1
|
Andlib N, Prabha S, Thakur SC. Unraveling the molecular pathogenesis of Type 2 Diabetes and its impact on female infertility: A bioinformatics and systems biology approach. Comput Biol Med 2024; 180:108987. [PMID: 39116715 DOI: 10.1016/j.compbiomed.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Type 2 diabetes mellitus (T2D) has been linked with female infertility (FI). Nevertheless, our understanding of the molecular hallmarks and underlying mechanisms remains elusive. This research article aimed to find the hub genes, pathways, transcription factors, and miRNA involved. For this study, softwares like cytoscape, string, Enrichr, FFL loop, etc., were utilized. This research article employed differentially expressed genes (DEGs) to identify multiple biological targets to understand the association between T2D and female infertility (FI). Between T2D and FI, we found 3869 differentially expressed genes. We have also analyzed different pathways like thyroid hormone signaling pathways, AGE-RAGE signaling pathways in diabetic complications and ubiquitin-mediated proteolysis through pathway analysis. Moreover, hub genes MED17, PRKCG, THRA, FOXO1, NCOA2, PLCG2, COL1A1, CXCL8, PRPF19, ANAPC5, UBE2I, XIAP and KEAP1 have been identified. Additionally, these hub genes were subjected to identify the miRNA-mRNA regulation network specific to T2D-associated female infertility. In the FFL study (Feed Forward Loop), transcription factor (SP1, NFKB1, RELA and FOX01), miRNA (has-mir-7-5p, has-let-7a-5p, hsa-mir-16-5p, hsa-mir-155-5p, has-mir-122-5p, has-let-7b-5p, has-mir-124-3p, has-mir-34a-5p, has-mir-130a-3p, has-let-7i-5p, and hsa-mir-27a-3p) and six genes (XIAP, THRA, NCOA2, MED17, FOXO1, and COL1A1) among the thirteen key genes were recognized as regulator and inhibitor. Our analysis reveals that these genes can serve as a significant biomarker for female infertility linked with Type 2 Diabetes, through the prioritization of candidate genes. This study gives us insight into the molecular and cellular mechanism of T2D-associated FI. This finding helps in developing novel therapeutic approaches and will improve efficacy and reduce side effects of the treatment. This research requires further experimental investigation of the principal targets.
Collapse
Affiliation(s)
- Nida Andlib
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Ahmadi F, Lotfi AS, Navaei-Nigjeh M, Kadivar M. Trimetazidine Preconditioning Potentiates the Effect of Mesenchymal Stem Cells Secretome on the Preservation of Rat Pancreatic Islet Survival and Function In Vitro. Appl Biochem Biotechnol 2023; 195:4796-4817. [PMID: 37184724 DOI: 10.1007/s12010-023-04532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Islet transplantation offers improved glycemic control in individuals with type 1 diabetes mellitus. However, in vitro islet culture is associated with islet apoptosis and eventually will lose their functionality prior to transplantation. In this study, we examined the effects of mesenchymal stem cells (MSCs) secretome preconditioned with diazoxide (DZ) and trimetazidine (TMZ) on rat islet cells during pre-transplant culture. With and without preconditioned hAD-MSCs' concentrated conditioned media (CCM) were added to the culture medium containing rat islets every 12 h for 24 and 48 h, after testing for selected cytokine concentrations (interleukin (IL)-4, IL-6, IL-13). Insulin content, glucose-stimulated insulin secretion, islet cell apoptosis, and mRNA expression of pro-apoptotic (BAX, BAK-1, and PUMA) and anti-apoptotic factors (BCL-2, BCL-xL, and XIAP) in rat islets were assessed after 24 and 48 h of culture. The protein level of IL-6 and IL-4 was significantly higher in TMZ-MSC-CM compared to MSC-non-CM. In rat isolated islets, normalized secreted insulin in the presence of 16.7 mM glucose was significantly higher in treated islet groups compared to control islets at both 24 and 48 h cultivation. Also, the percentage of apoptotic islet cells TMZ-MSC-CCM-treated islets was significantly lower compared to MSC-CM and MSC-CCM-treated islets in both 24 and 48 h cultivation. Consistent with the number of apoptotic cells, after 24 h culture, the expression of BCL-2 and BCL-xL genes in the control islets was lower than all treatment islet groups and in 48 h was lower than only TMZ-MSC-CM-treated islets. Also, the expression of the XIAP gene in control islets was significantly lower compared to the TMZ-MSC-CCM-treated islets at both at 24 and 48 h. In addition, mRNA level of the BAX gene in TMZ-MSC-CCM-treated islets was significantly lower compared to other groups at 48 h. Our findings revealed that TMZ proved to be more effective than DZ and could enhance the potential of hAD-MSCs-CM to improve the function and viability of islets prior to transplantation.
Collapse
Affiliation(s)
- Fariborz Ahmadi
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Animaw Z, Asres K, Abebe A, Taye S, Seyoum G. Acute and developmental toxicity of embelin isolated from Embelia schimperi Vatke fruit: In vivo and in silico studies. Toxicol Rep 2023; 10:714-722. [PMID: 37362226 PMCID: PMC10285041 DOI: 10.1016/j.toxrep.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Background Embelin is a hydroxybenzoquinone constituent of the Embelia species that has anti-disease properties. However, its toxicity, particularly the in silico, acute, and developmental toxicity profiles, has yet to be thoroughly investigated. Hence, this study aims to assess these toxicity profiles. Materials and Methods In silico and in vivo experimental studies were conducted on embelin isolated from the fruits of Embelia schimperi Vatke. In silico toxicity predictions were computed using the ProTox model. The in vivo experiment was done by administering 5000 mg/kg of embelin to a single female albino Wistar rat, followed by three female rats in the absence of death, to determine the mean lethal dose (LD50). Afterwards, three groups of pregnant rats were treated with embelin at doses of 250 mg/kg, 500 mg/kg, and 1000 mg/kg for the developmental toxicity test. Vehicle and ad libitum control groups were used to compare the acute and developmental toxicity variables. Results In silico toxicity predicted that embelin is free from hepatotoxic, carcinogenic, mutagenic, and cytotoxic effects. No inhibitory effect on hERG channels was observed. It has an immunotoxic property and an inhibitory effect on the CYP2D6 enzyme. Since mortality and signs of toxicities were not observed after treatment with 5000 mg/kg, the mean lethal dose (LD50) is determined to be > 5000 mg/kg. There was no significant difference in the morphological scores or number of somites among experimental animals. None of the embryonic systems possessed developmental delays. Nevertheless, the crown-rump length of the high-dose group became significantly shorter. Maternal food intake and weight gain exhibited significant dose-dependent differences between embelin-treated animals and controls. The number of implantations was significantly low in the treatment group, accompanied by a higher frequency of prior resorption. Conclusion Embelin is predicted to have a high probability of immunotoxicity potential and affect drug metabolism by inhibiting CYP2D6. In addition, it affects food intake, weight gain, and the number of implantations in pregnant rats. Therefore, it is highly recommended not to take embelin and embelin-rich plants during pregnancy. Further in vitro and in vivo studies need to be conducted to understand the mechanism behind the toxicity of embelin.
Collapse
Affiliation(s)
- Zelalem Animaw
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Drug Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Samson Taye
- Traditional and Modern Drug Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girma Seyoum
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Benaglio P, Zhu H, Okino ML, Yan J, Elgamal R, Nariai N, Beebe E, Korgaonkar K, Qiu Y, Donovan MK, Chiou J, Wang G, Newsome J, Kaur J, Miller M, Preissl S, Corban S, Aylward A, Taipale J, Ren B, Frazer KA, Sander M, Gaulton KJ. Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines. CELL GENOMICS 2022; 2:100214. [PMID: 36778047 PMCID: PMC9903835 DOI: 10.1016/j.xgen.2022.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/17/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
Abstract
We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-βH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.
Collapse
Affiliation(s)
- Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Lin Okino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jian Yan
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Ruth Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Naoki Nariai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisha Beebe
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Katha Korgaonkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Joshua Chiou
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jacklyn Newsome
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jaspreet Kaur
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sierra Corban
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Aylward
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A. Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, Buchwald P, Grilli A, Caroli J, Bicciato S, Serafini P. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun 2022; 13:1815. [PMID: 35383192 PMCID: PMC8983715 DOI: 10.1038/s41467-022-29377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
The ability to detect and target β cells in vivo can substantially refine how diabetes is studied and treated. However, the lack of specific probes still hampers a precise characterization of human β cell mass and the delivery of therapeutics in clinical settings. Here, we report the identification of two RNA aptamers that specifically and selectively recognize mouse and human β cells. The putative targets of the two aptamers are transmembrane p24 trafficking protein 6 (TMED6) and clusterin (CLUS). When given systemically in immune deficient mice, these aptamers recognize the human islet graft producing a fluorescent signal proportional to the number of human islets transplanted. These aptamers cross-react with endogenous mouse β cells and allow monitoring the rejection of mouse islet allografts. Finally, once conjugated to saRNA specific for X-linked inhibitor of apoptosis (XIAP), they can efficiently transfect non-dissociated human islets, prevent early graft loss, and improve the efficacy of human islet transplantation in immunodeficient in mice.
Collapse
Affiliation(s)
- Dimitri Van Simaeys
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana De La Fuente
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Zoso
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victoria Kuznetsova
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Grilli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jimmy Caroli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
The WWOX/HIF1A Axis Downregulation Alters Glucose Metabolism and Predispose to Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063326. [PMID: 35328751 PMCID: PMC8955937 DOI: 10.3390/ijms23063326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.
Collapse
|
7
|
Zbinden A, Urbanczyk M, Layland SL, Becker L, Marzi J, Bosch M, Loskill P, Duffy GP, Schenke-Layland K. Collagen and Endothelial Cell Coculture Improves β-Cell Functionality and Rescues Pancreatic Extracellular Matrix. Tissue Eng Part A 2020; 27:977-991. [PMID: 33023407 DOI: 10.1089/ten.tea.2020.0250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of biomaterials and biomaterial functionalization is a promising approach to support pancreatic islet viability posttransplantation in an effort to reduce insulin dependence for patients afflicted with diabetes mellitus type 1. Extracellular matrix (ECM) proteins are known to impact numerous reparative functions in the body. Assessing how endogenously expressed pancreatic ECM proteins are affected by posttransplant-like hypoxic conditions may provide significant insights toward the development of tissue-engineered therapeutic strategies to positively influence β-cell survival, proliferation, and functionality. Here, we investigated the expression of three relevant groups of pancreatic ECM proteins in human native tissue, including basement membrane (BM) proteins (collagen type 4 [COL4], laminins [LAM]), proteoglycans (decorin [DCN], nidogen-1 [NID1]), and fibril-forming proteins (fibronectin [FN], collagen type 1 [COL1]). In an in vitro hypoxia model, we identified that ECM proteins were differently affected by hypoxic conditions, contributing to an overall loss of β-cell functionality. The use of a COL1 hydrogel as carrier material demonstrated a protective effect on β-cells mitigating the effect of hypoxia on proteoglycans as well as fibril-forming protein expression, supporting β-cell functionality in hypoxia. We further showed that providing endothelial cells (ECs) into the COL1 hydrogel improves β-cell response as well as the expression of relevant BM proteins. Our data show that β-cells benefit from a microenvironment composed of structure-providing COL1 with the incorporation of ECs to withstand the harsh conditions of hypoxia. Such hydrogels support β-cell survival and can serve as an initial source of ECM proteins to allow cell engraftment while preserving cell functionality posttransplantation. Impact statement Expression analysis identifies hypoxia-induced pathological changes in extracellular matrix (ECM) homeostasis as potential targets to support β-cell transplants by encapsulation in biomaterials for the treatment of diabetes mellitus. A collagen-1 hydrogel is shown to attenuate the effect of hypoxia on β-cells and their ECM expression. The functionalization of the hydrogel with endothelial cells increases the β-cell response to glucose and rescues essential basement membrane proteins.
Collapse
Affiliation(s)
- Aline Zbinden
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Max Urbanczyk
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lucas Becker
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Marzi
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Mariella Bosch
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Fraunhofer IGB, Stuttgart, Germany
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
de Souza BM, Rodrigues M, de Oliveira FS, da Silva LPA, Bouças AP, Portinho CP, Dos Santos BP, Camassola M, Rocha D, Lysakowski S, Martini J, Leitão CB, Nardi NB, Bauer AC, Crispim D. Improvement of human pancreatic islet quality after co-culture with human adipose-derived stem cells. Mol Cell Endocrinol 2020; 505:110729. [PMID: 31972330 DOI: 10.1016/j.mce.2020.110729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate whether co-culture of human islets with adipose-derived stem cells (ASCs) can improve islet quality and to evaluate which factors play a role in the protective effect of ASCs against islet dysfunction. Islets and ASCs were cultured in three experimental groups for 24 h, 48 h, and 72 h: 1) indirect co-culture of islets with ASC monolayer (Islets/ASCs); 2) islets alone; and 3) ASCs alone. Co-culture with ASCs improved islet viability and function in all culture time-points analyzed. VEGFA, HGF, IL6, IL8, IL10, CCL2, IL1B, and TNF protein levels were increased in supernatants of islet/ASC group compared to islets alone, mainly after 24 h. Moreover, VEGFA, IL6, CCL2, HIF1A, XIAP, CHOP, and NFKBIA genes were differentially expressed in islets from the co-culture condition compared to islets alone. In conclusion, co-culture of islets with ASCs promotes improvements in islet quality.
Collapse
Affiliation(s)
- Bianca M de Souza
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil.
| | - Michelle Rodrigues
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Fernanda S de Oliveira
- Laboratory of Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liana P A da Silva
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Ana P Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Ciro P Portinho
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Bruno P Dos Santos
- Laboratory for Tissue Bioengineering (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Melissa Camassola
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Dagoberto Rocha
- Post-Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Simone Lysakowski
- Organ Procurement Organization, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Juliano Martini
- Transplant Center, Surgery Department, Hospital Dom Vicente Scherer, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Cristiane B Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Nance B Nardi
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Andrea C Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Samy KP, Gao Q, Davis RP, Song M, Fitch ZW, Mulvihill MS, MacDonald AL, Leopardi FV, How T, Williams KD, Devi GR, Collins BH, Luo X, Kirk AD. The role of human CD46 in early xenoislet engraftment in a dual transplant model. Xenotransplantation 2019; 26:e12540. [PMID: 31219218 PMCID: PMC6908747 DOI: 10.1111/xen.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane cofactor protein CD46 attenuates the complement cascade by facilitating cleavage of C3b and C4b. In solid organ xenotransplantation, organs expressing CD46 have been shown to resist hyperacute rejection. However, the incremental value of human CD46 expression for islet xenotransplantation remains poorly defined. METHODS This study attempted to delineate the role of CD46 in early neonatal porcine islet engraftment by comparing Gal-knocked out (GKO) and hCD46-transgenic (GKO/CD46) islets in a dual transplant model. Seven rhesus macaques underwent dual transplant and were sacrificed at 1 hour (n = 4) or 24 hours (n = 3). Both hemilivers were recovered and fixed for immunohistochemistry (CD46, insulin, neutrophil elastase, platelet, IgM, IgG, C3d, C4d, CD68, Caspase 3). Quantitative immunohistochemical analysis was performed using the Aperio Imagescope. RESULTS Within 1 hour of intraportal infusion of xenografts, no differences were observed between the two types of islets in terms of platelet, antibody, or complement deposition. Cellular infiltration and islet apoptotic activity were also similar at 1 hour. At 24 hours, GKO/CD46 islets demonstrated significantly less platelet deposition (P = 0.01) and neutrophil infiltration (P = 0.01) compared to GKO islets. In contrast, C3d (P = 0.38) and C4d (P = 0.45) deposition was equal between the two genotypes. CONCLUSIONS Our findings suggest that expression of hCD46 on NPIs potentially provides a measurable incremental survival advantage in vivo by reducing early thrombo-inflammatory events associated with instant blood-mediated inflammatory reaction (IBMIR) following intraportal islet infusion.
Collapse
Affiliation(s)
- Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Robert Patrick Davis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Michael S Mulvihill
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Andrea L MacDonald
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Frank V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Tam How
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Kyha D Williams
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Xunrong Luo
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Prabhu KS, Achkar IW, Kuttikrishnan S, Akhtar S, Khan AQ, Siveen KS, Uddin S. Embelin: a benzoquinone possesses therapeutic potential for the treatment of human cancer. Future Med Chem 2018; 10:961-976. [PMID: 29620447 DOI: 10.4155/fmc-2017-0198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Natural products have been gaining recognition and are becoming a significant part of research in the area of drug development and discovery. Phytochemicals derived from these sources have been comprehensively studied and have displayed a wide range of activities against many fatal diseases including cancer. One such product that has gained recognition from its pharmacological properties and nontoxic nature is embelin, obtained from Embelia ribes. Amid all the vivid pharmacological activities, embelin has gained its prominence in the area of cancer research. Embelin binds to the BIR3 domain of XIAP, preventing the association of XIAP and caspase-9 resulting in the suppression of cell growth, proliferation and migration of various types of cancer cells. Furthermore, embelin modulates anti-apoptotic pathways by suppressing the activity of NF-κB, PI3-kinase/AKT, JAK/STAT pathway - among others. The present review summarizes the various reported effects of embelin on different types of cancer cells and highlights the cellular mechanisms of action.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodapully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
11
|
Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5264592. [PMID: 29686719 PMCID: PMC5857302 DOI: 10.1155/2018/5264592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis.
Collapse
|
12
|
Jimenez-Moreno CM, Herrera-Gomez IDG, Lopez-Noriega L, Lorenzo PI, Cobo-Vuilleumier N, Fuente-Martin E, Mellado-Gil JM, Parnaud G, Bosco D, Gauthier BR, Martin-Montalvo A. A Simple High Efficiency Intra-Islet Transduction Protocol Using Lentiviral Vectors. Curr Gene Ther 2016; 15:436-46. [PMID: 26122098 PMCID: PMC5411998 DOI: 10.2174/1566523215666150630121557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 11/22/2022]
Abstract
Successful normalization of blood glucose in patients transplanted with pancreatic islets isolated from cadaveric donors established the proof-of-concept that Type 1 Diabetes Mellitus is a curable disease. Nonetheless, major caveats to the widespread use of this cell therapy approach have been the shortage of islets combined with the low viability and functional rates subsequent to transplantation. Gene therapy targeted to enhance survival and performance prior to transplantation could offer a feasible approach to circumvent these issues and sustain a durable functional β-cell mass in vivo. However, efficient and safe delivery of nucleic acids to intact islet remains a challenging task. Here we describe a simple and easy-to-use lentiviral transduction protocol that allows the transduction of approximately 80 % of mouse and human islet cells while preserving islet architecture, metabolic function and glucose-dependent stimulation of insulin secretion. Our protocol will facilitate to fully determine the potential of gene expression modulation of therapeutically promising targets in entire pancreatic islets for xenotransplantation purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Benoit Raymond Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Americo Vespucio, Parque Científico y Tecnologico Cartuja 93, 41092 Sevilla, Spain.
| | | |
Collapse
|
13
|
Peng Y, Dong Y, Mahato RI. Synthesis and Characterization of a Novel Mycophenolic Acid-Quinic Acid Conjugate Serving as Immunosuppressant with Decreased Toxicity. Mol Pharm 2015; 12:4445-53. [PMID: 26529468 DOI: 10.1021/acs.molpharmaceut.5b00639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycophenolic acid (MPA) is one of the most commonly used immunosuppressive drugs for improving the outcome of cell and organ transplantations. However, an undesired adverse effect of MPA impedes its application in the clinics for post-transplant patients. By conjugating MPA to quinic acid (QA) via amide bonds, we synthesized a novel immunosuppressant, N-[2-[[(4E)-6-(1,3-dihydro-4-hydroxy-6-methoxy-7-methyl-3-oxo-5-isobenzofuranyl)-4-methyl-1-oxo-4-hexen-1-yl]amino]ethyl]-(1α,3R,4α,5R)-1,3,4,5-tetrakis(acetyloxy)cyclohexanecarboxamide (abbreviated as MQ4), which exhibits improved stability demonstrated by its incubation in vitro with human plasma, suggesting its better resistance to hydrolytic degradation induced by plasma enzyme. While the immunosuppressive effect of MQ4 on human lymphocyte proliferation was partially compromised as shown by flow cytometry, significant decrease in cytotoxicity of MQ4 to insulin producing β cells could compensate this drawback to some degree. There was a decreased level of apoptotic mediator caspase-3, which may contribute to the decreased toxicity of MQ4 to INS-1E cells. MQ4 could further improve insulin stimulation index and downregulate NFκB expression compared to physical mixing of QA to MPA. Taken together, MQ4 is a promising immunosuppressive agent for preventing and minimizing post-transplanted immune rejection.
Collapse
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198-6025, United States
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198-6025, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
14
|
Abstract
Diabetes is affecting more than 25.8 million people in the United States, causing huge burden on the health care system and economy. Insulin injection, which is the predominant treatment for diabetes, is incapable of replenishing the lost insulin-producing beta cell in patients. Restoring beta cell mass through replacement therapy such as islet transplantation or beta cell regeneration through in vitro and in vivo strategies has attracted particular attentions in the field due to its potential to cure diabetes. In the aspect of islet transplantation, gene therapy, stem cell therapy, and more biocompatible immunosuppressive drugs have been tested in various preclinical animal models to improve the longevity and function of human islets against the posttransplantation challenges. In the islet regeneration aspect, insulin-producing cells have been generated through in vitro transdifferentiation of stem cells and other types of cells and demonstrated to be capable of glycemic control. Moreover, several biomarkers including cell-surface receptors, soluble factors, and transcriptional factors have been identified or rediscovered in mediating the process of beta cell proliferation in rodents. This review summarizes the current progress and hurdles in the preclinical efforts in resurrecting beta cells. It may provide some useful insights into the future drug discovery for antidiabetic purposes.
Collapse
Affiliation(s)
| | - Hao Wu
- NGM Biopharmaceuticals, Inc, South San Francisco, CA, USA
| |
Collapse
|
15
|
Wang J, Li W. Discovery of novel second mitochondria-derived activator of caspase mimetics as selective inhibitor of apoptosis protein inhibitors. J Pharmacol Exp Ther 2014; 349:319-29. [PMID: 24623800 DOI: 10.1124/jpet.113.212019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inhibitor of apoptosis (IAP) proteins are widely considered as promising cancer drug targets, especially for drug-resistant tumors. Mimicking the IAP-binding motif of second mitochondria-derived activator of caspases (SMAC) is a rational strategy to design potential IAP inhibitors. In this report, we used the bioactive conformation of AVPI tetrapeptide in the N terminus of SMAC as a template and performed a shape-based virtual screening against a drug-like compound library to identify novel IAP inhibitors. Top hits were subsequently docked to available IAP crystal structures as a secondary screening followed by validation using in vitro biologic assays. Four novel hit compounds were identified to potently inhibit cell growth in two human melanoma (A375 and M14) and two human prostate (PC-3 and DU145) cancer cell lines. The best compound, UC-112 [5-((benzyloxy)methyl)-7-(pyrrolidin-1-ylmethyl)quinolin-8-ol], has IC50 values ranging from 0.7 to 3.4 µM. UC-112 also potently inhibits the growth of P-glycoprotein (P-gp)-overexpressed multidrug-resistant cancer cells, strongly activates caspase-3/7 and caspase-9 activities, and selectively downregulates survivin level at a concentration as low as 1 µM. Coincubation of UC-112 with a known proteasome inhibitor Z-Leu-Leu-Leu-CHO (MG-132) rescued survivin inhibition, consistent with the anticipated mechanism of action for UC-112. As a single agent, UC-112 strongly inhibits tumor growth and reduces both X chromosome-linked IAP and survivin levels in an A375 human melanoma xenograft model in vivo. Overall, our study identified novel scaffolds, especially UC-112, as new platforms on which potent and selective IAP antagonists can be developed.
Collapse
Affiliation(s)
- Jin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee
| | | |
Collapse
|
16
|
Poojari R. Embelin – a drug of antiquity: shifting the paradigm towards modern medicine. Expert Opin Investig Drugs 2014; 23:427-44. [DOI: 10.1517/13543784.2014.867016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Roscioli E, Hamon R, Ruffin RE, Zalewski P, Grant J, Lester S. X-linked inhibitor of apoptosis single nucleotide polymorphisms and copy number variation are not risk factors for asthma. Respirology 2013; 18:697-703. [PMID: 23418891 DOI: 10.1111/resp.12065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/19/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Aberrant apoptosis in asthma contributes to airway inflammation. Early apoptosis and fragility of airway epithelial cells and delayed apoptosis of inflammatory lymphocytes can cooperate to increase airway inflammation. In this study, single nucleotide polymorphisms (SNPs) and copy number variation (CNV) in the Baculoviral inhibitor of apoptosis protein repeat-containing 4 (BIRC4) gene (which encodes X-linked inhibitor of apoptosis protein) were evaluated for associations with asthma. METHODS Asthma cases (n = 203) were identified from Caucasian cohort participants in the North West Adelaide Health Study and matched with 198 controls. Asthma status was defined using self-report of doctor-diagnosed asthma, in conjunction with spirometry and bronchodilator response. Seven SNPs, which spanned the entire BIRC4 gene, were selected for the study on the basis of a haplotype tagging approach. SNPs genotyping was performed on the SEQUENOM MassARRAY iPLEX Gold platform, and genotyping success rate was > 98%. BIRC4 gene CNV was measured using a duplex Taqman qPCR assay, with RNAseP as the reference gene. Alleles and haplotype associations were analysed by logistic regression, assuming an additive genetic model, and adjusted for gender and atopy. RESULTS BIRC4 gene copy number was determined entirely by gender. All SNPs were in Hardy-Weinberg equilibrium for both case and control females. BIRC4 allele and haplotype frequencies were comparable between asthma cases and controls. CONCLUSIONS There is no evidence of CNV in BIRC4, and BIRC4 is not a susceptibility gene for asthma.
Collapse
Affiliation(s)
- Eugene Roscioli
- Discipline of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Wu H, Pagadala J, Yates CR, Miller D, Mahato RI. Synthesis and characterization of an anti-apoptotic immunosuppressive compound for improving the outcome of islet transplantation. Bioconjug Chem 2013; 24:2036-44. [PMID: 24256337 DOI: 10.1021/bc400369t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycophenolic acid (MPA) is a commonly used immunosuppressive drug for human islet transplantation. However, it is toxic to transplanted islets, causing primary nonfunction. We recently synthesized a quinic acid derivative, 1,3,4,5-tetrahydroxy-N-propylcyclohexanecarboxamide (KZ41), which has anti-inflammatory and anti-apoptotic effects. We hypothesized that the conjugate (E)-2,3,5-trihydroxy-5-(propylcarbamoyl) cyclohexyl 6-(4-ethoxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enoate (JP-3-110), which is composed of KZ41 and MPA through esterification, can suppress the immune rejection while inducing less toxicity. Early characterization showed that the solubility of JP-3-110 was significantly higher than that of MPA, though JP-3-110 was still poorly water-soluble. The ester bond connecting KZ41 and MPA is stable for a limited duration (<4 weeks). Pharmacological studies demonstrated that JP-3-110 induced significantly less activated caspase 3 and apoptotic cell death of human islets than MPA, while maintaining an equally potent immunosuppressive effect. A similar immunosuppressive effect of JP-3-110 and MPA in humanized NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NOD scid gamma, NSG) mice with adoptively transferred human immunity was observed. Taken together, our results demonstrated that JP-3-110 can be a safer immunosuppressive agent for human islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center , Memphis, Tennessee, United States
| | | | | | | | | |
Collapse
|
19
|
Wu H, Yoon AR, Li F, Yun CO, Mahato RI. RGD peptide-modified adenovirus expressing hepatocyte growth factor and X-linked inhibitor of apoptosis improves islet transplantation. J Gene Med 2013; 13:658-69. [PMID: 22095898 DOI: 10.1002/jgm.1626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Islet transplantation has the potential for treating type I diabetes; however, its widespread clinical application is limited by the massive apoptotic cell death and poor revascularization of transplanted islet grafts. METHODS We constructed a surface-modified adenoviral vector with RGD (Arg-Gly-Asp) sequences encoding human X-linked inhibitor of apoptosis and hepatocyte growth factor (RGD-Adv-hHGF-hXIAP). In vitro transgene expression in human islets was determined by enzyme-liniked immunosorbent assay. RGD-Adv-hHGF-hXIAP-transduced human islets were transplanted under the kidney capsule of streptozotocin-induced diabetic NOD/SCID mice. The blood glucose levels of mice were measured weekly. The kidneys bearing islets were isolated at the end of the experiment and subjected to immunofluorescence staining. RESULTS The transduction efficiency on human islets was significantly improved using RGD-modified adenovirus. HGF and XIAP gene expressions were dose-dependent after viral transduction. When exposed to a cocktail of inflammatory cytokines, RGD-Adv-hHGF-hXIAP-transduced human islets showed decreased caspase 3 activity and reduced apoptotic cell death. Prolonged normoglycemic control could be achieved by transplanting RGD-Adv-hHGF-hXIAP-transduced human islets. Immunofluorescence staining of kidney sections bearing RGD-Adv-hHGF-hXIAP-transduced islets was positive for insulin and von Willebrand factor (vWF) at 200 days after transplantation. CONCLUSIONS These results indicated that ex vivo transduction of islets with RGD-Adv-hHGF-hXIAP decreased apoptotic islet cell death and improved islet revascularization, and eventually might improve the outcome of human islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
20
|
de Vos P, Spasojevic M, de Haan BJ, Faas MM. The association between in vivo physicochemical changes and inflammatory responses against alginate based microcapsules. Biomaterials 2012; 33:5552-9. [DOI: 10.1016/j.biomaterials.2012.04.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/13/2012] [Indexed: 12/20/2022]
|
21
|
Lejonklou MH, Barbu A, Stålberg P, Skogseid B. Accelerated proliferation and differential global gene expression in pancreatic islets of five-week-old heterozygous Men1 mice: Men1 is a haploinsufficient suppressor. Endocrinology 2012; 153:2588-98. [PMID: 22492302 DOI: 10.1210/en.2011-1924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Individuals carrying heterozygous (hz) MEN1 (Multiple Endocrine Neoplasia Syndrome Type 1) germ line mutations develop endocrine tumors as a result of somatic loss of the wild-type (wt) allele. However, endocrine cell proliferation has been observed despite wt allele retention, indicating haploinsufficiency. To study downstream molecular effects of the hz haplotype, a germ line Men1 hz mouse model was used to explore differences in global endocrine pancreatic gene expression. Because islet cells of 5-wk-old hz mice express Menin from the retained wt Men1 allele, these were isolated after collagenase digestion of the pancreas, and used for global gene expression array. Wild-type littermates were used for comparison. Array findings were corroborated by quantitative PCR, Western blotting, in situ proximity ligation assay, and immunohistochemistry. The hz islets show increased proliferation: the Ki-67 index was twice as high as in wt islets (3.48 vs. 1.74%; P = 0.024). The microarray results demonstrated that several genes were differentially expressed. Some selected genes were studied on the protein level, e.g. the cytoskeletal regulator myristoylated alanine-rich protein kinase C substrate (Marcks) was significantly less expressed in hz islets, using in situ proximity ligation assay and Western blotting (P < 0.001 and P < 0.01, respectively). Further, gene ontology analysis showed that genes with higher mRNA expression in the hz endocrine pancreas were associated with e.g. chromatin maintenance and apoptosis. Lower mRNA was observed for genes involved in growth factor binding. In conclusion, despite retained Menin expression, proliferation was accelerated, and numerous genes were differentially expressed in the endocrine pancreas of 5-wk-old hz Men1 mice, corroborating the hypothesis that MEN1 is a haploinsufficient suppressor.
Collapse
Affiliation(s)
- Margareta H Lejonklou
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
22
|
Induction of protective genes leads to islet survival and function. J Transplant 2011; 2011:141898. [PMID: 22220267 PMCID: PMC3246756 DOI: 10.1155/2011/141898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/01/2011] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1), A20/tumor necrosis factor alpha inducible protein3 (tnfaip3), biliverdin reductase (BVR), Bcl2, and others) or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free.
Collapse
|
23
|
Wu H, Ye Z, Mahato RI. Genetically modified mesenchymal stem cells for improved islet transplantation. Mol Pharm 2011; 8:1458-70. [PMID: 21707070 DOI: 10.1021/mp200135e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of adult stem cells for therapeutic purposes has met with great success in recent years. Among several types of adult stem cells, mesenchymal stem cells (MSCs) derived from bone marrow (BM) and other sources have gained popularity for basic research and clinical applications because of their therapeutic potential in treating a variety of diseases. Because of their tissue regeneration potential and immune modulation effect, MSCs were recently used as cell-based therapy to promote revascularization, increase pancreatic β-cell proliferation, and avoid allograft rejection in islet transplantation. Taking advantage of the recent progress in gene therapy, genetically modified MSCs can further enhance and expand the therapeutic benefit of primary MSCs while retaining their stem-cell-like properties. This review aims to gain a thorough understanding of the current obstacles to successful islet transplantation and discusses the potential role of primary MSCs before or after genetic modification in islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | | | | |
Collapse
|