1
|
Hayne S, Kanovsky N, Margel S. One-Step Fabrication Process of Silica-Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films. Biomimetics (Basel) 2024; 9:756. [PMID: 39727760 DOI: 10.3390/biomimetics9120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry. The mixture is then spread on polymeric films using a Mayer rod, which eliminates the need for expensive equipment or multistep processes. The incorporation of silica nanoparticles along with titanium precursor and TEOS results in the formation of a silica-titania network around the silica nanoparticles. This chemically binds them to the activated surface, forming a unique dual-scale surface morphology depending on the size of the silica nanoparticles used in the coating mixture. The coated films were shown to be superhydrophobic with a high water contact angle of over 180° and a rolling angle of 0°. This is due to the combination of dual-scale micro/nano roughness with fluorinated hydrocarbons that lowered the surface free energy. The coatings exhibited excellent chemical and mechanical durability, as well as UV-blocking capabilities. The results show that the coatings remain superhydrophobic even after a sandpaper abrasion test under a pressure of 2.5 kPa for a distance of 30 m.
Collapse
Affiliation(s)
- Sharon Hayne
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Naftali Kanovsky
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
2
|
Wang Z, Huang L, Gao J, Luo H, Dong X, Wang C, Song Y. Leaf Vein-Inspired Superhydrophilic Microchannels for Sustainable Fog Collection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53252-53260. [PMID: 39298517 DOI: 10.1021/acsami.4c11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Fog collection is a promising solution for mitigating the urgent water shortage around the world. Despite the delicate design of various bionic fog harvesting surfaces with prowess to enable fast fog capture and programmed water transport, achieving sustainable and efficient fog collection by regulating the macroscale surface refreshment efficacy remains rarely concerned yet is effective. Here, we proposed a bioinspired structural design to achieve significant improvement on the surface refreshment efficacy to 46.47%, nearly 5 times larger than that of conventional design. Specifically, we constructed superhydrophilic vein-like microchannels on a superhydrophobic brass surface by using laser texture technology and hydrothermal treatment. Our microchannel design acts as a "highway" for synergically transporting and converging the collected fog droplets, as well as rapidly refreshing large surface area for the subsequent fog collection, reminiscent of the leaf veins responsible for the persistent mass transport between plant tissues. The practical implementation also convinced our design of a maximum water collection efficiency of up to 506.67 mg cm-2 h-1 and a long-term performance stability within a 10 h test. Our design is generic to most of the fog harvesting materials, showing great application potential for efficient atmospheric fog collection.
Collapse
Affiliation(s)
- Zhiyong Wang
- Research Center for Forestry Equipment of Hunan Province, College of Mechanical and Intelligent Manufacturing, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, P. R. China
| | - Longhui Huang
- Research Center for Forestry Equipment of Hunan Province, College of Mechanical and Intelligent Manufacturing, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, P. R. China
| | - Jinghui Gao
- Research Center for Forestry Equipment of Hunan Province, College of Mechanical and Intelligent Manufacturing, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, P. R. China
| | - Hong Luo
- Research Center for Forestry Equipment of Hunan Province, College of Mechanical and Intelligent Manufacturing, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, P. R. China
| | - Xinran Dong
- Research Center for Forestry Equipment of Hunan Province, College of Mechanical and Intelligent Manufacturing, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, P. R. China
| | - Cong Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, 932 South Lushan Street, Changsha 410083, P. R. China
| | - Yuxin Song
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 100872, P. R. China
| |
Collapse
|
3
|
Jia Y, Yang Y, Cai X, Zhang H. Recent Developments in Slippery Liquid-Infused Porous Surface Coatings for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:3655-3672. [PMID: 38743527 DOI: 10.1021/acsbiomaterials.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Slippery liquid-infused porous surface (SLIPS), inspired by the Nepenthes pitcher plant, exhibits excellent performances as it has a smooth surface and extremely low contact angle hysteresis. Biomimetic SLIPS attracts considerable attention from the researchers for different applications in self-cleaning, anti-icing, anticorrosion, antibacteria, antithrombotic, and other fields. Hence, SLIPS has shown promise for applications across both the biomedical and industrial fields. However, the manufacturing of SLIPS with strong bonding ability to different substrates and powerful liquid locking performance remains highly challenging. In this review, a comprehensive overview of research on SLIPS for medical applications is conducted, and the design parameters and common fabrication methods of such surfaces are summarized. The discussion extends to the mechanisms of interaction between microbes, cells, proteins, and the liquid layer, highlighting the typical antifouling applications of SLIPS. Furthermore, it identifies the potential of utilizing the controllable factors provided by SLIPS to develop innovative materials and devices aimed at enhancing human health.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yinuo Yang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Cai
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
4
|
Jian S, Wang X, Liu W, Wang Q, Wang P, Zhou M, Yu Y. A novel modified polydopamine based on melanin-like materials for antibacterial, hydrophobic, and ultraviolet protective of textiles. Int J Biol Macromol 2024; 265:130983. [PMID: 38521304 DOI: 10.1016/j.ijbiomac.2024.130983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
The development of environmentally friendly multifunctional auxiliaries for textile modification is the focus of attention in textile industry in recent years. Polydopamine is an important biological macromolecule and widely used in biomedicine, nanomaterials, material surface modification and other fields. In this study, the novel multifunctional melanin-like nanoparticles (Nha-PDA NPs) were prepared and used for antibacterial, hydrophobic, and UV protective of textiles. Nha-PDA NPs were prepared with dopamine (DA) and n-hexylamine (Nha) by simple autoxidation copolymerization. Nha-PDA NPs were bound to the fabric surface through the PDA structure in Nha-PDA NPs that has been widely confirmed to have strong adhesion on the surface of many materials. The modified fabrics, Nha-PDA NPs@Cotton, had good hydrophobic, antibacterial and UV protective properties. The static water contact angles of the modified fabrics could reach 120°. The antibacterial rates of Nha-PDA NPs@Cotton against E. coli and S. aureus were above 85 %. The maximum UPF value of the modified cotton was 362, indicating that the ultraviolet protection performance was excellent. The fabric modified with multifunctional melanin-like nanoparticle provides a green way for the multifunctional modification of textiles.
Collapse
Affiliation(s)
- Shan Jian
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyue Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Mohamad Sukri N, Abdul Manas NH, Jaafar NR, A Rahman R, Abdul Murad AM, Md Illias R. Effects of electrospun nanofiber fabrications on immobilization of recombinant Escherichia coli for production of xylitol from glucose. Enzyme Microb Technol 2024; 172:110350. [PMID: 37948908 DOI: 10.1016/j.enzmictec.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
A suitable nanofiber sheet was formulated and developed based on its efficacy in the immobilization of recombinant Escherichia coli (E. coli) to enhance xylitol production. The effects of different types of nanofibers and solvents on cell immobilization and xylitol production were studied. The most applicable nanofiber membrane was selected via preliminary screening of four types of nanofiber membrane, followed by the selection of six different solvents. Polyvinylidene fluoride (PVDF) nanofiber sheet synthesized using dimethylformamide (DMF) solvent was found to be the most suitable carrier for immobilization and xylitol production. The thin, beaded PVDF (DMF) nanofibers were more favourable for microbial adhesion, with the number of immobilized cells as high as 96 × 106 ± 3.0 cfu/ml. The attraction force between positively charged PVDF nanofibers and the negatively charged E. coli indicates that the electrostatic interaction plays a significant role in cell adsorption. The use of DMF has also produced PVDF nanofibers biocatalyst capable of synthesizing the highest xylitol concentration (2.168 g/l) and productivity (0.090 g/l/h) and 55-69% reduction in cell lysis compared with DMSO solvent and free cells. This finding suggests that recombinant E. coli immobilized on nanofibers shows great potential as a whole-cell biocatalyst for xylitol production.
Collapse
Affiliation(s)
- Norhamiza Mohamad Sukri
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
6
|
Zhang Y, Li Y, Tan Z. Development of Adjustable High- to Low-Adhesive Superhydrophobicity Using Aligned Electrospun Fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15986-15996. [PMID: 37922462 DOI: 10.1021/acs.langmuir.3c02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Superhydrophobic surfaces based on electrospun fibrous structures exhibit advantages of additive manufacturing and enable the passage of gases. Compared to randomly deposited fibers, directionally aligned fibers improve the control of surface wetting by a specified fiber orientation and predictable liquid-fiber contact interface. In this article, we create superhydrophobicity with adjustable adhesion based on the understanding of droplet wetting behavior on directionally aligned fibers. Directionally aligned polystyrene fibers with different diameters and interfiber distances (l) are produced using electrospinning with a rotating fin collector. The wetting behavior of droplets on the surfaces dressed by aligned fibers is characterized, and a thermodynamic model of wetting behavior is established to guide the experimental studies. As a result, high-adhesive superhydrophobicity is achieved on weak hydrophobic substrate surfaces dressed by aligned polystyrene fibers with a diameter of 1.8 μm and l between 5 and 130 μm. Water droplets (2 μL) exhibit a maximum contact angle of 156° and adhere to the fiber-dressed surfaces by tilting upside down. Low-adhesive superhydrophobicity is achieved by introducing an additional layer of aligned fibers to increase the transition energy barrier. On the dual-layer structure with an upper-layer l of 9 μm, droplets show a contact angle of 155° and can readily roll off the surface. Moreover, increasing the upper-layer l to 15 μm reserves the surface to high-adhesive superhydrophobicity.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yifu Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongchao Tan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
| |
Collapse
|
7
|
Alimohammadian M, Azizian S, Sohrabi B. Preparation of the graphene-based smart hydrophobic nanocomposite and its application in oil/water separation. Sci Rep 2023; 13:19816. [PMID: 37957214 PMCID: PMC10643443 DOI: 10.1038/s41598-023-46520-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Designing and synthesizing materials with smart hydrophobicity against an external magnetic field for efficient oil/water separation is of great importance due to the increasing problems caused by oil pollution. Here, the nanocomposites were fabricated based on graphene and different iron oxides exhibit smart hydrophobicity against an external magnetic field and they are in powder form eliminating the requirement for a substrate employing a facile and echo friendly method. The results prove that autoclaving of graphene leads to its ferromagnetic property; then it is attached to iron oxides by magnetic attraction and a nanocomposite is produced. The magnetic property of the resulting nanocomposite is higher than the magnetic property of its individual components. In addition, following nanocomposite formation, its hydrophobicity and surface area also change. FESEM images were taken from the nanocomposites to study their surface morphology, and EDS-MAP analysis to observe the elemental distribution uniformity of the nanocomposites. Also, to measure the surface area and pore size, BET analysis has been performed on pure materials and graphene-black iron oxide nanocomposite (graphene@black iron oxide). The results show that the specific surface area of black iron oxide increases after being composited with graphene dispersed at 5000 rpm. Indeed, graphene forms a composite by binding to iron oxide, and therefore, its specific surface area increases compared to iron oxide and graphene alone. These results show an increase in oil sorption and better separation of oil from water by the prepared nanocomposite. Also, to measure the magnetic properties of pure materials, graphene@black iron oxide, and ferromagnetic graphene at 3000 and 5000 rpm, the Vibrating Sample Magnetometer analysis has been performed. The results have proven that the nanocomposite powder prepared by a simple method obtained from cost-effective and available materials is hydrophobic and becomes more hydrophobic by applying an external magnetic field. Due to the ease with which oil can be readily removed from the nanocomposite by eliminating the external magnetic field, this nanocomposite is an excellent choice for the separation of oil from water.
Collapse
Affiliation(s)
- Mahsa Alimohammadian
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
8
|
Chang YM, Wang YS, Chen HY. Controlling Superhydrophobicity on Complex Substrates Based on a Vapor-Phase Sublimation and Deposition Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48754-48763. [PMID: 37793161 PMCID: PMC10592315 DOI: 10.1021/acsami.3c06684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
The superhydrophobic properties of material surfaces have attracted significant research and practical development in a wide range of applications. In the present study, a superhydrophobic coating was fabricated using a vapor-phase sublimation and deposition process. This process offers several advantages, including a controllable and tunable superhydrophobic property, a dry and solvent-free process that uses well-defined water/ice templates during fabrication, and a coating technology that is applicable to various substrates, regardless of their dimensions or complex geometric configurations. The fabrication process exploits time-dependent condensation to produce ice templates with a controlled surface morphology and roughness. The templates are sacrificed via vapor sublimation, which results in mass transfer of water vapor out of the system. A second vapor source of a polymer precursor is then introduced to the system, and deposition occurs upon polymerization on the iced templates, replicating the same topologies from the iced templates. The continuation of the co-current sublimation and deposition processes finally renders permanent hierarchical structures of the polymer coatings that combine the native hydrophobic property of the polymer and the structured property by the sacrificed ice templates, achieving a level of superhydrophobicity that is tunable from 90° to 164°. The experiments demonstrated the use of [2,2]paracyclophanes as the starting materials for forming the superhydrophobic coatings of poly(p-xylylenes) on substrate surfaces. In comparison to conventional vapor deposition of poly(p-xylylenes), which resulted in dense thin-film coatings with only a moderate water contact angle of approximately 90°, the reported superhydrophobic coatings and fabrication process can achieve a high water contact angle of 164°. Demonstrations furthermore revealed that the proposed coatings are durable while maintaining superhydrophobicity on various substrates, including an intraocular lens and a cardiovascular stent, even against harsh treatment conditions and varied solution compositions used on the substrates.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yun-Shan Wang
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Hsien-Yeh Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Molecular
Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Domínguez-Herrera JE, Maldonado-Saavedra O, Grande-Ramírez JR, Guarneros-Nolasco LR, González-Benito J. Solution Blow-Spun Poly (Ethylene Oxide)-Polysulfone Bicomponent Fibers-Characterization of Morphology, Structure, and Properties. Polymers (Basel) 2023; 15:3402. [PMID: 37631459 PMCID: PMC10459096 DOI: 10.3390/polym15163402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 08/27/2023] Open
Abstract
Solution blow spinning was used to prepare nonwoven bicomponent fibers constituted by poly (ethylene oxide)-Polysulfone (PEO-PSF). As a new material, deep characterization was carried out to have a database to understand final performance regarding its multiple functions as a potential material for biomedical applications. The morphology was studied by field emission scanning electron and transmission electron microscopy and optical profilometry. Structural characterization was carried out by Fourier transform infrared spectroscopy and thermal degradation by thermogravimetric analysis. Additionally, wettability and mechanical behavior were studied by contact angle measurements and tensile tests, respectively. The bicomponent material was constituted of fibers with a structure mainly described by a core-shell structure, where the PSF phase is located at the center of the fibers, and the PEO phase is mainly located at the outer parts of the fibers, leading to a kind of shell wall. The study of possible interactions between different phases revealed them to be lacking, pointing to the presence of an interface core/shell more than an interphase. The morphology and roughness of the bicomponent material improved its wettability when glycerol was tested. Indeed, its mechanical properties were enhanced due to the PSF core provided as reinforcement material.
Collapse
Affiliation(s)
| | - Octavio Maldonado-Saavedra
- Department of Nanotechnology, Universidad Tecnológica del Centro de Veracruz, Cuitláhuac 94910, Veracruz, Mexico;
| | - José Roberto Grande-Ramírez
- Department of Metal-Mechanic, Universidad Tecnológica del Centro de Veracruz, Cuitláhuac 94910, Veracruz, Mexico;
| | | | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Getafe, Spain;
| |
Collapse
|
10
|
Tian N, Wei J, Zhang J. Design of Waterborne Superhydrophobic Fabrics with High Impalement Resistance and Stretching Stability by Constructing Elastic Reconfigurable Micro-/Micro-/Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6556-6567. [PMID: 37117159 DOI: 10.1021/acs.langmuir.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Superhydrophobic fabrics have great application potential in many fields including wearable electronic devices, sports textiles, and human health monitoring, but good water impalement resistance and stretching stability are the prerequisites. Here, we report the design of waterborne superhydrophobic fabrics with high impalement resistance and stretching stability by constructing elastic reconfigurable micro-/micro-/nanostructures. Following theoretical analysis, two approaches were proposed and employed: (i) regulating distance between the microfibers of polyester fabrics to decrease the solid-liquid contact area, and (ii) forming reconfigurable two-tier hierarchical micro-/nanostructures on the microfibers by stretching during dipping to further decrease the solid-liquid contact area. The effects of microfiber distance and micro-/nanostructures on microfibers on superhydrophobicity and impalement resistance were studied. The superhydrophobic fabrics show excellent impalement resistance as verified by high-speed water impact, water jetting, and rainfall, etc. The fabrics also show excellent stretching stability, as 100% stretching and 1000 cycles of cyclic 100% stretching-releasing have no obvious influence on superhydrophobicity. Additionally, the fabrics show good antifouling property, self-cleaning performance, as well as high abrasion and washing stability. The experimental results agree with the theoretical simulation very well. We anticipate that this study will boost the development of impalement-resistant and stretching-stable superhydrophobic surfaces.
Collapse
Affiliation(s)
- Ning Tian
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Centrifugal microfluidic-based multiplex recombinase polymerase amplification assay for rapid detection of SARS-CoV-2. iScience 2023; 26:106245. [PMID: 36845031 PMCID: PMC9941069 DOI: 10.1016/j.isci.2023.106245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
The COVID-19 pandemic has spread worldwide, and rapid detection of the SARS-CoV-2 virus is crucial for infection surveillance and epidemic control. This study developed a centrifugal microfluidics-based multiplex reverse transcription recombinase polymerase amplification (RT-RPA) assay for endpoint fluorescence detection of the E, N, and ORF1ab genes of SARS-CoV-2. The microscope slide-shaped microfluidic chip could simultaneously accomplish three target genes and one reference human gene (i.e., ACTB) RT-RPA reactions in 30 min, and the sensitivity was 40 RNA copies/reaction for the E gene, 20 RNA copies/reaction for the N gene, and 10 RNA copies/reaction for the ORF1ab gene. The chip demonstrated high specificity, reproducibility, and repeatability. Chip performance was also evaluated using real clinical samples. Thus, this rapid, accurate, on-site, and multiplexed nucleic acid test microfluidic chip would significantly contribute to detecting patients with COVID-19 in low-resource settings and point-of-care testing (POCT) and, in the future, could be used to detect emerging new variants of SARS-CoV-2.
Collapse
|
12
|
Kodihalli Shivaprakash N, Banerjee PS, Banerjee SS, Barry C, Mead J. Advanced polymer processing technologies for micro‐ and nanostructured surfaces: A review. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
| | - Pratip Sankar Banerjee
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Shib Shankar Banerjee
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Carol Barry
- Nanomanufacturing Center, Department of Plastic Engineering University of Massachusetts Lowell Lowell Massachusetts USA
| | - Joey Mead
- Nanomanufacturing Center, Department of Plastic Engineering University of Massachusetts Lowell Lowell Massachusetts USA
| |
Collapse
|
13
|
Acceleration of Electrospun PLA Degradation by Addition of Gelatin. Int J Mol Sci 2023; 24:ijms24043535. [PMID: 36834947 PMCID: PMC9966984 DOI: 10.3390/ijms24043535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Biocompatible polyesters are widely used in biomedical applications, including sutures, orthopedic devices, drug delivery systems, and tissue engineering scaffolds. Blending polyesters with proteins is a common method of tuning biomaterial properties. Usually, it improves hydrophilicity, enhances cell adhesion, and accelerates biodegradation. However, inclusion of proteins to a polyester-based material typically reduces its mechanical properties. Here, we describe the physicochemical properties of an electrospun polylactic acid (PLA)-gelatin blend with a 9:1 PLA:gelatin ratio. We found that a small content (10 wt%) of gelatin does not affect the extensibility and strength of wet electrospun PLA mats but significantly accelerates their in vitro and in vivo decomposition. After a month, the thickness of PLA-gelatin mats subcutaneously implanted in C57black mice decreased by 30%, while the thickness of the pure PLA mats remained almost unchanged. Thus, we suggest the inclusion of a small amount of gelatin as a simple tool to tune the biodegradation behavior of PLA mats.
Collapse
|
14
|
Nawaz T, Ali A, Ahmad S, Piatkowski P, Alnaser AS. Enhancing Anticorrosion Resistance of Aluminum Alloys Using Femtosecond Laser-Based Surface Structuring and Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:644. [PMID: 36839012 PMCID: PMC9963414 DOI: 10.3390/nano13040644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
We report a robust two-step method for developing adherent and anticorrosive molybdenum (Mo)-based coatings over an aluminum (Al) 6061 alloy substrate using a femtosecond (fs) laser. The fs laser nanostructuring of Al 6061 alloy in air gives rise to regular arrays of microgrooves exhibiting superhydrophilic surface properties. The microstructured surface is further coated with an Mo layer using the fs-pulsed laser deposition (fs-PLD) technique. The combination of the two femtosecond laser surface treatments (microstructuring followed by coating) enabled the development of a highly corrosion-resistant surface, with a corrosion current of magnitude less than that of the pristine, the only structured, and the annealed alloy samples. The underlying mechanism is attributed to the laser-assisted formation of highly rough hierarchical oxide structures on the Al 6061 surface along with post heat treatment, which passivates the surface and provide the necessary platform for firm adhesion for Mo coating. Our results reveal that the corrosive nature of the Al-based alloys can be controlled and improved using a combined approach of femtosecond laser-based surface structuring and coating.
Collapse
Affiliation(s)
- Tahir Nawaz
- Department of Physics, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Asghar Ali
- Department of Physics, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Shahbaz Ahmad
- Department of Physics, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Piotr Piatkowski
- Department of Physics, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Ali S. Alnaser
- Department of Physics, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
15
|
Antinate Shilpa S, Kavitha Sri A, Jeen Robert RB, Subbulakshmi MS, Hikku GSO. A review focused on the superhydrophobic fabrics with functional properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sagayanathan Antinate Shilpa
- Medical Bionanotechnology, Faculty of Allied Health Sciences Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education Chennai India
| | - Annadurai Kavitha Sri
- Medical Bionanotechnology, Faculty of Allied Health Sciences Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education Chennai India
| | | | | | - Gnanadhas Sobhin Osannal Hikku
- Medical Bionanotechnology, Faculty of Allied Health Sciences Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education Chennai India
| |
Collapse
|
16
|
Yu B, Liu H, Chen H, Li W, Zhu L, Liang W. A wear and heat-resistant hydrophobic fluoride-free coating based on modified nanoparticles and waterborne-modified polyacrylic resin. RSC Adv 2023; 13:4542-4552. [PMID: 36760316 PMCID: PMC9900232 DOI: 10.1039/d2ra07237h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrophobic coatings have attracted extensive research due to their broad application prospects. However, hydrophobic coatings in practical applications are often limited by their insufficient stability and are difficult to be applied on a large scale. In this regard, wear and heat resistance are key aspects that must be considered. In this paper, a method for preparing a robust hydrophobic coating with modified ZrO2 particles as the core component and modified acrylic resin is proposed. First, γ-aminopropyltriethoxysilane (APTES) was used to silanize ZrO2 to obtain Si-ZrO2 nanoparticles, which were grafted with amino groups. Then, the nanoparticles reacted with isocyanates to be grafted with hydrophobic groups. A simple spray method was developed to deposit a hydrophobic (141.8°) coating using the mixture containing the modified nanoparticles and non-fluorinated water-based silicon-modified acrylic resin (WSAR) that was prepared by free radical polymerization. The obtained coating exhibited a rough surface and the particles and resin were closely combined. Compared with pure resin coating, the composite coating exhibited 150% enhancement in wear resistance and it could wear 45 meters at a pressure of 20 kPa. Moreover, the coating could maintain the hydrophobic property even when it lost 70% quality or after it was heated at 390 °C. The thermogravimetric results showed that the temperature could reach 400 °C before the quality of the fluorine-free coating dropped to 90%. In addition, the coating could easily take away graphite or silicon carbide powder under the impact of water droplets, showing excellent self-cleaning performance.
Collapse
Affiliation(s)
- Bin Yu
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Huicong Liu
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Haining Chen
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Weiping Li
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Liqun Zhu
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Weitao Liang
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| |
Collapse
|
17
|
Bang J, Park S, Hwang SW, Oh JK, Yeo H, Jin HJ, Kwak HW. Biodegradable and hydrophobic nanofibrous membranes produced by solution blow spinning for efficient oil/water separation. CHEMOSPHERE 2023; 312:137240. [PMID: 36379429 DOI: 10.1016/j.chemosphere.2022.137240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The development of nanofibrous oil-water separation materials is explosively progressing, but the remarkably low productivity is the main factor hindering their practical application. In this study, biodegradable polybutylene succinate (PBS) nanofibers with excellent productivity (27.0 g/h per nozzle) were successfully fabricated using the solution blow spinning (SBS) process, breaking away from the conventional electrospinning method. The prepared PBS nanofibers exhibited extremely thin fiber diameters (130 nm) with high porosity (97.4%). Without any chemical modification or inorganic/organic hybrid materialization, the PBS nanofibrous membrane showed excellent oil adsorption capacity (minimum: 18.7 g/g and maximum: 38.5 g/g) and separation efficiency; water and oil mixtures (99.4-99.98%) and emulsions (98.1-99.5%) compared to conventional organic polymer-based nanofibers. In terms of disposal after use, this biodegradable nanofibrous membrane was able to return to nature through hydrolysis and biodegradation processes.
Collapse
Affiliation(s)
- Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Subong Park
- Fisheries Engineering Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Sung-Wook Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung-Kwon Oh
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hwanmyeong Yeo
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyoung-Joon Jin
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Namgu, Incheon, 22212, South Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
18
|
Sariipek FB, Gündoğdu Y, Kiliç HŞ. Fabrication of eco‐friendly superhydrophobic and superoleophilic
PHB‐SiO
2
bionanofiber membrane for gravity‐driven oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fatma Bayram Sariipek
- Department of Chemical Engineering, Faculty of Engineering and Nature Konya Technical University Konya Türkiye
| | - Yasemin Gündoğdu
- Department of Computer Technologies, Kadınhanı Faik İçil Vocational High School Selçuk University Konya Türkiye
- Directorate of Laser Induced Proton Therapy Application and Research Center Selçuk University Konya Türkiye
| | - Hamdi Şükür Kiliç
- Directorate of Laser Induced Proton Therapy Application and Research Center Selçuk University Konya Türkiye
- Department of Physics, Faculty of Science Selçuk University Konya Türkiye
| |
Collapse
|
19
|
Bai L, Wang X, Sun X, Li J, Huang L, Sun H, Gao X. Enhanced superhydrophobicity of electrospun carbon nanofiber membranes by hydrothermal growth of ZnO nanorods for oil-water separation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Salamah T, Ramahi A, Alamara K, Juaidi A, Abdallah R, Abdelkareem MA, Amer EC, Olabi AG. Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154050. [PMID: 35217056 DOI: 10.1016/j.scitotenv.2022.154050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 05/24/2023]
Abstract
Recent achievement and progress in solar PV play a significant role in controlling climate change. This study reviewed comprehensively electrical characteristics, life cycle of dust, optical characteristics, and different cleaning techniques related to the effect of dust on the performance of PV modules throughout different climate regions of the world. The power maximum power point (MPP) and curve of PV module under the effect of irradiance and temperature were presented. The effect of dust (shading) on the electrical efficiency of PV module was discussed based on soft, partial, and complete (soiling) shading. The physical properties of dust around the globe such as PM10 concentration, dust loading (mgm-2), and fine dust particles concentration were covered and discussed. Reasons behind the accumulation of dust based on, location and installation factors, dust type, and environmental factors. Environmental reasons causing dust and dust removal in accordance with the life cycle of dust was covered in detail. All the reasons that cause the generation, accumulation and removal of dust during its life cycle were explained. All forces responsible for the adhesion phase of the dust life cycle were presented. The effect of dust on PV module transmittance and electrical parameters module were discussed in detail based on physical properties of the dust at its location and installation conditions. Self-cleaning super hydrophobic surfaces based on methods such as solvents, vapor-assisted coating, powder coating, and polymerization were discussed. All cleaning technologies, including self-cleaning technologies, based on the material coating used, and the manufacturing of PV cells was compared. The future prospective for PV technologies and cleaning methods were also covered.
Collapse
Affiliation(s)
- Tareq Salamah
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates.
| | - Ahmad Ramahi
- Industrial Engineering Department, An-Najah National University, Nablus, Palestine.
| | - Kadhim Alamara
- Department of Mechanical and Industrial Engineering, American University of Ras Al Khaimah, Ras Al Khaima, United Arab Emirates
| | - Adel Juaidi
- Mechanical and Mechatronics Engineering Department, An-Najah National University, Nablus, Palestine.
| | - Ramez Abdallah
- Mechanical and Mechatronics Engineering Department, An-Najah National University, Nablus, Palestine.
| | - Mohammad Ali Abdelkareem
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| | - El-Cheikh Amer
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates; Department of Industrial Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Ghani Olabi
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
21
|
Agarwal H, Quinn LJ, Walter SC, Polaske TJ, Chang DH, Palecek SP, Blackwell HE, Lynn DM. Slippery Antifouling Polymer Coatings Fabricated Entirely from Biodegradable and Biocompatible Components. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17940-17949. [PMID: 35394750 PMCID: PMC9310543 DOI: 10.1021/acsami.1c25218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the design of slippery liquid-infused porous surfaces (SLIPS) fabricated from building blocks that are biodegradable, edible, or generally regarded to be biocompatible. Our approach involves infusion of lubricating oils, including food oils, into nanofiber-based mats fabricated by electrospinning or blow spinning of poly(ε-caprolactone), a hydrophobic biodegradable polymer used widely in medical implants and drug delivery devices. This approach leads to durable and biodegradable SLIPS that prevent fouling by liquids and other materials, including microbial pathogens, on objects of arbitrary shape, size, and topography. This degradable polymer approach also provides practical means to design "controlled-release" SLIPS that release molecular cargo at rates that can be manipulated by the properties of the infused oils (e.g., viscosity or chemical structure). Together, our results provide new designs and introduce useful properties and behaviors to antifouling SLIPS, address important issues related to biocompatibility and environmental persistence, and thus advance new potential applications, including the use of slippery materials for food packaging, industrial and marine coatings, and biomedical implants.
Collapse
Affiliation(s)
- Harshit Agarwal
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - La'Darious J Quinn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Sahana C Walter
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Thomas J Polaske
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Douglas H Chang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Modesto-López LB, Olmedo-Pradas J. Micromixing with In-Flight Charging of Polymer Solutions in a Single Step Enables High-Throughput Production of Micro- and Nanofibers. ACS OMEGA 2022; 7:12549-12555. [PMID: 35474807 PMCID: PMC9026060 DOI: 10.1021/acsomega.1c05589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Controlled ejection of liquids at capillary scales is a ubiquitous phenomenon associated with significant advances in, for instance, molecular biology or material synthesis. In this work, we introduce a high-throughput approach, which relies on a micromixing mechanism to eject and fragment viscous liquids, for production of microfibers from poly(vinyl alcohol) solutions. First, filaments were generated pneumatically with a so-called flow-blurring atomizer and using liquid flow rates of up to ∼1 L/min. Subsequently, the filaments were ionized online by corona discharge and consecutively manipulated with an electric field created by disc electrodes. Such charging of the filaments and the effect of the electric field allowed for their ultrafast elongation and diameter reduction from 150 μm down to fibers of 500 nm, which after collection exhibited fabric-like texture. The approach presented herein is a general procedure with potential for scalability that, upon proper adaptation, may be extended to various polymeric materials.
Collapse
Affiliation(s)
- Luis B. Modesto-López
- Department of Aerospace Engineering
and Fluid Mechanics, ETSI, Universidad de
Sevilla, Camino de los Descubrimientos S/N, 41092 Sevilla, Spain
| | - Jesús Olmedo-Pradas
- Department of Aerospace Engineering
and Fluid Mechanics, ETSI, Universidad de
Sevilla, Camino de los Descubrimientos S/N, 41092 Sevilla, Spain
| |
Collapse
|
23
|
Fabrication and structure optimization of expanded polystyrene (EPS) waste fiber for high-performance air filtration. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Kang H, Lee D. Facile preparation of superhydrophobic nanorod surfaces through ion‐beam irradiation. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyeon‐Ho Kang
- Department of Chemical Engineering Wonkwang University Iksan Jeonbuk Republic of Korea
| | - Dong‐Hoon Lee
- Department of Chemical Engineering Wonkwang University Iksan Jeonbuk Republic of Korea
| |
Collapse
|
25
|
Arik N, Horzum N, Truong YB. Development and Characterizations of Engineered Electrospun Bio-Based Polyurethane Containing Essential Oils. MEMBRANES 2022; 12:membranes12020209. [PMID: 35207129 PMCID: PMC8876489 DOI: 10.3390/membranes12020209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023]
Abstract
We report the fabrication of bio-based thermoplastic polyurethane (TPU) fibrous scaffolds containing essential oils (EO). The main goal of this study was to investigate the effects of essential oil type (St. John’s Wort oil (SJWO), lavender oil (LO), and virgin olive oil (OO))/concentration on the electrospinnability of TPU. The effects of applied voltage, flow rate, and end-tip distance on the diameter, morphology, and wettability of the TPU/EO electrospun fibers were investigated. The electrospun TPU/EO scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA), and Fourier transform infrared spectroscopy (FTIR). The addition of oil resulted in an increase in the fiber diameter, reduction in the surface roughness, and, accordingly, a reduction in the contact angle of the composite fibers. TPU fibers containing SJWO and LO have a more flexible structure compared to the fibers containing OO. This comparative study fills the existing information gap and shows the benefits of the fabrication of essential-oil-incorporated electrospun fiber with morphology and size range with respect to the desired applications, which are mostly wound dressing and food packaging.
Collapse
Affiliation(s)
- Nehir Arik
- Department of Biocomposite Engineering Graduate Program, Izmir Katip Celebi University, Izmir 35620, Turkey;
| | - Nesrin Horzum
- Department of Biocomposite Engineering Graduate Program, Izmir Katip Celebi University, Izmir 35620, Turkey;
- Department of Engineering Sciences, Izmir Katip Celebi University, Izmir 35620, Turkey
- Correspondence: ; Tel.: +90-542-761-6775
| | | |
Collapse
|
26
|
Yin Z, Sun L, Shi L, Nie H, Dai J, Zhang C. Bioinspired bimodal micro-nanofibrous scaffolds promote the tenogenic differentiation of tendon stem/progenitor cells for achilles tendon regeneration. Biomater Sci 2022; 10:753-769. [PMID: 34985056 DOI: 10.1039/d1bm01287h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poor tendon repair remains a clinical problem due to the difficulties in replicating the complex multiscale hierarchical structure of native tendons. In this work, a bioinspired fibrous scaffold with bimodal micro-nanofibers and a teno-inductive aligned topography was developed to replicate microscale collagen fibers and nanoscale collagen fibrils that compose native tendons. The results showed indicated that the combination of micro- and nanofibers enhanced the mechanical properties. Furthermore, their biological performance was assessed using tendon stem/progenitor cells (TSPCs). Micro-nanofibers induced a higher cell aspect ratio and enhanced the tenogenic differentiation of TSPCs compared to micro- and nanocontrols. Interestingly, it was observed that scaffold nanotopography and microstructures promoted tenogenesis via activating the TGF-β/Smad2/3-mediated signaling pathway. The in situ implantation study confirmed that micro-nanofibrous scaffolds promoted the structural and mechanical properties of the regenerated Achilles tendon. Overall, our study shows that the bimodal micro-nanofibrous scaffold developed here presents a promising potential to improve the outcomes of tendon tissue engineering.
Collapse
Affiliation(s)
- Zhiwei Yin
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Lu Sun
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Liyang Shi
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Jianwu Dai
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China. .,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| |
Collapse
|
27
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
28
|
Pavlova E, Maslakova A, Prusakov K, Bagrov D. Optical sensors based on electrospun membranes – principles, applications, and prospects for chemistry and biology. NEW J CHEM 2022. [DOI: 10.1039/d2nj01821g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospun membranes are promising substrates for receptor layer immobilization in optical sensors. Either colorimetric, luminescence, or Raman scattering signal can be used to detect the analyte.
Collapse
Affiliation(s)
- Elizaveta Pavlova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Aitsana Maslakova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| | - Kirill Prusakov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Dmitry Bagrov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| |
Collapse
|
29
|
Rivero PJ, Fuertes JP, Vicente A, Mata Á, Palacio JF, Monteserín M, Rodríguez R. Modeling Experimental Parameters for the Fabrication of Multifunctional Surfaces Composed of Electrospun PCL/ZnO-NPs Nanofibers. Polymers (Basel) 2021; 13:polym13244312. [PMID: 34960865 PMCID: PMC8706923 DOI: 10.3390/polym13244312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a one-step electrospinning technique has been implemented for the design and development of functional surfaces with a desired morphology in terms of wettability and corrosion resistance by using polycaprolactone (PCL) and zinc oxide nanoparticles (ZnO NPs). The surface morphology has been characterized by confocal microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (WCA), whereas the corrosion resistance has been evaluated by Tafel polarization curves. Strict control over the input operational parameters (applied voltage, feeding rate, distance tip to collector), PCL solution concentration and amount of ZnO NPs have been analyzed in depth by showing their key role in the final surface properties. With this goal in mind, a design of experiment (DoE) has been performed in order to evaluate the optimal coating morphology in terms of fiber diameter, surface roughness (Ra), water contact angle (WCA) and corrosion rate. It has been demonstrated that the solution concentration has a significant effect on the resultant electrospun structure obtained on the collector with the formation of beaded fibers with a higher WCA value in comparison with uniform bead-free fibers (dry polymer deposition or fiber-merging aspect). In addition, the presence of ZnO NPs distributed within the electrospun fibers also plays a key role in corrosion resistance, although it also leads to a decrease in the WCA. Finally, this is the first time that an exhaustive analysis by using DoE has been evaluated for PCL/ZnO electrospun fibers with the aim to optimize the surface morphology with the better performance in terms of corrosion resistance and wettability.
Collapse
Affiliation(s)
- Pedro J. Rivero
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (J.P.F.); (A.V.); (Á.M.); (R.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
- Correspondence:
| | - Juan P. Fuertes
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (J.P.F.); (A.V.); (Á.M.); (R.R.)
| | - Adrián Vicente
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (J.P.F.); (A.V.); (Á.M.); (R.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Álvaro Mata
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (J.P.F.); (A.V.); (Á.M.); (R.R.)
| | - José F. Palacio
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla, Spain; (J.F.P.); (M.M.)
| | - María Monteserín
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla, Spain; (J.F.P.); (M.M.)
| | - Rafael Rodríguez
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (J.P.F.); (A.V.); (Á.M.); (R.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
| |
Collapse
|
30
|
Zhan Y, Yu S, Amirfazli A, Siddiqui AR, Li W. Preparations of versatile polytetrafluoroethylene superhydrophobic surfaces using the femtosecond laser technology. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Wang T, Zhao Y. Fabrication of thermally and mechanically stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
33
|
Su Q, Wei Z, Wang X, Long S, Zeng W, Wang S, Yang J. Electrospun composite membrane based on polyarylene sulfide sulfone/Ag/
ZnO
nanofibers for antibacterial effective
PM
2
.5
filtration. J Appl Polym Sci 2021. [DOI: 10.1002/app.51693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Qing Su
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin China
| | - Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Wei Zeng
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin China
| | - Jie Yang
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
34
|
Selim MS, Fatthallah NA, Higazy SA, Hao Z, Jing Mo P. A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J Colloid Interface Sci 2021; 606:367-383. [PMID: 34392032 DOI: 10.1016/j.jcis.2021.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Two novel superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) enriched with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were synthesized as maritime fouling-release (FR) surfaces. Controlling the nanofillers' structures and distribution in the silicone matrix influenced the self-cleaning and antifouling properties. γ-AlOOH nanorods had a single crystallinity with an average diameter of 10-20 nm and < 200 nm length. A hydrothermal method was used to prepare RGO, while the chemical deposition method was used to synthesis GO-γ-AlOOH nanocomposites for use as fouling-release coating materials. For studying the synergetic effects of graphene-based materials on the surface, mechanical, and FR features, these nanofillers were dispersed in the silicone matrix using the solution casting method. The hydrophobicity and antifouling properties of the surface were studied using water contact angle (WCA), scanning electron, and atomic force microscopes (SEM and AFM). Coatings' roughness, superhydrophobicity, and surface mechanical properties all improved for the homogeneity of the dispersion of the nanocomposite. Laboratory assessments were carried out for 30 days using selected microorganisms to determine the antifouling effects of the coating systems. PDMS/GO-γ-AlOOH nanorod composite had better antibacterial activity than PDMS/RGO nanocomposite against different bacterial strains. This is caused by the high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers. The PDMS/GO-γ-AlOOH nanorod composite (3 wt%) had the lowest biodegradability percentage (1.6%) and the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. A field trial in natural seawater was conducted to confirm the coatings' FR performance based on the screening process and image analysis for 45 days in a tropical area. The most profound superhydrophobic antifouling nanostructured coating was the homogeneity of the GO-γ-AlOOH (3 wt%) dispersion, which had a WCA of 151° and a rough surface.
Collapse
Affiliation(s)
- Mohamed S Selim
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | | | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Zhifeng Hao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ping Jing Mo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
35
|
Wu F, Misra M, Mohanty AK. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101395] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Kouser T, Xiong Y, Yang D. Contribution of Superhydrophobic Surfaces and Polymer Additives to Drag Reduction. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taiba Kouser
- Huazhong University of Science and Technology (HUST) Department of Mechanics 430074 Wuhan China
| | - Yongliang Xiong
- Huazhong University of Science and Technology (HUST) Department of Mechanics 430074 Wuhan China
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment Luoyu Road 1037 430074 Wuhan China
| | - Dan Yang
- Huazhong University of Science and Technology (HUST) School of Naval Architecture and Ocean Engineering 430074 Wuhan China
- Huazhong University of Science and Technology (HUST) Hubei Key Laboratory of Naval Architecture & Ocean Engineering Hydrodynamics 430074 Wuhan China
| |
Collapse
|
37
|
Dal Sasso E, Zamuner A, Filippi A, Romanato F, Palmosi T, Vedovelli L, Gregori D, Gómez Ribelles JL, Russo T, Gloria A, Iop L, Gerosa G, Dettin M. Covalent functionalization of decellularized tissues accelerates endothelialization. Bioact Mater 2021; 6:3851-3864. [PMID: 33937589 PMCID: PMC8065253 DOI: 10.1016/j.bioactmat.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the field of tissue regeneration, the lack of a stable endothelial lining may affect the hemocompatibility of both synthetic and biological replacements. These drawbacks might be prevented by specific biomaterial functionalization to induce selective endothelial cell (EC) adhesion. Decellularized bovine pericardia and porcine aortas were selectively functionalized with a REDV tetrapeptide at 10−5 M and 10−6 M working concentrations. The scaffold-bound peptide was quantified and REDV potential EC adhesion enhancement was evaluated in vitro by static seeding of human umbilical vein ECs. The viable cells and MTS production were statistically higher in functionalized tissues than in control. Scaffold histoarchitecture, geometrical features, and mechanical properties were unaffected by peptide anchoring. The selective immobilization of REDV was effective in accelerating ECs adhesion while promoting proliferation in functionalized decellularized tissues intended for blood-contacting applications. Covalent functionalization of the decellularized tissues with REDV peptide accelerates endothelialization. New covalent grafting method not inducing collagen cross-linking. Measurements through two photon miscroscopy allow the quantification of biological matrix bound peptide. The decellularized tissues can be changed by chemical procedures to promote specific cellular behaviour with ECM preservation.
Collapse
Affiliation(s)
- Eleonora Dal Sasso
- Department of Cardiac, Thoracic and Vascular Sciences and Venetian Institute of Molecular Medicine, Padua, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padua, Padua, Italy.,LIFELAB Program, Consorzio per la Ricerca Sanitaria, CORIS, Veneto Region, Italy
| | - Andrea Filippi
- LIFELAB Program, Consorzio per la Ricerca Sanitaria, CORIS, Veneto Region, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy.,Fondazione Bruno Kessler, Trento, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Filippo Romanato
- LIFELAB Program, Consorzio per la Ricerca Sanitaria, CORIS, Veneto Region, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Tiziana Palmosi
- Department of Cardiac, Thoracic and Vascular Sciences and Venetian Institute of Molecular Medicine, Padua, Italy
| | - Luca Vedovelli
- Department of Cardiac, Thoracic and Vascular Sciences and Venetian Institute of Molecular Medicine, Padua, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic and Vascular Sciences and Venetian Institute of Molecular Medicine, Padua, Italy
| | - José Luís Gómez Ribelles
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, València, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Laura Iop
- Department of Cardiac, Thoracic and Vascular Sciences and Venetian Institute of Molecular Medicine, Padua, Italy.,LIFELAB Program, Consorzio per la Ricerca Sanitaria, CORIS, Veneto Region, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences and Venetian Institute of Molecular Medicine, Padua, Italy.,LIFELAB Program, Consorzio per la Ricerca Sanitaria, CORIS, Veneto Region, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Padua, Italy.,LIFELAB Program, Consorzio per la Ricerca Sanitaria, CORIS, Veneto Region, Italy
| |
Collapse
|
38
|
Doganci MD. Fabrication of superhydrophobic transparent cyclic olefin copolymer (
COC
)‐
SiO
2
nanocomposite surfaces. J Appl Polym Sci 2021. [DOI: 10.1002/app.50145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Merve Dandan Doganci
- Department of Chemistry and Chemical Processing Tech Kocaeli University Kocaeli Turkey
| |
Collapse
|
39
|
A Review of Fabrication Methods, Properties and Applications of Superhydrophobic Metals. Processes (Basel) 2021. [DOI: 10.3390/pr9040666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrophobicity and superhydrophobicity with self-cleaning properties are well-known characteristics of several natural surfaces, such as the leaves of the sacred lotus plant (Nelumbo nucifera). To achieve a superhydrophobic state, micro- and nanometer scale topography should be realized on a low surface energy material, or a low surface energy coating should be deposited on top of the micro-nano topography if the material is inherently hydrophilic. Tailoring the surface chemistry and topography to control the wetting properties between extreme wetting states enables a palette of functionalities, such as self-cleaning, antifogging, anti-biofouling etc. A variety of surface topographies have been realized in polymers, ceramics, and metals. Metallic surfaces are particularly important in several engineering applications (e.g., naval, aircrafts, buildings, automobile) and their transformation to superhydrophobic can provide additional functionalities, such as corrosion protection, drag reduction, and anti-icing properties. This review paper focuses on the recent advances on superhydrophobic metals and alloys which can be applicable in real life applications and aims to provide an overview of the most promising methods to achieve sustainable superhydrophobicity.
Collapse
|
40
|
Bagrov D, Perunova S, Pavlova E, Klinov D. Wetting of electrospun nylon-11 fibers and mats. RSC Adv 2021; 11:11373-11379. [PMID: 35423606 PMCID: PMC8695991 DOI: 10.1039/d0ra10788c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
Wetting of electrospun mats plays a huge role in tissue engineering and filtration applications. However, it is challenging to trace the interrelation between the wetting of individual nano-sized fibers and the macroscopic electrospun mat. Here we measured the wetting of different nylon-11 samples – solution-cast films, electrospun fibers deposited onto a substrate, and free-standing mats. With electrospun nylon-11 on aluminium foil, we traced the dependence of the wetting contact angle on the fibers' surface density (substrate coverage). When the coverage was low, the contact angle increased almost linearly with it. At ∼17–20% coverage, the contact angle achieved its maximum of 124 ± 7°, which matched the contact angle of a non-woven electrospun mat, 126 ± 2°. Our results highlight the importance of the outermost layer of fibers for the wetting of electrospun mats. When the surface density of electrospun nylon-11 fibers on aluminium increases, it causes a two-stage change in the wetting behaviour.![]()
Collapse
Affiliation(s)
- Dmitry Bagrov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency 1a Malaya Pirogovskaya Street 119435 Moscow Russian Federation .,Lomonosov Moscow State University, Faculty of Biology Leninskie Gory 1-12 119234 Moscow Russian Federation
| | - Svetlana Perunova
- National University of Science and Technology MISiS Leninskiy Prospect 4 Moscow 119049 Russian Federation
| | - Elizaveta Pavlova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency 1a Malaya Pirogovskaya Street 119435 Moscow Russian Federation .,Moscow Institute of Physics and Technology 9 Institutsky Per., Dolgoprudny 141700 Moscow Region Russian Federation
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency 1a Malaya Pirogovskaya Street 119435 Moscow Russian Federation
| |
Collapse
|
41
|
Electrospinning Janus Nanofibrous Membrane for Unidirectional Liquid Penetration and Its Applications. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0010-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Zheng K, Zhu J, Liu H, Zhang X, Wang E. Study on the Superhydrophobic Properties of an Epoxy Resin-Hydrogenated Silicone Oil Bulk Material Prepared by Sol-Gel Methods. MATERIALS 2021; 14:ma14040988. [PMID: 33669880 PMCID: PMC7923260 DOI: 10.3390/ma14040988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
A superhydrophobic material was prepared by a simple and easily accessed sol-gel method using epoxy resin (E-51) and γ-aminopropyltriethoxysilane (KH-550) as the precursors, aqueous ammonia (NH4OH) as the catalyst and hydrogenated silicone oil (PMHS) as the hydrophobic modifier, and then pelleting the final product. The morphologies, surface chemical properties and thermal stability of the superhydrophobic bulk materials were characterized by scanning electron microscopy, Fourier infrared spectrometry and thermal analyzer. The hydrophobic properties and repairability of the as-prepared materials were also studied. The results showed that the prepared epoxy resin-hydrogenated silicone oil bulk materials were composed of tightly bound nanoparticles with a size of 50–100 nm in diameter. The material showed excellent superhydrophobic properties with a surface contact angle of 152°. The material also had good thermal resistance with a heat-resistant temperature of 300 °C and showed good repairability. The epoxy resin-hydrogenated silicone oil bulk superhydrophobic material exhibited excellent performance and showed wide application prospects.
Collapse
Affiliation(s)
- Kui Zheng
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010, China
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China; (H.L.); (X.Z.)
- Correspondence: (K.Z.); (E.W.)
| | - Jie Zhu
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Haifeng Liu
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China; (H.L.); (X.Z.)
| | - Xingquan Zhang
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China; (H.L.); (X.Z.)
| | - Enze Wang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010, China
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- Correspondence: (K.Z.); (E.W.)
| |
Collapse
|
43
|
Su R, Li S, Wu W, Song C, Liu G, Yu Y. Recent progress in electrospun nanofibrous membranes for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Baig N, Saleh TA. Photochemically Produced Superhydrophobic Silane@polystyrene-Coated Polypropylene Fibrous Network for Oil/Water Separation. Chem Asian J 2021; 16:329-341. [PMID: 33453081 DOI: 10.1002/asia.202001368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Cost-effective separation of oil and immiscible organic contaminants from water has become an urgent challenge to protect aquatic and human life from devastating effects. Therefore, it has become imperative to develop super-selective materials for efficiently separating oil from water. In this work, a superhydrophobic surface has been formed that consists of a silane@polystyrene-coated polypropylene fibrous network (silane@PS-PPF) for efficient separation of accidentally spilled oil from water. The superhydrophobic PPFs were designed by a simple, cost-effective two-step process that includes photochemically controlled polymerization of styrene and subsequent dip coating in octadecyltrichlorosilane solution. The hydrophobic surface (CA=129°±4°) of the PS coated PPF after treating with silane was turned into a superhydrophobic body (CA=161°±2°). The achieved silane@PS-PPF fibrous network selectively allowed the fast permeation of the oils and non-polar organic liquids by altogether rejecting water during operation. The separation efficiency for various oils from the contaminated water was 96 to 99%, with a high flux in the range of 7606±312 L m-2 h-1 to 9870±151 L m-2 h-1 . Apart from being used as a filter, the silane@PS-PPF was also used as an oil absorber and has shown an absorption capacity in the range of 1185 to 1535% for various oils. We anticipate that the developed silane@PS-PPF, due to its facile synthetic route, cost-effectiveness, and high performance, can be effectively used in oily wastewater treatment and clean-up of large oil spills from water.
Collapse
Affiliation(s)
- Nadeem Baig
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.,Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
45
|
Huang J, Yang M, Zhang H, Zhu J. Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1323-1332. [PMID: 33382573 DOI: 10.1021/acsami.0c16582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superhydrophobicity originating from the "lotus effect" enables novel applications such as self-cleaning, anti-fouling, anti-icing, anti-corrosion, and oil-water separation. However, their real-world applications are hindered by some main shortcomings, especially the organic solvent problem, complex chemical modification of nanoparticles, and poor mechanical stability of obtained surfaces. Here, we report for the first time the solvent-free, chemical modification-free, and mechanically, chemically, and UV robust superhydrophobic powder coatings. The coatings were fabricated by adding commercially available polytetrafluoroethylene (PTFE) particles into powder coatings and by following the regular powder-coating processing route. The formation of such superhydrophobic surfaces was attributed to PTFE particles, which hindered the microscale leveling of powder coatings during curing. Through adjusting the dosage of PTFE, the hydrophobicity of obtained coatings can be tuned in a large range (water contact angle from 92 to 162°). The superhydrophobic coatings exhibited remarkable mechanical robustness against abrasion because of the unique hierarchical micro/nanoscale roughness and low surface energy throughout the coating and the solid lubrication effect of PTFE particles. The coatings also have robustness against chemical corrosion and UV irradiation owing to high bonding energy and chemical inertness of PTFE. Moreover, the coatings show attractive performances including self-cleaning, anti-rain, anti-snow, and anti-icing. With these multifaceted features, such superhydrophobic coatings are promising for outdoor applications. This study also contributes to the preparation of robust superhydrophobic surfaces in an environmentally friendly way.
Collapse
Affiliation(s)
- Jinbao Huang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Marshall Yang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hui Zhang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Jesse Zhu
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| |
Collapse
|
46
|
High Yield Super-Hydrophobic Carbon Nanomaterials Using Cobalt/Iron Co-Catalyst Impregnated on Powder Activated Carbon. Processes (Basel) 2021. [DOI: 10.3390/pr9010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Synthesis of super-hydrophobic carbonaceous materials is gaining a broader interest by the research community due to its versatile application in separation processes, special coating technologies, and membrane distillation. Carbon nanomaterials (CNMs) may exhibit stable super-hydrophobic character due to their unique physio-chemical features which can be further controlled based on customer requirements by optimizing the process variables. This study deals with the application of a bimetallic catalyst composed of iron (Fe) and cobalt (Co) to synthesize CNMs from powder activated carbon as a precursor. The process parameters were optimized to ensure super-hydrophobic surfaces. Chemical vapor deposition was utilized for the growth of carbon nanomaterials. The impact of input variables on the desired output of yield and contact angle was analyzed. The chemical vapor deposition process was optimized using the response surface methodology based on Box-Behnken design. The proportion of the catalysts and reaction time were the three input explanatory variables whereas the desired response variables were selected as the carbon yield (CY) and contact angle (CA). The synthesized super-hydrophobic materials were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetric analysis (TGA), and contact angle analysis. The comprehensive statistical study of the results led to a significant model and optimization. The highest CY (351%) and CA (173°) were obtained at the optimal loading of 2.5% Fe and 2% Mo with a reaction time of 60 min. The images obtained from FESEM and TEM revealed the presence of two types of CNMs including carbon nanofibers and multiwall carbon nanotubes. Thermogravimetric analysis was carried out to observe the temperature degradation profile of the synthesized sample. Raman spectroscopic analysis was also used to observe the proportion of ordered and disordered carbon content inside the synthesized samples. The improved catalytic super-hydrophobic carbon nanostructured materials production process proposed by this study assures the stability and high yield of the product.
Collapse
|
47
|
Li H, Lin X, Wang H. Fabrication and Evaluation of Nano-TiO 2 Superhydrophobic Coating on Asphalt Pavement. MATERIALS 2021; 14:ma14010211. [PMID: 33406746 PMCID: PMC7795204 DOI: 10.3390/ma14010211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022]
Abstract
In order to address water damage of asphalt pavement, reduce the occurrence of water-related potholes, deformation, and other diseases, and improve the performance and service life of the pavement, a nano-TiO2 superhydrophobic coating (PSC) on asphalt pavement was prepared from waterborne polyurethane and nano-TiO2 modified by stearic acid. FT-IR measured stearic acid successfully modified low surface energy substance on the surface of nano-TiO2. The SEM image shows that the PSC has a rough surface structure. The contact angle and rolling angle of the PSC in the contact angle test are 153.5° and 4.7°, respectively. PSC has a super-hydrophobic ability, which can improve the water stability of the asphalt mixture. Although the texture depth and pendulum value have been reduced by 2.5% and 4.4%, respectively, they all comply with the standard requirements. After the abrasion resistance test, the PSC coating still has a certain hydrophobic ability. These results surface PSC coating can effectively reduce water damage on asphalt pavement, and has considerable application value.
Collapse
|
48
|
Yang Y, Ali N, Bilal M, Khan A, Ali F, Mao P, Ni L, Gao X, Hong K, Rasool K, Iqbal HM. Robust membranes with tunable functionalities for sustainable oil/water separation. J Mol Liq 2021; 321:114701. [DOI: 10.1016/j.molliq.2020.114701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Qiu Z, Yin B, Wang J, Sun J, Tong Y, Li L, Wang R. Theoretical and experimental studies of sol–gel electrodeposition on magnesium alloy. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zhaozhong Qiu
- Center for Biomedical Materials and Engineering Harbin Engineering University Harbin China
- School of Materials and Chemical Engineering Xuzhou University of Technology Xuzhou China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Bo Yin
- School of Materials Science and Engineering Heilongjiang University of Science and Technology Harbin China
| | - Jianyong Wang
- School of Materials Science and Engineering Heilongjiang University of Science and Technology Harbin China
| | - Jia Sun
- School of Materials and Chemical Engineering Xuzhou University of Technology Xuzhou China
| | - Yunxiang Tong
- Center for Biomedical Materials and Engineering Harbin Engineering University Harbin China
| | - Li Li
- Center for Biomedical Materials and Engineering Harbin Engineering University Harbin China
| | - Rui Wang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| |
Collapse
|
50
|
Cai J, Liu Z, Guo F. Transport Analysis of Anti-Wetting Composite Fibrous Membranes for Membrane Distillation. MEMBRANES 2020; 11:14. [PMID: 33374163 PMCID: PMC7823856 DOI: 10.3390/membranes11010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/26/2023]
Abstract
Composite electrospun fibrous membranes are widely studied for the application of membrane distillation. It is an effective approach to enhance the membrane distillation performance in terms of anti-wetting surface and permeate flux by fabricating composite fibrous membranes (CFMs) with a thin skin layer on a thick supporting layer. In this work, various membranes prepared with different pore sizes and porosities by polyacrylonitrile and polyvinylpyrrolidone were prepared. The membrane characteristics and membrane distillation performance were tested. The mass transfer across the membranes was analyzed experimentally and theoretically in detail. It is shown that the skin layer significantly increases liquid entry pressure of the CFM by 5 times. All the membranes have a similar permeate flux. The permeate flux of membranes is stable at 19.2 ± 1.2 kg/m2/h, and the salt rejection ratios remain above 99.98% at 78 ± 1 °C for 11 h. The pore size and porosity of membranes have an insignificant effect on the temperature distribution of membrane. The porosity and pore size of the skin layer have an insignificant effect on the mass transfer process of the CFM. The mass transfer process of the CFM is governed by the supporting layer.
Collapse
Affiliation(s)
| | | | - Fei Guo
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China; (J.C.); (Z.L.)
| |
Collapse
|