1
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
2
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
3
|
Wang ZB, Xu J. Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant-Antigen Codelivery. Vaccines (Basel) 2020; 8:vaccines8010128. [PMID: 32183209 PMCID: PMC7157724 DOI: 10.3390/vaccines8010128] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional aluminum adjuvants can trigger strong humoral immunity but weak cellular immunity, limiting their application in some vaccines. Currently, various immunomodulators and delivery carriers are used as adjuvants, and the mechanisms of action of some of these adjuvants are clear. However, customizing targets of adjuvant action (cellular or humoral immunity) and action intensity (enhancement or inhibition) according to different antigens selected is time-consuming. Here, we review the adjuvant effects of some delivery systems and immune stimulants. In addition, to improve the safety, effectiveness, and accessibility of adjuvants, new trends in adjuvant development and their modification strategies are discussed.
Collapse
Affiliation(s)
| | - Jing Xu
- Correspondence: ; Tel.: +86-(10)-5224-5008
| |
Collapse
|
4
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Liposome and immune system interplay: Challenges and potentials. J Control Release 2019; 305:194-209. [DOI: 10.1016/j.jconrel.2019.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
6
|
Cruz-Leal Y, Grubaugh D, Nogueira CV, Lopetegui-González I, Del Valle A, Escalona F, Laborde RJ, Alvarez C, Fernández LE, Starnbach MN, Higgins DE, Lanio ME. The Vacuolar Pathway in Macrophages Plays a Major Role in Antigen Cross-Presentation Induced by the Pore-Forming Protein Sticholysin II Encapsulated Into Liposomes. Front Immunol 2018; 9:2473. [PMID: 30455685 PMCID: PMC6230584 DOI: 10.3389/fimmu.2018.02473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cross-presentation is an important mechanism for the differentiation of effector cytotoxic T lymphocytes (CTL) from naïve CD8+ T-cells, a key response for the clearance of intracellular pathogens and tumors. The liposomal co-encapsulation of the pore-forming protein sticholysin II (StII) with ovalbumin (OVA) (Lp/OVA/StII) induces a powerful OVA-specific CTL activation and an anti-tumor response in vivo. However, the pathway through which the StII contained in this preparation is able to induce antigen cross-presentation and the type of professional antigen presenting cells (APCs) involved have not been elucidated. Here, the ability of mouse bone marrow-derived dendritic cells (BM-DCs) and macrophages (BM-MΦs) stimulated with Lp/OVA/StII to activate SIINFEKL-specific B3Z CD8+ T cells was evaluated in the presence of selected inhibitors. BM-MΦs, but not BM-DCs were able to induce SIINFEKL-specific B3Z CD8+ T cell activation upon stimulation with Lp/OVA/StII. The cross-presentation of OVA was markedly decreased by the lysosome protease inhibitors, leupeptin and cathepsin general inhibitor, while it was unaffected by the proteasome inhibitor epoxomicin. This process was also significantly reduced by phagocytosis and Golgi apparatus function inhibitors, cytochalasin D and brefeldin A, respectively. These results are consistent with the concept that BM-MΦs internalize these liposomes through a phagocytic mechanism resulting in the cross-presentation of the encapsulated OVA by the vacuolar pathway. The contribution of macrophages to the CTL response induced by Lp/OVA/StII in vivo was determined by depleting macrophages with clodronate-containing liposomes. CTL induction was almost completely abrogated in mice depleted of macrophages, demonstrating the relevance of these APCs in the antigen cross-presentation induced by this formulation.
Collapse
Affiliation(s)
- Yoelys Cruz-Leal
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Daniel Grubaugh
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, Boston, MA, United States
| | - Catarina V Nogueira
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, Boston, MA, United States
| | | | - Anaixis Del Valle
- Department of Biochemistry, Faculty of Biology, University of Havana, Havana, Cuba
| | - Felipe Escalona
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Rady J Laborde
- Department of Biochemistry, Faculty of Biology, University of Havana, Havana, Cuba
| | - Carlos Alvarez
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Luis E Fernández
- Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, Boston, MA, United States
| | - Darren E Higgins
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, Boston, MA, United States
| | - María E Lanio
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| |
Collapse
|
7
|
A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 2017; 122:23-33. [DOI: 10.1016/j.biomaterials.2017.01.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
|
8
|
Laborde RJ, Sanchez-Ferras O, Luzardo MC, Cruz-Leal Y, Fernández A, Mesa C, Oliver L, Canet L, Abreu-Butin L, Nogueira CV, Tejuca M, Pazos F, Álvarez C, Alonso ME, Longo-Maugéri IM, Starnbach MN, Higgins DE, Fernández LE, Lanio ME. Novel Adjuvant Based on the Pore-Forming Protein Sticholysin II Encapsulated into Liposomes Effectively Enhances the Antigen-Specific CTL-Mediated Immune Response. THE JOURNAL OF IMMUNOLOGY 2017; 198:2772-2784. [PMID: 28258198 DOI: 10.4049/jimmunol.1600310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
Vaccine strategies to enhance CD8+ CTL responses remain a current challenge because they should overcome the plasmatic and endosomal membranes for favoring exogenous Ag access to the cytosol of APCs. As a way to avoid this hurdle, sticholysin (St) II, a pore-forming protein from the Caribbean Sea anemone Stichodactyla helianthus, was encapsulated with OVA into liposomes (Lp/OVA/StII) to assess their efficacy to induce a CTL response. OVA-specific CD8+ T cells transferred to mice immunized with Lp/OVA/StII experienced a greater expansion than when the recipients were injected with the vesicles without St, mostly exhibiting a memory phenotype. Consequently, Lp/OVA/StII induced a more potent effector function, as shown by CTLs, in vivo assays. Furthermore, treatment of E.G7-OVA tumor-bearing mice with Lp/OVA/StII significantly reduced tumor growth being more noticeable in the preventive assay. The contribution of CD4+ and CD8+ T cells to CTL and antitumor activity, respectively, was elucidated. Interestingly, the irreversibly inactive variant of the StI mutant StI W111C, encapsulated with OVA into Lp, elicited a similar OVA-specific CTL response to that observed with Lp/OVA/StII or vesicles encapsulating recombinant StI or the reversibly inactive StI W111C dimer. These findings suggest the relative independence between StII pore-forming activity and its immunomodulatory properties. In addition, StII-induced in vitro maturation of dendritic cells might be supporting these properties. These results are the first evidence, to our knowledge, that StII, a pore-forming protein from a marine eukaryotic organism, encapsulated into Lp functions as an adjuvant to induce a robust specific CTL response.
Collapse
Affiliation(s)
- Rady J Laborde
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Oraly Sanchez-Ferras
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - María C Luzardo
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Audry Fernández
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Circe Mesa
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Liliana Oliver
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Liem Canet
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Liane Abreu-Butin
- Discipline of Immunology, Department of Microbiology, Immunology, and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo 04023-900, Brazil; and
| | - Catarina V Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Mayra Tejuca
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Pazos
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Carlos Álvarez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - María E Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ieda M Longo-Maugéri
- Discipline of Immunology, Department of Microbiology, Immunology, and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo 04023-900, Brazil; and
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Darren E Higgins
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Luis E Fernández
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba;
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba;
| |
Collapse
|
9
|
Tao Y, Li M, Kim B, Auguste DT. Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Am J Cancer Res 2017; 7:899-911. [PMID: 28382162 PMCID: PMC5381252 DOI: 10.7150/thno.17927] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/03/2016] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. Successful development of sensitive nanoprobes for breast cancer cell detection is of great importance for breast cancer diagnosis and symptomatic treatment. Herein, inspired by the intrinsic peroxidase property of gold nanoclusters, high loading, and targeting ability of ErbB2/Her2 antibody functionalized liposomes, we report that gold nanoclusters-loaded, target-directed, functionalized liposomes can serve as a robust sensing platform for amplified colorimetric detection of HER2-positive breast cancer cells. This approach allows HER2-positive breast cancer cell identification at high sensitivity with high selectivity. In addition, the colorimetric “readout” offers extra advantages in terms of low-cost, portability, and easy-to-use applications. The practicality of this platform was further proved by successful detection of HER2-positive breast cancer cells in human serum samples and in breast cancer tissue, which indicated our proposed method has potential for application in cancer theranostics.
Collapse
|
10
|
Zhang H, Gao XD. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:935-946. [PMID: 27772724 DOI: 10.1016/j.msec.2016.03.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
Abstract
Synthetic oligodeoxynucleotides containing immunostimulatory CpG motif mimic bacterial DNA and are potent activator of innate and adaptive immune responses. Therefore, CpG ODNs have significant potentials as immunotherapeutic agent for treatment of infectious diseases, allergy and cancer. Many clinical trials involving CpG ODNs either used alone or as adjuvant have been initiated. However, delivery of CpG ODNs to target sites still remains a great challenge due to their extreme susceptibility to nuclease degradation in serum and poor cellular uptake. Chemical modification of CpG ODNs backbone can protect them against degradation by nucleases, but have raised concern regarding several severe side effects. Development of efficient CpG ODNs delivery systems to address these issues and enhance their immunostimulatory effect are highly desirable. In recent years, the emergence of nanotechnology has provided unprecedented opportunities to encapsulate CpG ODN into various nanocarriers or synthesize CpG ODNs nanostructures. This review provides an overview of the delivery systems based on nanomaterials and nanostructures newly developed for enhancing the immunostimulatory effect of CpG ODNs, together with a brief discussion on perspectives for future studies in this field.
Collapse
Affiliation(s)
- Huijie Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators. Pharmaceutics 2016; 8:pharmaceutics8010007. [PMID: 26978390 PMCID: PMC4810083 DOI: 10.3390/pharmaceutics8010007] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR expression profile of the target APCs. Here, we review state-of-the-art formulation approaches employed for the inclusion of immunostimulators and subunit antigens into liposome dispersion and their optimization towards robust vaccine formulations.
Collapse
|
12
|
Wilson JT, Postma A, Keller S, Convertine AJ, Moad G, Rizzardo E, Meagher L, Chiefari J, Stayton PS. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles. AAPS JOURNAL 2014; 17:358-69. [PMID: 25501498 DOI: 10.1208/s12248-014-9697-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/01/2014] [Indexed: 11/30/2022]
Abstract
Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell responses to protein-based vaccines.
Collapse
Affiliation(s)
- John T Wilson
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington, 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:159-82. [PMID: 25364509 DOI: 10.1177/2051013614541440] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome-DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized.
Collapse
Affiliation(s)
- Reto A Schwendener
- Institute of Molecular Cancer Research, Laboratory of Liposome Research, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
14
|
Neeland MR, Elhay MJ, Nathanielsz J, Meeusen ENT, de Veer MJ. Incorporation of CpG into a liposomal vaccine formulation increases the maturation of antigen-loaded dendritic cells and monocytes to improve local and systemic immunity. THE JOURNAL OF IMMUNOLOGY 2014; 192:3666-75. [PMID: 24646740 DOI: 10.4049/jimmunol.1303014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Liposomal vaccine formulations incorporating stimulants that target innate immune receptors have been shown to significantly increase vaccine immunity. Following vaccination, innate cell populations respond to immune stimuli, phagocytose and process Ag, and migrate from the injection site, via the afferent lymphatic vessels, into the local lymph node. In this study, the signals received in the periphery promote and sculpt the adaptive immune response. Effector lymphocytes then leave the lymph node via the efferent lymphatic vessel to perform their systemic function. We have directly cannulated the ovine lymphatic vessels to detail the in vivo innate and adaptive immune responses occurring in the local draining lymphatic network following vaccination with a liposome-based delivery system incorporating CpG. We show that CpG induces the rapid recruitment of neutrophils, enhances dendritic cell-associated Ag transport, and influences the maturation of innate cells entering the afferent lymph. This translated into an extended period of lymph node shutdown, the induction of IFN-γ-positive T cells, and enhanced production of Ag-specific Abs. Taken together, the results of this study quantify the real-time in vivo kinetics of the immune response in a large animal model after vaccination of a dose comparable to that administered to humans. This study details enhancement of numerous immune mechanisms that provide an explanation for the immunogenic function of CpG when employed as an adjuvant within vaccines.
Collapse
Affiliation(s)
- Melanie R Neeland
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
15
|
Zhu R, Zhu Y, Zhang M, Xiao Y, Du X, Liu H, Wang S. The induction of maturation on dendritic cells by TiO2 and Fe(3)O(4)@TiO(2) nanoparticles via NF-κB signaling pathway. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:305-14. [PMID: 24863229 DOI: 10.1016/j.msec.2014.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/20/2014] [Accepted: 03/01/2014] [Indexed: 12/17/2022]
Abstract
Nanomaterials are increasingly used in many fields, including drug vectors and vaccine formulation. In this study, nano-TiO(2) and magnetic Fe(3)O(4)@TiO(2) were synthesized and their abilities to activate dendritic cells were investigated. The signaling pathway involved in their effects on the cellular functions was also explored. First, nano-TiO(2) and Fe(3)O(4)@TiO(2) were prepared with diameters of 82nm and 63nm, and zeta potentials of 41.5mV and 30.2mV, respectively. The magnetic property of Fe(3)O(4)@TiO(2) was detected to be 12.9emu/g. Both kinds of nanoparticles were proved to have good biocompatibility in vitro. Second, the exposure of nano-TiO2 and Fe(3)O(4)@TiO(2)caused an increased expression of TNF-α, CD86 and CD80, and besides, Fe(3)O(4)@TiO(2)showed a certain up-regulation on MHC-II. The cellular uptake of Ovalbumin on BMDCs could be strongly improved by nano-TiO2 and Fe(3)O(4)@TiO(2)as detected via flow cytometer and confocal observation. Further investigation revealed that nano-TiO(2) and Fe(3)O(4)@TiO(2)significantly increased the NF-κB expression in the nucleus, indicating that the NF-κB signaling pathway was involved in the dendritic cell maturation. Our results suggested that nano-TiO(2) and Fe(3)O(4)@TiO(2)may function as a useful vector to promote vaccine delivery in immune cells, and Fe(3)O(4)@TiO(2)provided a possibility to deliver and track vaccines via its magnetofection.
Collapse
Affiliation(s)
- Rongrong Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yanjing Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Min Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yu Xiao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Xiling Du
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China.
| |
Collapse
|
16
|
Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv 2014; 22:231-42. [PMID: 24524308 DOI: 10.3109/10717544.2014.882469] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pH-sensitive liposomes have been extensively used as an alternative to conventional liposomes in effective intracellular delivery of therapeutics/antigen/DNA/diagnostics to various compartments of the target cell. Such liposomes are destabilized under acidic conditions of the endocytotic pathway as they usually contain pH-sensitive lipid components. Therefore, the encapsulated content is delivered into the intracellular bio-environment through destabilization or its fusion with the endosomal membrane. The therapeutic efficacy of pH-sensitive liposomes enables them as biomaterial with commercial utility especially in cancer treatment. In addition, targeting ligands including antibodies can be anchored on the surface of pH-sensitive liposomes to target specific cell surface receptors/antigen present on tumor cells. These vesicles have also been widely explored for antigen delivery and serve as immunological adjuvant to enhance the immune response to antigens. The present review deals with recent research updates on application of pH-sensitive liposomes in chemotherapy/diagnostics/antigen/gene delivery etc.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya Bilaspur , Chhattisgarh , India
| | | | | |
Collapse
|
17
|
Lv S, Wang J, Dou S, Yang X, Ni X, Sun R, Tian Z, Wei H. Nanoparticles encapsulating hepatitis B virus cytosine-phosphate-guanosine induce therapeutic immunity against HBV infection. Hepatology 2014; 59:385-94. [PMID: 23907803 DOI: 10.1002/hep.26654] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023]
Abstract
UNLABELLED Infection with hepatitis B virus (HBV) is the most common cause of liver disease worldwide. However, because the current interferon (IFN)-based treatments have toxic side effects and marginal efficacy, improved antivirals are essential. Here we report that unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) from the HBV genome (HBV-CpG) induced robust expression of IFN-α by plasmacytoid dendritic cells (pDCs) in a Toll-like receptor 9 (TLR9)-dependent manner. We also identified inhibitory guanosine-rich ODNs in the HBV genome (HBV-ODN) that are capable of inhibiting HBV-CpG-induced IFN-α production. Furthermore, nanoparticles containing HBV-CpG, termed NP(HBV-CpG), reversed the HBV-ODN-mediated suppression of IFN-α production and also exerted a strong immunostimulatory effect on lymphocytes. Our results suggest that NP(HBV-CpG) can enhance the immune response to hepatitis B surface antigen (HBsAg) and skew this response toward the Th1 pathway in mice immunized with rHBsAg and NP(HBV-CpG). Moreover, NP(HBV-CpG)-based therapy led to the efficient clearance of HBV and induced an anti-HBsAg response in HBV carrier mice. CONCLUSION Endogenous HBV-CpG ODNs from the HBV genome induce IFN-α production so that nanoparticle-encapsulated HBV-CpG may act as an HBsAg vaccine adjuvant and may also represent a potent therapeutic agent for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Shujuan Lv
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Microbiology, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee CC, Opara C, Convertine A, Stayton PS. pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS NANO 2013; 7:3912-25. [PMID: 23590591 PMCID: PMC4042837 DOI: 10.1021/nn305466z] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein subunit vaccines offer important potential advantages over live vaccine vectors but generally elicit weaker and shorter-lived cellular immune responses. Here we investigate the use of pH-responsive, endosomolytic polymer nanoparticles that were originally developed for RNA delivery as vaccine delivery vehicles for enhancing cellular and humoral immune responses. Micellar nanoparticles were assembled from amphiphilic diblock copolymers composed of an ampholytic core-forming block and a redesigned polycationic corona block doped with thiol-reactive pyridyl disulfide groups to enable dual-delivery of antigens and immunostimulatory CpG oligodeoxynucleotide (CpG ODN) adjuvants. Polymers assembled into 23 nm particles with simultaneous packaging of CpG ODN and a thiolated protein antigen, ovalbumin (ova). Conjugation of ova to nanoparticles significantly enhanced antigen cross-presentation in vitro relative to free ova or an unconjugated, physical mixture of the parent compounds. Subcutaneous vaccination of mice with ova-nanoparticle conjugates elicited a significantly higher CD8(+) T cell response (0.5% IFN-γ(+) of CD8(+)) compared to mice vaccinated with free ova or a physical mixture of the two components. Significantly, immunization with ova-nanoparticle conjugates electrostatically complexed with CpG ODN (dual-delivery) enhanced CD8(+) T cell responses (3.4% IFN-γ(+) of CD8(+)) 7-, 18-, and 8-fold relative to immunization with conjugates, ova administered with free CpG, or a formulation containing free ova and CpG complexed to micelles, respectively. Similarly, dual-delivery carriers significantly increased CD4(+)IFN-γ(+) (Th1) responses and elicited a balanced IgG1/IgG2c antibody response. Intradermal administration further augmented cellular immune responses, with dual-delivery carriers inducing ∼7% antigen-specific CD8(+) T cells. This work demonstrates the ability of pH-responsive, endosomolytic nanoparticles to actively promote antigen cross-presentation and augment cellular and humoral immune responses via dual-delivery of protein antigens and CpG ODN. Hence, pH-responsive polymeric nanoparticles offer promise as a delivery platform for protein subunit vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick S. Stayton
- Corresponding Author Box 355061, University of Washington, Seattle, WA 98195- 1721. Tel: (206) 685-8148.
| |
Collapse
|
19
|
Kar UK, Jiang J, Champion CI, Salehi S, Srivastava M, Sharma S, Rabizadeh S, Niazi K, Kickhoefer V, Rome LH, Kelly KA. Vault nanocapsules as adjuvants favor cell-mediated over antibody-mediated immune responses following immunization of mice. PLoS One 2012; 7:e38553. [PMID: 22808011 PMCID: PMC3394761 DOI: 10.1371/journal.pone.0038553] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Modifications of adjuvants that induce cell-mediated over antibody-mediated immunity is desired for development of vaccines. Nanocapsules have been found to be viable adjuvants and are amenable to engineering for desired immune responses. We previously showed that natural nanocapsules called vaults can be genetically engineered to elicit Th1 immunity and protection from a mucosal bacterial infection. The purpose of our study was to characterize immunity produced in response to OVA within vault nanoparticles and compare it to another nanocarrier. Methodology and Principal Findings We characterized immunity resulting from immunization with the model antigen, ovalbumin (OVA) encased in vault nanocapsules and liposomes. We measured OVA responsive CD8+ and CD4+ memory T cell responses, cytokine production and antibody titers in vitro and in vivo. We found that immunization with OVA contain in vaults induced a greater number of anti-OVA CD8+ memory T cells and production of IFNγ plus CD4+ memory T cells. Also, modification of the vault body could change the immune response compared to OVA encased in liposomes. Conclusions/Significance These experiments show that vault nanocapsules induced strong anti-OVA CD8+ and CD4+ T cell memory responses and modest antibody production, which markedly differed from the immune response induced by liposomes. We also found that the vault nanocapsule could be modified to change antibody isotypes in vivo. Thus it is possible to create a vault nanocapsule vaccine that can result in the unique combination of immunogen-responsive CD8+ and CD4+ T cell immunity coupled with an IgG1 response for future development of vault nanocapsule-based vaccines against antigens for human pathogens and cancer.
Collapse
Affiliation(s)
- Upendra K. Kar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Janina Jiang
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Cheryl I. Champion
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sahar Salehi
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Minu Srivastava
- Molecular Medicine Laboratory, Veteran’s Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Sherven Sharma
- Molecular Medicine Laboratory, Veteran’s Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Shahrooz Rabizadeh
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kayvan Niazi
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Leonard H. Rome
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kathleen A. Kelly
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|