1
|
Chen S, Lai J, Chen J, Zheng L, Wang M. 3D printed gelatin/PTMC core/shell scaffolds with NIR laser-tuned drug/biomolecule release for cancer therapy and uterine regeneration. Int J Biol Macromol 2024; 283:137193. [PMID: 39500434 DOI: 10.1016/j.ijbiomac.2024.137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Surgical resection is an efficient treatment for cancerous tissues and uterine fibroids in the women uterus. However, the insufficiency of clinical interventions could result in tumor recurrence, and the defective tissues remained would cause intrauterine adhesions (IUAs) and further affect reproduction capacity. In this study, 3D printed hydrogel/poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short) core/shell scaffolds with NIR-tuned doxorubicin hydrochloride (DOX) and estradiol (E2) dual release were designed and fabricated for cancer therapy and uterine regeneration. Gelatin (Gel) and DOX were homogeneously mixed and then 3D printed to form Gel-DOX scaffolds. Gel-DOX scaffolds were then immersed in PTMC-PDA@E2 solution to fabricate Gel-DOX/PTMC-PDA@E2 core/shell scaffolds. Consequently, Gel-DOX/PTMC-PDA@E2 scaffolds could release DOX and E2 in a chronological manner, firstly delivering DOX assisted by phototherapy (PTT) to effectively kill Hela cells and then sustainably releasing E2 to promote uterine tissue regeneration. In vitro experiments showed that core/shell scaffolds exhibited excellent anticancer efficiency through the synergy of DOX release and hyperthermia ablation. Moreover, E2 could be sustainably released for over 28 days in vitro to promote the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). The novel Gel-DOX/PTMC-PDA@E2 core/shell scaffolds have therefore exhibited potential promise for the treatment of cancer therapy and uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jiahui Lai
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jizhuo Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Liwu Zheng
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong Special Administrative Region of China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Green K, Kulkarni AS, Jankoski PE, Newton TB, Derbigny B, Clemons TD, Watkins DL, Morgan SE. Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties. Biomacromolecules 2024; 25:6681-6692. [PMID: 39276065 PMCID: PMC11480976 DOI: 10.1021/acs.biomac.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/16/2024]
Abstract
The self-assembly of Janus-type amphiphilic hybrid block copolymers composed of hydrophilic/hydrophobic layers has shown promise for drug encapsulation and delivery. Saccharides have previously been incorporated to improve the biocompatibility of self-assembled structures; however, glycopolymer block copolymers have been less explored, and their structure-property relationships are not well understood. In this study, novel glycopolymer-branched poly(lactic acid) (PLA) block copolymers were synthesized via thiol-ene coupling and their composition-dependent morphologies were elucidated. Stability as a function of pH, dye uptake capabilities, and cytotoxicity were evaluated. Systems with a hydrophilic weight ratio of 30% were found to produce bilayer nanoparticles, while systems with a hydrophilic weight ratio of 60% form micelles upon self-assembly in aqueous media. Regardless of composition and morphology, all systems exhibited uptake of both hydrophobic (curcumin, DL % from 4.25 to 11.55) and hydrophilic (methyl orange, DL % from 4.08 to 5.88) dye molecules with release profiles dependent on composition. Furthermore, all of the nanoparticles exhibited low cytotoxicity, confirming their potential for biomedical applications.
Collapse
Affiliation(s)
- Kevin
A. Green
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Anuja S. Kulkarni
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Penelope E. Jankoski
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Thomas B. Newton
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Blaine Derbigny
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Tristan D. Clemons
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| | - Davita L. Watkins
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Sarah E. Morgan
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi, Hattiesburg 39406, United States
| |
Collapse
|
3
|
Tong R, Wang B, Xiao N, Yang S, Xing Y, Wang Y, Xing B. Selection of engineered degradation method to remove microplastics from aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176281. [PMID: 39278507 DOI: 10.1016/j.scitotenv.2024.176281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) in the aquatic environment are difficult to degrade naturally due to their hydrophobicity and structure. A variety of engineered degradation methods were developed to treat MPs contamination in the aquatic environment. Current reviews of MPs degradation methods only provided an inventory but lacked systematic comparisons and application recommendations. However, selecting suitable degradation methods for different types of MPs contamination may be more effective. This work examined the present engineered degradation methods for MPs in the aquatic environment. They were categorized into chemical degradation, biodegradation, thermal degradation and photodegradation. These degradation methods were systematically summarized in terms of degradation efficiency, technical limitations and production of environmental hazards. Also, the potential influences of different environmental factors and media on degradation were analyzed, and the selection of degradation methods were suggested from the perspectives of contamination types and degradation mechanisms. Finally, the development trend and challenges for studying MPs engineered degradation were proposed. This work will contribute to a better selection of customized degradation methods for different types of MPs contamination scenarios in aquatic environments.
Collapse
Affiliation(s)
- Ruizhen Tong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Wang
- Shaanxi Geomatics Center, Ministry of Natural Resources, Xi'an, Shaanxi 710054, China.
| | - Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Shuo Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Xing
- Shaanxi Environmental Monitoring Center, Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710054, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
4
|
Wang L, Yong LX, Loo SCJ. Utilizing Food Waste in 3D-Printed PLA Formulations to Achieve Sustainable and Customizable Controlled Delivery Systems. ACS OMEGA 2024; 9:34140-34150. [PMID: 39130598 PMCID: PMC11307293 DOI: 10.1021/acsomega.4c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
This is the first study that explores blending polylactic acid (PLA) with various biomasses, including food wastes-brewer's spent grain (BSG), spent coffee grounds (SCG), sesame cake (SC), and thermoplastic starch (TPS) biomass to create composite gastric floating drug delivery systems (GFDDS) through 3D printing. The aim is to investigate the influence of biomass percentage, biomass type, and printing parameters on their corresponding drug release profiles. 3D-printed (3DP) composite filaments were prepared by blending biomasses and PLA before in vitro drug release studies were performed using hydrophilic and hydrophobic model drugs, metoprolol tartrate (MT), and risperidone (RIS). The data revealed that release profiles were influenced by composite compositions and wall thicknesses of 3DP GFDDS capsules. Up to 15% of food waste could be blended with PLA for all food waste types tested. Delivery studies for PLA-food wastes found that MT was fully released by 4 h, exhibiting burst release profiles after a lag time of 0.5 to 1.5 h, and RIS could achieve a sustained release profile of approximately 48 h. PLA-TPS was utilized as a comparison and demonstrated variable release profiles ranging from 8 to 120 h, depending on the TPS content. The results demonstrated the potential for adjusting drug release profiles by incorporating affordable biomasses into GFDDS. This study presents a promising direction for creating delivery systems that are sustainable, customizable, and cost-effective, utilizing sustainable materials that can also be employed for agricultural, nutraceutical, personal care, and wastewater treatment applications.
Collapse
Affiliation(s)
- Liwen Wang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ling Xin Yong
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang
Drive, 636921 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
5
|
Srivastava P, Saji J, Manickam N. Biodegradation of polyethylene terephthalate (PET) by Brucella intermedia IITR130 and its proposed metabolic pathway. Biodegradation 2024; 35:671-685. [PMID: 38459363 DOI: 10.1007/s10532-024-10070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/18/2024] [Indexed: 03/10/2024]
Abstract
Accumulation of polyethylene terephthalate (PET) polyester in ecosystems across the globe is a major pollution of concern. Microbial degradation recently generated novel insights into the biodegradation of varieties of plastics. In this study, a PET degrading bacterium Brucella intermedia IITR130 was isolated from a contaminated lake ecosystem at Pallikaranai, Chennai, India. Incubation of the bacterium along with the PET sheet (0.1 mm thickness) for 60 days resulted in 26.06% degradation, indicating a half-life of 137.8 days. Considerable changes in the surface morphology of the PET sheet were found as holes, pits, and cracks on incubation with strain IITR130, as revealed by scanning electron microscopy (SEM). After bacterial treatment of PET, the formation of new functional groups, most notably in the area of 3326 cm-1 suggestive of O-H stretch, leading to carboxylic acid and alcohol as products were suggested by fourier transform infrared (FTIR) analysis. Monomethyl terephthalate (MMT) and terephthalic acid (TPA) were identified by gas chromatography-mass spectrometry (GC-MS) analysis as PET degradation metabolites. Tributyrin clearance assay confirmed the presence of a lipase/esterase enzyme in the strain IITR130. In this study, a degradation pathway for PET by an isolated and identified bacterium Brucella intermedia IITR130 was characterized in detail.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Joel Saji
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Hallstein J, Metzsch-Zilligen E, Pfaendner R. Long-Term Thermal Stabilization of Poly(Lactic Acid). MATERIALS (BASEL, SWITZERLAND) 2024; 17:2761. [PMID: 38894026 PMCID: PMC11173481 DOI: 10.3390/ma17112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
To use polylactic acid in demanding technical applications, sufficient long-term thermal stability is required. In this work, the thermal aging of polylactic acid (PLA) in the solid phase at 100 °C and 150 °C is investigated. PLA has only limited aging stability without the addition of stabilizers. Therefore, the degradation mechanism in thermal aging was subsequently investigated in more detail to identify a suitable stabilization strategy. Investigations using nuclear magnetic resonance spectroscopy showed that, contrary to expectations, even under thermal aging conditions, hydrolytic degradation rather than oxidative degradation is the primary degradation mechanism. This was further confirmed by the investigation of suitable stabilizers. While the addition of phenols, phosphites and thioethers as antioxidants leads only to a limited improvement in aging stability, the addition of an additive composition to provide hydrolytic stabilization results in extended durability. Efficient compositions consist of an aziridine-based hydrolysis inhibitor and a hydrotalcite co-stabilizer. At an aging temperature of 100 °C, the time until significant polymer chain degradation occurs is extended from approx. 500 h for unstabilized polylactic acid to over 2000 h for stabilized polylactic acid.
Collapse
Affiliation(s)
| | | | - Rudolf Pfaendner
- Division Plastics, Fraunhofer Institute for Structural Durability and System Reliability LBF, 64289 Darmstadt, Germany; (J.H.); (E.M.-Z.)
| |
Collapse
|
7
|
Jang Y, Jang J, Kim BY, Song YS, Lee DY. Effect of Gelatin Content on Degradation Behavior of PLLA/Gelatin Hybrid Membranes. Tissue Eng Regen Med 2024; 21:557-569. [PMID: 38483778 PMCID: PMC11087404 DOI: 10.1007/s13770-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Poly(L-lactic acid) (PLLA) is a biodegradable polymer (BP) that replaces conventional petroleum-based polymers. The hydrophobicity of biodegradable PLLA periodontal barrier membrane in wet state can be solved by alloying it with natural polymers. Alloying PLLA with gelatin imparts wet mechanical properties, hydrophilicity, shrinkage, degradability and biocompatibility to the polymeric matrix. METHODS To investigate membrane performance in the wet state, PLLA/gelatin membranes were synthesized by varying the gelatin concentration from 0 to 80 wt%. The membrane was prepared by electrospinning. RESULTS At the macroscopic scale, PLLA containing gelatin can tune the wet mechanical properties, hydrophilicity, water uptake capacity (WUC), degradability and biocompatibility of PLLA/gelatin membranes. As the gelatin content increased from 0 to 80 wt%, the dry tensile strength of the membranes increased from 6.4 to 38.9 MPa and the dry strain at break decreased from 1.7 to 0.19. PLLA/gelatin membranes with a gelatin content exceeding 40% showed excellent biocompatibility and hydrophilicity. However, dimensional change (37.5% after 7 days of soaking), poor tensile stress in wet state (3.48 MPa) and rapid degradation rate (73.7%) were observed. The highest WUC, hydrophilicity, porosity, suitable mechanical properties and biocompatibility were observed for the PLLA/40% gelatin membrane. CONCLUSION PLLA/gelatin membranes with gelatin content less than 40% are suitable as barrier membranes for absorbable periodontal tissue regeneration due to their tunable wet mechanical properties, degradability, biocompatibility and lack of dimensional changes.
Collapse
Affiliation(s)
- Yunyoung Jang
- Department of Biomedical Engineering, Daelim University, 29 Imgok-ro, Dongan-gu, Anyang, 13916, South Korea
- Department of R&D Center, Renewmedical Co., Ltd., 28-7 Jeongju-ro, Bucheon, 14532, South Korea
| | - Juwoong Jang
- Department of R&D Center, Renewmedical Co., Ltd., 28-7 Jeongju-ro, Bucheon, 14532, South Korea
| | - Bae-Yeon Kim
- Department of Materials Science and Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea
| | - Yo-Seung Song
- Department of Materials Science and Engineering, Korea Aviation University, 76 Hanggongdaehak-ro, Dukyang-gu, Goyang, 10540, South Korea.
| | - Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, 29 Imgok-ro, Dongan-gu, Anyang, 13916, South Korea.
- Department of R&D Center, Hass Co., Ltd, 60 Haan-ro, Gwangmyeong, 14322, South Korea.
| |
Collapse
|
8
|
Munhoz DR, Meng K, Wang L, Lwanga EH, Geissen V, Harkes P. Exploring the potential of earthworm gut bacteria for plastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172175. [PMID: 38575018 DOI: 10.1016/j.scitotenv.2024.172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain-plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain-plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature ("room temperature" & "30 °C"), carbon source ("carbon-free" & "low carbon supply"), and strain interactions ("single strains" & "strain mixtures") on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.
Collapse
Affiliation(s)
- Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Ke Meng
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Lang Wang
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands; Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av Polígono s/n, Cd. Industrial, Lerma, Campeche, Mexico
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
9
|
Brió Pérez M, Wurm FR, de Beer S. On the Road to Circular Polymer Brushes: Challenges and Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7249-7256. [PMID: 38556745 PMCID: PMC11008239 DOI: 10.1021/acs.langmuir.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Polymer brushes are unique surface coatings that have been of high interest in research for the past decades due to their covalent tethering to surfaces and the broad spectrum of polymers that can be grafted to or grafted from various surfaces. Modification of surfaces with brushes may provide lubricious and/or antifouling properties, and they can also potentially be used in many application fields due to their high responsiveness toward certain stimuli. Generally, polymer brushes are long-lasting coatings, while their end-of-life has to date largely been neglected. Therefore, it is important to consider additional design methodologies to produce circular brushes, which will degrade after a certain period of time such that surfaces can be reused, and the potentially obtained monomers may be used again to synthesize new brushes. In this Perspective, we aim to tackle and understand the challenges to translate the knowledge on degradation and chemical recycling of bulk polymers toward circular polymer brushes. We summarized the recent developments on (bio)degradable polymer brushes and the challenges that are to be tackled toward their potential implementation as circular coatings.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
10
|
Ma Y, Zhang R, Mao X, Li X, Li T, Liang F, He J, Wen L, Wang W, Li X, Zhang Y, Yu H, Lu B, Yu T, Ao Q. Preparation of PLCL/ECM nerve conduits by electrostatic spinning technique and evaluation in vitroand in vivo. J Neural Eng 2024; 21:026028. [PMID: 38572924 DOI: 10.1088/1741-2552/ad3851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Yizhan Ma
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Runze Zhang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiaoyan Mao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- China (Nanchang) Intellectual Property Protection Center, Nanchang, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Fang Liang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jing He
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Lili Wen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Weizuo Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Yanhui Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Honghao Yu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Binhan Lu
- School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People's Republic of China
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
11
|
Li X, Li G, Wang J, Li X, Yang Y, Song D. Elucidating polyethylene microplastic degradation mechanisms and metabolic pathways via iron-enhanced microbiota dynamics in marine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133655. [PMID: 38310843 DOI: 10.1016/j.jhazmat.2024.133655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
The extensive use of plastics has given rise to microplastics, a novel environmental contaminant that has sparked considerable ecological and environmental concerns. Biodegradation offers a more environmentally friendly approach to eliminating microplastics, but their degradation by marine microbial communities has received little attention. In this study, we used iron-enhanced marine sediment to augment the natural bacterial community and facilitate the decomposition of polyethylene (PE) microplastics. The introduction of iron-enhanced sediment engendered an augmented bacterial biofilm formation on the surface of polyethylene (PE), thereby leading to a more pronounced degradation effect. This novel observation has been ascribed to the oxidative stress-induced generation of a variety of oxygenated functional groups, including hydroxyl (-OH), carbonyl (-CO), and ether (-C-O) moieties, within the microplastic substrate. The analysis of succession in the community structure of sediment bacteria during the degradation phase disclosed that Acinetobacter and Pseudomonas emerged as the principal bacterial players in PE degradation. These taxa were directly implicated in oxidative metabolic pathways facilitated by diverse oxidase enzymes under iron-facilitated conditions. The present study highlights bacterial community succession as a new pivotal factor influencing the complex biodegradation dynamics of polyethylene (PE) microplastics. This investigation also reveals, for the first time, a unique degradation pathway for PE microplastics orchestrated by the multifaceted marine sediment microbiota. These novel insights shed light on the unique functional capabilities and internal biochemical mechanisms employed by the marine sediment microbiota in effectively degrading polyethylene microplastics.
Collapse
Affiliation(s)
- Xionge Li
- College of Marine and Environmental, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guangbi Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaxin Wang
- College of Marine and Environmental, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinyi Li
- College of Marine and Environmental, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuru Yang
- College of Marine and Environmental, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Donghui Song
- College of Marine and Environmental, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, China.
| |
Collapse
|
12
|
Hallstein J, Metzsch-Zilligen E, Pfaendner R. Enhancing the Hydrolytic Stability of Poly(lactic acid) Using Novel Stabilizer Combinations. Polymers (Basel) 2024; 16:506. [PMID: 38399884 PMCID: PMC10892727 DOI: 10.3390/polym16040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Commercially available poly(lactic acid) exhibits poor hydrolytic stability, which makes it impossible for use in durable applications. Therefore, a novel hydrolysis inhibitor based on an aziridine derivative as well as a novel stabilizer composition, containing an aziridine derivative and an acid scavenger, were investigated to improve the hydrolytic stability. To evaluate the stabilizing effect, the melt volume rate (MVR) and molecular weight were monitored during an accelerated hydrolytic aging in water at elevated temperatures. Temperatures were selected according to the glass transition temperature (~60 °C) of PLA. It was shown that the novel hydrolysis inhibitor as well as the novel stabilizer composition exhibited excellent performance during hydrolytic aging, exceeding commercially available alternatives, e.g., polymeric carbodiimides. A molecular weight analysis resulted in a molecular weight decrease of only 10% during approximately 850 h and up to 20% after 1200 h of hydrolytic aging, whereas poly(lactic acid) stabilized with a commercial polycarbodiimide revealed comparable molecular weight reductions after only 300 h. Furthermore, the stabilization mechanism of the aziridine derivative alone, as well as in the synergistic combination with the acid scavenger (calcium hydrotalcite), was investigated using nuclear magnetic resonance (NMR) spectroscopy. In addition to an improved hydrolytic stability, the thermal properties were also enhanced compared to polymeric carbodiimides.
Collapse
Affiliation(s)
| | | | - Rudolf Pfaendner
- Fraunhofer Institute for Structural Durability and System Reliability LBF, Division Plastics, 64289 Darmstadt, Germany; (J.H.); (E.M.-Z.)
| |
Collapse
|
13
|
Soo XYD, Jia L, Lim QF, Chua MH, Wang S, Hui HK, See JMR, Chen Y, Li J, Wei F, Tomczak N, Kong J, Loh XJ, Fei X, Zhu Q. Hydrolytic degradation and biodegradation of polylactic acid electrospun fibers. CHEMOSPHERE 2024; 350:141186. [PMID: 38215833 DOI: 10.1016/j.chemosphere.2024.141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Increased use of bioplastics, such as polylactic acid (PLA), helps in reducing greenhouse gas emissions, decreases energy consumption and lowers pollution, but its degradation efficiency has much room for improvement. The degradation rate of electrospun PLA fibers of varying diameters ranging from 0.15 to 1.33 μm is measured during hydrolytic degradation under different pH from 5.5 to 10, and during aerobic biodegradation in seawater supplemented with activated sewage sludge. In hydrolytic conditions, varying PLA fiber diameter had significant influence over percentage weight loss (W%L), where faster degradation was achieved for PLA fibers with smaller diameter. W%L was greatest for PLA-5 > PLA-12 > PLA-16 > PLA-20, with average W%L at 30.7%, 27.8%, 17.2% and 14.3% respectively. While different pH environment does not have a significant influence on PLA degradation, with W%L only slightly higher for basic environments. Similarly biodegradation displayed faster degradation for small diameter fibers with PLA-5 attaining the highest degree of biodegradation at 22.8% after 90 days. Hydrolytic degradation resulted in no significant structural change, while biodegradation resulted in significant hydroxyl end capping products on the PLA surface. Scanning electron microscopy (SEM) imaging of degraded PLA fibers showed a deteriorated morphology of PLA-5 and PLA-12 fibers with increased adhesion structures and irregularly shaped fibers, while a largely unmodified morphology for PLA-16 and PLA-20.
Collapse
Affiliation(s)
- Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Linran Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Hui Kim Hui
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jia Min Regine See
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yunjie Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jiuwei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Fengxia Wei
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore; Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore.
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| |
Collapse
|
14
|
Brió Pérez M, Hempenius MA, de Beer S, Wurm FR. Polyester Brush Coatings for Circularity: Grafting, Degradation, and Repeated Growth. Macromolecules 2023; 56:8856-8865. [PMID: 38024158 PMCID: PMC10653273 DOI: 10.1021/acs.macromol.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Polymer brushes are widely used as versatile surface modifications. However, most of them are designed to be long-lasting by using nonbiodegradable materials. This generates additional plastic waste and hinders the reusability of substrates. To address this, we present a synthetic strategy for grafting degradable polymer brushes via organocatalytic surface-initiated ring-opening polymerization (SI-ROP) from stable PGMA-based macroinitiators. This yields polyester brush coatings (up to 50 nm in thickness) that hydrolyze with controlled patterns and can be regrown on the same substrate after degradation. We chose polyesters of different hydrolytic stability and degradation mechanism, i.e., poly(lactic acid) (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB), which are grown from poly(glycidyl methacrylate) (PGMA)-based macroinitiators for strong surface binding and initiating site reuse. Brush degradation is monitored via thickness changes in pH-varied buffer solutions and seawater with PHB brushes showing rapid degradation in all solutions. PLA and PCL brushes show higher stability in solutions of up to pH 8, while all coatings fully degrade after 14 days in seawater. These brushes offer surface modifications with well-defined degradation patterns that can be regrown after degradation, making them an interesting alternative to (meth)acrylate-based, nondegradable polymers brushes.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mark A. Hempenius
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
15
|
Cho Y, Jeong H, Kim B, Jang J, Song YS, Lee DY. Electrospun Poly(L-Lactic Acid)/Gelatin Hybrid Polymer as a Barrier to Periodontal Tissue Regeneration. Polymers (Basel) 2023; 15:3844. [PMID: 37765697 PMCID: PMC10537136 DOI: 10.3390/polym15183844] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Poly(L-lactic acid) (PLLA) and PLLA/gelatin polymers were prepared via electrospinning to evaluate the effect of PLLA and gelatin content on the mechanical properties, water uptake capacity (WUC), water contact angle (WCA), degradation rate, cytotoxicity and cell proliferation of membranes. As the PLLA concentration increased from 1 wt% to 3 wt%, the tensile strength increased from 5.8 MPa to 9.1 MPa but decreased to 7.0 MPa with 4 wt% PLLA doping. The WUC decreased rapidly from 594% to 236% as the PLLA content increased from 1 to 4 wt% due to the increased hydrophobicity of PLLA. As the gelatin content was increased to 3 wt% PLLA, the strength, WUC and WCA of the PLLA/gelatin membrane changed from 9.1 ± 0.9 MPa to 13.3 ± 2.3 MPa, from 329% to 1248% and from 127 ± 1.2° to 0°, respectively, with increasing gelatin content from 0 to 40 wt%. However, the failure strain decreased from 3.0 to 0.5. The biodegradability of the PLLA/gelatin blend increased from 3 to 38% as the gelatin content increased to 40 wt%. The viability of L-929 and MG-63 cells in the PLLA/gelatin blend was over 95%, and the excellent cell proliferation and mechanical properties suggested that the tunable PLLA/gelatin barrier membrane was well suited for absorbable periodontal tissue regeneration.
Collapse
Affiliation(s)
- Youngchae Cho
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Heeseok Jeong
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Baeyeon Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Juwoong Jang
- Department of R&D Center, Renewmedical Co., Ltd., Bucheon 14532, Republic of Korea;
| | - Yo-Seung Song
- Department of Materials Science and Engineering, Korea Aviation University, Goyang 10540, Republic of Korea;
| | - Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| |
Collapse
|
16
|
Xiang P, Zhang Y, Zhang T, Wu Q, Zhao C, Li Q. A novel bacterial combination for efficient degradation of polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131856. [PMID: 37331064 DOI: 10.1016/j.jhazmat.2023.131856] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
This study aimed to investigate the combined decomposition of polystyrene (PS) microplastics using three bacterial cultures: Stenotrophomonas maltophilia, Bacillus velezensis, and Acinetobacter radioresistens. The ability of all three strains to grow on medium containing PS (Mn 90,000 Da, Mw 241,200 Da) microplastics as the sole carbon source was examined. After 60 days of A. radioresistens treatment, the maximum weight loss of the PS microplastics was found to be 16.7 ± 0.6% (half-life 251.1 d). After 60 days of treatment with S. maltophilia and B. velezensis, the maximum weight loss of PS microplastics was 43.5 ± 0.8% (half-life 74.9 d). After 60 days of treatment with S. maltophilia, B. velezensis, and A. radioresistens, the weight loss of the PS microplastics was 17.0 ± 0.2% (half-life 224.2 d). The S. maltophilia and B. velezensis treatment showed a more significant degradation effect after 60 days. This result was attributed to interspecific assistance and interspecific competition. Biodegradation of PS microplastics was confirmed using scanning electron microscopy, water contact angle, high-temperature gel chromatography, Fourier transform infrared spectroscopy and thermogravimetric analysis. This study is the first to explore the degradation ability of different bacterial combinations on PS microplastics, providing a reference for future research on the biodegradation technology of mixed bacteria.
Collapse
Affiliation(s)
- Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China; School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Chmal-Fudali E, Basińska D, Kucharska-Jastrząbek A, Struszczyk MH, Muzalewska M, Wyleżoł M, Wątrobiński M, Andrzejewski J, Tarzyńska N, Gzyra-Jagieła K. Effect of the Advanced Cranial and Craniofacial Implant Fabrication on Their Degradation Affinity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6070. [PMID: 37687763 PMCID: PMC10488726 DOI: 10.3390/ma16176070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Biodegradable craniofacial and cranial implants are a new aspect in terms of reducing potential complications, especially in the long term after surgery. They are also an important contribution in the field of surgical reconstructions for children, for whom it is important to restore natural bone in a relatively short time, due to the continuous growth of bones. The aim of this study was to verify the impact of the technology on biodegradability and to estimate the risk of inappropriate implant resorption time, which is an important aspect necessary to select prototypes of implants for in vivo testing. Prototypes of implants were made using two technologies: 3D printing using a PLDLA: poly(L-co-D,L lactide) (PLDLA) filament containing hydroxyapatite nanoparticles, and injection using PLDLA. After the radiation sterilization process, they were subjected to in vitro degradation under accelerated conditions. As part of this study, the in vitro degradation of newly developed biodegradable implant technologies was assessed in accordance with the guidelines of European standards. It was found that the implant manufacturing process had a significant impact on the degradation time under simulated conditions in various media. Implants made using the injection technique were characterized by lower susceptibility to degradation media compared to the 3D-printed implant under accelerated conditions.
Collapse
Affiliation(s)
- Edyta Chmal-Fudali
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Daria Basińska
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Agnieszka Kucharska-Jastrząbek
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Marcin H. Struszczyk
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Małgorzata Muzalewska
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland; (M.M.); (M.W.)
| | - Marek Wyleżoł
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland; (M.M.); (M.W.)
| | | | - Jacek Andrzejewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland;
| | - Nina Tarzyńska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (N.T.); (K.G.-J.)
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (N.T.); (K.G.-J.)
| |
Collapse
|
18
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
19
|
Gonciarz W, Chmiela M, Kost B, Piątczak E, Brzeziński M. Stereocomplexed microparticles loaded with Salvia cadmica Boiss. extracts for enhancement of immune response towards Helicobacter pylori. Sci Rep 2023; 13:7039. [PMID: 37120681 PMCID: PMC10148839 DOI: 10.1038/s41598-023-34321-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Controlled delivery of therapeutic substance gives numerous advantages (prevents degradation, improves uptake, sustains concentration, lowers side effects). To encapsulate Salvia cadmica extracts (root or aerial part), enriched with polyphenols with immunomodulatory activity, in stereocomplexed microparticles (sc-PLA), for using them to enhance the immune response towards gastric pathogen Helicobacter pylori. Microparticles were made of biodegradable poly(lactic acid) (PLA) and poly(D-lactic acid) (PDLA). Their stereocomplexation was used to form microspheres and enhance the stability of the obtained particles in acidic/basic pH. The release of Salvia cadmica extracts was done in different pH (5.5, 7.4 and 8.0). The obtained polymers are safe in vitro and in vivo (guinea pig model). The sc-PLA microparticles release of S. cadmica extracts in pH 5.5, 7.4, and 8.0. S. cadmica extracts enhanced the phagocytic activity of guinea pig bone marrow-derived macrophages, which was diminished by H. pylori, and neutralized H. pylori driven enhanced production of tumor necrosis factor (TNF)-α and interleukin (IL)-10. The sc-PLA encapsulated S. cadmica extracts can be recommended for further in vivo study in guinea pigs infected with H. pylori to confirm their ability to improve an immune response towards this pathogen.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| |
Collapse
|
20
|
Romeo A, Kazsoki A, Omer S, Pinke B, Mészáros L, Musumeci T, Zelkó R. Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics 2023; 15:pharmaceutics15041296. [PMID: 37111782 PMCID: PMC10143234 DOI: 10.3390/pharmaceutics15041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The poor ocular bioavailability of melatonin (MEL) limits the therapeutic action the molecule could exert in the treatment of ocular diseases. To date, no study has explored the use of nanofiber-based inserts to prolong ocular surface contact time and improve MEL delivery. Here, the electrospinning technique was proposed to prepare poly (vinyl alcohol) (PVA) and poly (lactic acid) (PLA) nanofiber inserts. Both nanofibers were produced with different concentrations of MEL and with or without the addition of Tween® 80. Nanofibers morphology was evaluated by scanning electron microscopy. Thermal and spectroscopic analyses were performed to characterize the state of MEL in the scaffolds. MEL release profiles were observed under simulated physiological conditions (pH 7.4, 37 °C). The swelling behavior was evaluated by a gravimetric method. The results confirmed that submicron-sized nanofibrous structures were obtained with MEL in the amorphous state. Different MEL release rates were achieved depending on the nature of the polymer. Fast (20 min) and complete release was observed for the PVA-based samples, unlike the PLA polymer, which provided slow and controlled MEL release. The addition of Tween® 80 affected the swelling properties of the fibrous structures. Overall, the results suggest that membranes could be an attractive vehicle as a potential alternative to liquid formulations for ocular administration of MEL.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Safaa Omer
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - László Mészáros
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Teresa Musumeci
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- NANOMED-Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| |
Collapse
|
21
|
Han WB, Heo SY, Kim D, Yang SM, Ko GJ, Lee GJ, Kim DJ, Rajaram K, Lee JH, Shin JW, Jang TM, Han S, Kang H, Lim JH, Kim DH, Kim SH, Song YM, Hwang SW. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. SCIENCE ADVANCES 2023; 9:eadf5883. [PMID: 36724224 PMCID: PMC9891689 DOI: 10.1126/sciadv.adf5883] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in passive radiative cooling systems describe a variety of strategies to enhance cooling efficiency, while the integration of such technology with a bioinspired design using biodegradable materials can offer a research opportunity to generate energy in a sustainable manner, favorable for the temperature/climate system of the planet. Here, we introduce stretchable and ecoresorbable radiative cooling/heating systems engineered with zebra stripe-like patterns that enable the generation of a large in-plane temperature gradient for thermoelectric generation. A comprehensive study of materials with theoretical evaluations validates the ability to accomplish the target performances even under external mechanical strains, while all systems eventually disappear under physiological conditions. Use of the zebra print for selective radiative heating demonstrates an unexpected level of temperature difference compared to use of radiative cooling emitters alone, which enables producing energy through resorbable silicon-based thermoelectric devices. The overall result suggests the potential of scalable, ecofriendly renewable energy systems.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Se-Yeon Heo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Donghak Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gil Ju Lee
- Department of Electronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Do Hyeon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
Jang W, Mun SJ, Kim SY, Bong KW. Controlled growth factor delivery via a degradable poly(lactic acid) hydrogel microcarrier synthesized using degassed micromolding lithography. Colloids Surf B Biointerfaces 2023; 222:113088. [PMID: 36577342 DOI: 10.1016/j.colsurfb.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Controlled and targeted delivery of growth factors to biological environments is important for tissue regeneration. Polylactic acid (PLA) hydrogel microparticles are attractive carriers for the delivery of therapeutic cargoes based on their superior biocompatibility and biodegradability, uniform encapsulation of cargoes, and non-requirement of organic solvents during particle synthesis. In this study, we newly present controlled growth factor delivery utilizing PLA-based hydrogel microcarriers synthesized via degassed micromolding lithography (DML). Based on the direct gelation procedure from the single-phase aqueous precursor in DML, bovine serum albumin, a model protein of growth factor, and fibroblast growth factor were encapsulated into microparticles with uniform distribution. In addition, by tuning the monomer concentration and adding a hydrolytically stable crosslinker, the release of encapsulated cargoes was efficiently controlled and extended to 2 weeks. Finally, we demonstrated the biological activity of encapsulated FGF-2 in PLA-based microparticles using a fibroblast proliferation assay.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soung-Yon Kim
- Department of Orthopaedic Surgery, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon-si, Gangwon-do 24289, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
Impact of In Vitro Degradation on the Properties of Samples Produced by Additive Production from PLA/PHB-Based Material and Ceramics. Polymers (Basel) 2022; 14:polym14245441. [PMID: 36559807 PMCID: PMC9783706 DOI: 10.3390/polym14245441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The present study deals with preparing a polymer-based material with incorporated ceramics and monitoring changes in properties after in vitro natural degradation. The developed material is a mixture of polymers of polylactic acid and polyhydroxybutyrate in a ratio of 85:15. Ceramic was incorporated into the prepared material, namely 10% hydroxyapatite and 10% tricalcium phosphate of the total volume. The material was processed into a filament form, and types of solid and porous samples were prepared using additive technology. These samples were immersed in three different solutions: physiological solution, phosphate-buffered saline, and Hanks' solution. Under constant laboratory conditions, changes in solution pH, material absorption, weight loss, changes in mechanical properties, and surface morphology were monitored for 170 days. The average value of the absorption of the solid sample was 7.07%, and the absorption of the porous samples was recorded at 8.33%, which means a difference of 1.26%. The least change in pH from the reference value of 7.4 was noted with the phosphate-buffered saline solution. Computed tomography was used to determine the cross-section of the samples. The obtained data were used to calculate the mechanical properties of materials after degradation. The elasticity modulus for both the full and porous samples degraded in Hanks' solution (524.53 ± 13.4 MPa) has the smallest deviation from the non-degraded reference sample (536.21 ± 22.69 MPa).
Collapse
|
24
|
Graphene Nanoplatelets-Based Textured Polymeric Fibrous Fabrics for the Next-Generation Devices. Polymers (Basel) 2022; 14:polym14245415. [PMID: 36559782 PMCID: PMC9785025 DOI: 10.3390/polym14245415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Graphene is a 2D crystal composed of carbon atoms in a hexagonal arrangement. From their isolation, graphene nanoplatelets (nCD) have revolutionized material science due to their unique properties, and, nowadays, there are countless applications, including drug delivery, biosensors, energy storage, and tissue engineering. Within this work, nCD were combined with PLA, a widely used and clinically relevant thermoplastic polymer, to produce advanced composite texturized electrospun fabric for the next-generation devices. The electrospinning manufacturing process was set-up by virtue of a proper characterization of the composite raw material and its solution. From the morphological point of view, the nCD addition permitted the reduction of the fiber diameter while the texture allowed more aligned fibers. After that, mechanical features of fabrics were tested at RT and upon heating (40 °C, 69 °C), showing the reinforcement action of nCD mainly in the texturized mats at 40 °C. Finally, mats' degradation in simulated physiological fluid was minimal up to 30 d, even if composite mats revealed excellent fluid-handling capability. Moreover, no toxic impurities and degradation products were pointed out during the incubation. This work gains insight on the effects of the combination of composite carbon-based material and texturized fibers to reach highly performing fabrics.
Collapse
|
25
|
Abdurashitov AS, Proshin PI, Sindeeva OA, Sukhorukov GB. Laser Microperforation Assisted Drug-Elution from Biodegradable Films. Pharmaceutics 2022; 14:pharmaceutics14102144. [PMID: 36297579 PMCID: PMC9611648 DOI: 10.3390/pharmaceutics14102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
In a modern high-tech medicine, drug-eluting polymer coatings are actively used to solve a wide range of problems, including the prevention of post-surgery infection, inflammatory, restenosis, thrombosis and many other implant-associated complications. For major assumptions, the drug elution mechanism is considered mainly to be driven by the degradation of the polymer matrix. This process is very environmentally dependent, unpredictable and often leads to a non-linear drug release kinetic. In the present work, we demonstrate how the laser microperforation of cargo-loaded biodegradable films could be used as a tool to achieve zero-order release kinetics with different elution rates. The effects of the laser-induced hole’s diameter (10, 18, 22, 24 µm) and their density (0, 1, 2, 4 per sample) on release kinetic are studied. The linear dynamics of elution was measured for all perforation densities. Release rates were estimated to be 0.018 ± 0.01 µg/day, 0.211 ± 0.08 µg/day, 0.681 ± 0.1 µg/day and 1.19 ± 0.12 µg/day for groups with 0, 1, 2, 4 microperforations, respectively. The role of biodegradation of the polymer matrix is reduced only to the decomposition of the film over time with no major influence on elution rates.
Collapse
Affiliation(s)
- Arkady S. Abdurashitov
- V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skoltech, 121205 Moscow, Russia
- Correspondence:
| | - Pavel I. Proshin
- V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skoltech, 121205 Moscow, Russia
| | - Olga A. Sindeeva
- V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skoltech, 121205 Moscow, Russia
| | - Gleb B. Sukhorukov
- V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skoltech, 121205 Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Siberian State Medical University, Moskovskiy Trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
26
|
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022; 11:3087. [PMID: 36230164 PMCID: PMC9563026 DOI: 10.3390/foods11193087] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Simon Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| | - Ramona Weinrich
- Department of Consumer Behaviour in the Bioeconomy, University of Hohenheim, Wollgrasweg 49, 70599 Stuttgart, Germany
| | - Carsten Herbes
- Institute for International Research on Sustainable Management and Renewable Energy, Nuertingen Geislingen University, Neckarsteige 6-10, 72622 Nuertingen, Germany
| | - Philip B V Scholten
- Bloom Biorenewables, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Department of Food Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Samir Kopacic
- Institute for Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Johanna Lahti
- Sustainable Products and Materials, VTT Technical Research Centre of Finland, Visiokatu 4, 33720 Tampere, Finland
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd 19, 50254 Kaunas, Lithuania
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
27
|
Yang D, Zhu Y, Li J, Yue Z, Zhou J, Wang X. Degradable, antibacterial and ultrathin filtrating electrospinning membranes of Ag-MOFs/poly(l-lactide) for air pollution control and medical protection. Int J Biol Macromol 2022; 212:182-192. [PMID: 35598727 DOI: 10.1016/j.ijbiomac.2022.05.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
The widely used melt-blown polypropylene (PP) non-woven fabrics had no antibacterial functions and its large-scale use also increased the burden on the environment owing to its non-degradable property. Herein, silver (I) metal organic frameworks (Ag-2MI) were prepared with AgNO3 and 2-methylimidazole and embedded into degradable poly(l-lactide) (PLLA) to make an ultrathin filtration and antibacterial membrane by electrospinning technology with low loading of Ag-2MI. The morphology, mechanical properties, adsorption performance and antibacterial activities of the prepared films were tested and the results indicated that the addition of Ag-2MI could reduce the diameter of PLLA fibers from 910 nm to 520 nm (1.8 wt% of Ag-2MI), while the tensile strength, elongation at break of the membrane and the contact angle of the films were enhanced. Although the thickness of the prepared membranes was only about one-third of that of commercially available melt-blown cloth, they exhibited better filtering performances than the melt-blown cloth. The fiber membrane with low loading of 1.8 wt% Ag-2MI showed 99.99% inhibition rate against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Dangsha Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yanyan Zhu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jiangen Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jingheng Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
28
|
Lin Z, Jin T, Zou T, Xu L, Xi B, Xu D, He J, Xiong L, Tang C, Peng J, Zhou Y, Fei J. Current progress on plastic/microplastic degradation: Fact influences and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119159. [PMID: 35304177 DOI: 10.1016/j.envpol.2022.119159] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Plastic pollution, particularly non-degradable residual plastic films and microplastics (MPs), is a serious environmental problem that continues to worsen each year. Numerous studies have characterized the degradation of plastic fragments; however, there is known a lack of about the state of current physicochemical biodegradation methods used for plastics treatment and their degradation efficiency. Therefore, this review explores the effects of different physicochemical factors on plastics/MPs degradation, including mechanical comminution, ultraviolet radiation, high temperature, and pH value. Further, this review discusses different mechanisms of physicochemical degradation and summarizes the degradation efficiency of these factors under various conditions. Additionally, the important role of enzymes in the biodegradation mechanism of plastics/MPs is also discussed. Collectively, the topics discussed in this review provide a solid basis for future research on plastics/MPs degradation methods and their effects.
Collapse
Affiliation(s)
- Zhenyan Lin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; College of Biology and Environmental Science, Jishou University, Jishou, 416000, China
| | - Tuo Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Li Xu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Xi
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Dandan Xu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Jianwu He
- College of Biology and Environmental Science, Jishou University, Jishou, 416000, China
| | - Lizhi Xiong
- College of Biology and Environmental Science, Jishou University, Jishou, 416000, China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jianwei Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jiangchi Fei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
29
|
Jang H, Kwon S, Kim SJ, Park SI. Maleic Anhydride-Grafted PLA Preparation and Characteristics of Compatibilized PLA/PBSeT Blend Films. Int J Mol Sci 2022; 23:ijms23137166. [PMID: 35806171 PMCID: PMC9266444 DOI: 10.3390/ijms23137166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/03/2022] Open
Abstract
Poly(butylene sebacate-co-terephthalate) (PBSeT) is a biodegradable flexible polymer suitable for melt blending with other biodegradable polymers. Melt blending with a compatibilizer is a common strategy for increasing miscibility between polymers. In this study, PBSeT polyester was synthesized, and poly(lactic acid) (PLA) was blended with 25 wt% PBSeT by melt processing with 3–6 phr PLA-grafted maleic anhydride (PLA-g-MAH) compatibilizers. PLA-g-MAH enhanced the interfacial adhesion of the PLA/PBSeT blend, and their mechanical and morphological properties confirmed that the miscibility also increased. Adding more than 6 phr of PLA-g-MAH significantly improved the mechanical properties and accelerated the cold crystallization of the PLA/PBSeT blends. Furthermore, the thermal stabilities of the blends with PLA-g-MAH were slightly enhanced. PLA/PBSeT blends with and without PLA-g-MAH were not significantly different after 120 h, whereas all blends showed a more facilitated hydrolytic degradation rate than neat PLA. These findings indicate that PLA-g-MAH effectively improves PLA/PBSeT compatibility and can be applied in the packaging industry.
Collapse
Affiliation(s)
- Hyunho Jang
- Department of Packaging, Yonsei University, Wonju 26493, Korea
| | - Sangwoo Kwon
- Department of Packaging, Yonsei University, Wonju 26493, Korea
| | - Sun Jong Kim
- CJ Cheil Jedang WhiteBio-CJ Research Center, Woburn, MA 01801, USA
| | - Su-Il Park
- Department of Packaging, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
30
|
Lin Y, Xie J, Xiang Q, Liu Y, Wang P, Wu Y, Zhou Y. Effect of propiconazole on plastic film microplastic degradation: Focusing on the change in microplastic morphology and heavy metal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153609. [PMID: 35121034 DOI: 10.1016/j.scitotenv.2022.153609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
With the rapid increase in the use of plastic films, microplastic (MP) pollution in agricultural soils has become a global environmental problem. Propiconazole is widely used in agriculture and horticulture; however, its role in plastic film degradation remains elusive. Butylene adipate-co-terephthalate (PBAT) and polyethylene (PE) films were used to analyze the effects of propiconazole on plastic film and MP degradation. We identified the surface morphologies of PBAT and PE at different propiconazole concentrations and soil pH values, as well as the adsorption and release characteristics of heavy metals during the degradation process via scanning electron microscopy, Fourier transform infrared spectroscopy and inductively coupled plasma mass spectrometry. Propiconazole accelerated the degradation of MPs, adsorption of heavy metals (Ni and Zn), and release of Sn at low concentrations (≤40 mg/kg); however, these effects were evidently absent at a high concentration (120 mg/kg). Furthermore, MPs were more prone to degradation in acidic or alkaline soils than in neutral soil when they coexisted with propiconazole. Hence, we suggest that PBAT and PE plastic films may not be suitable for application in acidic and alkaline soils with propiconazole, because of shorter rupture time and more heavy metal adsorption. PBAT degraded faster, absorbed and released more heavy metals than PE. Under all tested conditions, the heavy metal contents in MPs gradually approached those in soil, which proves that MPs are carriers of heavy metal pollutants. These results may help in assessing the impact of MPs on soil environments and provide a theoretical basis for the standardized propiconazole and plastic film usage.
Collapse
Affiliation(s)
- Yimiao Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiafei Xie
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingqing Xiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pingya Wang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316012, China
| | - Yichun Wu
- Zhoushan Institute for Food and Drug Control, Zhoushan 316012, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Environmental Microplastic Pollution Research Center, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
31
|
Maiza M, Hamam A. Toughened Poly (lactic acid)/Poly (ε-caprolactone) blend with triethyl citrate (TEC) and polyethylene glycol (PEG 3). POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1982967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Mounira Maiza
- Research Center in Industrial Technologies Crti, Cheraga, Algiers, Algeria
| | - Abderrazak Hamam
- Research Center in Industrial Technologies Crti, Cheraga, Algiers, Algeria
| |
Collapse
|
32
|
Soo XYD, Wang S, Yeo CCJ, Li J, Ni XP, Jiang L, Xue K, Li Z, Fei X, Zhu Q, Loh XJ. Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151084. [PMID: 34678364 PMCID: PMC8531277 DOI: 10.1016/j.scitotenv.2021.151084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/19/2023]
Abstract
The global massive consumption of disposable face masks driven by the ongoing COVID-19 pandemic has emerged as a blooming disaster to both the land and marine environment that might last for generations. Growing public concerns have been raised over the management and control of this new form of plastic pollution, and one of the proposed sustainable solution is to use renewable and/or biodegradable resources to develop mask materials in order to minimize their environmental impacts. As a representative biodegradable polymer, polylactic acid (PLA) has been proposed as a promising candidate to produce non-woven face masks instead of those fossil-based polymers. To further explore the feasibility of this alternative mask material, the present work aims to study both the hydrolytic and bio-degradation behaviors of pure PLA-derived 3-ply disposable face masks at ambient temperature. Hydrolytic degradability was investigated at different pH conditions of 2, 7 and 13 with the whole piece of face mask soaked for regular timed intervals up to 8 weeks. Weight loss study showed neutral and acidic conditions had minimal effect on PLA masks, but rapid degradation occurred under basic conditions in the first week with a sharp 25% decrease in weight that slowly tapered off, coupled with solution pH dropping from 13 to 9.6. This trend was supported by mechanical property, bacterial filtration efficiency (BFE) and particulate filtration efficiency (PFE) studies. Masks soaked in basic conditions had their modulus and tensile strength dropped by more than 50% after 8 weeks where the middle layer reached 68% and 90% respectively just after 48 h, and BFE and PFE decreased by 14% and 43% respectively after 4 weeks, which was much more significant than those in neutral and acidic conditions. Base degradation was also supported by nuclear magnetic resonance (NMR) and fourier transform infrared (FTIR), which disclosed that only the middle layer undergo major degradation with random chain scission and cleavage of enol or enolate chain ends, while outer and inner layers were much less affected. Scanning electron microscopy (SEM) attributed this observation to thinner PLA fibers for the middle layer of 3-7 μm diameter, which on average is 3 times smaller. This degradation was further supported by gel permeation chromatography (GPC) which saw an increase in lower molecular weight fragment Mw ~ 800 Da with soaking duration. The biodegradation behavior was studied under OECD 301F specification in sewage sludge environment. Similarly, degradation to the middle meltblown layer was more extensive, where the average weight loss and carbon loss was 25.8% and 25.7% respectively, double that of outer/inner spunbond layer. The results showed that the face masks did not completely disintegrate after 8 weeks, but small solubilized fragments of PLA formed in the biodegradation process can be completely mineralized into carbon dioxide without generation of secondary microplastic pollution in the environment. PLA masks are therefore a slightly greener option to consider in times of a pandemic that the world was caught unprepared; however future research on masks could be geared towards a higher degradability material that fully breaks down into non-harmful components while maintaining durability, filtration and protection properties for users.
Collapse
Affiliation(s)
- Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Chee Chuan Jayven Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Jiuwei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Xi Ping Ni
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Lu Jiang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| |
Collapse
|
33
|
Mu G, Genzer J, Gorman CB. Degradable Anti-Biofouling Polyester Coatings with Controllable Lifetimes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1488-1496. [PMID: 35050633 DOI: 10.1021/acs.langmuir.1c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To achieve degradable, anti-biofouling coatings with longer lifetimes and better mechanical properties, we synthesized a series of degradable co-polyesters composed of cyclic ketene acetals, di-(ethylene glycol) methyl ether methacrylate, and a photoactive curing agent, 4-benzoylphenyl methacrylate, using a radical ring-opening polymerization. The precursor co-polyesters were spin-coated on a benzophenone-functionalized silicon wafer to form ca. 60 nm films and drop-casted on glass to form ∼32 μm films. The copolymers were cross-linked via UV irradiation at 365 nm. The degradation of films was studied by immersing the specimens in aqueous buffers of different pH values. The results show that both the pH of buffer solutions and gel fractions of networks affect the degradation rate. The coatings show good bovine serum albumin resistance capability. By adjusting the fractions of monomers, the degradation rate and degree of hydration (e.g., swelling ratio) are controllable.
Collapse
Affiliation(s)
- Gaoyan Mu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Christopher B Gorman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
34
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
35
|
Vaid R, Yildirim E, Pasquinelli MA, King MW. Hydrolytic Degradation of Polylactic Acid Fibers as a Function of pH and Exposure Time. Molecules 2021; 26:molecules26247554. [PMID: 34946629 PMCID: PMC8706057 DOI: 10.3390/molecules26247554] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Polylactic acid (PLA) is a widely used bioresorbable polymer in medical devices owing to its biocompatibility, bioresorbability, and biodegradability. It is also considered a sustainable solution for a wide variety of other applications, including packaging. Because of its widespread use, there have been many studies evaluating this polymer. However, gaps still exist in our understanding of the hydrolytic degradation in extreme pH environments and its impact on physical and mechanical properties, especially in fibrous materials. The goal of this work is to explore the hydrolytic degradation of PLA fibers as a function of a wide range of pH values and exposure times. To complement the experimental measurements, molecular-level details were obtained using both molecular dynamics (MD) simulations with ReaxFF and density functional theory (DFT) calculations. The hydrolytic degradation of PLA fibers from both experiments and simulations was observed to have a faster rate of degradation in alkaline conditions, with 40% of strength loss of the fibers in just 25 days together with an increase in the percent crystallinity of the degraded samples. Additionally, surface erosion was observed in these PLA fibers, especially in extreme alkaline environments, in contrast to bulk erosion observed in molded PLA grafts and other materials, which is attributed to the increased crystallinity induced during the fiber spinning process. These results indicate that spun PLA fibers function in a predictable manner as a bioresorbable medical device when totally degraded at end-of-life in more alkaline conditions.
Collapse
Affiliation(s)
- Radhika Vaid
- Fiber and Polymer Science Program, Wilson College of Textiles, NC State University, Raleigh, NC 27606, USA; (R.V.); (M.A.P.)
| | - Erol Yildirim
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey;
| | - Melissa A. Pasquinelli
- Fiber and Polymer Science Program, Wilson College of Textiles, NC State University, Raleigh, NC 27606, USA; (R.V.); (M.A.P.)
- Department of Forest Biomaterials, College of Natural Resources, NC State University, Raleigh, NC 27606, USA
| | - Martin W. King
- Fiber and Polymer Science Program, Wilson College of Textiles, NC State University, Raleigh, NC 27606, USA; (R.V.); (M.A.P.)
- College of Textiles, Donghua University, Shanghai 201620, China
- Correspondence: ; Tel.: +1-919-291-2563
| |
Collapse
|
36
|
Simulated and Experimental Investigation of the Mechanical Properties and Solubility of 3D-Printed Capsules for Self-Healing Cement Composites. MATERIALS 2021; 14:ma14164578. [PMID: 34443101 PMCID: PMC8401703 DOI: 10.3390/ma14164578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
In the concrete industry, various R&D efforts have been devoted to self-healing technology, which can maintain the long-term performance of concrete structures, which is important in terms of sustainable development. Cracks in cement composites occur and propagate because of various internal and external factors, reducing the composite's stability. Interest in "self-healing" materials that can repair cracks has led researchers to embed self-healing capsules in cement composites. Overcoming the limitations of polymer capsules produced by chemical manufacturing methods, three-dimensional (3D) printing can produce capsules quickly and accurately and offers advantages such as high material strength, low cost, and the ability to fabricate capsules with complex geometries. We performed structural analysis simulations, experimentally evaluated the mechanical properties and solubility of poly(lactic acid) (PLA) capsules, and examined the effect of the capsule wall thickness and printing direction on cement composites embedded with these capsules. Thicker capsules withstood larger bursting loads, and the capsule rupture characteristics varied with the printing angle. Thus, the capsule design parameters must be optimized for different environments. Although the embedded capsules slightly reduced the compressive strength of the cement composites, the benefit of the encapsulated self-healing agent is expected to overcome this disadvantage.
Collapse
|
37
|
Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Design and Optimization of 3D-Printed Gastroretentive Floating Devices by Central Composite Design. AAPS PharmSciTech 2021; 22:197. [PMID: 34191172 DOI: 10.1208/s12249-021-02053-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to optimize the size of capsule-shaped 3D-printed devices (CPD) using an experimental design by the response surface methodology to provide a gastroretentive drug delivery system (GRDDS) with optimal floating time. The CPD was fabricated using a fused deposition modeling (FDM) 3D printer. The central composite design was employed for the optimization of the devices. The morphology of the CPD was observed using a digital microscope and scanning electron microscope (SEM). The in vitro floating time and drug release were evaluated using a USP dissolution apparatus II. Appropriate total floating time (TFT) of the devices (more than 3 h) was obtained with the device's body, cap, and bottom thickness of 1.2, 1.8, and 2.9 mm, respectively. The release kinetics of the drug from the devices fitted well with zero-order kinetics. In conclusion, the optimization of CPD for GRDDS using the experimental design provided the devices with desirable floating time and ideal drug release characteristics.
Collapse
|
38
|
Levytskyi V, Katruk D, Masyuk A, Kysil K, Bratychak Jr. M, Chopyk N. Resistance of Polylactide Materials to Water Mediums of the Various Natures. CHEMISTRY & CHEMICAL TECHNOLOGY 2021. [DOI: 10.23939/chcht15.02.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of talc filler, its content, as well as an additional heat treatment and temperature on the regularities of polylactide materials water-absorption has been researched. Based on the obtained data, the water diffusion coefficient in polylactide materials and the activation energy of the diffusion process were determined. It was found that the process of water absorption by the filled and heat-treated materials based on polylactide proceeds slower and requires more activation energy of the process. Stability of the developed polylactide materials to acidic and alkaline media has been determined, in particular, it was found that the destruction of polylactide samples occurs faster in an alkaline medium than in an acidic one
Collapse
|
39
|
Synthesis of Poly(l-lactide-co-ε-caprolactone) Copolymer: Structure, Toughness, and Elasticity. Polymers (Basel) 2021; 13:polym13081270. [PMID: 33919756 PMCID: PMC8070679 DOI: 10.3390/polym13081270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
Biodegradable and bioabsorbable polymers have drawn considerable attention because of their mechanical properties that mimic human soft tissue. Poly(l-lactide-co-ε-caprolactone) (PLCL), the copolymer of L-lactic (LA) and ε-caprolactone (CL), has been applied in many tissue engineering and regenerative medicine fields. However, both the synthesis of PLCL and the structure-activity relationship of the copolymer need to be further investigated to allow tuning of different mechanical properties. The synthesis conditions of PLCL were optimized to increase the yield and improve the copolymer properties. The synthetic process was evaluated by while varying the molar ratio of the monomers and polymerization time. The mechanical properties of the copolymer were investigated from the macroscopic and microscopic perspectives. Changes in the polymerization time and feed ratio resulted in the difference in the LA and CL content, which, in turn, caused the PLCL to exhibit different properties. The PLCL obtained with a feed ratio of 1:1 (LA:CL) and a polymerization time of 30 h has the best toughness and elasticity. The developed PLCL may have applications in dynamic mechanical environment, such as vascular tissue engineering.
Collapse
|
40
|
Momeni S, Rezvani Ghomi E, Shakiba M, Shafiei-Navid S, Abdouss M, Bigham A, Khosravi F, Ahmadi Z, Faraji M, Abdouss H, Ramakrishna S. The Effect of Poly (Ethylene glycol) Emulation on the Degradation of PLA/Starch Composites. Polymers (Basel) 2021; 13:1019. [PMID: 33806074 PMCID: PMC8036416 DOI: 10.3390/polym13071019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a hydrophilic renewable polymer, starch has been widely used in biocompatible plastics as a filler for more than two decades. The present study aimed at investigating the effects of polyethylene glycol (PEG), as a plasticizer, on the physicochemical properties of a hybrid composite-polylactic acid (PLA) and thermoplastic starch (TPS). A solvent evaporation process was adopted to gelatinize the starch and disparate PEG contents ranging from 3 to 15 wt.% (with respect to the sample weight) were examined. It was revealed that the increase in the PEG content was accompanied by an increment in the starch gelatinization degree. Referring to the microstructural analyses, the TPS/PLA mixture yielded a ductile hybrid composite with a fine morphology and a uniform phase. Nevertheless, two different solvents, including acetone and ethanol, were used to assess if they had any effect on the hybrid's morphology, tensile strength and thermal properties. It was found that ethanol culminated in a porous hybrid composite with a finer morphology and better starch distribution in the PLA structure than acetone. As the result of PEG addition to the composite, the crystallinity and tensile strength were decreased, whereas the elongation increased. The hydrolytic degradation of samples was assessed under different pH and thermal conditions. Moreover, the microbial degradation of the PLA/TPS hybrid composite containing different PEG molar fractions was investigated in the soil for 45 days. The rate of degradation in both hydrolytic and biodegradation increased in the samples with a higher amount of PEG with ethanol solvent.
Collapse
Affiliation(s)
- Sarieh Momeni
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Mohamadreza Shakiba
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Saied Shafiei-Navid
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran;
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare pad. 20, 80125 Naples, Italy;
| | - Fatemeh Khosravi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Zahed Ahmadi
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran;
| | - Hamidreza Abdouss
- Department of Polymer, Amirkabir University of Technology, Tehran 15875-4413, Iran;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
41
|
Sinha A, Wang Q, Wei J. Feasibility and Compatibility of a Biomass Capsule System in Self-Healing Concrete. MATERIALS (BASEL, SWITZERLAND) 2021; 14:958. [PMID: 33670525 PMCID: PMC7922090 DOI: 10.3390/ma14040958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Cracking can facilitate deteriorations of concrete structures via various mechanisms by providing ingress pathways for moisture and aggressive chemicals. In contrast to conventional maintenance methods, self-healing is a promising strategy for achieving automatic crack repair without human intervention. However, in capsule-based self-healing concrete, the dilemma between capsules' survivability and crack healing efficiency is still an unfathomed challenge. In this study, the feasibility of a novel property-switchable capsule system based on a sustainable biomass component, polylactic acid, is investigated. Capsules with different geometries and dimensions were studied focusing on the compatibility with concrete, including survivability during concrete mixing, influence on mortar and concrete properties, and property evolution of the capsules. The results indicate that the developed elliptical capsules can survive regular concrete mixing with a survival ratio of 95%. In concrete containing 5 vol.% of gravel-level capsules, the compressive strength was decreased by 13.5% after 90 days, while the tensile strength was increased by 4.8%. The incorporation of 2 vol.% of sand-level capsules did not impact the mortar strength. Degradation and switchable properties triggered by the alkaline matrix of cement were observed, revealing the potential of this novel biomass capsule system in achieving both high survivability and self-healing efficiency in concrete.
Collapse
Affiliation(s)
| | | | - Jianqiang Wei
- Department of Civil and Environmental Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (A.S.); (Q.W.)
| |
Collapse
|
42
|
Roymuhury SK, Mandal M, Chakraborty D, Ramkumar V. Homoleptic titanium and zirconium complexes exhibiting unusual Oiminol–metal coordination: application in stereoselective ring-opening polymerization of lactide. Polym Chem 2021. [DOI: 10.1039/d1py00237f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis and characterization of novel homoleptic Ti and Zr complexes with tridentate ONO-type Schiff base ligands and their catalytic activities towards the ring-opening polymerization (ROP) of lactide are reported.
Collapse
Affiliation(s)
- Sagnik K. Roymuhury
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | - Mrinmay Mandal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | - Debashis Chakraborty
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | | |
Collapse
|
43
|
Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. Eur J Pharm Sci 2020; 155:105555. [DOI: 10.1016/j.ejps.2020.105555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
|
44
|
Kang EY, Park SB, Choi B, Baek SW, Ko KW, Rhim WK, Park W, Kim IH, Han DK. Enhanced mechanical and biological characteristics of PLLA composites through surface grafting of oligolactide on magnesium hydroxide nanoparticles. Biomater Sci 2020; 8:2018-2030. [PMID: 32080689 DOI: 10.1039/c9bm01863h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(l-lactic acid) (PLLA) is a biocompatible and biodegradable polymer that has received much attention as a biomedical material. However, PLLA also produces by-products that acidify the surrounding tissues during in vivo degradation, which induces inflammatory responses. To overcome these problems, magnesium hydroxide nanoparticles (nano-magnesium hydroxide; nMH) were added to the PLLA matrix as a bioactive filler that can suppress inflammatory responses by neutralizing the acidified environment caused by the degradation of PLLA. Despite the advantages of nMH, the strong cohesion of these nanoparticles toward each other makes it difficult to manufacture a polymer matrix containing homogeneous nanoparticles through thermal processing. Here, we prepared two types of surface-modified nMH with oligolactide (ODLLA) utilizing grafting to (GT) and grafting from (GF) strategies to improve the mechanical and biological characteristics of the organic-inorganic hybrid composite. The incorporation of surface-modified nMH not only enhanced mechanical properties, such as Young's modulus, but also improved homogeneity of magnesium hydroxide particles in the PLLA matrix due to the increase in interfacial interaction. Additionally, the PLLA composites with surface-modified nMH exhibited reduced bulk erosion during hydrolytic degradation with lower cytotoxicity and immunogenicity. Hemocompatibility tests on the PLLA composites with nMH showed a higher albumin to fibrinogen ratio (AFR) and a lower influence of platelet activation, when compared with unmodified control samples. Taken all together, the surface-modified nMH could be seen to successfully improve the physical and biological characteristics of polymer composites. We believe this technology has great potential for the development of hybrid nanocomposites for biomedical devices, including cardiovascular implants.
Collapse
Affiliation(s)
- Eun Young Kang
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. and Department of Biological Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sung-Bin Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea. and Department of Biomedical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do 16419, Republic of Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Wooram Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| | - Ik-Hwan Kim
- Department of Biological Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| |
Collapse
|
45
|
Puthumana M, Santhana Gopala Krishnan P, Nayak SK. Chemical modifications of PLA through copolymerization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1830650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Manju Puthumana
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - P. Santhana Gopala Krishnan
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - Sanjay Kumar Nayak
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| |
Collapse
|
46
|
Trofimchuk ES, Moskvina MA, Nikonorova NI, Efimov AV, Garina ES, Grokhovskaya TE, Ivanova OA, Bakirov AV, Sedush NG, Chvalun SN. Hydrolytic degradation of polylactide films deformed by the environmental crazing mechanism. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Hsieh YK, Hung PH, Huang CW, Chuang KC, Wang J. Study on the degradation of biodegradable poly (glycerol maleate) (PGM) microbeads. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Rade PP, Garnaik B. Ofloxacin-Loaded PLLA Nanofibrous Mats for Wound Dressing Applications. ACS APPLIED BIO MATERIALS 2020; 3:6648-6660. [DOI: 10.1021/acsabm.0c00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Priyanka P. Rade
- Polymer Science and Engineering Division, CSIR- National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division, CSIR- National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
49
|
Degradable and cationic long-subchain hyperbranched block copolymers with well-defined block subchain: Synthesis, characterization and degradation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Shokouhi M, Mehrgardi MA. Cancer Cell Detection‐Based on Released Hydrogen Peroxide Using a Non‐Modified Closed Bipolar Electrochemical System. ChemElectroChem 2020. [DOI: 10.1002/celc.202000535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maryam Shokouhi
- Department of chemistryUniversity of Isfahan Isfahan 81746-73441 Iran
| | | |
Collapse
|