1
|
Wang J, Xiong Z, Fan Y, Wang H, An C, Wang B, Yang M, Li X, Wang Y, Wang Y. Lignin/Surfactin Coacervate as an Eco-Friendly Pesticide Carrier and Antifungal Agent against Phytopathogen. ACS NANO 2024; 18:22415-22430. [PMID: 39126678 DOI: 10.1021/acsnano.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Excessive usage of biologically toxic fungicides and their matrix materials poses a serious threat to public health. Leveraging fungicide carriers with inherent pathogen inhibition properties is highly promising for enhancing fungicide efficacy and reducing required dosage. Herein, a series of coacervates have been crafted with lignin and surfactin, both of which are naturally derived and demonstrate substantial antifungal properties. This hierarchically assembled carrier not only effectively loads fungicides with a maximum encapsulation efficiency of 95% but also stably deposits on hydrophobic leaves for high-speed impacting droplets. Intriguingly, these coacervates exhibit broad spectrum fungicidal activity against eight ubiquitous phytopathogens and even act as a standalone biofungicide to replace fungicides. This performance can significantly reduce the fungicide usage and be further strengthened by an encapsulated fungicide. The inhibition rate reaches 87.0% when 0.30 mM pyraclostrobin (Pyr) is encapsulated within this coacervate, comparable to the effectiveness of 0.80 mM Pyr alone. Additionally, the preventive effects against tomato gray mold reached 53%, significantly surpassing those of commercial adjuvants. Thus, it demonstrates that utilizing biosurfactants and biomass with intrinsic antifungal activity to fabricate fully biobased coacervates can synergistically combine the functions of a fungicide carrier and antifungal agent against phytopathogens and guarantee environmental friendliness. This pioneering approach provides deeper insights into synergistically enhancing the effectiveness of agrochemicals from multiple aspects, including fungicide encapsulation, cooperative antifungal action, and droplet deposition.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichen Xiong
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ming Yang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Li
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Cheng S, Hu J, Guo C, Ye Z, Shang Y, Lian C, Liu H. The effects of size and surface functionalization of polystyrene nanoplastics on stratum corneum model membranes: An experimental and computational study. J Colloid Interface Sci 2023; 638:778-787. [PMID: 36791476 DOI: 10.1016/j.jcis.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Nanoplastics are mainly generated from the decomposition of plastic waste and artificial production and have attracted much attention due to their wide distribution in the environment and the potential risk for humans. As the largest organ of the human body, the skin is inevitably in contact with nanoplastics. Stratum corneum is the first barrier when the skin is exposed to nanoplastics. However, little is known about the interactions between nanoplastics and stratum corneum. Here, the effects of particle size and surface functionalization (amino-modified and carboxy-modified) of polystyrene nanoplastics on the stratum corneum models were studied by Langmuir monolayer and molecular dynamics simulations. An equimolar mixture of ceramide/cholesterol/free fatty acid was used to mimic stratum corneum intercellular lipids. The Langmuir monolayer studies demonstrated that the larger size and surface functionalization of polystyrene nanoplastics significantly reduced the stability of stratum corneum lipid monolayer in a concentration-dependent fashion. Simulation results elucidated that functionalized polystyrene oligomers had a stronger interaction with lipid components of the stratum corneum model membrane. The cell experiments also indicated that functionalized polystyrene nanoplastics, especially for amino-modified polystyrene nanoplastics, had significant cytotoxicity on normal human dermal fibroblast cells. Our results provide fundamental information and the basis for a deeper understanding of the health risks of nanoplastics to humans.
Collapse
Affiliation(s)
- Shiqiang Cheng
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Zhejiang Xianju Pharmaceutical Co., Ltd., Taizhou 318000, China
| | - Chen Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Badhe Y, Sharma P, Gupta R, Rai B. Elucidating collective translocation of nanoparticles across the skin lipid matrix: a molecular dynamics study. NANOSCALE ADVANCES 2023; 5:1978-1989. [PMID: 36998645 PMCID: PMC10044770 DOI: 10.1039/d2na00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The top layer of skin, the stratum corneum, provides a formidable barrier to the skin. Nanoparticles are utilized and further explored for personal and health care applications related to the skin. In the past few years, several researchers have studied the translocation and permeation of nanoparticles of various shapes, sizes, and surface chemistry through cell membranes. Most of these studies focused on a single nanoparticle and a simple bilayer system, whereas skin has a highly complex lipid membrane architecture. Moreover, it is highly unlikely that a nanoparticle formulation applied on the skin will not have multiple nanoparticle-nanoparticle and skin-nanoparticle interactions. In this study, we have utilized coarse-grained MARTINI molecular dynamics simulations to assess the interactions of two types (bare and dodecane-thiol coated) of nanoparticles with two models (single bilayer and double bilayer) of skin lipid membranes. The nanoparticles were found to be partitioned from the water layer to the lipid membrane as an individual entity as well as in the cluster form. It was discovered that each nanoparticle reached the interior of both single bilayer and double bilayer membranes irrespective of the nanoparticle type and concentration, though coated particles were observed to efficiently traverse across the bilayer when compared with bare particles. The coated nanoparticles also created a single large cluster inside the membrane, whereas the bare nanoparticles were found in small clusters. Both the nanoparticles exhibited preferential interactions with cholesterol molecules present in the lipid membrane as compared to other lipid components of the membrane. We have also observed that the single membrane model exhibited unrealistic instability at moderate to higher concentrations of nanoparticles, and hence for translocation study, a minimum double bilayer model should be employed.
Collapse
Affiliation(s)
- Yogesh Badhe
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| | | | - Rakesh Gupta
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| | - Beena Rai
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| |
Collapse
|
4
|
Lee B, Sung M, Shin K, Hyun Lee J, Woong Kim J. Microphase transitions of Langmuir-Blodgett lipid-assembled monolayers with new types of ceramides, ultra-long-chain ceramide and 1-O-acylceramide. J Colloid Interface Sci 2023; 642:523-531. [PMID: 37028159 DOI: 10.1016/j.jcis.2023.03.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
HYPOTHESIS Intercellular lipid lamellae, consisting of ceramide, cholesterol, and free fatty acids, are the primary pathways for substances in the stratum corneum (SC). The microphase transition of lipid-assembled monolayers (LAMs), mimicking an initial layer of the SC, would be affected by new types of ceramides: ceramide with ultra-long chain (CULC) and 1-O-acylceramide (CENP) with three chains in different direction. EXPERIMENTS The LAMs were fabricated with varying the mixing ratio of CULC (or CENP) against base ceramide via Langmuir-Blodgett assembly. Surface pressure-area isotherms and elastic modulus-surface pressure plots were obtained to characterize π-dependent microphase transitions. The surface morphology of LAMs was observed by atomic force microscopy. FINDINGS The CULCs favored lateral lipid packing, and the CENPs hindered the lateral lipid packing by lying alignment, which was due to their different molecular structures and conformations. The sporadic clusters and empty spaces in the LAMs with CULC were presumably due to the short-range interactions and self-entanglements of ultra-long alkyl chains following the freely jointed chain model, respectively, which was not noticeably observed in the neat LAM films and the LAM films with CENP. The addition of surfactants disrupted the lateral packing of lipids, thus weakening the LAM elasticity. These findings allowed us to understand the role of CULC and CENP in the lipid assemblies and microphase transition behaviors in an initial layer of SC.
Collapse
|
5
|
Bacha K, Chemotti C, Monboisse JC, Robert A, Furlan AL, Smeralda W, Damblon C, Estager J, Brassart-Pasco S, Mbakidi JP, Pršić J, Bouquillon S, Deleu M. Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity. Molecules 2022; 27:8022. [PMID: 36432124 PMCID: PMC9698622 DOI: 10.3390/molecules27228022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin C is one of the most sensitive cosmetic active ingredients. To avoid its degradation, its encapsulation into biobased carriers such as dendrimers is one alternative of interest. In this work, we wanted to evaluate the potential of two biobased glycerodendrimer families (GlyceroDendrimers-Poly(AmidoAmine) (GD-PAMAMs) or GlyceroDendrimers-Poly(Propylene Imine) (GD-PPIs)) as a vitamin C carrier for topical application. The higher encapsulation capacity of GD-PAMAM-3 compared to commercial PAMAM-3 and different GD-PPIs, and its absence of cytotoxicity towards dermal cells, make it a good candidate. Investigation of its mechanism of action was done by using two kinds of biomimetic models of stratum corneum (SC), lipid monolayers and liposomes. GD-PAMAM-3 and VitC@GD-PAMAM-3 (GD-PAMAM-3 with encapsulated vitamin C) can both interact with the lipid representatives of the SC lipid matrix, whichever pH is considered. However, only pH 5.0 is suggested to be favorable to release vitamin C into the SC matrix. Their binding to SC-biomimetic liposomes revealed only a slight effect on membrane permeability in accordance with the absence of cytotoxicity but an increase in membrane rigidity, suggesting a reinforcement of the SC barrier property. Globally, our results suggest that the dendrimer GD-PAMAM-3 could be an efficient carrier for cosmetic applications.
Collapse
Affiliation(s)
- Katia Bacha
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Catherine Chemotti
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Jean-Claude Monboisse
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369 (MEDyC), UFR Médecine, Reims Champagne Ardenne University, 51 Rue Cognacq Jay, F-51095 Reims, France
| | - Anthony Robert
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Aurélien L. Furlan
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Willy Smeralda
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Christian Damblon
- Structural Biological Chemistry Laboratory, MolSys Research Unity, University of Liege, 11, Allée du six Août, 4000 Liège, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet, 45-Zone Industrielle C, B 7180 Seneffe, Belgium
| | - Sylvie Brassart-Pasco
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369 (MEDyC), UFR Médecine, Reims Champagne Ardenne University, 51 Rue Cognacq Jay, F-51095 Reims, France
| | - Jean-Pierre Mbakidi
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Jelena Pršić
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Sandrine Bouquillon
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| |
Collapse
|
6
|
Hermet M, Yanis Espinosa R, Elisa Fait M, Yenisleidy de las Zulueta Díaz M, Morcelle S, Laura Bakás S, Ariel Alvarez H, Laura Fanani M. Arginine-based surfactants alter the rheological and in-plane structural properties of stratum corneum model membranes. J Colloid Interface Sci 2022; 631:224-238. [DOI: 10.1016/j.jcis.2022.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022]
|
7
|
Mescola A, Ragazzini G, Facci P, Alessandrini A. The potential of AFM in studying the role of the nanoscale amphipathic nature of (lipo)-peptides interacting with lipid bilayers. NANOTECHNOLOGY 2022; 33:432001. [PMID: 35830770 DOI: 10.1088/1361-6528/ac80c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial peptides (AMPs) and lipopeptides (LPs) represent very promising molecules to fight resistant bacterial infections due to their broad-spectrum of activity, their first target, i.e. the bacterial membrane, and the rapid bactericidal action. For both types of molecules, the action mechanism starts from the membrane of the pathogen agents, producing a disorganization of their phase structure or the formation of pores of different size altering their permeability. This mechanism of action is based on physical interactions more than on a lock-and-key recognition event and it is difficult for the pathogens to rapidly develop an effective resistance. Very small differences in the sequence of both AMPs and LPs might lead to very different effects on the target membrane. Therefore, a correct understanding of their mechanism of action is required with the aim of developing new synthetic peptides, analogues of the natural ones, with specific and more powerful bactericidal activity. Atomic force microscopy (AFM), with its high resolution and the associated force spectroscopy resource, provides a valuable technique to investigate the reorganization of lipid bilayers exposed to antimicrobial or lipopeptides. Here, we present AFM results obtained by ours and other groups on the action of AMPs and LPs on supported lipid bilayers (SLBs) of different composition. We also consider data obtained by fluorescence microscopy to compare the AFM data with another technique which can be used on different lipid bilayer model systems such as SLBs and giant unilamellar vesicles. The outcomes here presented highlight the powerful of AFM-based techniques in detecting nanoscale peptide-membrane interactions and strengthen their use as an exceptional complementary tool toin vivoinvestigations. Indeed, the combination of these approaches can help decipher the mechanisms of action of different antimicrobials and lipopeptides at both the micro and nanoscale levels, and to design new and more efficient antimicrobial compounds.
Collapse
Affiliation(s)
- Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, I-41125, Modena, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, I-41125, Modena, Italy
| | - Paolo Facci
- CNR-Ibf, Via De Marini 6, I-16149, Genova, Italy
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, I-41125, Modena, Italy
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, I-41125, Modena, Italy
| |
Collapse
|
8
|
Effects of Cholesterol on the mechanism of fengycin, a biofungicide. Biophys J 2022; 121:1963-1974. [DOI: 10.1016/j.bpj.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
|
9
|
Saleh MM, Woods A, Harvey RD, Young AR, Jones SA. Nanomaterials fusing with the skin: Alpha-tocopherol phosphate delivery into the viable epidermis to protect against ultraviolet radiation damage. Int J Pharm 2021; 594:120000. [PMID: 33166585 DOI: 10.1016/j.ijpharm.2020.120000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/15/2022]
Abstract
Vitamin E (alpha tocopherol, α-T) is an important skin antioxidant, but its penetration into the viable epidermis, where it acts, is very limited. This study investigated if phosphorylating α-tocopherol (α-TP) to form a provitamin, improved its interactions with skin, its passage into the tissue, and thus its ability to protect the skin from ultraviolet radiation (UVR) damage. At pH 7.4, when the α-TPO4-1 microspecies predominated in solution, dynamic light scattering measurements showed that α-TP formed nanoaggregates with a median hydrodynamic diameter of 9 nm (Critical aggregation constant, CAC, - 4.2 mM). At 9.0 when the α-TPO4-2 microspecies predominated there was no aggregation. The passage of α-TP nanoaggregates through regenerated cellulose membranes was significantly slower than the α-TP monomers (at pH 9) suggesting that aggregation slowed diffusion. However, a lotion formulation containing the nanoaggregates delivered more α-TP into the skin compared to the formulation containing the monomers. In addition, the nanosized α-TP aggregates delivered 8-fold more active into the stratum corneum (SC) (252.2 μg/cm2 vs 29.5 μg/cm2) and 4 fold more active into the epidermis (85.1 μg/cm2 vs 19 μg/cm2, respectively, p < 0.05) compared to α-T. Langmuir subphase injection studies at pH 7.4 (surface pressure 10 mN m-1) showed that the α-TP nanoaggregates more readily fused with the SC compared to the monomers and the membrane compression studies demonstrated that α-TP fluidised the SC lipids. Together the fusion with the SC and its fluidisation were proposed as the causes of the better α-TP penetration into the skin, which enhanced potential of α-TP to protect from UVR-induced skin damage compared to α-T.
Collapse
Affiliation(s)
- Mais M Saleh
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Arcadia Woods
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Richard D Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Antony R Young
- St John's Institute of Dermatology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
10
|
l-Ascorbic acid alkyl esters action on stratum corneum model membranes: An insight into the mechanism for enhanced skin permeation. Colloids Surf B Biointerfaces 2020; 185:110621. [PMID: 31726308 DOI: 10.1016/j.colsurfb.2019.110621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
Abstract
L-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which act as skin permeation enhancers. We investigated the physical changes induced by incorporating ASCn into stratum corneum (SC) lipid membranes and correlated this with the mechanism proposed in the literature for skin permeation enhancement phenomena. We used lipid monolayers to explore the 2D structure and elasticity of the lipid-enhancer systems. As a comparison, the classic permeation enhancer, oleic acid (OA) and the non-enhancer analogue stearic acid (SA) were analysed. The incorporation of ASCn or OA into SC membranes resulted in more liquid-like films, with a dose-dependent lowering of the compressibility modulus. Brewster angle microscopy (BAM) evidenced partial miscibility of the enhancer with SC lipid components, stabilising the liquid-expanded phase. At the nanoscale, AFM showed that SC lipids form heterogeneous membranes, which underwent structural alterations after incorporating ASCn and fatty acids, such as SA and OA. The lower, cholesterol-enriched phase appears to concentrate the enhancers, whilst the higher ceramide-enriched phase concentrated the non-enhancer SA. Our results and previously reported pieces of evidence indicate a strong pattern in which the rheological properties of SC lipid films are determinant for skin permeation phenomena.
Collapse
|
11
|
Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Sci Rep 2019; 9:16034. [PMID: 31690786 PMCID: PMC6831686 DOI: 10.1038/s41598-019-52551-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
The one-sided addition of fengycin (FE) to planar lipid bilayers mimicking target fungal cell membranes up to 0.1 to 0.5 μM in the membrane bathing solution leads to the formation of well-defined and well-reproducible single-ion channels of various conductances in the picosiemens range. FE channels were characterized by asymmetric conductance-voltage characteristic. Membranes treated with FE showed nonideal cationic selectivity in potassium chloride bathing solutions. The membrane conductance induced by FE increased with the second power of the lipopeptide aqueous concentration, suggesting that at least FE dimers are involved in the formation of conductive subunits. The pore formation ability of FE was not distinctly affected by the molecular shape of membrane lipids but strongly depended on the presence of negatively charged species in the bilayer. FE channels were characterized by weakly pronounced voltage gating. Small molecules known to modify the transmembrane distribution of electrical potential and the lateral pressure profile were used to modulate the channel-forming activity of FE. The observed effects of membrane modifiers were attributed to changes in lipid packing and lipopeptide oligomerization in the membrane.
Collapse
|
12
|
Mantil E, Crippin T, Avis TJ. Supported lipid bilayers using extracted microbial lipids: domain redistribution in the presence of fengycin. Colloids Surf B Biointerfaces 2019; 178:94-102. [DOI: 10.1016/j.colsurfb.2019.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
13
|
Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J Membr Biol 2019; 252:131-157. [PMID: 31098678 DOI: 10.1007/s00232-019-00067-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Several experimental and theoretical studies have extensively investigated the effects of a large diversity of antimicrobial peptides (AMPs) on model lipid bilayers and living cells. Many of these peptides disturb cells by forming pores in the plasma membrane that eventually lead to the cell death. The complexity of these peptide-lipid interactions is mainly related to electrostatic, hydrophobic and topological issues of these counterparts. Diverse studies have shed some light on how AMPs act on lipid bilayers composed by different phospholipids, and how mechanical properties of membranes could affect the antimicrobial effects of such compounds. On the other hand, cyclic lipopeptides (cLPs), an important class of microbial secondary metabolites, have received comparatively less attention. Due to their amphipathic structures, cLPs exhibit interesting biological activities including interactions with biofilms, anti-bacterial, anti-fungal, antiviral, and anti-tumoral properties, which deserve more investigation. Understanding how physicochemical properties of lipid bilayers contribute and determining the antagonistic activity of these secondary metabolites over a broad spectrum of microbial pathogens could establish a framework to design and select effective strategies of biological control. This implies unravelling-at the biophysical level-the complex interactions established between cLPs and lipid bilayers. This review presents, in a systematic manner, the diversity of lipidated antibiotics produced by different microorganisms, with a critical analysis of the perturbing actions that have been reported in the literature for this specific set of membrane-active lipopeptides during their interactions with model membranes and in vivo. With an overview on the mechanical properties of lipid bilayers that can be experimentally determined, we also discuss which parameters are relevant in the understanding of those perturbation effects. Finally, we expose in brief, how this knowledge can help to design novel strategies to use these biosurfactants in the agronomic and pharmaceutical industries.
Collapse
|
14
|
Mantil E, Crippin T, Avis TJ. Domain redistribution within ergosterol-containing model membranes in the presence of the antimicrobial compound fengycin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:738-747. [DOI: 10.1016/j.bbamem.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023]
|
15
|
Effect of synthetic surfactants and soapwort (Saponaria officinalis L.) extract on skin-mimetic model lipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:556-564. [DOI: 10.1016/j.bbamem.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
|
16
|
Malekkhaiat Häffner S, Malmsten M. Influence of self-assembly on the performance of antimicrobial peptides. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Sci Rep 2018; 8:8534. [PMID: 29867089 PMCID: PMC5986815 DOI: 10.1038/s41598-018-26838-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.
Collapse
|
18
|
Gronnier J, Crowet JM, Habenstein B, Nasir MN, Bayle V, Hosy E, Platre MP, Gouguet P, Raffaele S, Martinez D, Grelard A, Loquet A, Simon-Plas F, Gerbeau-Pissot P, Der C, Bayer EM, Jaillais Y, Deleu M, Germain V, Lins L, Mongrand S. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 2017; 6:e26404. [PMID: 28758890 PMCID: PMC5536944 DOI: 10.7554/elife.26404] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Jean-Marc Crowet
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Mehmet Nail Nasir
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, CNRS, University of BordeauxBordeauxFrance
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | | | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Axelle Grelard
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Christophe Der
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| |
Collapse
|
19
|
Dos Santos AG, Bayiha JC, Dufour G, Cataldo D, Evrard B, Silva LC, Deleu M, Mingeot-Leclercq MP. Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28642042 DOI: 10.1016/j.bbamem.2017.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Budesonide (BUD), a poorly soluble anti-inflammatory drug, is used to treat patients suffering from asthma and COPD (Chronic Obstructive Pulmonary Disease). Hydroxypropyl-β-cyclodextrin (HPβCD), a biocompatible cyclodextrin known to interact with cholesterol, is used as a drug-solubilizing agent in pharmaceutical formulations. Budesonide administered as an inclusion complex within HPβCD (BUD:HPβCD) required a quarter of the nominal dose of the suspension formulation and significantly reduced neutrophil-induced inflammation in a COPD mouse model exceeding the effect of each molecule administered individually. This suggests the role of lipid domains enriched in cholesterol for inflammatory signaling activation. In this context, we investigated the effect of BUD:HPβCD on the biophysical properties of membrane lipids. On cellular models (A549, lung epithelial cells), BUD:HPβCD extracted cholesterol similarly to HPβCD. On large unilamellar vesicles (LUVs), by using the fluorescent probes diphenylhexatriene (DPH) and calcein, we demonstrated an increase in membrane fluidity and permeability induced by BUD:HPβCD in vesicles containing cholesterol. On giant unilamellar vesicles (GUVs) and lipid monolayers, BUD:HPβCD induced the disruption of cholesterol-enriched raft-like liquid ordered domains as well as changes in lipid packing and lipid desorption from the cholesterol monolayers, respectively. Except for membrane fluidity, all these effects were enhanced when HPβCD was complexed with budesonide as compared with HPβCD. Since cholesterol-enriched domains have been linked to membrane signaling including pathways involved in inflammation processes, we hypothesized the effects of BUD:HPβCD could be partly mediated by changes in the biophysical properties of cholesterol-enriched domains.
Collapse
Affiliation(s)
- Andreia G Dos Santos
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology Unit, Avenue E. Mounier 73, B1.73.05, B-1200 Bruxelles, Belgium; Universidade de Lisboa, Faculdade de Farmácia, iMed.ULisboa - Research Institute for Medicines, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jules César Bayiha
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology Unit, Avenue E. Mounier 73, B1.73.05, B-1200 Bruxelles, Belgium
| | - Gilles Dufour
- Université de Liège, CIRM, Laboratoire de Technologie Pharmaceutique et Biopharmacie, Avenue de l'Hôpital 3, B-4000 Liège, Belgium
| | - Didier Cataldo
- Université de Liège and CHU, Laboratory of Tumor & Development Biology (GIGA-Cancer), Avenue Hippocrate 13, B-4000 Liège, Belgium
| | - Brigitte Evrard
- Université de Liège, CIRM, Laboratoire de Technologie Pharmaceutique et Biopharmacie, Avenue de l'Hôpital 3, B-4000 Liège, Belgium
| | - Liana C Silva
- Universidade de Lisboa, Faculdade de Farmácia, iMed.ULisboa - Research Institute for Medicines, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Magali Deleu
- Université de Liège, Gembloux Agro Bio-Tech, Laboratoire de Biophysique Moléculaire aux Interfaces, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology Unit, Avenue E. Mounier 73, B1.73.05, B-1200 Bruxelles, Belgium.
| |
Collapse
|
20
|
Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys Chem 2017; 224:20-31. [DOI: 10.1016/j.bpc.2017.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/09/2017] [Accepted: 03/19/2017] [Indexed: 02/07/2023]
|
21
|
Todosijević MN, Brezesinski G, Savić SD, Neubert RHH. Sucrose esters as biocompatible surfactants for penetration enhancement: An insight into the mechanism of penetration enhancement studied using stratumcorneum model lipids and Langmuir monolayers. Eur J Pharm Sci 2016; 99:161-172. [PMID: 27940082 DOI: 10.1016/j.ejps.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/19/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Up to now, the molecular mechanism of the penetration enhancing effect of sucrose esters (SEs) on stratumcorneum (SC) has not been explained in details. In this study, variety of surface sensitive techniques, including surface pressure-area (π-A) isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Brewster angle microscopy (BAM), have been used to investigate interactions between SEs and SC intercellular lipids. A monolayer of the mixture of ceramide AS C18:18, stearic acid and cholesterol in the molar ratio of 1:1:0.7 on an aqueous subphase is a good model to mimic a single layer of intercellular SC lipids. The π-A isotherms of mixed monolayers and parameters derived from the curves demonstrated the interaction between nonionic surfactants such as SEs and SC lipids. With increasing SE concentration, the resultant monolayer films became more fluid and better compressible. IRRAS measurements showed that SEs disordered the acyl chains of SC lipids, and the BAM images demonstrated the modification of the domain structures in SC monolayers. Longer chain-SE has a stronger disordering effect and is better miscible with ceramides in comparison to SE with a shorter hydrophobic part. In conclusion, this study demonstrates the disordering effect of SEs on the biomimetic SC model, pointing out that small changes in the structure of surfactant may have a strong influence on a penetration enhancement of lipophilic drugs through intercellular lipids of skin.
Collapse
Affiliation(s)
- Marija N Todosijević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Snežana D Savić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
22
|
Fiedler S, Heerklotz H. Vesicle Leakage Reflects the Target Selectivity of Antimicrobial Lipopeptides from Bacillus subtilis. Biophys J 2016; 109:2079-89. [PMID: 26588567 DOI: 10.1016/j.bpj.2015.09.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/30/2022] Open
Abstract
Cyclic lipopeptides act against a variety of plant pathogens and are thus highly efficient crop-protection agents. Some pesticides contain Bacillus subtilis strains that produce lipopeptide families, such as surfactins (SF), iturins (IT), and fengycins (FE). The antimicrobial activity of these peptides is mainly mediated by permeabilizing cellular membranes. We used a fluorescence-lifetime based leakage assay to examine the effect of individual lipid components in model membranes on lipopeptide activity. Leakage induction by FE was strongly inhibited by cholesterol (CHOL) as well as by phosphatidylethanolamine (PE) and -glycerol (PG) lipids. Already moderate amounts of CHOL increased the tolerable FE content in membranes by an order of magnitude to 0.5 FE per PC + CHOL. This indicates reduced FE-lipid demixing and aggregation, which is known to be required for membrane permeabilization and explains the strong inhibition by CHOL. Ergosterol (ERG) had a weak antagonistic effect. This confirms results of microbiological tests and agrees with the fungicidal activity and selectivity of FE. SF is known to be much less selective in its antimicrobial action. In line with this, liposome leakage by SF was little affected by sterols and PE. Interestingly, PG increased SF activity and changed its leakage mechanism toward all-or-none, suggesting more specific, larger, and/or longer-lived defect structures. This may be because of the reduced energetic cost of locally accumulating anionic SF in an anionic lipid matrix. IT was found largely inactive in our assays. B. subtilis QST713 produces the lipopeptides in a ratio of 6 mol SF: 37 mol FE: 57 mol IT. Leakage induced by this native mixture was inhibited by CHOL and PE, but unaffected by ERG and by PG in the absence of PE. Note that fungi contain anionic lipids, but little PE. Hence, our data explain the strong, fungicidal activity and selectivity of B. subtilis QST713 lipopeptides.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | - Heiko Heerklotz
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany.
| |
Collapse
|
23
|
Díaz YDLMZ, Mottola M, Vico RV, Wilke N, Fanani ML. The Rheological Properties of Lipid Monolayers Modulate the Incorporation of l-Ascorbic Acid Alkyl Esters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:587-95. [PMID: 26694518 DOI: 10.1021/acs.langmuir.5b04175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASCn incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASCn compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASCn uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASCn uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum.
Collapse
Affiliation(s)
- Yenisleidy de Las Mercedes Zulueta Díaz
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica and, ‡Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria , X5000HUA, Córdoba, Argentina
| | - Milagro Mottola
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica and, ‡Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria , X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica and, ‡Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria , X5000HUA, Córdoba, Argentina
| | - Natalia Wilke
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica and, ‡Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria , X5000HUA, Córdoba, Argentina
| | - María Laura Fanani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica and, ‡Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria , X5000HUA, Córdoba, Argentina
| |
Collapse
|
24
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
25
|
Wise C, Falardeau J, Hagberg I, Avis TJ. Cellular Lipid Composition Affects Sensitivity of Plant Pathogens to Fengycin, an Antifungal Compound Produced by Bacillus subtilis Strain CU12. PHYTOPATHOLOGY 2014; 104:1036-41. [PMID: 24679152 DOI: 10.1094/phyto-12-13-0336-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fengycin is an antimicrobial cyclic lipopeptide produced by various Bacillus subtilis strains, including strain CU12. Direct effects of fengycin include membrane pore formation and efflux of cellular contents leading to cell death in sensitive microorganisms. In this study, four plant pathogens were studied in order to elucidate the role of membrane lipids in their relative sensitivity to fengycin. Inhibition of mycelial growth in these pathogens varied considerably. Analysis of membrane lipids in these microorganisms indicated that sensitivity correlated with low ergosterol content and shorter phospholipid fatty acyl chains. Sensitivity to fengycin also correlated with a lower anionic/zwitterionic phospholipid ratio. Our data suggest that decreased fluidity buffering capacity, as a result of low ergosterol content, and higher intrinsic fluidity afforded by short fatty acyl chain length may increase the sensitivity of microbial membranes to fengycin. Our results also suggest that lower content in anionic phospholipids may increase fengycin insertion into the membrane through reduced electrostatic repulsion with the negatively charged fengycin. The intrinsic membrane lipid composition may contribute, in part, to the observed level of antimicrobial activity of fengycin in various plant pathogens.
Collapse
|
26
|
Eeman M, Olofsson G, Sparr E, Nasir MN, Nylander T, Deleu M. Interaction of fengycin with stratum corneum mimicking model membranes: a calorimetry study. Colloids Surf B Biointerfaces 2014; 121:27-35. [PMID: 24929530 DOI: 10.1016/j.colsurfb.2014.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/07/2014] [Accepted: 05/10/2014] [Indexed: 12/28/2022]
Abstract
Based on its outstanding antifungal properties, it is reasonable to believe that fengycin might be efficient to topically treat localized dermatomycoses. Since most of the fungi species involved in the formation of those mycotic skin diseases colonize primarily the stratum corneum (SC), studying the interaction between fengycin and SC-mimicking lipid membranes is a primary step to determine the potential of fengycin to overcome the physical barrier of the skin. In this respect, multilamellar lipid vesicles (MLVs), with a lipid composition mimicking that of the SC, were prepared and characterized by differential scanning calorimetry (DSC). The critical micelle concentration (CMC) of fengycin was also assessed under skin conditions and found to be 1.2±0.1μM. The molecular interactions of fengycin with SC-mimicking MLVs were investigated by both DSC and isothermal titration calorimetry (ITC). Results showed that the interactions were considerably affected by changes in lipid phase behaviour. At 40°C and below, fengycin induced exothermic changes in the lipid structures suggesting that less-ordered lipid domains became more-ordered in presence of fengycin. At 60°C, clearly endothermic interaction enthalpies were observed, which could arise from the "melting" of remaining solid domains enriched in high melting lipids that without fengycin melt at higher temperatures.
Collapse
Affiliation(s)
- Marc Eeman
- Université de Liège, Gembloux Agro-Bio-Tech, Unité de Chimie Biologique Industrielle, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Gerd Olofsson
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Emma Sparr
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehmet Nail Nasir
- Université de Liège, Gembloux Agro-Bio-Tech, Laboratoire de Biophysique Moléculaire aux Interfaces, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Tommy Nylander
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Magali Deleu
- Université de Liège, Gembloux Agro-Bio-Tech, Laboratoire de Biophysique Moléculaire aux Interfaces, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| |
Collapse
|
27
|
Abstract
With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity.
Collapse
|
28
|
Schmidtchen A, Pasupuleti M, Malmsten M. Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci 2014; 205:265-74. [PMID: 23910480 DOI: 10.1016/j.cis.2013.06.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022]
Abstract
With increasing resistance development against conventional antibiotics, there is an urgent need to identify novel approaches for infection treatment. Antimicrobial peptides may offer opportunities in this context, hence there has been considerable interest in identification and optimization of such peptides during the last decade in particular, with the long-term aim of developing these to potent and safe therapeutics. In the present overview, focus is placed on hydrophobic modifications of antimicrobial peptides, and how these may provide opportunities to combat also more demanding pathogens, including multi-resistant strains, yet not provoking unacceptable toxic responses. In doing so, physicochemical factors affecting peptide interactions with bacterial and eukaryotic cell membranes are discussed. Throughout, an attempt is made to illustrate how physicochemical studies on model lipid membranes can be correlated to result from bacterial and cell assays, and knowledge from this translated into therapeutic considerations.
Collapse
Affiliation(s)
- Artur Schmidtchen
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Mukesh Pasupuleti
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
29
|
Skolová B, Janůšová B, Zbytovská J, Gooris G, Bouwstra J, Slepička P, Berka P, Roh J, Palát K, Hrabálek A, Vávrová K. Ceramides in the skin lipid membranes: length matters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15624-15633. [PMID: 24283654 DOI: 10.1021/la4037474] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ceramides are essential constituents of the skin barrier that allow humans to live on dry land. Reduced levels of ceramides have been associated with skin diseases, e.g., atopic dermatitis. However, the structural requirements and mechanisms of action of ceramides are not fully understood. Here, we report the effects of ceramide acyl chain length on the permeabilities and biophysics of lipid membranes composed of ceramides (or free sphingosine), fatty acids, cholesterol, and cholesterol sulfate. Short-chain ceramides increased the permeability of the lipid membranes compared to a long-chain ceramide with maxima at 4-6 carbons in the acyl. By a combination of differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, Langmuir monolayers, and atomic force microscopy, we found that the reason for this effect in short ceramides was a lower proportion of tight orthorhombic packing and phase separation of continuous short ceramide-enriched domains with shorter lamellar periodicity compared to native long ceramides. Thus, long acyl chains in ceramides are essential for the formation of tightly packed impermeable lipid lamellae. Moreover, the model skin lipid membranes are a valuable tool to study the relationships between the lipid structure and composition, lipid organization, and the membrane permeability.
Collapse
Affiliation(s)
- Barbora Skolová
- Charles University in Prague , Faculty of Pharmacy, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
D'Auria L, Deleu M, Dufour S, Mingeot-Leclercq MP, Tyteca D. Surfactins modulate the lateral organization of fluorescent membrane polar lipids: A new tool to study drug:membrane interaction and assessment of the role of cholesterol and drug acyl chain length. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2064-73. [DOI: 10.1016/j.bbamem.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022]
|
31
|
Falardeau J, Wise C, Novitsky L, Avis TJ. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 2013; 39:869-78. [PMID: 23888387 DOI: 10.1007/s10886-013-0319-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
Abstract
Members of the genus Bacillus produce a wide variety of antimicrobial compounds. Cyclic lipopeptides (CLP) produced by Bacillus subtilis strains have been shown to protect host plants from a numbers of pathogens. The representative families of these CLP (surfactins, fengycins, and iturins) share a polypeptide ring linked to a lipid tail of varying length. CLP provide plant protection through a variety of unique mechanisms. Members of the surfactin and fengycin families elicit induced systemic resistance in certain host plants, and they also function by directly affecting the biological membranes of bacterial and fungal pathogens, mainly resulting in membrane pore formation. Specific pore forming mechanisms differ between CLP families, causing differential activities. CLP also may aid in enhanced B. subtilis colonization of the plant environment in addition to potentially preventing the adhesion of competitive microorganisms. Several recent studies have highlighted the control of plant pathogens by CLP-producing B. subtilis strains. Strong ecological advantages through multifaceted activities of CLP provide these strains with immense promise in controlling pathogens in a variety of plant ecosystems.
Collapse
Affiliation(s)
- J Falardeau
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Nasir MN, Laurent P, Flore C, Lins L, Ongena M, Deleu M. Analysis of calcium-induced effects on the conformation of fengycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 110:450-457. [PMID: 23588300 DOI: 10.1016/j.saa.2013.03.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
Fengycin is a natural lipopeptide with antifungal and eliciting properties and able to inhibit the activity of phospholipase A2. A combination of CD, FT-IR, NMR and fluorescence spectroscopic techniques was applied to elucidate its conformation in a membrane-mimicking environment and to investigate the effect of calcium ions on it. We mainly observed that fengycin adopts a turn conformation. Our results showed that calcium ions are bound by the two charged glutamates. The calcium binding has an influence on the fengycin conformation and more particularly, on the environment of the tyrosine residues. The modulation of the fengycin conformation by the environmental conditions may influence its biological properties.
Collapse
Affiliation(s)
- Mehmet Nail Nasir
- Unité de Chimie biologique industrielle, University of Liege, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Nsimba Zakanda F, Lins L, Nott K, Paquot M, Mvumbi Lelo G, Deleu M. Interaction of hexadecylbetainate chloride with biological relevant lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3524-33. [PMID: 22263671 DOI: 10.1021/la2040328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The present work investigates the interaction of hexadecylbetainate chloride (C(16)BC), a glycine betaine-based ester with palmitoyl-oleoyl-phosphatidylcholine (POPC), sphingomyelin (SM), and cholesterol (CHOL), three biological relevant lipids present in the outer leaflet of the mammalian plasma membrane. The binding affinity and the mixing behavior between the lipids and C(16)BC are discussed based on experimental (isothermal titration calorimetry (ITC) and Langmuir film balance) and molecular modeling studies. The results show that the interaction between C(16)BC and each lipid is thermodynamically favorable and does not affect the integrity of the lipid vesicles. The primary adsorption of C(16)BC into the lipid film is mainly governed by a hydrophobic effect. Once C(16)BC is inserted in the lipid film, the polar component of the interaction energy between C(16)BC and the lipid becomes predominant. Presence of CHOL increases the affinity of C(16)BC for membrane. This result can be explained by the optimal matching between C(16)BC and CHOL within the film rather by a change of membrane fluidity due to the presence of CHOL. The interaction between C(16)BC and SM is also favorable and gives rise to highly stable monolayers probably due to hydrogen bonds between their hydrophilic groups. The interaction of C(16)BC with POPC is less favorable but does not destabilize the mixed monolayer from a thermodynamic point of view. Interestingly, for all the monolayers investigated, the exclusion surface pressures are above the presumed lateral pressure of the plasma membranes suggesting that C(16)BC would be able to penetrate into mammalian plasma membranes in vivo. These results may serve as a useful basis in understanding the interaction of C(16)BC with real membranes.
Collapse
Affiliation(s)
- F Nsimba Zakanda
- Unité de Chimie Biologique Industrielle, Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Deleu M, Gatard S, Payen E, Lins L, Nott K, Flore C, Thomas R, Paquot M, Bouquillon S. d-xylose-based bolaamphiphiles: Synthesis and influence of the spacer nature on their interfacial and membrane properties. CR CHIM 2012. [DOI: 10.1016/j.crci.2011.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Henry G, Deleu M, Jourdan E, Thonart P, Ongena M. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 2011; 13:1824-37. [PMID: 21838773 DOI: 10.1111/j.1462-5822.2011.01664.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The lipopeptide surfactin secreted by plant-beneficial bacilli has crucial biological functions among which the ability to stimulate immune-related responses in host tissues. This phenomenon is important for biological control of plant diseases but its molecular basis is still poorly understood. In this work, we used various approaches to study the mechanism governing the perception of this biosurfactant at the plant cell surface. Combining data on oxidative burst induction in tobacco cells, structure/activity relationship, competitive inhibition, insertion kinetics within plant membranes and thermodynamic determination of binding parameters on model membranes globally indicates that surfactin perception relies on a lipid-driven process at the plasma membrane level. Such a sensor role of the lipid bilayer is quite uncommon considering that plant basal immunity is usually triggered upon recognition of microbial molecular patterns by high-affinity proteic receptors.
Collapse
Affiliation(s)
- Guillaume Henry
- Walloon Center for Industrial Biology Unité de Chimie Biologique Industrielle, University of Liège/Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | | | | | | | | |
Collapse
|
36
|
Reuter S, Hofmann AM, Busse K, Frey H, Kressler J. Langmuir and Langmuir-Blodgett films of multifunctional, amphiphilic polyethers with cholesterol moieties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1978-1989. [PMID: 21175221 DOI: 10.1021/la104274d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Langmuir films of multifunctional, hydrophilic polyethers containing a hydrophobic cholesterol group (Ch) were studied by surface pressure-mean molecular area (π-mmA) measurements and Brewster angle microscopy (BAM). The polyethers were either homopolymers or diblock copolymers of linear poly(glycerol) (lPG), linear poly(glyceryl glycidyl ether) (lPGG), linear poly(ethylene glycol) (lPEG), or hyperbranched poly(glycerol) (hbPG). Surface pressure measurements revealed that the homopolymers lPG and hbPG did not stay at the water surface after spreading and solvent evaporation, in contrast to lPEG. Because of the incorporation of the Ch group in the polymer structure, stable Langmuir films were formed by Ch-lPG(n), Ch-lPGG(n), and Ch-hbPG(n). The Ch-hbPG(n), Ch-lPEG(n), Ch-lPEG(n)-b-lPG(m), Ch-lPEG(n)-b-lPGG(m), and Ch-lPEG(n)-b-hbPG(m) systems showed an extended plateau region assigned to a phase transition involving the Ch groups. Typical hierarchically ordered morphologies of the LB films on hydrophilic substrates were observed for all Ch-initiated polymers. All LB films showed that Ch of the Ch-initiated homopolymers is able to crystallize. This strong tendency of self-aggregation then triggers further dewetting effects of the respective polyether entities. Fingerlike morphologies are observed for Ch-lPEG(69), since the lPEG(69) entity is able to undergo crystallization after transfer onto the silicon substrate.
Collapse
Affiliation(s)
- Sascha Reuter
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
37
|
Nicoli S, Eeman M, Deleu M, Bresciani E, Padula C, Santi P. Effect of lipopeptides and iontophoresis on aciclovir skin delivery. J Pharm Pharmacol 2010; 62:856-65. [DOI: 10.1211/jpp.62.06.0006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 2010; 87:427-44. [PMID: 20424836 DOI: 10.1007/s00253-010-2589-0] [Citation(s) in RCA: 685] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
Collapse
Affiliation(s)
- Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|