1
|
Brisson ERL, Worthington MJH, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chem Soc Rev 2024; 53:1984-2021. [PMID: 38173417 DOI: 10.1039/d1cs01114f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer self-assembly has become a reliable and versatile workhorse to produce polymeric nanomaterials. With appropriate polymer design and monomer selection, polymers can assemble into shapes and morphologies beyond well-studied spherical and cylindrical micellar structures. Steadfast access to anisotropic polymer nanoparticles has meant that the fabrication and application of 2D soft matter has received increasing attention in recent years. In this review, we focus on nanoscale polymer discs, toroids, and platelets: three morphologies that are often interrelated and made from similar starting materials or common intermediates. For each morphology, we illustrate design rules, and group and discuss commonly used self-assembly strategies. We further highlight polymer compositions, fundamental principles and self-assembly conditions that enable precision in bottom-up fabrication strategies. Finally, we summarise potential applications of such nanomaterials, especially in the context of biomedical research and template chemistry and elaborate on future endeavours in this space.
Collapse
Affiliation(s)
- Emma R L Brisson
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Max J H Worthington
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Simran Kerai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
2
|
Shen T, Deng K, Chen Y, He Y, Zhu Y, Xu J, Ling J. Multiblock Poly-ε-Caprolactones: One-Step Synthesis toward Programmable Properties. Macromol Rapid Commun 2023; 44:e2300397. [PMID: 37821120 DOI: 10.1002/marc.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Control of monomer sequence enables predictable structure-property relationships in versatile polymeric materials. The facile synthesis of multiblock copolymers (MBCPs) with controlled chain structure is highly challenging, particularly for those prepared via one-pot copolymerization of mixed monomers. Herein, poly-ε-caprolactone MBCPs, a series of thermoplastic elastomers with tailored thermal, mechanical, rheological, and degradable properties, are synthesized by Janus polymerization. Melting temperature, tensile strength, ductility, viscosity, and enzymatic degradability are governed by block length which is in turn dictated by the monomer-to-catalyst feed ratio. The relationships between the physicochemical properties and the architectures are investigated in detail.
Collapse
Affiliation(s)
- Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Rheinberger T, Flögel U, Koshkina O, Wurm FR. Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterials. Commun Chem 2023; 6:182. [PMID: 37658116 PMCID: PMC10474120 DOI: 10.1038/s42004-023-00954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/05/2023] [Indexed: 09/03/2023] Open
Abstract
Polyphosphoesters (PPEs) are used in tissue engineering and drug delivery, as polyelectrolytes, and flame-retardants. Mostly polyphosphates have been investigated but copolymers involving different PPE subclasses have been rarely explored and the reactivity ratios of different cyclic phospholanes have not been reported. We synthesized binary and ternary PPE copolymers using cyclic comonomers, including side-chain phosphonates, phosphates, thiophosphate, and in-chain phosphonates, through organocatalyzed ring-opening copolymerization. Reactivity ratios were determined for all cases, including ternary PPE copolymers, using different nonterminal models. By combining different comonomers and organocatalysts, we created gradient copolymers with adjustable amphiphilicity and microstructure. Reactivity ratios ranging from 0.02 to 44 were observed for different comonomer sets. Statistical ring-opening copolymerization enabled the synthesis of amphiphilic gradient copolymers in a one-pot procedure, exhibiting tunable interfacial and magnetic resonance imaging (MRI) properties. These copolymers self-assembled in aqueous solutions, 31 P MRI imaging confirmed their potential as MRI-traceable nanostructures. This systematic study expands the possibilities of PPE-copolymers for drug delivery and theranostics.
Collapse
Affiliation(s)
- Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany
| | - Olga Koshkina
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands.
| |
Collapse
|
4
|
Conka R, Marien YW, Van Steenberge PH, Hoogenboom R, D'hooge DR. An equation driven quality classification of (a)symmetric gradient, gradient-block, block-gradient-block and block copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Coldstream JG, Camp PJ, Phillips DJ, Dowding PJ. Gradient copolymers versus block copolymers: self-assembly in solution and surface adsorption. SOFT MATTER 2022; 18:6538-6549. [PMID: 35943121 DOI: 10.1039/d2sm00741j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The structures of amphiphilic block and gradient copolymers in solution and adsorbed onto surfaces are surveyed using molecular-dynamics simulations. A bead-spring model is used to identify the general effects of the different architectures: block and gradient copolymers have equal numbers of solvophilic and solvophobic beads, and the gradient copolymer is represented by a linear concentration profile along the chain. Each type of isolated copolymer forms a structure with a globular head of solvophobic beads, and a coil-like tail of solvophilic beads. The radius of gyration of a gradient copolymer is found to be much more sensitive to temperature than that of a block copolymer due to an unravelling mechanism. At finite concentrations, both gradient and block copolymers self-assemble into micelles, with the gradient copolymers again showing a larger temperature dependence. The micelles are characterised using simulated scattering profiles, which compare favourably to existing experimental data. The adsorption of copolymers onto structureless surfaces is modelled with an attractive potential that is selective for the solvophobic beads, and the surface structures are characterised using the average height of the molecules, and the proportion of beads adsorbed. Both types of copolymer form adsorbed films with persistent micelle-like structures, but the gradient copolymers show a stronger dependence on the strength of the surface interactions and the temperature. Coarse-grained, bead-spring models allow a rapid survey and comparison of the block and gradient architectures, and the results set the scene for future work with atomistic simulations. A superficial but favourable comparison is made between the results from the bead-spring models, and atomistic simulations of a butyl prop-2-enoate/prop-2-enoic acid (butyl acrylate/acrylic acid) copolymer in n-dodecane at room temperature.
Collapse
Affiliation(s)
- Jonathan G Coldstream
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| | - Philip J Camp
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| | - Daniel J Phillips
- Infineum UK Ltd., P.O. Box 1, Milton Hill, Abingdon OX13 6BB, England, UK
| | - Peter J Dowding
- Infineum UK Ltd., P.O. Box 1, Milton Hill, Abingdon OX13 6BB, England, UK
| |
Collapse
|
6
|
Zheng C. Unexpected toroidal micelles formed from St/MMA gradient copolymers. SOFT MATTER 2022; 18:5706-5713. [PMID: 35876330 DOI: 10.1039/d2sm00619g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toroidal micelles are of great interest and rarely observed in gradient copolymer systems. Herein, we report massive toroidal micelles formed from styrene (St)/methyl methacrylate (MMA) gradient copolymers using a common solvent mixing method followed by a cooling-heating procedure. Furthermore, we demonstrate that the obtained toroidal morphology is sensitively dependent on a heat treatment procedure. Solely spherical micelles are obtained by a common solvent mixing method. These spherical micelles could be transformed into toroidal micelles via vesicles during a cooling-heating process. When a reverse heating-cooling process is adopted, no toroidal micelles formed. Thus, these results add new members to the family of toroidal micelles and reveal pathway dominating morphologies in gradient copolymer micelles.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Applied Chemistry, College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China.
| |
Collapse
|
7
|
Conka R, Marien Y, Van Steenberge P, Hoogenboom R, D'hooge DR. A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d1py01391b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of well-defined gradient, block-gradient and di-block copolymers with both asymmetric and symmetric compositions considering hydrophilic and hydrophobic monomer units is relevant for application fields, such as drug/gene delivery...
Collapse
|
8
|
Kravchenko VS, Abetz V, Potemkin II. Self-assembly of gradient copolymers in a selective solvent. New structures and comparison with diblock and statistical copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Timmers E, Fransen PM, Magana JR, Janssen HM, Voets IK. Micellization of Sequence-Controlled Polyurethane Ionomers in Mixed Aqueous Solvents. Macromolecules 2021; 54:2376-2382. [PMID: 33814615 PMCID: PMC8016144 DOI: 10.1021/acs.macromol.0c02107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/28/2020] [Indexed: 12/22/2022]
Abstract
While the impact of compositional parameters such as block length and ionic content on the micellization of (polymeric) amphiphiles is widely investigated, the influence of monomer sequence has received far less attention until recently. Here, we report the synthesis of two sequence-controlled polyurethane ionomers (PUIs) prepared via a stepwise coupling-deprotection strategy, and compare their solution association in aqueous-organic mixtures. The two PUIs are highly similar in mass and overall composition, yet differ markedly in the sequence of building blocks. PUI-A2 comprises a polytetrahydrofuran (pTHF) block connected to an alternation of isophorone diamine (IPDA) and dimethylolpropionic acid (DMPA) units that together are also arranged in a blockwise manner. The result is a macromolecular structure with a comparatively hydrophobic tail (pTHF) and a hydrophilic headgroup, which structure is reminiscent of those of traditional surfactants, albeit much larger in size. PUI-S2 instead resembles a bolaamphiphilic architecture with a pTHF midblock connected on either end to a singly charged segment comprising DMPA and IPDA. We detect micellization below a threshold cosolvent volume fraction (φsolv) of 0.4 in aqueous-organic mixtures with tetrahydrofuran (THF), ethanol, and isopropyl alcohol. We use scattering tools to compare the aggregation number (N agg) and hydrodynamic radius (R h) of PUI-S2 and PUI-A2 micelles. Irrespective of the solvent composition, we observe in the micellar window of φsolv < 0.4, lower N agg for PUI-S2 micelles compared to PUI-A2, which we attribute to packing restraints associated with its bolaamphiphilic architecture. The increase in micellar size with increasing φsolv is much more pronounced for PUI-S2 than for PUI-A2. The micellar mass decreases with increasing φsolv for both PUIs; the effect is modest for PUI-S2 compared to PUI-A2 and is not observed in the most apolar cosolvent studied (THF). Upon the approach of the micellization boundary φsolv ≈ 0.4, both types of PUI micelles become less compact in structure, as (in most cases) PUIs are released and as micellar dimensions increase.
Collapse
Affiliation(s)
- Elizabeth
M. Timmers
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Laboratory
of Macro-Organic Chemistry, Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - P. Michel Fransen
- Laboratory
of Macro-Organic Chemistry, Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- SyMO-Chem
B.V., Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Jose Rodrigo Magana
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Laboratory
of Macro-Organic Chemistry, Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Henk M. Janssen
- Laboratory
of Macro-Organic Chemistry, Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- SyMO-Chem
B.V., Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Laboratory
of Macro-Organic Chemistry, Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
10
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
11
|
Zhang J, Farias‐Mancilla B, Kulai I, Hoeppener S, Lonetti B, Prévost S, Ulbrich J, Destarac M, Colombani O, Schubert US, Guerrero‐Sanchez C, Harrisson S. Effect of Hydrophilic Monomer Distribution on Self-Assembly of a pH-Responsive Copolymer: Spheres, Worms and Vesicles from a Single Copolymer Composition. Angew Chem Int Ed Engl 2021; 60:4925-4930. [PMID: 32997426 PMCID: PMC7984367 DOI: 10.1002/anie.202010501] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Indexed: 11/22/2022]
Abstract
A series of copolymers containing 50 mol % acrylic acid (AA) and 50 mol % butyl acrylate (BA) but with differing composition profiles ranging from an AA-BA diblock copolymer to a linear gradient poly(AA-grad-BA) copolymer were synthesized and their pH-responsive self-assembly behavior was investigated. While assemblies of the AA-BA diblock copolymer were kinetically frozen, the gradient-like compositions underwent reversible changes in size and morphology in response to changes in pH. In particular, a diblock copolymer consisting of two random copolymer segments of equal length (16 mol % and 84 mol % AA content, respectively) formed spherical micelles at pH >5, a mix of spherical and wormlike micelles at pH 5 and vesicles at pH 4. These assemblies were characterized by dynamic light scattering, cryo-transmission electron microscopy and small angle neutron scattering.
Collapse
Affiliation(s)
- Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | | | - Ihor Kulai
- IMRCP UMR5623Université de Toulouse118, route de Narbonne31062Toulouse Cedex 9France
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Barbara Lonetti
- IMRCP UMR5623Université de Toulouse118, route de Narbonne31062Toulouse Cedex 9France
| | | | - Jens Ulbrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Mathias Destarac
- IMRCP UMR5623Université de Toulouse118, route de Narbonne31062Toulouse Cedex 9France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM)UMR 6283 CNRSLe Mans Université/ CNRSAvenue Olivier Messiaen72085Le Mans Cedex 9France
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Carlos Guerrero‐Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Simon Harrisson
- LCPO UMR 5629Université Bordeaux/ CNRS/ Ecole Nationale Supérieure de Chimie, de Biologie & de Physique16 Avenue Pey-Berland33607Pessac CedexFrance
| |
Collapse
|
12
|
Zhang J, Farias‐Mancilla B, Kulai I, Hoeppener S, Lonetti B, Prévost S, Ulbrich J, Destarac M, Colombani O, Schubert US, Guerrero‐Sanchez C, Harrisson S. Einfluss der Verteilung hydrophiler Monomere auf die Selbstassemblierung eines pH‐responsiven Copolymers: Kugeln, Würmer und Vesikel aus einer einzigen Copolymerkomposition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Barbara Farias‐Mancilla
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Ihor Kulai
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Barbara Lonetti
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Sylvain Prévost
- Institut Laue-Langevin 71 Avenue des Martyrs Grenoble Frankreich
| | - Jens Ulbrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Mathias Destarac
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Olivier Colombani
- IMMM UMR6283 Université du Maine – UFR Sciences et Techniques Avenue Olivier Messiaen 72085 Le Mans Cedex 9 Frankreich
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Carlos Guerrero‐Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Simon Harrisson
- LCPO UMR 5629 Université Bordeaux/ CNRS/ Ecole Nationale Supérieure de Chimie, de Biologie & de Physique 16 Avenue Pey-Berland 33607 Pessac Cedex Frankreich
| |
Collapse
|
13
|
Sedlacek O, Hoogenboom R. Drug Delivery Systems Based on Poly(2‐Oxazoline)s and Poly(2‐Oxazine)s. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900168] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| |
Collapse
|
14
|
Faujan NH, Abedi Karjiban R, Kashaban I, Basri M, Basri H. Computational simulation of palm kernel oil-based esters nano-emulsions aggregation as a potential parenteral drug delivery system. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Zheng C. Gradient copolymer micelles: an introduction to structures as well as structural transitions. SOFT MATTER 2019; 15:5357-5370. [PMID: 31210242 DOI: 10.1039/c9sm00880b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exhibiting variation of the composition along a chain, gradient copolymers bring new blood to the old story of polymeric micelles. The gradient chain structure results in some special features in micellar structures and leads to unique structural transitions, potentially leading to new properties and applications. Henceforth, gradient copolymer micellar structures and their transitions from the viewpoint of soft matter physics will be reviewed. Concepts such as a diffuse interface, shrinkage-stretching of micelles, and intrinsic temperature responsiveness are summarized from current research, which highlight new characteristic structures, relaxation modes and novel properties of micelles, respectively.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Applied Chemistry, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
16
|
Alam MM, Jack KS, Hill DJ, Whittaker AK, Peng H. Gradient copolymers – Preparation, properties and practice. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Dannenhoffer A, Sai H, Huang D, Nagasing B, Harutyunyan B, Fairfield DJ, Aytun T, Chin SM, Bedzyk MJ, Olvera de la Cruz M, Stupp SI. Impact of charge switching stimuli on supramolecular perylene monoimide assemblies. Chem Sci 2019; 10:5779-5786. [PMID: 31293765 PMCID: PMC6568310 DOI: 10.1039/c8sc05595e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
The development of stimuli-responsive amphiphilic supramolecular nanostructures is an attractive target for systems based on light-absorbing chromophores that can function as photosensitizers in water. We report here on a water soluble supramolecular carboxylated perylene monoimide system in which charge can be switched significantly by a change in pH. This was accomplished by substituting the perylene core with an ionizable hydroxyl group. In acidic environments, crystalline supramolecular nanoribbons with dimensions on the order of 500 × 50 × 2 nm form readily, while in basic solution the additional electrostatic repulsion of the ionized hydroxyl reduces assemblies to very small dimensions on the order of only several nanometers. The HOMO/LUMO levels were also found to be sensitive to pH; in acidic media the HOMO/LUMO levels are -5.65 and -3.70 eV respectively versus vacuum, whereas is in basic conditions they are -4.90 and -3.33 eV, respectively. Utilizing the assemblies as photosensitizers in photocatalytic production of hydrogen with [Mo3S13]2- as a catalyst at a pH of 4, H2 was generated with a turnover number of 125 after 18 hours. Charge switching the assemblies at a pH of 9-10 and using an iron porphyrin catalyst, protons could again be reduced to hydrogen and CO2 was reduced to CO with a turnover number of 30. The system investigated offers an example of dynamic photosensitizing assemblies that can drive reactions in both acidic and basic media.
Collapse
Affiliation(s)
- Adam Dannenhoffer
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Hiroaki Sai
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Simpson Querrey Institute , Northwestern University , 303 E. Superior , Chicago , Illinois 60611 , USA
| | - Dongxu Huang
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Benjamin Nagasing
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Boris Harutyunyan
- Department of Physics and Astronomy , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA
| | - Daniel J Fairfield
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Taner Aytun
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Stacey M Chin
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Michael J Bedzyk
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Department of Physics and Astronomy , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Samuel I Stupp
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
- Department of Medicine , Northwestern University , 676 N St. Clair , Chicago , Illinois 60611 , USA
- Simpson Querrey Institute , Northwestern University , 303 E. Superior , Chicago , Illinois 60611 , USA
- Department of Biomedical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA
| |
Collapse
|
18
|
|
19
|
Bera D, Sedlacek O, Jager E, Pavlova E, Vergaelen M, Hoogenboom R. Solvent-control over monomer distribution in the copolymerization of 2-oxazolines and the effect of a gradient structure on self-assembly. Polym Chem 2019. [DOI: 10.1039/c9py00927b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of a polymerization solvent on the monomer distribution in gradient copolymers is demonstrated and the effect of the monomer gradient on the copolymer self-assembly behavior is shown.
Collapse
Affiliation(s)
- Debaditya Bera
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Eliezer Jager
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 162 06 Prague 6
- Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 162 06 Prague 6
- Czech Republic
| | - Maarten Vergaelen
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| |
Collapse
|
20
|
Sedlacek O, Janouskova O, Verbraeken B, Hoogenboom R. Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules 2018; 20:222-230. [DOI: 10.1021/acs.biomac.8b01366] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Olga Janouskova
- Institute of Macromolecular
Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Bart Verbraeken
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
21
|
Zhang J, Farias-Mancilla B, Destarac M, Schubert US, Keddie DJ, Guerrero-Sanchez C, Harrisson S. Asymmetric Copolymers: Synthesis, Properties, and Applications of Gradient and Other Partially Segregated Copolymers. Macromol Rapid Commun 2018; 39:e1800357. [DOI: 10.1002/marc.201800357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Junliang Zhang
- MOE Key Laboratory; of Material Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Macromolecular Science and Technology; Department of Applied Chemistry; School of Science; Northwestern Polytechnical University; Xi’an Shaanxi 710072 P. R. China
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Barbara Farias-Mancilla
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Mathias Destarac
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Ulrich S. Schubert
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Daniel J. Keddie
- Faculty of Science and Engineering; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1LY UK
| | - Carlos Guerrero-Sanchez
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Simon Harrisson
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
22
|
Datta S, Jutková A, Šrámková P, Lenkavská L, Huntošová V, Chorvát D, Miškovský P, Jancura D, Kronek J. Unravelling the Excellent Chemical Stability and Bioavailability of Solvent Responsive Curcumin-Loaded 2-Ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline Copolymer Nanoparticles for Drug Delivery. Biomacromolecules 2018; 19:2459-2471. [PMID: 29634248 DOI: 10.1021/acs.biomac.8b00057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new gradient copolymer has been synthesized by the living cationic ring-opening polymerization of hydrophilic 2-ethyl-2-oxazoline with lipophilic 2-(4-dodecyloxyphenyl)-2-oxazoline (EtOx-grad-DPOx). The prepared copolymer is capable of assembling in water to yield polymeric nanoparticles that are successfully loaded with an anticancer agent, curcumin. Self-assembly of the copolymer was found to be tuned by the polarity as well as the hydrogen bonding ability of solvents. Solvent took distinctive role in the preparation of unloaded and curcumin-loaded nanoparticles. The stability of the nanoparticles was increased by curcumin loading promoted by curcumin-polymer interactions. Further, the chemical stability of curcumin in water is largely enhanced inside the polymeric nanoparticles. Curcumin-loaded (EtOx-grad-DPOx) copolymer nanoparticles showed excellent stability in the biological medium, low cytotoxicity, and concentration dependent uptake by U87 MG and HeLa cells, which indicate the possibility of their efficient application in drug delivery.
Collapse
Affiliation(s)
- Shubhashis Datta
- Center for Interdisciplinary Biosciences , Technology and Innovation Park, P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic
| | - Annamária Jutková
- Department of Biophysics, Faculty of Science , P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic
| | - Petra Šrámková
- Department for Biomaterials Research , Polymer Institute of the Slovak Academy of Sciences , Dúbravská cesta 9 , 845 41 Bratislava , Slovak Republic
| | - Lenka Lenkavská
- Department of Biophysics, Faculty of Science , P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences , Technology and Innovation Park, P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic
| | - Dušan Chorvát
- Laboratory of Laser Microscopy and Spectroscopy , International Laser Centre , Il'kovičova 3 , 841 04 Bratislava 4 , Slovak Republic
| | - Pavol Miškovský
- Center for Interdisciplinary Biosciences , Technology and Innovation Park, P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic.,Department of Biophysics, Faculty of Science , P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic
| | - Daniel Jancura
- Center for Interdisciplinary Biosciences , Technology and Innovation Park, P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic.,Department of Biophysics, Faculty of Science , P. J. Šafárik University in Košice , Jesenná 5 , 041 54 Košice , Slovak Republic
| | - Juraj Kronek
- Department for Biomaterials Research , Polymer Institute of the Slovak Academy of Sciences , Dúbravská cesta 9 , 845 41 Bratislava , Slovak Republic
| |
Collapse
|
23
|
Chen J, Li B, Li X, Zhang J, Wan X. Gradient helical copolymers: synthesis, chiroptical properties, thermotropic liquid crystallinity, and self-assembly in selective organic solvents. Polym Chem 2018. [DOI: 10.1039/c8py00237a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel gradient copolymers R-(−)-poly(StN-grad-C8) were synthesized through atom transfer radical copolymerization of an achiral styrenic monomer, N,N-dimethyl-4-ethenylbenzamide (M-StN), and a chiral bulky vinylterphenyl monomer, (−)-2,5-bis{4′-[(R)-sec-octyloxycarbonyl]phenyl}styrene (R-(−)-M-C8).
Collapse
Affiliation(s)
- Junxian Chen
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Bowen Li
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Xiaofu Li
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
24
|
Filippov SK, Verbraeken B, Konarev PV, Svergun DI, Angelov B, Vishnevetskaya NS, Papadakis CM, Rogers S, Radulescu A, Courtin T, Martins JC, Starovoytova L, Hruby M, Stepanek P, Kravchenko VS, Potemkin II, Hoogenboom R. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside. J Phys Chem Lett 2017; 8:3800-3804. [PMID: 28759235 DOI: 10.1021/acs.jpclett.7b01588] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.
Collapse
Affiliation(s)
- Sergey K Filippov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic CZ - 162 06 Praha 1, Czech Republic
| | - Bart Verbraeken
- Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Petr V Konarev
- Hamburg Outstation, European Molecular Biology Laboratory c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre 'Crystallography and Photonics', Russian Academy of Sciences , Leninsky prospekt 59, Moscow 119333, Russian Federation
- National Research Centre "Kurchatov Institute" , Akademika Kurchatova Place 1, Moscow 123182, Russian Federation
| | - Dmitri I Svergun
- Hamburg Outstation, European Molecular Biology Laboratory c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Borislav Angelov
- Institute of Physics, Academy of Sciences of the Czech Republic , 182 21 Praha 8, Czech Republic
| | - Natalya S Vishnevetskaya
- Technische Universität München, Physik-Department , Fachgebiet Physik weicher Materie, James-Franck-Straße 1, 85748 Garching, Germany
| | - Christine M Papadakis
- Technische Universität München, Physik-Department , Fachgebiet Physik weicher Materie, James-Franck-Straße 1, 85748 Garching, Germany
| | - Sarah Rogers
- ISIS Facility, STFC, Rutherford Appleton Laboratory , Harwell Oxford, Didcot, OX11 0QX, United Kingdom
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS, Outstation at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Tim Courtin
- Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - José C Martins
- Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Larisa Starovoytova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic CZ - 162 06 Praha 1, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic CZ - 162 06 Praha 1, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic CZ - 162 06 Praha 1, Czech Republic
| | - Vitaly S Kravchenko
- Physics Department, Lomonosov Moscow State University , Moscow 119991, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University , Moscow 119991, Russian Federation
- National Research South Ural State University , Chelyabinsk 454080, Russian Federation
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
25
|
Oleszko-Torbus N, Utrata-Wesołek A, Wałach W, Dworak A. Solution behavior of thermoresponsive random and gradient copolymers of 2-n-propyl-2-oxazoline. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
|
27
|
Kravchenko VS, Potemkin II. Micelles of Gradient vs Diblock Copolymers: Difference in the Internal Structure and Properties. J Phys Chem B 2016; 120:12211-12217. [DOI: 10.1021/acs.jpcb.6b10120] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vitaly S. Kravchenko
- Physics
Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Igor I. Potemkin
- Physics
Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- DWI − Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| |
Collapse
|
28
|
Demirel Özçam D, Teymour F. Chain-by-Chain Monte Carlo Simulation: A Novel Hybrid Method for Modeling Polymerization. Part I. Linear Controlled Radical Polymerization Systems. MACROMOL REACT ENG 2016. [DOI: 10.1002/mren.201600042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Derya Demirel Özçam
- Department of Chemical and Biological Engineering; Illinois Institute of Technology; 10 West 33rd Street Chicago IL 60616 USA
| | - Fouad Teymour
- Department of Chemical and Biological Engineering; Illinois Institute of Technology; 10 West 33rd Street Chicago IL 60616 USA
| |
Collapse
|
29
|
Černochová Z, Bogomolova A, Borisova OV, Filippov SK, Černoch P, Billon L, Borisov OV, Štěpánek P. Thermodynamics of the multi-stage self-assembly of pH-sensitive gradient copolymers in aqueous solutions. SOFT MATTER 2016; 12:6788-6798. [PMID: 27451979 DOI: 10.1039/c6sm01105e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly thermodynamics of pH-sensitive di-block and tri-block gradient copolymers of acrylic acid and styrene was studied for the first time using isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) performed at varying pH. We were able to monitor each step of micellization as a function of decreasing pH. The growth of micelles is a multi-stage process that is pH dependent with several exothermic and endothermic components. The first step of protonation of the acrylic acid monomer units was accompanied mainly by conformational changes and the beginning of self-assembly. In the second stage of self-assembly, the micelles become larger and the number of micelles becomes smaller. While solution acidity increases, the isothermal calorimetry data show a broad deep minimum corresponding to an exothermic process attributed to an increase in the size of hydrophobic domains and an increase in the structure's hydrophobicity. The minor change in heat capacity (ΔCp) confirms the structural changes during this exothermic process. The exothermic process terminates deionization of acrylic acid. The pH-dependence of the ζ-potential of the block gradient copolymer micelles exhibits a plateau in the regime corresponding to the pH-controlled variation of the micellar dimensions. The onset of micelle formation and the solubility of the gradient copolymers were found to be dependent on the length of the gradient block.
Collapse
Affiliation(s)
- Zulfiya Černochová
- Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovského nám. 2, CZ-162 06 Praha 6, Czech Republic.
| | - Anna Bogomolova
- Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovského nám. 2, CZ-162 06 Praha 6, Czech Republic.
| | - Olga V Borisova
- UPPA, CNRS UMR 5254 IPREM Equipe de Physique et Chimie des Polymères, Pau, France
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovského nám. 2, CZ-162 06 Praha 6, Czech Republic.
| | - Peter Černoch
- Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovského nám. 2, CZ-162 06 Praha 6, Czech Republic.
| | - Laurent Billon
- UPPA, CNRS UMR 5254 IPREM Equipe de Physique et Chimie des Polymères, Pau, France
| | - Oleg V Borisov
- UPPA, CNRS UMR 5254 IPREM Equipe de Physique et Chimie des Polymères, Pau, France and St.Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St.Petersburg, Russia
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry AS CR, v.v.i., Heyrovského nám. 2, CZ-162 06 Praha 6, Czech Republic.
| |
Collapse
|
30
|
Presa-Soto D, Carriedo GA, de la Campa R, Presa Soto A. Formation and Reversible Morphological Transition of Bicontinuous Nanospheres and Toroidal Micelles by the Self-Assembly of a Crystalline-b-Coil Diblock Copolymer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Presa-Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Gabino A. Carriedo
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Raquel de la Campa
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| |
Collapse
|
31
|
Presa-Soto D, Carriedo GA, de la Campa R, Presa Soto A. Formation and Reversible Morphological Transition of Bicontinuous Nanospheres and Toroidal Micelles by the Self-Assembly of a Crystalline-b-Coil Diblock Copolymer. Angew Chem Int Ed Engl 2016; 55:10102-7. [DOI: 10.1002/anie.201605317] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/20/2016] [Indexed: 11/09/2022]
Affiliation(s)
- David Presa-Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Gabino A. Carriedo
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Raquel de la Campa
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| |
Collapse
|
32
|
Dargaville TR, Lava K, Verbraeken B, Hoogenboom R. Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tim R. Dargaville
- Science and Engineering
Faculty, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Kathleen Lava
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Bart Verbraeken
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
33
|
Mechanistic study of ring-opening copolymerization of ɛ-caprolactam with epoxide: Development of novel thermosetting epoxy resin system. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Jena SS, Roy SG, Azmeera V, De P. Solvent-dependent self-assembly behaviour of block copolymers having side-chain amino acid and fatty acid block segments. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Kourti ME, Fega E, Pitsikalis M. Block copolymers based on 2-methyl- and 2-phenyl-oxazoline by metallocene-mediated cationic ring-opening polymerization: synthesis and characterization. Polym Chem 2016. [DOI: 10.1039/c6py00405a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cationic polymerization of oxazolines, lactones and vinyl ethers can be efficiently promoted by metallocene complexes activated by floroaryl borates.
Collapse
Affiliation(s)
- Maria-Evgenia Kourti
- Industrial Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- 15771 Athens
- Greece
| | - Eirini Fega
- Industrial Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- 15771 Athens
- Greece
| | - Marinos Pitsikalis
- Industrial Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- 15771 Athens
- Greece
| |
Collapse
|
36
|
Van Steenberge PHM, Verbraeken B, Reyniers MF, Hoogenboom R, D’hooge DR. Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-oxazoline)s On the basis of 2-Methyl-2-oxazoline and 2-Phenyl-2-oxazoline. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01642] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Paul H. M. Van Steenberge
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
| | - Bart Verbraeken
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marie-Françoise Reyniers
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
- Department
of Textiles, Ghent University, Technologiepark 907, B-9052 Zwijnaarde (Gent), Belgium
| |
Collapse
|
37
|
Structure analysis and thermosensitive properties of copolymers prepared from 2-ethyl-2-oxazoline and 2-(4-aminophenyl)-2-oxazoline. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Xu H, Hu M, Yu X, Li Y, Fu Y, Zhou X, Zhang D, Li J. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery. Eur J Pharm Biopharm 2015; 91:66-74. [PMID: 25660909 DOI: 10.1016/j.ejpb.2015.01.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/10/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
In this study, a novel material, poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate (PEtOz-CHEMS), was synthesized to construct pH-sensitive liposomes. The structure of PEtOz-CHEMS was confirmed by thin-layer chromatography, Fourier transform infrared spectroscopy, and (1)H NMR. Anticancer fluorescent drug doxorubicin (DOX) was encapsulated into the liposomes. Compared with conventional liposomes (CL), CHEMS modified liposomes (CH-L) and PEGylated liposomes (PEG-L), the PEtOzylated liposomes (PEtOz-L) showed an acidic pH-induced increase in particle size. At pH 6.4, the heme release of PEtOz-L group was close to that of the positive control group, whereas that of CL, CH-L and PEG-L was close to that of the negative control group. In vitro drug release studies demonstrated that DOX was released from PEtOz-L in a pH-dependent manner, and the release of DOX from conventional DOX liposomes (CL-DOX), DOX loaded CH-L (CH-DOX-L) and PEGylated DOX liposomes (PEG-DOX-L) had no pronounced differences under each pH medium. In vitro cellular uptake assays showed that PEtOz-DOX-L indicated a significant fluorescence intensity at pH 6.4 compared with at pH 7.4. CL-DOX, CH-DOX-L and PEG-DOX-L did not achieve any obvious diversity at different pH conditions. Confocal laser scanning microscopy images showed that PEtOz-DOX-L can fuse with the endosomal membrane under acidic conditions of endosome, release DOX into the cytoplasm, then gather into the nucleus. Therefore, PEtOz can help liposomes achieve "endosomal escape". The in vitro cytotoxicity experiment results on A375 cells showed that PEtOz-DOX-L resulted in lower cell viability than CL-DOX, CH-DOX-L and PEG-DOX-L under low pH conditions. These results confirm that the pH-responsive PEtOz was a promising material for intracellular targeted delivery system and might be used for overcoming the "PEG dilemma".
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China.
| | - Meina Hu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Xiu Yu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Yan Li
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Yuanshan Fu
- Department of Anatomy, College of Basic Medical Science, Dlian Medical University, Dalian, PR China.
| | - Xiaoxia Zhou
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Di Zhang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Jianying Li
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| |
Collapse
|
39
|
Lu J, Fu C, Wang S, Tao L, Yan L, Haddleton DM, Chen G, Wei Y. From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. Macromolecules 2014. [DOI: 10.1021/ma500664u] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiawei Lu
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Changkui Fu
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shiqi Wang
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Litang Yan
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Gaojian Chen
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
40
|
Hoang PH, Dien LQ. Fast synthesis of an inorganic–organic block copolymer in a droplet-based microreactor. RSC Adv 2014. [DOI: 10.1039/c3ra45747h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Zheng C, Huang H, He T. Micellization of St/MMA Gradient Copolymers: A General Picture of Structural Transitions in Gradient Copolymer Micelles. Macromol Rapid Commun 2013; 34:1654-61. [DOI: 10.1002/marc.201300553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/20/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Haiying Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Tianbai He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
42
|
Steinhauer W, Hoogenboom R, Keul H, Moeller M. Block and Gradient Copolymers of 2-Hydroxyethyl Acrylate and 2-Methoxyethyl Acrylate via RAFT: Polymerization Kinetics, Thermoresponsive Properties, and Micellization. Macromolecules 2013. [DOI: 10.1021/ma302606x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wiktor Steinhauer
- DWI an der
RWTH Aachen e.V.
and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Richard Hoogenboom
- DWI an der
RWTH Aachen e.V.
and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstrasse 50, 52056 Aachen, Germany
- Supramolecular Chemistry Group,
Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Helmut Keul
- DWI an der
RWTH Aachen e.V.
and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Martin Moeller
- DWI an der
RWTH Aachen e.V.
and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstrasse 50, 52056 Aachen, Germany
| |
Collapse
|
43
|
Zhang N, Luxenhofer R, Jordan R. Thermoresponsive Poly(2-Oxazoline) Molecular Brushes by Living Ionic Polymerization: Modulation of the Cloud Point by Random and Block Copolymer Pendant Chains. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200261] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Niko Y, Konishi GI. Polymer-Chain-Induced Tunable Luminescence Properties: Amphiphilic Poly(2-oxazoline)s Possessing a N,N-Dialkylpyrene-1-carboxamide Chromophore in the Side Chain. Macromolecules 2012. [DOI: 10.1021/ma3001252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yosuke Niko
- Department of Organic
and Polymeric
Materials, Tokyo Institute of Technology, O-okayama, Tokyo 152-8552, Japan
| | - Gen-ichi Konishi
- Department of Organic
and Polymeric
Materials, Tokyo Institute of Technology, O-okayama, Tokyo 152-8552, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012,
Japan
| |
Collapse
|
45
|
Milonaki Y, Kaditi E, Pispas S, Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: self-organization in aqueous media and drug encapsulation. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25888] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
|
47
|
Hoang PH, Nguyen CT, Perumal J, Kim DP. Droplet synthesis of well-defined block copolymers using solvent-resistant microfluidic device. LAB ON A CHIP 2011; 11:329-335. [PMID: 21072416 DOI: 10.1039/c0lc00321b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Well-defined diblock copolymers were synthesized via an exothermic RAFT route by a droplet microfluidic process using a solvent-resistant and thermally stable fluoropolymer microreactor fabricated by a non-lithographic embedded template method. The resulting polymers were compared to products obtained from continuous flow capillary reactor and conventional bulk synthesis. The droplet based microreactor demonstrated superior molecular weight distribution control by synthesizing a higher molecular weight product with higher conversion and narrow polydispersity in a much shorter reaction time. The high quality of the as-synthesized block copolymer PMMA-b-PS led to a generation of micelles with a narrow size distribution that could be used as a template for well-ordered mesoporous silica with regular frameworks and high surface areas.
Collapse
Affiliation(s)
- Phan Huy Hoang
- National Creative Research Center of Applied Microfluidic Chemistry, Chungnam National University, 220 Kung Dong, Yuseong Gu, Daejeon 305-764, Korea
| | | | | | | |
Collapse
|
48
|
Ribaut T, Oberdisse J, Annighofer B, Fournel B, Sarrade S, Haller H, Lacroix-Desmazes P. Solubility and self-assembly of amphiphilic gradient and block copolymers in supercritical CO2. J Phys Chem B 2011; 115:836-43. [PMID: 21222465 DOI: 10.1021/jp108888x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work aims at demonstrating the interest of gradient copolymers in supercritical CO(2) in comparison with block copolymers. Gradient copolymers exhibit a better solubility in supercritical CO(2) than block copolymers, as attested by cloud point data. The self-assembly of gradient and block copolymers in dense CO(2) has been characterized by Small-Angle Neutron Scattering (SANS), and it is shown that it is not fundamentally modified when changing from block copolymers to gradient copolymers. Therefore, gradient copolymers are advantageous thanks to their easier synthesis and their solubility at lower pressure while maintaining a good ability for self-organization in dense CO(2).
Collapse
Affiliation(s)
- Tiphaine Ribaut
- Institut Charles Gerhardt-UMR 5253 CNRS/UM2/ENSCM/UM1, Ingénierie et Architectures Macromoléculaires (IAM), ENSCM, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Holder SJ, Sommerdijk NAJM. New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles. Polym Chem 2011. [DOI: 10.1039/c0py00379d] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses recent advances of the self-assembly of amphiphilic block copolymers into novel micellar architectures in dilute solutions. The formation of multi-compartment, disk-like, toroidal and bicontinuous micelles and the macromolecular architectures that give rise to these morphologies are reviewed and discussed.
Collapse
Affiliation(s)
- Simon J. Holder
- Functional Materials Group
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | - Nico A. J. M. Sommerdijk
- Laboratory of Materials and Interface Chemistry and Soft Matter Cryo-TEM Research Unit
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
50
|
Hamada T, Kudo K. Nanoaggregate Formation of Amphiphilic Alternating and Random Copolyimides in Water. CHEM LETT 2010. [DOI: 10.1246/cl.2010.1285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|