1
|
Abbasifard M, Khorramdelazad H. Harmonizing hope: navigating the osteoarthritis melody through the CCL2/CCR2 axis for innovative therapeutic avenues. Front Immunol 2024; 15:1387651. [PMID: 39076996 PMCID: PMC11284107 DOI: 10.3389/fimmu.2024.1387651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Osteoarthritis (OA) is characterized by a complex interplay of molecular signals orchestrated by the CCL2/CCR2 axis. The pathogenesis of OA has been revealed to be influenced by a multifaceted effect of CCL2/CCR2 signaling on inflammation, cartilage degradation, and joint homeostasis. The CCL2/CCR2 axis promotes immune cell recruitment and tips the balance toward degeneration by influencing chondrocyte behavior. Insights into these intricate pathways will offer novel therapeutic approaches, paving the way for targeted interventions that may redefine OA management in the future. This review article explores the molecular symphony through the lens of the CCL2/CCR2 axis, providing a harmonious blend of current knowledge and future directions on OA treatment. Furthermore, in this study, through a meticulous review of recent research, the key players and molecular mechanisms that amplify the catabolic cascade within the joint microenvironment are identified, and therapeutic approaches to targeting the CCL2/CCR axis are discussed.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Zhang X, Qiu L, Sultan DH, Luehmann HP, Yu Y, Zhang X, Heo GS, Li A, Lahad D, Rho S, Tu Z, Liu Y. Development of a CCR2 targeted 18F-labeled radiotracer for atherosclerosis imaging with PET. Nucl Med Biol 2024; 130-131:108893. [PMID: 38422918 PMCID: PMC10964492 DOI: 10.1016/j.nucmedbio.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease and the leading cause of morbidity and mortality worldwide. CC motif chemokine ligand 2 and its corresponding cognate receptor 2 (CCL2/CCR2) signaling has been implicated in regulating monocyte recruitment and macrophage polarization during inflammatory responses that plays a pivotal role in atherosclerosis initiation and progression. In this study, we report the design and synthesis of a novel 18F radiolabeled small molecule radiotracer for CCR2-targeted positron emission tomography (PET) imaging in atherosclerosis. The binding affinity of this radiotracer to CCR2 was evaluated via in vitro binding assay using CCR2+ membrane and cells. Ex vivo biodistribution was carried out in wild type mice to assess radiotracer pharmacokinetics. CCR2 targeted PET imaging of plaques was performed in two murine atherosclerotic models. The sensitive detection of atherosclerotic lesions highlighted the potential of this radiotracer for CCR2 targeted PET and warranted further optimization.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lin Qiu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Debbie H Sultan
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hannah P Luehmann
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanbo Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiuli Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Shinji Rho
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Dawson JRD, Wadman GM, Zhang P, Tebben A, Carter PH, Gu S, Shroka T, Borrega-Roman L, Salanga CL, Handel TM, Kufareva I. Molecular determinants of antagonist interactions with chemokine receptors CCR2 and CCR5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567150. [PMID: 38014122 PMCID: PMC10680698 DOI: 10.1101/2023.11.15.567150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
By driving monocyte chemotaxis, the chemokine receptor CCR2 shapes inflammatory responses and the formation of tumor microenvironments. This makes it a promising target in inflammation and immuno-oncology; however, despite extensive efforts, there are no FDA-approved CCR2-targeting therapeutics. Cited challenges include the redundancy of the chemokine system, suboptimal properties of compound candidates, and species differences that confound the translation of results from animals to humans. Structure-based drug design can rationalize and accelerate the discovery and optimization of CCR2 antagonists to address these challenges. The prerequisites for such efforts include an atomic-level understanding of the molecular determinants of action of existing antagonists. In this study, using molecular docking and artificial-intelligence-powered compound library screening, we uncover the structural principles of small molecule antagonism and selectivity towards CCR2 and its sister receptor CCR5. CCR2 orthosteric inhibitors are shown to universally occupy an inactive-state-specific tunnel between receptor helices 1 and 7; we also discover an unexpected role for an extra-helical groove accessible through this tunnel, suggesting its potential as a new targetable interface for CCR2 and CCR5 modulation. By contrast, only shape complementarity and limited helix 8 hydrogen bonding govern the binding of various chemotypes of allosteric antagonists. CCR2 residues S1012.63 and V2446.36 are implicated as determinants of CCR2/CCR5 and human/mouse orthosteric and allosteric antagonist selectivity, respectively, and the role of S1012.63 is corroborated through experimental gain-of-function mutagenesis. We establish a critical role of induced fit in antagonist recognition, reveal strong chemotype selectivity of existing structures, and demonstrate the high predictive potential of a new deep-learning-based compound scoring function. Finally, this study expands the available CCR2 structural landscape with computationally generated chemotype-specific models well-suited for structure-based antagonist design.
Collapse
Affiliation(s)
- John R D Dawson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Grant M Wadman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | | | - Percy H Carter
- Bristol Myers Squibb Company, Princeton, NJ, USA
- (current affiliation) Blueprint Medicines, Cambridge, MA, USA
| | - Siyi Gu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- (current affiliation) Lycia Therapeutics, South San Francisco, CA
| | - Thomas Shroka
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- (current affiliation) Avidity Biosciences Inc., San Diego, CA
| | - Leire Borrega-Roman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Liu Y, Deguchi Y, Wei D, Liu F, Moussalli MJ, Deguchi E, Li D, Wang H, Valentin LA, Colby JK, Wang J, Zheng X, Ying H, Gagea M, Ji B, Shi J, Yao JC, Zuo X, Shureiqi I. Rapid acceleration of KRAS-mutant pancreatic carcinogenesis via remodeling of tumor immune microenvironment by PPARδ. Nat Commun 2022; 13:2665. [PMID: 35562376 PMCID: PMC9106716 DOI: 10.1038/s41467-022-30392-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is a precursor of pancreatic ductal adenocarcinoma (PDAC), which commonly occurs in the general populations with aging. Although most PanIN lesions (PanINs) harbor oncogenic KRAS mutations that initiate pancreatic tumorigenesis; PanINs rarely progress to PDAC. Critical factors that promote this progression, especially targetable ones, remain poorly defined. We show that peroxisome proliferator-activated receptor-delta (PPARδ), a lipid nuclear receptor, is upregulated in PanINs in humans and mice. Furthermore, PPARδ ligand activation by a high-fat diet or GW501516 (a highly selective, synthetic PPARδ ligand) in mutant KRASG12D (KRASmu) pancreatic epithelial cells strongly accelerates PanIN progression to PDAC. This PPARδ activation induces KRASmu pancreatic epithelial cells to secrete CCL2, which recruits immunosuppressive macrophages and myeloid-derived suppressor cells into pancreas via the CCL2/CCR2 axis to orchestrate an immunosuppressive tumor microenvironment and subsequently drive PanIN progression to PDAC. Our data identify PPARδ signaling as a potential molecular target to prevent PDAC development in subjects harboring PanINs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Micheline J Moussalli
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eriko Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lovie Ann Valentin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer K Colby
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Chen HR, Chen CW, Kuo YM, Chen B, Kuan IS, Huang H, Lee J, Anthony N, Kuan CY, Sun YY. Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury. Theranostics 2022; 12:512-529. [PMID: 34976198 PMCID: PMC8692901 DOI: 10.7150/thno.64033] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Rationale: Monocytes belong to the mononuclear phagocyte system and are immune responders to tissue injury and infection. There were also reports of monocytes transforming to microglia-like cells. Here we explore the roles of monocytes in microglia ontogeny and the pathogenesis of neonatal cerebral hypoxic-ischemic (HI) brain injury in mice. Methods: We used three genetic methods to track the development of monocytes, including CX3CR1GFP/+; CCR2RFP/+ reporter mice, adoptive transfer of GFP+ monocytes, and fate-mapping with CCR2-CreER mice, in neonatal mouse brains with or without lipopolysaccharide (LPS, 0.3 mg/kg)-sensitized Vannucci HI. We also used genetic (CCR2RFP/ RFP, CCR2 knockout) and pharmacological methods (RS102895, a CCR2 antagonist) to test the roles of monocytic influx in LPS/HI brain injury. Results: CCR2+ monocytes entered the late-embryonic brains via choroid plexus, but rapidly became CX3CR1+ amoeboid microglial cells (AMCs). The influx of CCR2+ monocytes declined after birth, but recurred after HI or LPS-sensitized HI (LPS/HI) brain injury, particularly in the hippocampus. The CCR2-CreER-based fate-mapping showed that CCR2+ monocytes became CD68+ TNFα+ macrophages within 4 d after LPS/HI, and maintained as TNFα+ MHCII+ macrophages or persisted as Tmem119+ Sall1+ P2RY12+ ramified microglia for at least five months after injury. Genetic deletion of the chemokine receptor CCR2 markedly diminished monocytic influx, the expression of pro- and anti-inflammatory cytokines, and brain damage. Post-LPS/HI application of RS102895 also reduced inflammatory responses and brain damage, leading to better cognitive functions. Conclusion: These results suggest that monocytes promote acute inflammatory responses and may become pathological microglia long after the neonatal LPS/HI insult. Further, blocking the influx of monocytes may be a potential therapy for neonatal brain injury.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ching-Wen Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Brandon Chen
- University of Louisville School of Medicine, Louisville, KY, USA
| | - Irena S. Kuan
- St. Louis University School of Medicine, St. Louis, MO, USA
| | - Henry Huang
- Department of Anesthesiology, Rhode Island Hospital, Providence, RI, USA
| | - Jolly Lee
- Emory University School of Medicine, Atlanta, GA, USA
| | - Neil Anthony
- Emory Integrated Cellular Imaging, Atlanta, GA, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Chan PC, Hsieh PS. The Chemokine Systems at the Crossroads of Inflammation and Energy Metabolism in the Development of Obesity. Int J Mol Sci 2021; 22:ijms222413528. [PMID: 34948325 PMCID: PMC8709111 DOI: 10.3390/ijms222413528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue accompanied with alterations in the immune and metabolic responses. Although the chemokine systems have been documented to be involved in the control of tissue inflammation and metabolism, the dual role of chemokines and chemokine receptors in the pathogenesis of the inflammatory milieu and dysregulated energy metabolism in obesity remains elusive. The objective of this review is to present an update on the link between chemokines and obesity-related inflammation and metabolism dysregulation under the light of recent knowledge, which may present important therapeutic targets that could control obesity-associated immune and metabolic disorders and chronic complications in the near future. In addition, the cellular and molecular mechanisms of chemokines and chemokine receptors including the potential effect of post-translational modification of chemokines in the regulation of inflammation and energy metabolism will be discussed in this review.
Collapse
Affiliation(s)
- Pei-Chi Chan
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
| | - Po-Shiuan Hsieh
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
- Graduate Institute of Medical Science, NDMC, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18622); Fax: +886-2-87924827
| |
Collapse
|
7
|
Dang Y, Yu J, Zhao S, Jin L, Cao X, Wang Q. GOLM1 Drives Colorectal Cancer Metastasis by Regulating Myeloid-derived Suppressor Cells. J Cancer 2021; 12:7158-7166. [PMID: 34729117 PMCID: PMC8558645 DOI: 10.7150/jca.61567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer (CRC) is the most common digestive neoplasms worldwide, metastasis and recurrence still account for the leading cause for the high mortality rate, but the exact mechanisms remain unclear. More and more evidence has indicated that the deregulation of GOLM1 plays a crucial role in cancer progression. Here, we reported a novel role of GOLM1 in promoting CRC metastasis. In this study, the expression of GOLM1 was detected in human CRC cohort. The function of GOLM1 in CRC metastasis was analyzed by in vivo cecum orthotopic model. We found that the expression of GOLM1 was significantly increased in CRC tissues than adjacent nontumor. Overexpression GOLM1 can promote CRC immune escape and metastasis by recruiting of myeloid-derived suppressor cells (MDSCs) at the same time. PF-04136309, a small molecule and specific inhibitor of CCR2 can largely suppressed GOLM1-mediated CRC metastasis. These results suggest that GOLM1 can promote CRC metastasis and is a prognostic biomarker in human CRC.
Collapse
Affiliation(s)
- Yunzhi Dang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710086, China
| | | | | | | | | | | |
Collapse
|
8
|
Ratnayake D, Nguyen PD, Rossello FJ, Wimmer VC, Tan JL, Galvis LA, Julier Z, Wood AJ, Boudier T, Isiaku AI, Berger S, Oorschot V, Sonntag C, Rogers KL, Marcelle C, Lieschke GJ, Martino MM, Bakkers J, Currie PD. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 2021; 591:281-287. [PMID: 33568815 DOI: 10.1038/s41586-021-03199-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.
Collapse
Affiliation(s)
- Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Phong D Nguyen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Verena C Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean L Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Laura A Galvis
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Ziad Julier
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Thomas Boudier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia.,European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia. .,EMBL Australia, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
9
|
Pezhman L, Tahrani A, Chimen M. Dysregulation of Leukocyte Trafficking in Type 2 Diabetes: Mechanisms and Potential Therapeutic Avenues. Front Cell Dev Biol 2021; 9:624184. [PMID: 33692997 PMCID: PMC7937619 DOI: 10.3389/fcell.2021.624184] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.
Collapse
Affiliation(s)
- Laleh Pezhman
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Abd Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Lenzo FL, Kato S, Pabla S, DePietro P, Nesline MK, Conroy JM, Burgher B, Glenn ST, Kuvshinoff B, Kurzrock R, Morrison C. Immune profiling and immunotherapeutic targets in pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:119. [PMID: 33569421 PMCID: PMC7867882 DOI: 10.21037/atm-20-1076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Immunotherapeutic approaches for pancreatic ductal adenocarcinoma (PDAC) are less successful as compared to many other tumor types. In this study, comprehensive immune profiling was performed in order to identify novel, potentially actionable targets for immunotherapy. Methods Formalin-fixed paraffin embedded (FFPE) specimens from 68 patients were evaluated for expression of 395 immune-related markers (RNA-seq), mutational burden by complete exon sequencing of 409 genes, PD-L1 expression by immunohistochemistry (IHC), pattern of tumor infiltrating lymphocytes (TILs) infiltration by CD8 IHC, and PD-L1/L2 copy number by fluorescent in situ hybridization (FISH). Results The seven classes of actionable genes capturing myeloid immunosuppression, metabolic immunosuppression, alternative checkpoint blockade, CTLA-4 immune checkpoint, immune infiltrate, and programmed cell death 1 (PD-1) axis immune checkpoint, discerned 5 unique clinically relevant immunosuppression expression profiles (from most to least common): (I) combined myeloid and metabolic immunosuppression [affecting 25 of 68 patients (36.8%)], (II) multiple immunosuppressive mechanisms (29.4%), (III) PD-L1 positive (20.6%), (IV) highly inflamed PD-L1 negative (10.3%); and (V) immune desert (2.9%). The Wilcoxon rank-sum test was used to compare the PDAC cohort with a comparison cohort (n=1,416 patients) for the mean expressions of the 409 genes evaluated. Multiple genes including TIM3, VISTA, CCL2, CCR2, TGFB1, CD73, and CD39 had significantly higher mean expression versus the comparison cohort, while three genes (LAG3, GITR, CD38) had significantly lower mean expression. Conclusions This study demonstrates that a clinically relevant unique profile of immune markers can be identified in PDAC and be used as a roadmap for personalized immunotherapeutic decision-making strategies.
Collapse
Affiliation(s)
| | - Shumei Kato
- Center for Personalized Cancer Therapy, Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | - Jeffrey M Conroy
- OmniSeq, Inc., Buffalo, NY, USA.,Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Sean T Glenn
- OmniSeq, Inc., Buffalo, NY, USA.,Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Boris Kuvshinoff
- Department of Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center, La Jolla, CA, USA
| | - Carl Morrison
- OmniSeq, Inc., Buffalo, NY, USA.,Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
11
|
Wu X, Singh R, Hsu DK, Zhou Y, Yu S, Han D, Shi Z, Huynh M, Campbell JJ, Hwang ST. A Small Molecule CCR2 Antagonist Depletes Tumor Macrophages and Synergizes with Anti–PD-1 in a Murine Model of Cutaneous T-Cell Lymphoma (CTCL). J Invest Dermatol 2020; 140:1390-1400.e4. [DOI: 10.1016/j.jid.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/27/2023]
|
12
|
Abid S, Marcos E, Parpaleix A, Amsellem V, Breau M, Houssaini A, Vienney N, Lefevre M, Derumeaux G, Evans S, Hubeau C, Delcroix M, Quarck R, Adnot S, Lipskaia L. CCR2/CCR5-mediated macrophage–smooth muscle cell crosstalk in pulmonary hypertension. Eur Respir J 2019; 54:13993003.02308-2018. [DOI: 10.1183/13993003.02308-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/27/2019] [Indexed: 11/05/2022]
Abstract
Macrophages are major players in the pathogenesis of pulmonary arterial hypertension (PAH).To investigate whether lung macrophages and pulmonary-artery smooth muscle cells (PASMCs) collaborate to stimulate PASMC growth and whether the CCL2-CCR2 and CCL5-CCR5 pathways inhibited macrophage–PASMC interactions and PAH development, we used human CCR5-knock-in mice and PASMCs from patients with PAH and controls.Conditioned media from murine M1 or M2 macrophages stimulated PASMC growth. This effect was markedly amplified with conditioned media from M2 macrophage/PASMC co-cultures. CCR2, CCR5, CCL2 and CCL5 were upregulated in macrophage/PASMC co-cultures. Compared to inhibiting either receptor, dual CCR2 and CCR5 inhibition more strongly attenuated the growth-promoting effect of conditioned media from M2-macrophage/PASMC co-cultures. Deleting either CCR2 or CCR5 in macrophages or PASMCs attenuated the growth response. In mice with hypoxia- or SUGEN/hypoxia-induced PH, targeting both CCR2 and CCR5 prevented or reversed PH more efficiently than targeting either receptor alone. Patients with PAH exhibited CCR2 and CCR5 upregulation in PASMCs and perivascular macrophages compared to controls. The PASMC growth-promoting effect of conditioned media from M2-macrophage/PASMC co-cultures was greater when PASMCs from PAH patients were used in the co-cultures or as the target cells and was dependent on CCR2 and CCR5. PASMC migration toward M2-macrophages was greater with PASMCs from PAH patients and was attenuated by blocking CCR2 and CCR5.CCR2 and CCR5 are required for collaboration between macrophages and PASMCs to initiate and amplify PASMC migration and proliferation during PAH development. Dual targeting of CCR2 and CCR5 may hold promise for treating human PAH.
Collapse
|
13
|
Artelsmair M, Miranda-Azpiazu P, Kingston L, Bergare J, Schou M, Varrone A, Elmore CS. Synthesis, 3 H-labelling and in vitro evaluation of a substituted dipiperidine alcohol as a potential ligand for chemokine receptor 2. J Labelled Comp Radiopharm 2019; 62:265-279. [PMID: 30937946 PMCID: PMC6617762 DOI: 10.1002/jlcr.3731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
The immune system is implicated in the pathology of neurodegenerative disorders. The C‐C chemokine receptor 2 (CCR2) is one of the key targets involved in the activation of the immune system. A suitable ligand for CCR2 could be a useful tool to study immune activation in central nervous system (CNS) disorders. Herein, we describe the synthesis, tritium radiolabelling, and preliminary in vitro evaluation in post‐mortem human brain tissue of a known potent small molecule antagonist for CCR2. The preparation of a tritium‐labelled analogue for the autoradiography (ARG) study gave rise to an intriguing and unexpected side reaction profile through a novel amination of ethanol and methanol in the presence of tritium. After successful preparation of the tritiated radioligand, in vitro ARG measurements on human brain sections revealed nonspecific binding properties of the selected antagonist in the CNS.
Collapse
Affiliation(s)
- Markus Artelsmair
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Patricia Miranda-Azpiazu
- Department of Clinical Neuroscience, Centre of Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lee Kingston
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jonas Bergare
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre of Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
14
|
Gentilini A, Pastore M, Marra F, Raggi C. The Role of Stroma in Cholangiocarcinoma: The Intriguing Interplay between Fibroblastic Component, Immune Cell Subsets and Tumor Epithelium. Int J Mol Sci 2018; 19:ijms19102885. [PMID: 30249019 PMCID: PMC6213545 DOI: 10.3390/ijms19102885] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a severe and mostly intractable adenocarcinoma of biliary epithelial cells. A typical feature of CCA is its highly desmoplastic microenvironment containing fibrogenic connective tissue and an abundance of immune cells (T lymphocytes, Natural Killer (NK) cells, and macrophages) infiltrating tumor epithelium. This strong desmoplasia is orchestrated by various soluble factors and signals, suggesting a critical role in shaping a tumor growth-permissive microenvironment that is responsible for CCA poor clinical outcome. Indeed stroma not only provides an abundance of factors that facilitate CCA initiation, growth and progression, but also a prejudicial impact on therapeutic outcome. This review will give an overview of tumor-stroma signaling in a microenvironment critically regulating CCA development and progression. Identification of CCA secreted factors by both the fibroblast component and immune cell subsets might provide ample opportunities for pharmacological targeting of this type of cancer.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano 20089, Italy.
| |
Collapse
|
15
|
Huck BR, Kötzner L, Urbahns K. Kleine Moleküle, ganz groß: niedermolekulare immunonkologische Kombinationstherapien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bayard R. Huck
- Healthcare R&D, Discovery Technologies, Merck KGaA; Frankfurter Straße 250 64293 Darmstadt Deutschland
| | - Lisa Kötzner
- Healthcare R&D, Discovery Technologies, Merck KGaA; Frankfurter Straße 250 64293 Darmstadt Deutschland
| | - Klaus Urbahns
- Healthcare R&D, Discovery Technologies, Merck KGaA; Frankfurter Straße 250 64293 Darmstadt Deutschland
| |
Collapse
|
16
|
Huck BR, Kötzner L, Urbahns K. Small Molecules Drive Big Improvements in Immuno-Oncology Therapies. Angew Chem Int Ed Engl 2018; 57:4412-4428. [PMID: 28971564 PMCID: PMC5900885 DOI: 10.1002/anie.201707816] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 12/16/2022]
Abstract
Immuno-oncology therapies have the potential to revolutionize the armamentarium of available cancer treatments. To further improve clinical response rates, researchers are looking for novel combination regimens, with checkpoint blockade being used as a backbone of the treatment. This Review highlights the significance of small molecules in this approach, which holds promise to provide increased benefit to cancer patients.
Collapse
Affiliation(s)
- Bayard R. Huck
- Healthcare R&D, Discovery Technologies, Merck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| | - Lisa Kötzner
- Healthcare R&D, Discovery Technologies, Merck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| | - Klaus Urbahns
- Healthcare R&D, Discovery Technologies, Merck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| |
Collapse
|
17
|
In-silico guided discovery of novel CCR9 antagonists. J Comput Aided Mol Des 2018; 32:573-582. [DOI: 10.1007/s10822-018-0113-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
|
18
|
Amin SA, Adhikari N, Baidya SK, Gayen S, Jha T. Structural refinement and prediction of potential CCR2 antagonists through validated multi-QSAR modeling studies. J Biomol Struct Dyn 2018; 37:75-94. [PMID: 29251559 DOI: 10.1080/07391102.2017.1418679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chemokines trigger numerous inflammatory responses and modulate the immune system. The interaction between monocyte chemoattractant protein-1 and chemokine receptor 2 (CCR2) may be the cause of atherosclerosis, obesity, and insulin resistance. However, CCR2 is also implicated in other inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, asthma, and neuropathic pain. Therefore, there is a paramount importance of designing potent and selective CCR2 antagonists despite a number of drug candidates failed in clinical trials. In this article, 83 CCR2 antagonists by Jhonson and Jhonson Pharmaceuticals have been considered for robust validated multi-QSAR modeling studies to get an idea about the structural and pharmacophoric requirements for designing more potent CCR2 antagonists. All these QSAR models were validated and statistically reliable. Observations resulted from different modeling studies correlated and validated results of other ones. Finally, depending on these QSAR observations, some new molecules were proposed that may exhibit higher activity against CCR2.
Collapse
Affiliation(s)
- Sk Abdul Amin
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , P. O. Box 17020, Kolkata 700032 , West Bengal , India
| | - Nilanjan Adhikari
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , P. O. Box 17020, Kolkata 700032 , West Bengal , India
| | - Sandip Kumar Baidya
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , P. O. Box 17020, Kolkata 700032 , West Bengal , India
| | - Shovanlal Gayen
- b Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr. Harisingh Gour University , Sagar 470003 , Madhya Pradesh , India
| | - Tarun Jha
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , P. O. Box 17020, Kolkata 700032 , West Bengal , India
| |
Collapse
|
19
|
Bernardini G, Benigni G, Scrivo R, Valesini G, Santoni A. The Multifunctional Role of the Chemokine System in Arthritogenic Processes. Curr Rheumatol Rep 2017; 19:11. [PMID: 28265846 DOI: 10.1007/s11926-017-0635-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The involvement of chemokines and their receptors in the genesis and perpetuation of rheumatoid arthritis, spondyloarthritis, and osteoarthritis has been clearly recognized for a long time. Nevertheless, the complexity of their contribution to these diseases is now becoming evident and this review focuses on published evidence on their mechanism of action. RECENT FINDINGS Studies performed on patients and in vivo models have identified a number of chemokine-mediated pathways involved in various aspects of arthritogenic processes. Chemokines promote leukocyte infiltration and activation, angiogenesis, osteoclast differentiation, and synoviocyte proliferation and activation and participate to the generation of pain by regulating the release of neurotransmitters. A number of chemokines are expressed in a timely controlled fashion in the joint during arthropathies, regulating all the aspects of inflammation as well as the equilibrium between damage and repair and between relief and pain. Thus, the targeting of specific chemokine/chemokine receptor interactions is considered a promising tool for therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Dipartimento di Medicina Molecolare, Sapienza Universita' di Roma, 00161, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Giorgia Benigni
- Innate Immunity Unit, Institut Pasteur, Paris, 75015, France
| | - Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy
| | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy.
| | - Angela Santoni
- Dipartimento di Medicina Molecolare, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Universita' di Roma, Viale Regina Elena 291, 00161, Roma, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
20
|
Cadamuro M, Stecca T, Brivio S, Mariotti V, Fiorotto R, Spirli C, Strazzabosco M, Fabris L. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1435-1443. [PMID: 28757170 DOI: 10.1016/j.bbadis.2017.07.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Prognosis of cholangiocarcinoma, a devastating liver epithelial malignancy characterized by early invasiveness, remains very dismal, though its incidence has been steadily increasing. Evidence is mounting that in cholangiocarcinoma, tumor epithelial cells establish an intricate web of mutual interactions with multiple stromal components, largely determining the pervasive behavior of the tumor. The main cellular components of the tumor microenvironment (i.e. myofibroblasts, macrophages, lymphatic endothelial cells), which has been recently termed as 'tumor reactive stroma', are recruited and activated by neoplastic cells, and in turn, deleteriously mold tumor behavior by releasing a huge variety of paracrine signals, including cyto/chemokines, growth factors, morphogens and proteinases. An abnormally remodeled and stiff extracellular matrix favors and supports these cell interactions. Although the mechanisms responsible for the generation of tumor reactive stroma are largely uncertain, hypoxia presumably plays a central role. In this review, we will dissect the intimate relationship among the different cell elements cooperating within this complex 'ecosystem', with the ultimate goal to pave the way for a deeper understanding of the mechanisms underlying cholangiocarcinoma aggressiveness, and possibly, to foster the development of innovative, combinatorial therapies aimed at halting tumor progression. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy
| | - Tommaso Stecca
- Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Simone Brivio
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padua School of Medicine, 35121 Padua, Italy
| | - Romina Fiorotto
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carlo Spirli
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mario Strazzabosco
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Luca Fabris
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Department of Molecular Medicine, University of Padua School of Medicine, 35121 Padua, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016; 15:639-660. [PMID: 27256476 DOI: 10.1038/nrd.2016.75] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| |
Collapse
|
22
|
Vilums M, Zweemer AJ, Barmare F, van der Gracht AM, Bleeker DC, Yu Z, de Vries H, Gross R, Clemens J, Krenitsky P, Brussee J, Stamos D, Saunders J, Heitman LH, IJzerman AP. When structure–affinity relationships meet structure–kinetics relationships: 3-((Inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamides as CCR2 antagonists. Eur J Med Chem 2015; 93:121-34. [DOI: 10.1016/j.ejmech.2015.01.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 02/02/2023]
|
23
|
Zuo Z, Hu M, Chen M, Chen X, Yang F, Zeng C, Zhao Y, Zhang Y. HPLC Determination of Enantiomeric Purity of PF-04136309 Based on a Chiral Stationary Phase. Chromatographia 2015. [DOI: 10.1007/s10337-015-2860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Design and synthesis of novel small molecule CCR2 antagonists: Evaluation of 4-aminopiperidine derivatives. Bioorg Med Chem Lett 2014; 24:5377-80. [DOI: 10.1016/j.bmcl.2014.10.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022]
|
25
|
Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine 2014; 70:185-93. [PMID: 25066335 DOI: 10.1016/j.cyto.2014.06.019] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 02/09/2023]
Abstract
Osteoarthritis is a chronic and painful disease of synovial joints. Chondrocytes, synovial cells and other cells in the joint can express and respond to cytokines and chemokines, and all of these molecules can also be detected in synovial fluid of patients with osteoarthritis. The presence of inflammatory cytokines in the osteoarthritic joint raises the question whether they may directly participate in pain generation by acting on innervating joint nociceptors. Here, we first provide a systematic discussion of the known proalgesic effects of cytokines and chemokines that have been detected in osteoarthritic joints, including TNF-α, IL-1, IL-6, IL-15, IL-10, and the chemokines, MCP-1 and fractalkine. Subsequently, we discuss what is known about their contribution to joint pain based on studies in animal models. Finally, we briefly discuss limited data available from clinical studies in human osteoarthritis.
Collapse
Affiliation(s)
- Rachel E Miller
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, United States
| | - Anne-Marie Malfait
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
26
|
Tschammer N, Kokornaczyk AK, Strunz AK, Wünsch B. Selective and Dual Targeting of CCR2 and CCR5 Receptors: A Current Overview. CHEMOKINES 2014; 14. [PMCID: PMC7123309 DOI: 10.1007/7355_2014_40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemokine receptor 2 (CCR2) and chemokine receptor 5 (CCR5) are important mediators of leukocyte trafficking in inflammatory processes. The emerging evidence for a role of CCR2 and CCR5 receptors in human inflammatory diseases led to a growing interest in CCR2- and CCR5-selective antagonists. In this review, we focus on the recent development of selective CCR2/CCR5 receptor ligands and dual antagonists. Several compounds targeting CCR2, e.g., INCB8761 and MK0812, were developed as promising candidates for clinical trials, but failed to show clinical efficacy as presumed from preclinical models. The role of CCR5 receptors as the second co-receptor for the HIV-host cell fusion led to the development of various CCR5-selective ligands. Maraviroc is the first CCR5-targeting drug for the treatment of HIV-1 infections on the market. The role of CCR5 receptors in the progression of inflammatory processes fueled the use of CCR5 antagonists for the treatment of rheumatoid arthritis. Unfortunately, the use of maraviroc for the treatment of rheumatoid arthritis failed due to its inefficacy. Some of the ligands, e.g., TAK-779 and TAK-652, were also found to be dual antagonists of CCR2 and CCR5 receptors. The fact that CCR2 and CCR5 receptor antagonists contribute to the treatment of inflammatory diseases renders the development of dual antagonists as promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Nuska Tschammer
- Dept. of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
INTRODUCTION This perspective summarizes 42 drug projects in the general areas of endocrine and metabolic diseases that were reported discontinued during 2012. AREAS COVERED These programs include development projects against diabetes, metabolic complications (including kidney and liver disease), as well as projects that can be described as approaches to treatment of obesity/anorexia, lipids and various inflammatory diseases. Candidates were identified from a search by Informa Healthcare including data available on TreasureTrove as provided by EOID. Additional information was sought using Google, PubMed, HighWire and ClinicalTrials.gov. EXPERT OPINION The summary of discontinued projects in this area for 2012 provides little in the way of specific guidance especially since details of the fate of most projects are often lacking. Nonetheless, it seems clear that none of these projects has hit upon the key aspects of the pathophysiology of the disorders that they were intended to treat, and the most likely cause of failure is the lack of the ability to produce compelling evidence to support the respective business case in the sense of efficacy/potential therapeutic profile.
Collapse
Affiliation(s)
- Jerry R Colca
- Metabolic Solutions Development Co. , 161 E. Michigan Ave, 4th Floor, Kalamazoo, MI 49007 , USA +1 269 267 3567 ;
| |
Collapse
|
28
|
Carter PH. Progress in the discovery of CC chemokine receptor 2 antagonists, 2009 - 2012. Expert Opin Ther Pat 2013; 23:549-68. [PMID: 23428142 DOI: 10.1517/13543776.2013.771168] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION CC chemokine receptor 2 (CCR2) is a key mediator of the activation and migration of inflammatory monocytes. As such, it has been investigated extensively as a target for therapeutic intervention in a diverse range of diseases. AREAS COVERED This article reviews both the patent and peer-reviewed literature on the discovery of CCR2 antagonists from January 2009 to December 2012. Developments have occurred within each of the major chemical families of CCR2 antagonists, and are framed in that context. As has been true historically, a number of the compound families also exhibit substantial activity against the related CC chemokine receptor 5 (CCR5), making them formally CCR2/5-dual antagonists. EXPERT OPINION Significant progress continues to be made in identifying novel, potent CCR2 antagonists. In addition, researchers have had success in addressing issues related to selectivity, cardiac safety, and preclinical pharmacokinetics. Establishing proof-of-concept in clinical trials remains the primary challenge for the field.
Collapse
Affiliation(s)
- Percy H Carter
- Research & Development, Bristol-Myers Squibb Co., Princeton, NJ 08543, USA.
| |
Collapse
|
29
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
30
|
A novel series of N-(azetidin-3-yl)-2-(heteroarylamino)acetamide CCR2 antagonists. Bioorg Med Chem Lett 2012; 23:1063-9. [PMID: 23294701 DOI: 10.1016/j.bmcl.2012.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 11/23/2022]
Abstract
The inflammatory response associated with the activation of C-C chemokine receptor CCR2 via it's interaction with the monocyte chemoattractant protein-1 (MCP-1, CCL2) has been implicated in many disease states, including rheumatoid arthritis, multiple sclerosis, atherosclerosis, asthma and neuropathic pain. Small molecule antagonists of CCR2 have been efficacious in animal models of inflammatory disease, and have been advanced into clinical development. The necessity to attenuate hERG binding appears to be a common theme for many of the CCR2 antagonist scaffolds appearing in the literature, presumably due the basic hydrophobic motif present in all of these molecules. Following the discovery of a novel cyclohexyl azetidinylamide CCR2 antagonist scaffold, replacement of the amide bond with heterocyclic rings was explored as a strategy for reducing hERG binding and improving pharmacokinetic properties.
Collapse
|
31
|
Zhang X, Hou C, Hufnagel H, Singer M, Opas E, McKenney S, Johnson D, Sui Z. Discovery of a 4-Azetidinyl-1-thiazoyl-cyclohexane CCR2 Antagonist as a Development Candidate. ACS Med Chem Lett 2012; 3:1039-44. [PMID: 24900425 DOI: 10.1021/ml300260s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/07/2012] [Indexed: 02/07/2023] Open
Abstract
We have discovered a novel series of 4-azetidinyl-1-aryl-cyclohexanes as CCR2 antagonists. Divergent SAR studies on hCCR2 and hERG activities led to the discovery of compound 8d, which displayed good hCCR2 binding affinity (IC50, 37 nM) and potent functional antagonism (chemotaxis IC50, 30 nM). It presented an IC50 of >50 μM in inhibition of the hERG channel and had no effect on the QTc interval up to 10 mg/kg (i.v.) in anesthetized guinea pig and dog CV studies. It also displayed high selectivity over other chemokine receptors and GPCRs, and amendable oral bioavailability in dogs and primates. In a thioglycollate-induced inflammation model in hCCR2KI mice, it had ED50 of 3 mg/kg on inhibition of the influx of leukocytes, monocytes/macrophages, and T-lymphocytes.
Collapse
Affiliation(s)
- Xuqing Zhang
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| | - Cuifen Hou
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| | - Heather Hufnagel
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| | - Monica Singer
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| | - Evan Opas
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| | - Sandra McKenney
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| | - Dana Johnson
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| | - Zhihua Sui
- Janssen Research and Development, LLC, Welsh & McKean Roads, Box 776, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
32
|
Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, Hewitt S, Udupi GM, Gallagher WM, Wegner C, West BL, Wang-Gillam A, Goedegebuure P, Linehan DC, DeNardo DG. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 2012; 73:1128-41. [PMID: 23221383 DOI: 10.1158/0008-5472.can-12-2731] [Citation(s) in RCA: 740] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-infiltrating immune cells can promote chemoresistance and metastatic spread in aggressive tumors. Consequently, the type and quality of immune responses present in the neoplastic stroma are highly predictive of patient outcome in several cancer types. In addition to host immune responses, intrinsic tumor cell activities that mimic stem cell properties have been linked to chemoresistance, metastatic dissemination, and the induction of immune suppression. Cancer stem cells are far from a static cell population; rather, their presence seems to be controlled by highly dynamic processes that are dependent on cues from the tumor stroma. However, the impact immune responses have on tumor stem cell differentiation or expansion is not well understood. In this study, we show that targeting tumor-infiltrating macrophages (TAM) and inflammatory monocytes by inhibiting either the myeloid cell receptors colony-stimulating factor-1 receptor (CSF1R) or chemokine (C-C motif) receptor 2 (CCR2) decreases the number of tumor-initiating cells (TIC) in pancreatic tumors. Targeting CCR2 or CSF1R improves chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses. Tumor-educated macrophages also directly enhanced the tumor-initiating capacity of pancreatic tumor cells by activating the transcription factor STAT3, thereby facilitating macrophage-mediated suppression of CD8(+) T lymphocytes. Together, our findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs.
Collapse
Affiliation(s)
- Jonathan B Mitchem
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The design and synthesis of novel, potent and orally bioavailable N-aryl piperazine-1-carboxamide CCR2 antagonists with very high hERG selectivity. Bioorg Med Chem Lett 2012; 22:3895-9. [DOI: 10.1016/j.bmcl.2012.04.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 11/19/2022]
|
34
|
Wijtmans M, Scholten DJ, de Esch IJ, Smit MJ, Leurs R. Therapeutic targeting of chemokine receptors by small molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e227-e314. [PMID: 24063737 DOI: 10.1016/j.ddtec.2012.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|