via Orus 2, Padova, 35129, Italy.,Dept. of Industrial Engineering, University of Padova, Via Marzolo 9, Padova, 35131, Italy
| | - Stefano Giulitti
- Venetian Inst. of Molecular Medicine, Via Orus 2, Padova, 35129, Italy.,Dept. of Industrial Engineering, University of Padova, Via Marzolo 9, Padova, 35131, Italy
| | - Luca Prevedello
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova, Padova, 35124, Italy
| | | | - Camilla Luni
- Shanghai Inst. for Advanced Immunochemical Studies, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Nicola Elvassore
- Venetian Inst. of Molecular Medicine, Via Orus 2, Padova, 35129, Italy.,Dept. of Industrial Engineering, University of Padova, Via Marzolo 9, Padova, 35131, Italy.,Shanghai Inst. for Advanced Immunochemical Studies, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China.,Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, U.K
| |
Collapse
|
16
|
Morimoto Y, Onoe H, Takeuchi S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Sci Robot 2018; 3:3/18/eaat4440. [DOI: 10.1126/scirobotics.aat4440] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
17
|
Gattazzo F, De Maria C, Rimessi A, Donà S, Braghetta P, Pinton P, Vozzi G, Bonaldo P. Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering. J Biomed Mater Res B Appl Biomater 2018; 106:2763-2777. [PMID: 29412500 DOI: 10.1002/jbm.b.34057] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/03/2023]
Abstract
Skeletal muscle engineering aims at tissue reconstruction to replace muscle loss following traumatic injury or in congenital muscle defects. Skeletal muscle can be engineered by using biodegradable and biocompatible scaffolds that favor myogenic cell adhesion and subsequent tissue organization. In this study, we characterized scaffolds made of gelatin cross-linked with genipin, a natural derived cross-linking agent with low cytotoxicity and high biocompatibility, for tissue engineering of skeletal muscle. We generated gelatin-genipin hydrogels with a stiffness of 13 kPa to reproduce the mechanical properties characteristic of skeletal muscle and we show that their surface can be topographically patterned through soft lithography to drive myogenic cells differentiation and unidirectional orientation. Furthermore, we demonstrate that these biomaterials can be successfully implanted in vivo under dorsal mouse skin, showing good biocompatibility and slow biodegradation rate. Moreover, the grafting of this biomaterial in partially ablated tibialis anterior muscle does not impair muscle regeneration, supporting future applications of gelatin-genipin biomaterials in the field of skeletal muscle tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2763-2777, 2018.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Carmelo De Maria
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy
| | - Silvia Donà
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy.,CRIBI Biotechnology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
18
|
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018; 15:20170380. [PMID: 29343633 PMCID: PMC5805959 DOI: 10.1098/rsif.2017.0380] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
19
|
Lee MS, Yang HS. Sphingosine-1-Phosphate Immobilized on Nanotopographical Scaffolds Improve Myogenic Differentiation. Biotechnol J 2017; 12. [PMID: 29144589 DOI: 10.1002/biot.201700309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/02/2017] [Indexed: 11/12/2022]
Abstract
The skeletal muscle consists of highly aligned dense cables of collagen fibers with nanometer feature size to support muscle fibers. The skeletal myocyte can be greatly affected to differentiate by their surrounding topographical structure. To improve myogenic differentiation, we fabricated cell culture platform that sphingosine-1-phosphate (S1P) which regulated myocyte behavior is immobilized on a biomimetic nanopatterned polyurethaneacrylate (PUA) substrate using 3,4-dihydroxyphenylalanine (L-DOPA) for providing topographical and biological cues synergistically. In the present study, we hypothesized that cultured C2C12 cells can be induced to synergistically promote myogenic differenntiation on nanopatterned PUA-L-DOPA-S1P. We confirmed that nanopatterned PUA-L-DOPA-S1P has high hydrophilicity with a suitable range of water contact angle and small intensity of phosphate peak (P2p) by analyses of water contact analyzer and X-ray photoelectron spectroscopy. In addition, C2C12 cells culured on nanopatterned PUA-L-DOPA-S1P has well-oriented and organized myodubes formed with greater expression of myogenic regulatory factors such as MyoD and MyoG comapred to flat PUA groups. This functional platform which is not only provided topographical and biological cues has a suitable potential function to apply muscle cell niche as similar structure of muscle fiber but also utilized cell behavior within tissue engineered scaffolds and cellular microenvironment.
Collapse
Affiliation(s)
- Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
20
|
Liu X, Liu Y, Zhao F, Hun T, Li S, Wang Y, Sun W, Wang W, Sun Y, Fan Y. Regulation of cell arrangement using a novel composite micropattern. J Biomed Mater Res A 2017; 105:3093-3101. [DOI: 10.1002/jbm.a.36157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyi Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Shan Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yuguang Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Weijie Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Wei Wang
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing 100871 China
- Innovation Center for Micro-Nano-electronics and Integrated System; Beijing 100871 China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- National Research Center for Rehabilitation Technical Aids; Beijing 100176 People's Republic of China
| |
Collapse
|
21
|
Influence of Micropatterned Silk Fibroin Films on Human Umbilical Endothelial Cell Behaviors. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Naskar S, Kumaran V, Basu B. On The Origin of Shear Stress Induced Myogenesis Using PMMA Based Lab-on-Chip. ACS Biomater Sci Eng 2017; 3:1154-1171. [PMID: 33429590 DOI: 10.1021/acsbiomaterials.7b00206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the central themes in cell and tissue engineering is to develop an understanding as to how biophysical cues can influence cell functionality changes. The flow induced shear stress is regarded as one such biophysical cue to influence physiological changes in shear-sensitive tissues, in vivo. The origin of such phenomena is, however, poorly understood. While addressing such an issue, the present work demonstrates the intriguing synergistic effect of shear stress and spatial constraints in inducing aligned growth and differentiation of myoblast cells to myotubes. In a planned set of in vitro experiments, the regulation of laminar flow regime within a narrow window was obtained in a PMMA-based Lab-on-Chip (LOC) device, wherein the murine muscle cells (C2C12), chosen for their phenotypical differentiation stages, were cultured under graded shear conditions. The two factors of shear stress and spatial allowance were decoupled by another two sets of experiments. This aspect has been conclusively established using a PMMA device having a fixed width microchannel with varying shear and an identical amount of shear with different width of channels. On the basis of the extensive analysis of biochemical assays (WST-1, picogreen) together with gene expression using qRT-PCR and cell morphological changes (fluorescence/confocal microscopy), extensive differentiation of the myoblasts into myotubes is found to be dependent on both shear stress and spatial allocation with a maximum at an optimal shear of ca. 16 mPa. Quantitatively, the mRNA expression of myogenic biomarkers, i.e., myogenin, MyoD, and neogenin, exhibited 10- to 50-fold changes at ca. 16 mPa shear flow, compared to that under static conditions. Also, myotube aspect ratio and myotube density are modulated with shear stress and are in commensurate with gene expression changes. The flow cytometry analysis further confirmed that the cell cycle arrest at the G1/G0 phase triggers the onset of myogenesis. Taken together, the present study unambiguously establishes qualitative and quantitative biophysical basis for the origin of myogenesis toward the critical shear stress of murine myoblasts in a microfludic device, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - V Kumaran
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
23
|
Jagla K, Kalman B, Boudou T, Hénon S, Batonnet-Pichon S. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Semin Cell Dev Biol 2017; 64:171-180. [DOI: 10.1016/j.semcdb.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
24
|
Jana S, Lan Levengood SK, Zhang M. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10588-10612. [PMID: 27865007 PMCID: PMC5253134 DOI: 10.1002/adma.201600240] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/27/2016] [Indexed: 05/19/2023]
Abstract
Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Sheeny K. Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
25
|
Hadjiantoniou SV, Sean D, Ignacio M, Godin M, Slater GW, Pelling AE. Physical confinement signals regulate the organization of stem cells in three dimensions. J R Soc Interface 2016; 13:20160613. [PMID: 27798278 PMCID: PMC5095220 DOI: 10.1098/rsif.2016.0613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/05/2016] [Indexed: 01/25/2023] Open
Abstract
During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro, mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell-cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell-substrate versus cell-cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell-cell and cell-substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.
Collapse
Affiliation(s)
- Sebastian V Hadjiantoniou
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - David Sean
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Maxime Ignacio
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Michel Godin
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- Department of Mechanical Engineering, University of Ottawa, Site Building, 800 King Edward Avenue, Ottawa, Ontario, Canada K1N 6N5
- Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada K1N 6N5
| | - Gary W Slater
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Andrew E Pelling
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- Institute for Science, University of Ottawa, Society and Policy, Desmarais Building, 55 Laurier Avenue East, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
26
|
Serena E, Zatti S, Zoso A, Lo Verso F, Tedesco FS, Cossu G, Elvassore N. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model. Stem Cells Transl Med 2016; 5:1676-1683. [PMID: 27502519 DOI: 10.5966/sctm.2015-0053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
: Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. SIGNIFICANCE This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from patients with Duchenne muscular dystrophy (DMD), using a microengineered model. An ad hoc experimental strategy was designed to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. This microscaled in vitro model, which validated previous in vivo preclinical work, revealed that mesoangioblasts showed unexpected efficiency as compared with myoblasts in dystrophin production. Consequently, this model may be used to predict efficacy of new drugs or therapies aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo.
Collapse
Affiliation(s)
- Elena Serena
- Industrial Engineering Department, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Susi Zatti
- Industrial Engineering Department, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Alice Zoso
- Industrial Engineering Department, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesca Lo Verso
- Industrial Engineering Department, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - F Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Giulio Cossu
- Institute of Inflammation and Repair Manchester, University of Manchester, Manchester, United Kingdom
| | - Nicola Elvassore
- Industrial Engineering Department, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
27
|
Duffy RM, Sun Y, Feinberg AW. Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle. Ann Biomed Eng 2016; 44:2076-89. [PMID: 26983843 PMCID: PMC4880540 DOI: 10.1007/s10439-016-1592-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
Skeletal muscle lost through trauma or disease has proven difficult to regenerate due to the challenge of differentiating human myoblasts into aligned, contractile tissue. To address this, we investigated microenvironmental cues that drive myoblast differentiation into aligned myotubes for potential applications in skeletal muscle repair, organ-on-chip disease models and actuators for soft robotics. We used a 2D in vitro system to systematically evaluate the role of extracellular matrix (ECM) protein composition and geometric patterning for controlling the formation of highly aligned myotubes. Specifically, we analyzed myotubes differentiated from murine C2C12 cells and human skeletal muscle derived cells (SkMDCs) on micropatterned lines of laminin compared to fibronectin, collagen type I, and collagen type IV. Results showed that laminin supported significantly greater myotube formation from both cells types, resulting in greater than twofold increase in myotube area on these surfaces compared to the other ECM proteins. Species specific differences revealed that human SkMDCs uniaxially aligned over a wide range of micropatterned line dimensions, while C2C12s required specific line widths and spacings to do the same. Future work will incorporate these results to engineer aligned human skeletal muscle tissue in 2D for in vitro applications in disease modeling, drug discovery and toxicity screening.
Collapse
Affiliation(s)
- Rebecca M Duffy
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Yan Sun
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA, 15219, USA
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Adam W Feinberg
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA, 15219, USA.
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
28
|
Poosala P, Ichinose H, Kitaoka T. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion. Int J Mol Sci 2016; 17:ijms17050686. [PMID: 27164094 PMCID: PMC4881512 DOI: 10.3390/ijms17050686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/31/2023] Open
Abstract
Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation.
Collapse
Affiliation(s)
- Pornthida Poosala
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Ichinose
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
29
|
Gagliano O, Elvassore N, Luni C. Microfluidic technology enhances the potential of human pluripotent stem cells. Biochem Biophys Res Commun 2016; 473:683-7. [DOI: 10.1016/j.bbrc.2015.12.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023]
|
30
|
|
31
|
Gao H, Dong H, Cao X, Fu X, Zhu Y, Mao C, Wang Y. Effective Spatial Separation of PC12 and NIH3T3 Cells by the Microgrooved Surface of Biocompatible Polymer Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6797-806. [PMID: 26072918 PMCID: PMC4924521 DOI: 10.1021/acs.langmuir.5b01018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Most organs and tissues are composed of more than one type of cell that is spatially separated and located in different regions. This study used a microgrooved poly(lactic-co-glycolic acid) (PLGA) substrate to guide two types of cocultured cells to two spatially separated regions. Specifically, PC12 pheochromocytoma cells are guided to the inside of microgrooves, whereas NIH3T3 fibroblasts are guided to the ridge area in between neighboring parallel microgrooves. In addition, the microgrooved structures can significantly promote the proliferation and neural differentiation of PC12 cells as well as the osteogenic differentiation of NIH3T3 cells. Therefore, the microgrooved PLGA surface with separated PC12 and NIH3T3 cells can serve as a potential model system for studying nerve reconstruction in bone-repairing scaffolds.
Collapse
Affiliation(s)
- Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Corresponding Authors. .
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Corresponding Authors. .
| |
Collapse
|
32
|
Takayama Y, Wagatsuma A, Hoshino T, Mabuchi K. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes. Biotechnol Prog 2014; 31:220-5. [DOI: 10.1002/btpr.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/11/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Yuzo Takayama
- Mesenchymal Stem Cell Dynamics Research Team, Research Center for Stem Cell Engineering; National Inst. of Advanced Industrial Science and Technology (AIST); Central 4, 1-1-1 Higashi Tsukuba Ibaraki 305-8562 Japan
- Dept. of Information Physics and Computing, Graduate School of Information Science and Technology; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Akira Wagatsuma
- Dept. of Information Physics and Computing, Graduate School of Information Science and Technology; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takayuki Hoshino
- Dept. of Information Physics and Computing, Graduate School of Information Science and Technology; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kunihiko Mabuchi
- Dept. of Information Physics and Computing, Graduate School of Information Science and Technology; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
33
|
Uzel SGM, Pavesi A, Kamm RD. Microfabrication and microfluidics for muscle tissue models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:279-93. [PMID: 25175338 DOI: 10.1016/j.pbiomolbio.2014.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
The relatively recent development of microfluidic systems with wide-ranging capabilities for generating realistic 2D or 3D systems with single or multiple cell types has given rise to an extensive collection of platform technologies useful in muscle tissue engineering. These new systems are aimed at (i) gaining fundamental understanding of muscle function, (ii) creating functional muscle constructs in vitro, and (iii) utilizing these constructs a variety of applications. Use of microfluidics to control the various stimuli that promote differentiation of multipotent cells into cardiac or skeletal muscle is first discussed. Next, systems that incorporate muscle cells to produce either 2D sheets or 3D tissues of contractile muscle are described with an emphasis on the more recent 3D platforms. These systems are useful for fundamental studies of muscle biology and can also be incorporated into drug screening assays. Applications are discussed for muscle actuators in the context of microrobotics and in miniaturized biological pumps. Finally, an important area of recent study involves coculture with cell types that either activate muscle or facilitate its function. Limitations of current designs and the potential for improving functionality for a wider range of applications is also discussed, with a look toward using current understanding and capabilities to design systems of greater realism, complexity and functionality.
Collapse
Affiliation(s)
- Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrea Pavesi
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Hampe N, Jonas T, Wolters B, Hersch N, Hoffmann B, Merkel R. Defined 2-D microtissues on soft elastomeric silicone rubber using lift-off epoxy-membranes for biomechanical analyses. SOFT MATTER 2014; 10:2431-2443. [PMID: 24623394 DOI: 10.1039/c3sm53123f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Surface patterning with complex molecules has become a valuable tool in cell biology and biotechnology, as it enables one to control cell shape and function in culture. However, this technique for micro-contact printing is normally performed on rigid substrates, e.g. Petri dishes or glass. Despite the fact that these substrates can easily be patterned they are artificially stiff environments for cells affecting their morphology and function. Those artifacts can be avoided on tissue elasticity resembling substrates, leading to a nature like cell morphology and behavior. However, reproducible patterning of very soft elastomeric substrates is challenging. Here, we describe a simple and highly accurate method through cavities of lift-off membranes for protein patterning of silicone rubber substrates in an elasticity range down to 1.5 kPa without altering their mechanical properties. Membranes are made of epoxy resin with feature sizes that can be chosen almost arbitrarily including widths down to 5 μm and aspect ratios of 100 and more. Different feature shapes were used to actively manipulate cell adhesion, cell morphology and the actin cytoskeleton on soft substrates. Manipulation of cytoskeletal organization furthermore allowed the comparison of myofibril alignment and cellular forces of cardiac myocytes. These data could show that cell forces are largely unaffected upon active disordering of overall myofibril alignment on a single cell level while aligned multicellular systems generate cell forces in an additive manner.
Collapse
Affiliation(s)
- Nico Hampe
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:1. [PMID: 26015941 PMCID: PMC4365821 DOI: 10.1038/mtm.2013.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/03/2013] [Indexed: 01/04/2023]
Abstract
Duchenne muscular dystrophy (DMD)–associated cardiac diseases are emerging as a major cause of morbidity and mortality in DMD patients, and many therapies for treatment of skeletal muscle failed to improve cardiac function. The reprogramming of patients’ somatic cells into pluripotent stem cells, combined with technologies for correcting the genetic defect, possesses great potential for the development of new treatments for genetic diseases. In this study, we obtained human cardiomyocytes from DMD patient–derived, induced pluripotent stem cells genetically corrected with a human artificial chromosome carrying the whole dystrophin genomic sequence. Stimulation by cytokines was combined with cell culturing on hydrogel with physiological stiffness, allowing an adhesion-dependent maturation and a proper dystrophin expression. The obtained cardiomyocytes showed remarkable sarcomeric organization of cardiac troponin T and α-actinin, expressed cardiac-specific markers, and displayed electrically induced calcium transients lasting less than 1 second. We demonstrated that the human artificial chromosome carrying the whole dystrophin genomic sequence is stably maintained throughout the cardiac differentiation process and that multiple promoters of the dystrophin gene are properly activated, driving expression of different isoforms. These dystrophic cardiomyocytes can be a valuable source for in vitro modeling of DMD-associated cardiac disease. Furthermore, the derivation of genetically corrected, patient-specific cardiomyocytes represents a step toward the development of innovative cell and gene therapy approaches for DMD.
Collapse
|
36
|
Pellegrini G, Rama P, Di Rocco A, Panaras A, De Luca M. Concise Review: Hurdles in a Successful Example of Limbal Stem Cell-based Regenerative Medicine. Stem Cells 2014; 32:26-34. [DOI: 10.1002/stem.1517] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Graziella Pellegrini
- Centre for Regenerative Medicine “Stefano Ferrari”; University of Modena and Reggio Emilia; Modena Italy
| | - Paolo Rama
- San Raffaele Scientific Institute, Ophthalmology Department; Milano Italy
| | - Antonio Di Rocco
- Centre for Regenerative Medicine “Stefano Ferrari”; University of Modena and Reggio Emilia; Modena Italy
| | - Athanasios Panaras
- Centre for Regenerative Medicine “Stefano Ferrari”; University of Modena and Reggio Emilia; Modena Italy
| | - Michele De Luca
- Centre for Regenerative Medicine “Stefano Ferrari”; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
37
|
Zambon A, Zoso A, Luni C, Frommer WB, Elvassore N. Determination of glucose flux in live myoblasts by microfluidic nanosensing and mathematical modeling. Integr Biol (Camb) 2014; 6:277-88. [DOI: 10.1039/c3ib40204e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quantitative dissection of dynamic glucose handling processes in live myoblasts without use of glucose analogs and radioactive hexoses.
Collapse
Affiliation(s)
- Alessandro Zambon
- Department of Industrial Engineering
- University of Padova
- Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM)
- Padova, Italy
| | - Alice Zoso
- Department of Industrial Engineering
- University of Padova
- Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM)
- Padova, Italy
| | - Camilla Luni
- Department of Industrial Engineering
- University of Padova
- Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM)
- Padova, Italy
| | - Wolf B. Frommer
- Department of Plant Biology
- Carnegie Institution for Science
- Stanford, USA
| | - Nicola Elvassore
- Department of Industrial Engineering
- University of Padova
- Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM)
- Padova, Italy
| |
Collapse
|
38
|
Duffy RM, Feinberg AW. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:178-95. [PMID: 24319010 DOI: 10.1002/wnan.1254] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
Abstract
Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs.
Collapse
Affiliation(s)
- Rebecca M Duffy
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | |
Collapse
|
39
|
Giulitti S, Magrofuoco E, Prevedello L, Elvassore N. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture. LAB ON A CHIP 2013; 13:4430-41. [PMID: 24064704 DOI: 10.1039/c3lc50643f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Long-term cell culture in microfluidic devices is an essential prerequisite for "on a chip" biological and physiological based studies. We investigated how medium delivery, from continuous to periodic perfusion, affects long-term cell cultures in a microfluidic platform. Computational simulations suggested that different delivery strategies result in different temporal profiles of accumulation and washing out of endogenous (EnF) and exogenous (ExF) factors, respectively. Thus, cultures exposed to the same overall amount of medium with different temporal profiles were analysed in terms of homogeneity, cell morphology and phenotype. Murine and human cell lines (C2C12 and HFF) and mouse embryonic stem cells (mESC) were cultured in microfluidic channels. An ad hoc experimental setup was developed to perform continuous and periodic medium delivery into the chip, tuning the flow rate, the perfusion time, and the interval of perfusion while using the same amount of medium volume. Periodic medium delivery with a short perfusion pulse ensured cell homogeneity compared to standard cell culture. Conversely, a continuous flow resulted in cell heterogeneity, with abnormal morphology and vesiculation. Only dramatic and unfeasible increasing of perfused medium volume in the continuous configuration could rescue normal cell behaviour. Consistent results were obtained for C2C12 and HFF. In order to extend these results to highly sensitive cells, mESC were cultured for 6 days in the microfluidic channels. Our analysis demonstrates that a periodic medium delivery with fast pulses (with a frequency of 4 times per day) resulted in a homogeneous cell culture in terms of cell viability, colony morphology and maintenance of pluripotency markers. According to experimental observations, the computational model provided a rational description of the perfusion strategies and of how they deeply shape the cell microenvironment in microfluidic cell cultures. These results provide new insight to define optimal strategies for homogeneous and robust long-term cell culture in microfluidic systems, an essential prerequisite for lab on chip cell-based applications.
Collapse
Affiliation(s)
- Stefano Giulitti
- Department of Industrial Engineering, Università degli Studi di Padova, Via Marzolo 9, I-35131, Padova, Italy.
| | | | | | | |
Collapse
|
40
|
Al-Rekabi Z, Pelling AE. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics. Phys Biol 2013; 10:066003. [PMID: 24164970 DOI: 10.1088/1478-3975/10/6/066003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ~16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (~64-89 kPa) as opposed to substrates mimicking resting tissue (~16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
41
|
Bayati V, Altomare L, Tanzi MC, Farè S. Adipose-derived stem cells could sense the nano-scale cues as myogenic-differentiating factors. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2439-2447. [PMID: 23793565 DOI: 10.1007/s10856-013-4983-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Microenvironmental cues, such as surface topography and substrate stiffness, may affect stem cells adhesion, morphology, alignment, proliferation and differentiation. Adipose derived stem cells (ASCs) have attracted considerable interest in regenerative medicine due to their easy isolation, extensive in vitro expandability and ability to differentiate along a number of different tissue-specific lineages. The aim of this work was to investigate ASCs adhesion, alignment and differentiation into myogenic lineage on nanofibrous polymeric scaffolds with anisotropic topography. Nanostructured scaffolds with randomized or parallel fibers were fabricated by electrospinning using polycaprolactone (PCL) and the polycarbonate-urethane ChronoFlex AL 80A (CFAL). Cells expressed myosin (fast skeletal) and tropomyosin in all surface topographies 7 days after seeding but myotube formation was only observed on CFAL scaffolds and only few myotubes were formed on PCL scaffolds. The different cell behavior could be ascribed to two main parameters: fibers dimensions and fibers orientation of the substrates that could result in a better myotube formation on CFAL scaffolds.
Collapse
Affiliation(s)
- V Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | |
Collapse
|
42
|
Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 2013; 34:9413-9. [PMID: 24041425 DOI: 10.1016/j.biomaterials.2013.08.062] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
This paper describes a fabrication method of muscle tissue constructs driven by neurotransmitters released from activated motor neurons. The constructs consist of three-dimensional (3D) free-standing skeletal muscle fibers co-cultured with motor neurons. We differentiated mouse neural stem cells (mNSCs) cultured on the skeletal muscle fibers into neurons that extend their processes into the muscle fibers. We found that acetylcholine receptors (AChRs) were formed at the connection between the muscle fibers and the neurons. The neuron-muscle constructs consist of highly aligned, long and matured muscle fibers that facilitate wide contractions of muscle fibers in a single direction. The contractions of the neuron-muscle construct were observed after glutamic acid activation of the neurons. The contraction was stopped by treatment with curare, an neuromuscular junction (NMJ) antagonist. These results indicate that our method succeeded in the formation of NMJs in the neuron-muscle constructs. The neuron-muscle construct system can potentially be used in pharmacokinetic assays related to NMJ disease therapies and in soft-robotic actuators.
Collapse
Affiliation(s)
- Yuya Morimoto
- Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | | | | | |
Collapse
|
43
|
Sun Y, Duffy R, Lee A, Feinberg AW. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater 2013; 9:7885-94. [PMID: 23632372 DOI: 10.1016/j.actbio.2013.04.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 11/16/2022]
Abstract
An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force-frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure-function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.
Collapse
Affiliation(s)
- Y Sun
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
44
|
Leclerc A, Tremblay D, Hadjiantoniou S, Bukoreshtliev NV, Rogowski JL, Godin M, Pelling AE. Three dimensional spatial separation of cells in response to microtopography. Biomaterials 2013; 34:8097-104. [PMID: 23899447 DOI: 10.1016/j.biomaterials.2013.07.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/12/2013] [Indexed: 12/14/2022]
Abstract
Cellular organization, migration and proliferation in three-dimensions play a critical role in numerous physiological and pathological processes. Nano- and micro-fabrication approaches have demonstrated that nano- and micro-scale topographies of the cellular microenvironment directly impact organization, migration and proliferation. In this study, we investigated these dynamics of two cell types (NIH3T3 fibroblast and MDCK epithelial cells) in response to microscale grooves whose dimensions exceed typical cell sizes. Our results demonstrate that fibroblasts display a clear preference for proliferating along groove ridges whereas epithelial cells preferentially proliferate in the grooves. Importantly, these cell-type dependent behaviours were also maintained when in co-culture. We show that it is possible to spatially separate a mixed suspension of two cell types by allowing them to migrate and proliferate on a substrate with engineered microtopographies. This ability may have important implications for investigating the mechanisms that facilitate cellular topographic sensing. Moreover, our results may provide insights towards the controlled development of complex three-dimensional multi-cellular constructs.
Collapse
Affiliation(s)
- Alexandre Leclerc
- Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Lamberti F, Giulitti S, Giomo M, Elvassore N. Biosensing with electroconductive biomimetic soft materials. J Mater Chem B 2013; 1:5083-5091. [DOI: 10.1039/c3tb20666a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices. SENSORS 2012. [PMID: 23202240 PMCID: PMC3522993 DOI: 10.3390/s121115947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Collapse
|
47
|
Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay. PLoS One 2012; 7:e48483. [PMID: 23152776 PMCID: PMC3495940 DOI: 10.1371/journal.pone.0048483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022] Open
Abstract
Introduction The heart is one of the least regenerative organs in the body and any major insult can result in a significant loss of heart cells. The development of an in vitro-based cardiac tissue could be of paramount importance for many aspects of the cardiology research. In this context, we developed an in vitro assay based on human cardiomyocytes (hCMs) and ad hoc micro-technologies, suitable for several applications: from pharmacological analysis to physio-phatological studies on transplantable hCMs. We focused on the development of an assay able to analyze not only hCMs viability, but also their functionality. Methods hCMs were cultured onto a poly-acrylamide hydrogel with tunable tissue-like mechanical properties and organized through micropatterning in a 20×20 array. Arrayed hCMs were characterized by immunofluorescence, GAP-FRAP analyses and live and dead assay. Their functionality was evaluated monitoring the excitation-contraction coupling. Results Micropatterned hCMs maintained the expression of the major cardiac markers (cTnT, cTnI, Cx43, Nkx2.5, α-actinin) and functional properties. The spontaneous contraction frequency was (0.83±0.2) Hz, while exogenous electrical stimulation lead to an increase up to 2 Hz. As proof of concept that our device can be used for screening the effects of pathological conditions, hCMs were exposed to increasing levels of H2O2. Remarkably, hCMs viability was not compromised with exposure to 0.1 mM H2O2, but hCMs contractility was dramatically suppressed. As proof of concept, we also developed a microfluidic platform to selectively treat areas of the cell array, in the perspective of performing multi-parametric assay. Conclusions Such system could be a useful tool for testing the effects of multiple conditions on an in vitro cell model representative of human heart physiology, thus potentially helping the processes of therapy and drug development.
Collapse
|