1
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
2
|
Carbone MG, Maremmani I. Chronic Cocaine Use and Parkinson's Disease: An Interpretative Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1105. [PMID: 39200714 PMCID: PMC11354226 DOI: 10.3390/ijerph21081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024]
Abstract
Over the years, the growing "epidemic" spread of cocaine use represents a crucial public health and social problem worldwide. According to the 2023 World Drug Report, 0.4% of the world's population aged 15 to 64 report using cocaine; this number corresponds to approximately 24.6 million cocaine users worldwide and approximately 1 million subjects with cocaine use disorder (CUD). While we specifically know the short-term side effects induced by cocaine, unfortunately, we currently do not have exhaustive information about the medium/long-term side effects of the substance on the body. The scientific literature progressively highlights that the chronic use of cocaine is related to an increase in cardio- and cerebrovascular risk and probably to a greater incidence of psychomotor symptoms and neurodegenerative processes. Several studies have highlighted an increased risk of antipsychotic-induced extrapyramidal symptoms (EPSs) in patients with psychotic spectrum disorders comorbid with psychostimulant abuse. EPSs include movement dysfunction such as dystonia, akathisia, tardive dyskinesia, and characteristic symptoms of Parkinsonism such as rigidity, bradykinesia, and tremor. In the present paper, we propose a model of interpretation of the neurobiological mechanisms underlying the hypothesized increased vulnerability in chronic cocaine abusers to neurodegenerative disorders with psychomotor symptoms. Specifically, we supposed that the chronic administration of cocaine produces significant neurobiological changes, causing a complex dysregulation of various neurotransmitter systems, mainly affecting subcortical structures and the dopaminergic pathways. We believe that a better understanding of these cellular and molecular mechanisms involved in cocaine-induced neuropsychotoxicity may have helpful clinical implications and provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Division of Psychiatry, Department of Medicine and Surgery, University of Insubria, Viale Luigi Borri 57, 21100 Varese, Italy;
- VP Dole Research Group, G. De Lisio Institute of Behavioural Sciences, Via di Pratale 3, 56121 Pisa, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Icro Maremmani
- VP Dole Research Group, G. De Lisio Institute of Behavioural Sciences, Via di Pratale 3, 56121 Pisa, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Addiction Research Methods Institute, World Federation for the Treatment of Opioid Dependence, 225 Varick Street, Suite 402, New York, NY 10014, USA
| |
Collapse
|
3
|
Ye N, Qin W, Tian S, Xu Q, Wold EA, Zhou J, Zhen XC. Small Molecules Selectively Targeting Sigma-1 Receptor for the Treatment of Neurological Diseases. J Med Chem 2020; 63:15187-15217. [PMID: 33111525 DOI: 10.1021/acs.jmedchem.0c01192] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sigma-1 (σ1) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ1 receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ1 receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal. This review provides up-to-date information on the selective targeting of σ1 receptors, including their history, function, reported crystal structures, and roles in neurological diseases, as well as a useful collation of new chemical entities as σ1 selective orthosteric ligands or allosteric modulators.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangzhi Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Estrada-Valencia M, Herrera-Arozamena C, Pérez C, Viña D, Morales-García JA, Pérez-Castillo A, Ramos E, Romero A, Laurini E, Pricl S, Rodríguez-Franco MI. New flavonoid - N, N-dibenzyl( N-methyl)amine hybrids: Multi-target-directed agents for Alzheimer´s disease endowed with neurogenic properties. J Enzyme Inhib Med Chem 2020; 34:712-727. [PMID: 31852270 PMCID: PMC6407579 DOI: 10.1080/14756366.2019.1581184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The design of multi-target directed ligands (MTDLs) is a valid approach for obtaining effective drugs for complex pathologies. MTDLs that combine neuro-repair properties and block the first steps of neurotoxic cascades could be the so long wanted remedies to treat neurodegenerative diseases (NDs). By linking two privileged scaffolds with well-known activities in ND-targets, the flavonoid and the N,N-dibenzyl(N-methyl)amine (DBMA) fragments, new CNS-permeable flavonoid - DBMA hybrids (1-13) were obtained. They were subjected to biological evaluation in a battery of targets involved in Alzheimer's disease (AD) and other NDs, namely human cholinesterases (hAChE/hBuChE), β-secretase (hBACE-1), monoamine oxidases (hMAO-A/B), lipoxygenase-5 (hLOX-5) and sigma receptors (σ1R/σ2R). After a funnel-type screening, 6,7-dimethoxychromone - DBMA (6) was highlighted due to its neurogenic properties and an interesting MTD-profile in hAChE, hLOX-5, hBACE-1 and σ1R. Molecular dynamic simulations showed the most relevant drug-protein interactions of hybrid 6, which could synergistically contribute to neuronal regeneration and block neurodegeneration.
Collapse
Affiliation(s)
- Martín Estrada-Valencia
- Institute of Medicinal Chemistry, Spanish Council for Scientific Research (IQM-CSIC), Madrid, Spain
| | - Clara Herrera-Arozamena
- Institute of Medicinal Chemistry, Spanish Council for Scientific Research (IQM-CSIC), Madrid, Spain
| | - Concepción Pérez
- Institute of Medicinal Chemistry, Spanish Council for Scientific Research (IQM-CSIC), Madrid, Spain
| | - Dolores Viña
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José A Morales-García
- Institute for Biomedical Research "Alberto Sols", Spanish Council for Scientific Research (IIB-CSIC), Madrid, Spain.,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Medical School, Complutense University of Madrid, Madrid, Spain
| | - Ana Pérez-Castillo
- Institute for Biomedical Research "Alberto Sols", Spanish Council for Scientific Research (IIB-CSIC), Madrid, Spain.,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain; x
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain; x
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), Trieste, Italy
| | | |
Collapse
|
5
|
Maurice T, Volle JN, Strehaiano M, Crouzier L, Pereira C, Kaloyanov N, Virieux D, Pirat JL. Neuroprotection in non-transgenic and transgenic mouse models of Alzheimer's disease by positive modulation of σ 1 receptors. Pharmacol Res 2019; 144:315-330. [PMID: 31048034 DOI: 10.1016/j.phrs.2019.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 04/21/2019] [Indexed: 01/30/2023]
Abstract
The sigma-1 (σ1) receptor is an endoplasmic reticulum (ER) chaperone protein, enriched in mitochondria-associated membranes. Its activation triggers physiological responses to ER stress and modulate Ca2+ mobilization in mitochondria. Small σ1 agonist molecules activate the protein and act behaviorally as antidepressant, anti-amnesic and neuroprotective agents. Recently, several chemically unrelated molecules were shown to be σ1 receptor positive modulators (PMs), with some of them a clear demonstration of their allostericity. We here examined whether a σ1 PM also shows neuroprotective potentials in pharmacological and genetic models of Alzheimer's disease (AD). For this aim, we describe (±)-2-(3-chlorophenyl)-3,3,5,5-tetramethyl-2-oxo-[1,4,2]-oxazaphosphinane (OZP002) as a novel σ1 PM. OZP002 does not bind σ1 sites but induces σ1 effects in vivo and boosts σ1 agonist activity. OZP002 was antidepressant in the forced swim test and its effect was blocked by the σ1 antagonist NE-100 or in σ1 receptor knockout mice. It potentiated the antidepressant effect of the σ1 agonist igmesine. In mice tested for Y-maze alternation or passive avoidance, OZP002 prevented scopolamine-induced learning deficits, in a NE-100 sensitive manner. Pre-administered IP before an ICV injection of amyloid Aβ25-35 peptide, a pharmacological model of Alzheimer's disease, OZP002 prevented the learning deficits induced by the peptide after one week in the Y-maze, passive avoidance and novel object tests. Biochemical analyses of the mouse hippocampi showed that OZP002 significantly decreased Aβ25-35-induced increases in reactive oxygen species, lipid peroxidation, and increases in Bax, TNFα and IL-6 levels. Immunohistochemically, OZP002 prevented Aβ25-35-induced reactive astrogliosis and microgliosis in the hippocampus. It also alleviated Aβ25-35-induced decreases in synaptophysin level and choline acetyltransferase activity. Moreover, chronically administered in APPswe mice during 2 months, OZP002 prevented learning deficits (in all tests plus place learning in the water-maze) and increased biochemical markers. This study shows that σ1 PM with high neuropotective potential can be identified, combining pharmacological efficacy, selectivity and therapeutic safety, and identifies a novel promising compound, OZP002.
Collapse
Affiliation(s)
- Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Jean-Noël Volle
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - Manon Strehaiano
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Claire Pereira
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Nikolay Kaloyanov
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - David Virieux
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - Jean-Luc Pirat
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| |
Collapse
|
6
|
Pascual R, Almansa C, Plata-Salamán C, Vela JM. A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated on a Large Experimental Dataset. Front Pharmacol 2019; 10:519. [PMID: 31214020 PMCID: PMC6555132 DOI: 10.3389/fphar.2019.00519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
The recent publication of the σ1R crystal structure is an important cornerstone for the derivation of more accurate activity prediction models. We report here a comparative study involving a set of more than 25,000 structures from our internal database that had been screened for σ1R affinity. Using the recently published crystal structure, 5HK1, two new pharmacophore models were generated. The first one, 5HK1-Ph.A, was obtained by an algorithm that identifies the most important receptor-ligand interactions including volume restrictions enforced by the atomic structure of the recognition site. The second, 5HK1-Ph.B, resulted from a manual edition of the first one by the fusion of two hydrophobic (HYD) features. Finally, we also docked the database using a high throughput docking technique and scored the resulting poses with seven different scoring functions. Statistical performance measures were obtained for the two models, comparing them with previously published σ1R pharmacophores (Hit Rate, sensitivity, specificity, and Receiver Operator Characteristic) and 5HK1-Ph.B emerged as the best one in discriminating between active and inactive compounds, with a ROC-AUC value above 0.8 and enrichment values above 3 at different fractions of screened samples. 5HK1-Ph.B also showed better results than the direct docking, which may be due to the rigidity of the crystal structure in the docking process (i.e., feature tolerances in the pharmacophore model). Additionally, the impact of the HYD interactions and the penalty for desolvating ligands with polar atoms may be not adequately captured by scoring functions, whereas HYD groups filling up such regions of the binding site are entailed in the pharmacophore model. Altogether, using annotated data from a large and diverse compound collection together with crystal structure information provides a sound basis for the generation and validation of predictive models to design new molecules.
Collapse
Affiliation(s)
- Rosalia Pascual
- ESTEVE Pharmaceuticals S.A., Drug Discovery and Preclinical Development, Barcelona, Spain
| | - Carmen Almansa
- ESTEVE Pharmaceuticals S.A., Drug Discovery and Preclinical Development, Barcelona, Spain
| | - Carlos Plata-Salamán
- ESTEVE Pharmaceuticals S.A., Drug Discovery and Preclinical Development, Barcelona, Spain
| | - José Miguel Vela
- ESTEVE Pharmaceuticals S.A., Drug Discovery and Preclinical Development, Barcelona, Spain
| |
Collapse
|
7
|
Kronenberg E, Weber F, Brune S, Schepmann D, Almansa C, Friedland K, Laurini E, Pricl S, Wünsch B. Synthesis and Structure-Affinity Relationships of Spirocyclic Benzopyrans with Exocyclic Amino Moiety. J Med Chem 2019; 62:4204-4217. [PMID: 30939014 DOI: 10.1021/acs.jmedchem.9b00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
σ1 and/or σ2 receptors play a crucial role in pathological conditions such as pain, neurodegenerative disorders, and cancer. A set of spirocyclic cyclohexanes with diverse O-heterocycles and amino moieties (general structure III) was prepared and pharmacologically evaluated. In structure-activity relationships studies, the σ1 receptor affinity and σ1:σ2 selectivity were correlated with the stereochemistry, the kind and substitution pattern of the O-heterocycle, and the substituents at the exocyclic amino moiety. cis-configured 2-benzopyran cis-11b bearing a methoxy group and a tertiary cyclohexylmethylamino moiety showed the highest σ1 affinity ( Ki = 1.9 nM) of this series of compounds. In a Ca2+ influx assay, cis-11b behaved as a σ1 antagonist. cis-11b reveals high selectivity over σ2 and opioid receptors. The interactions of the novel σ1 ligands were analyzed on the molecular level using the recently reported X-ray crystal structure of the σ1 receptor protein. The protonated amino moiety forms a persistent salt bridge with E172. The spiro[benzopyran-1,1'-cyclohexane] scaffold and the cyclohexylmethyl moiety occupy two hydrophobic pockets. Exchange of the N-cyclohexylmethyl moiety by a benzyl group led unexpectedly to potent and selective μ-opioid receptor ligands.
Collapse
Affiliation(s)
- Elisabeth Kronenberg
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Frauke Weber
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Stefanie Brune
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Carmen Almansa
- Esteve Pharmaceuticals S.A. , Baldiri Reixach 4-8 , 08028 Barcelona , Spain
| | - Kristina Friedland
- Pharmakologie und Toxikologie, Institut für Pharmazie und Biochemie , Universität Mainz , Staudinger Weg 5 , D-55128 Mainz , Germany
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-motion Cluster of Excellence (EXC 1003-CiM) , University of Münster , D-48149 Münster , Germany
| |
Collapse
|
8
|
Peng Y, Dong H, Welsh WJ. Comprehensive 3D-QSAR Model Predicts Binding Affinity of Structurally Diverse Sigma 1 Receptor Ligands. J Chem Inf Model 2019; 59:486-497. [PMID: 30497261 DOI: 10.1021/acs.jcim.8b00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Sigma 1 Receptor (S1R) has attracted intense interest as a pharmaceutical target for various therapeutic indications, including the treatment of neuropathic pain and the potentiation of opioid analgesia. Efforts by drug developers to rationally design S1R antagonists have been spurred recently by the 2016 publication of the high-resolution X-ray crystal structure of the ligand-bound human S1R. Until now, however, the absence in the published literature of a single, large-scale, and comprehensive quantitative structure-activity relationship (QSAR) model that encompasses a structurally diverse collection of S1R ligands has impaired rapid progress. To our best knowledge, the present study represents the first report of a statistically robust and highly predictive 3D-QSAR model (R2 = 0.92, Q2 = 0.62, Rpred2 = 0.81) based on the X-ray crystal structure of human S1R and constructed from a pooled compilation of 180 S1R antagonists that encompass five structurally diverse chemical families investigated using identical experimental protocols. Best practices, as recommended by the Organization for Economic Cooperation and Development (OECD: http://www.oecd.org/ ), were adopted for pooling data from disparate sources and for QSAR model development and both internal and external model validation. The practical utility of the final 3D-QSAR model was tested by virtual screening of the DrugBank database of FDA approved drugs supplemented by eight reported S1R antagonists. Among the top-ranked 40 DrugBank hits, four approved drugs which were previously unknown as S1R antagonists were tested using in vitro radiolabeled human S1R binding assays. Of these, two drugs (diphenhydramine and phenyltoloxamine) exhibited potent S1R binding affinity with Ki = 58 nM and 160 nM, respectively. As diphenhydramine is approved as an antiallergic, and phenyltoloxamine as an analgesic and sedative, each of these compounds represents a viable starting point for a drug discovery campaign aimed at the development of novel S1R antagonists for a wide range of therapeutic indications.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared Resources , Rutgers Cancer Institute of New Jersey , Rutgers, The State University of New Jersey , 195 Little Albany Street , New Brunswick , New Jersey 08903 , United States
| | - Hiep Dong
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - William J Welsh
- Biomedical Informatics Shared Resources , Rutgers Cancer Institute of New Jersey , Rutgers, The State University of New Jersey , 195 Little Albany Street , New Brunswick , New Jersey 08903 , United States
- Department of Pharmacology, Robert Wood Johnson Medical School , Rutgers, The State University of New Jersey , 661 Hoes Lane West , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
9
|
Zampieri D, Romano M, Menegazzi R, Mamolo MG. New piperidine-based derivatives as sigma receptor ligands. Synthesis and pharmacological evaluation. Bioorg Med Chem Lett 2018; 28:3206-3209. [DOI: 10.1016/j.bmcl.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023]
|
10
|
Estrada Valencia M, Herrera-Arozamena C, de Andrés L, Pérez C, Morales-García JA, Pérez-Castillo A, Ramos E, Romero A, Viña D, Yáñez M, Laurini E, Pricl S, Rodríguez-Franco MI. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer's disease. Eur J Med Chem 2018; 156:534-553. [PMID: 30025348 DOI: 10.1016/j.ejmech.2018.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/01/2022]
Abstract
In this work we describe neurogenic and neuroprotective donepezil-flavonoid hybrids (DFHs), exhibiting nanomolar affinities for the sigma-1 receptor (σ1R) and inhibition of key enzymes in Alzheimer's disease (AD), such as acetylcholinesterase (AChE), 5-lipoxygenase (5-LOX), and monoamine oxidases (MAOs). In general, new compounds scavenge free radical species, are predicted to be brain-permeable, and protect neuronal cells against mitochondrial oxidative stress. N-(2-(1-Benzylpiperidin-4-yl)ethyl)-6,7-dimethoxy-4-oxo-4H-chromene-2-carboxamide (18) is highlighted due to its interesting biological profile in σ1R, AChE, 5-LOX, MAO-A and MAO-B. In phenotypic assays, it protects a neuronal cell line against mitochondrial oxidative stress and promotes maturation of neural stem cells into a neuronal phenotype, which could contribute to the reparation of neuronal tissues. Molecular modelling studies of 18 in AChE, 5-LOX and σ1R revealed the main interactions with these proteins, which will be further exploited in the optimization of new, more efficient DFHs.
Collapse
Affiliation(s)
- Martín Estrada Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lucía de Andrés
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031, Madrid, Spain; Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031, Madrid, Spain
| | - Eva Ramos
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alejandro Romero
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Matilde Yáñez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, 34127 Trieste, Italy
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
11
|
Kurciński M, Jarończyk M, Lipiński PFJ, Dobrowolski JC, Sadlej J. Structural Insights into σ₁ Receptor Interactions with Opioid Ligands by Molecular Dynamics Simulations. Molecules 2018; 23:E456. [PMID: 29463040 PMCID: PMC6017133 DOI: 10.3390/molecules23020456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
Despite considerable advances over the past years in understanding the mechanisms of action and the role of the σ₁ receptor, several questions regarding this receptor remain unanswered. This receptor has been identified as a useful target for the treatment of a diverse range of diseases, from various central nervous system disorders to cancer. The recently solved issue of the crystal structure of the σ₁ receptor has made elucidating the structure-activity relationship feasible. The interaction of seven representative opioid ligands with the crystal structure of the σ₁ receptor (PDB ID: 5HK1) was simulated for the first time using molecular dynamics (MD). Analysis of the MD trajectories has provided the receptor-ligand interaction fingerprints, combining information on the crucial receptor residues and frequency of the residue-ligand contacts. The contact frequencies and the contact maps suggest that for all studied ligands, the hydrophilic (hydrogen bonding) interactions with Glu172 are an important factor for the ligands' affinities toward the σ₁ receptor. However, the hydrophobic interactions with Tyr120, Val162, Leu105, and Ile124 also significantly contribute to the ligand-receptor interplay and, in particular, differentiate the action of the agonistic morphine from the antagonistic haloperidol.
Collapse
Affiliation(s)
- Mateusz Kurciński
- Faculty of Chemistry, University of Warsaw, Pasteur Str.1, 02-093 Warsaw, Poland.
| | | | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Center, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Jan Cz Dobrowolski
- National Medicines Institute, 30/34 Chełmska Str., 00-725 Warsaw, Poland.
| | - Joanna Sadlej
- National Medicines Institute, 30/34 Chełmska Str., 00-725 Warsaw, Poland.
- Faculty of Mathematics and Natural Sciences. Cardinal Stefan Wyszyński University,1/3 Wóycickiego Str.,01-938 Warsaw, Poland.
| |
Collapse
|
12
|
Carta A, Sanna G, Briguglio I, Madeddu S, Vitale G, Piras S, Corona P, Peana AT, Laurini E, Fermeglia M, Pricl S, Serra A, Carta E, Loddo R, Giliberti G. Quinoxaline derivatives as new inhibitors of coxsackievirus B5. Eur J Med Chem 2017; 145:559-569. [PMID: 29339251 DOI: 10.1016/j.ejmech.2017.12.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/16/2022]
Abstract
Enteroviruses are among the most common and important human pathogens for which there are no specific antiviral agents approved by the US Food and Drug Administration so far. Particularly, coxsackievirus infections have a worldwide distribution and can cause many important diseases. We here report the synthesis of new 14 quinoxaline derivatives and the evaluation of their cytotoxicity and antiviral activity against representatives of ssRNA, dsRNA and dsDNA viruses. Promisingly, three compounds showed a very potent and selective antiviral activity against coxsackievirus B5, with EC50 in the sub-micromolar range (0.3-0.06 μM). A combination of experimental techniques (i.e. virucidal activity, time of drug addition and adsorption assays) and in silico modeling studies were further performed, aiming to understand the mode of action of the most active, selective and not cytotoxic compound, the ethyl 4-[(2,3-dimethoxyquinoxalin-6-yl)methylthio]benzoate (6).
Collapse
Affiliation(s)
- Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy.
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy.
| | - Irene Briguglio
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy
| | - Silvia Madeddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Gabriella Vitale
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy
| | - Paola Corona
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy
| | - Alessandra Tiziana Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulation Engineering (MOSE) Laboratory, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Alessandra Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Elisa Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Roberta Loddo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Gabriele Giliberti
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
13
|
Franchini S, Sorbi C, Battisti UM, Tait A, Bencheva LI, Cichero E, Fossa P, Cilia A, Prezzavento O, Ronsisvalle S, Aricò G, Benassi L, Vaschieri C, Azzoni P, Magnoni C, Brasili L. Structure-Activity Relationships within a Series of σ1
and σ2
Receptor Ligands: Identification of a σ2
Receptor Agonist (BS148) with Selective Toxicity against Metastatic Melanoma. ChemMedChem 2017; 12:1893-1905. [DOI: 10.1002/cmdc.201700427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Silvia Franchini
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Claudia Sorbi
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Umberto Maria Battisti
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Annalisa Tait
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Leda Ivanova Bencheva
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Elena Cichero
- Dipartimento di Farmacia; Università degli Studi di Genova; Viale Benedetto XV 3 16132 Genova Italy
| | - Paola Fossa
- Dipartimento di Farmacia; Università degli Studi di Genova; Viale Benedetto XV 3 16132 Genova Italy
| | - Antonio Cilia
- Divisione Ricerca e Sviluppo; Recordati S.p.A.; Via Civitali 1 20148 Milano Italy
| | - Orazio Prezzavento
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Viale Andrea Doria 6 95125 Catania Italy
| | - Simone Ronsisvalle
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Viale Andrea Doria 6 95125 Catania Italy
| | - Giuseppina Aricò
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Viale Andrea Doria 6 95125 Catania Italy
| | - Luisa Benassi
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Cristina Vaschieri
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Paola Azzoni
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Cristina Magnoni
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Livio Brasili
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| |
Collapse
|
14
|
Kokornaczyk AK, Schepmann D, Yamaguchi J, Itami K, Laurini E, Fermeglia M, Pricl S, Wünsch B. Thiazole-Based σ 1 Receptor Ligands: Diversity by Late-Stage C-H Arylation of Thiazoles, Structure-Affinity and Selectivity Relationships, and Molecular Interactions. ChemMedChem 2017; 12:1070-1080. [PMID: 28544475 DOI: 10.1002/cmdc.201700166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Indexed: 12/25/2022]
Abstract
Spirocyclic thiophene derivatives represent promising σ1 ligands with high σ1 affinity and selectivity over the σ2 subtype. To increase ligand efficiency, the thiophene ring was replaced bioisosterically by a thiazole ring, and the pyran ring was opened. Late-stage diversification by regioselective C-H arylation of thiazoles 9 a-c resulted in a set of 53 compounds with high diversity. This set of compounds was analyzed with respect to σ1 affinity, σ1 /σ2 selectivity, lipophilicity (logD7.4 ), lipophilicity-corrected ligand efficiency (LELP), and molecular target interactions. The most promising candidates were pyridyl-substituted thiazole derivatives 33 c (2-(1-benzyl-4-ethoxypiperidin-4-yl)-5-(pyridin-3-yl)thiazole) and 34 c (2-(1-benzyl-4-ethoxypiperidin-4-yl)-5-(pyridin-4-yl)thiazole), possessing low-nanomolar σ1 affinity (Ki =1.3 and 1.9 nm), high σ1 /σ2 selectivity (>1500-fold), low lipophilicity (logD7.4 =1.8) and very good ligand efficiency (LELP=5.5), indicating promising pharmacodynamics and pharmacokinetics. Molecular simulation studies, including docking and deconvolution of the free binding energy into its major components, led to decreased hydrophobic stabilization of pyridyl derivatives 33 c and 34 c, which was compensated by lower desolvation energy.
Collapse
Affiliation(s)
- Artur K Kokornaczyk
- Institut für Pharmazeutische und Medizinische Chemie der, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Erik Laurini
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127, Trieste, Italy
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
15
|
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, Campiani G, Filipic S, Agbaba D, Esteban G, Unzeta M, Nikolic K, Butini S, Marco-Contelles J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 2017; 151:4-34. [DOI: 10.1016/j.pneurobio.2015.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/16/2023]
|
16
|
Boido V, Ercoli M, Tonelli M, Novelli F, Tasso B, Sparatore F, Cichero E, Fossa P, Dorigo P, Froldi G. New arylsparteine derivatives as positive inotropic drugs. J Enzyme Inhib Med Chem 2017; 32:588-599. [PMID: 28133984 PMCID: PMC6009970 DOI: 10.1080/14756366.2017.1279156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Positive inotropic agents are fundamental in the treatment of heart failure; however, their arrhythmogenic liability and the increased myocardial oxygen demand strongly limit their therapeutic utility. Pursuing our study on cardiovascular activities of lupin alkaloid derivatives, several 2-(4-substituted-phenyl)-2-dehydrosparteines and 2-(4-substituted-phenyl)sparteines were prepared and tested for inotropic and chronotropic activities on isolated guinea pig atria. Four compounds (6b, 6e, 7b, and 7f) exhibited significant inotropism that, at the higher concentrations, was followed by negative inotropism or toxicity. Compound 7e (2-(4-tolyl)sparteine) exhibited a steep dose-depending inotropic activity up to the highest concentration tested (300 µM) with an Emax of 116.5 ± 3.4% of basal force, proving less potent but much more active in comparison to the highest concentrations tested of digoxin and milrinone having Emax of 87.5 ± 3.1% and 52.2 ± 1.1%, respectively. Finally, docking studies suggested that the relevant sparteine derivatives could target the sigma-1 receptor, whose involvement in cardiac activity is well documented.
Collapse
Affiliation(s)
- Vito Boido
- a Department of Pharmacy , University of Genoa , Genoa , Italy
| | - Marcella Ercoli
- a Department of Pharmacy , University of Genoa , Genoa , Italy
| | - Michele Tonelli
- a Department of Pharmacy , University of Genoa , Genoa , Italy
| | | | - Bruno Tasso
- a Department of Pharmacy , University of Genoa , Genoa , Italy
| | - Fabio Sparatore
- a Department of Pharmacy , University of Genoa , Genoa , Italy
| | - Elena Cichero
- a Department of Pharmacy , University of Genoa , Genoa , Italy
| | - Paola Fossa
- a Department of Pharmacy , University of Genoa , Genoa , Italy
| | - Paola Dorigo
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| | - Guglielmina Froldi
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| |
Collapse
|
17
|
Abstract
This chapter presents the three-dimensional (3D) model of the Sigma1 receptor protein as obtained from homology modeling techniques. We show the applicability of this structure to docking-based virtual screening and discuss combined in silico/in vitro mutagenesis studies performed to validate the structural features of the Sigma1 receptor model and to qualify/quantify the prominent role of specific amino acid residues in ligand binding. The validation of the virtual 3D Sigma1 receptor model and its reliable applicability to docking-based virtual screening is of significance for rational ligand design, even in light of the recently reported crystal structure for the Sigma1 receptor.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
| | - Domenico Marson
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy.
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 34127, Trieste, Italy.
| |
Collapse
|
18
|
Weber F, Wünsch B. Medicinal Chemistry of σ 1 Receptor Ligands: Pharmacophore Models, Synthesis, Structure Affinity Relationships, and Pharmacological Applications. Handb Exp Pharmacol 2017; 244:51-79. [PMID: 28620761 DOI: 10.1007/164_2017_33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
In the first part of this chapter, we summarize the various pharmacophore models for σ1 receptor ligands. Common to all of them is a basic amine flanked by two hydrophobic regions, representing the pharmacophoric elements. The development of computer-based models like the 3D homology model is described as well as the first crystal structure of the σ1 receptor. The second part focuses on the synthesis and biological properties of different σ1 receptor ligands, identified as 1-9. Monocyclic piperazines 1 and bicyclic piperazines 2 and 3 were developed as cytotoxic compounds, thus the IC50 values of cell growth and survival inhibition studies are given for all derivatives. The mechanism of cell survival inhibition, induction of time-dependent apoptosis, of compound ent-2a is discussed. Experimentally determined σ1 affinity shows good correlation with the results from molecular dynamics simulations based on a 3D homology model. Spirocyclic compounds 4 and 5 represent well-established σ1 receptor ligands. The homologous fluoroalkyl derivatives 4 have favorable pharmacological properties for use as fluorinated PET tracers. The (S)-configured fluoroethyl substituted compound (S)-4b is under investigation as PET tracer for imaging of σ1 receptors in the brain of patients affected by major depression. 1,3-Dioxanes 6c and 6d display a very potent σ1 antagonist profile and the racemic 1,3-dioxane 6c has high anti-allodynic activity at low doses. The arylpropenylamines 7 are very potent σ1 receptor ligands with high σ1/σ2 selectivity. The top compound 7g acts as an agonist as defined by its ability to potentiate neurite outgrowth at low concentrations. Among the morpholinoethoxypyrazoles 8, 8c (known as S1RA) reveals the most promising pharmacokinetic and physicochemical properties. Due to its good safety profile, 8c is currently being investigated in a phase II clinical trial for the treatment of neuropathic pain. The most potent ligand 9e of 3,4-dihydro-2(1H)-quinolones 9 shows promising anti-nociceptive activity in the formalin test.
Collapse
Affiliation(s)
- Frauke Weber
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, Münster, 48149, Germany.
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CIM), University Münster, Münster, Germany
| |
Collapse
|
19
|
Computer-assisted design, synthesis, binding and cytotoxicity assessments of new 1-(4-(aryl(methyl)amino)butyl)-heterocyclic sigma 1 ligands. Eur J Med Chem 2016; 121:712-726. [DOI: 10.1016/j.ejmech.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022]
|
20
|
Rui M, Rossi D, Marra A, Paolillo M, Schinelli S, Curti D, Tesei A, Cortesi M, Zamagni A, Laurini E, Pricl S, Schepmann D, Wűnsch B, Urban E, Pace V, Collina S. Synthesis and biological evaluation of new aryl-alkyl(alkenyl)-4-benzylpiperidines, novel Sigma Receptor (SR) modulators, as potential anticancer-agents. Eur J Med Chem 2016; 124:649-665. [PMID: 27614411 DOI: 10.1016/j.ejmech.2016.08.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/20/2023]
Abstract
In the early 2000s, the Sigma Receptor (SR) family was identified as potential "druggable" target in cancer treatment. Indeed, high density of SRs was found in breast, lung, and prostate cancer cells, supporting the idea that SRs could play a role in tumor growth and progression. Moreover, a link between the degree of SR expression and tumor aggressiveness has been postulated, justified by the presence of SRs in high metastatic-potential cancer cells. As a consequence, considerable efforts have been devoted to the development of small molecules endowed with good affinity towards the two SR subtypes (S1R and S2R) with potential anticancer activity. Herein, we report the synthesis and biological profile of aryl-alkyl(alkenyl)-4-benzylpiperidine derivatives - as novel potential anticancer drugs targeting SR. Among them, 3 (RC-106) exhibited a preclinical profile of antitumor efficacy on a panel of cell lines representative of different cancer types (i.e. Paca3, MDA-MB 231) expressing both SRs, and emerged as a hit compound of a new class of SR modulators potentially useful for the treatment of cancer disease.
Collapse
Affiliation(s)
- Marta Rui
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 6 and 12, 27100, Pavia, Italy; Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 6 and 12, 27100, Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 6 and 12, 27100, Pavia, Italy
| | - Mayra Paolillo
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 6 and 12, 27100, Pavia, Italy
| | - Sergio Schinelli
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 6 and 12, 27100, Pavia, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", Lab. of Cellular and Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola (FC), Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola (FC), Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola (FC), Italy
| | - Erik Laurini
- MOSE - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Sabrina Pricl
- MOSE - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy; National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste, Italy
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149, Muenster, Germany
| | - Bernhard Wűnsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149, Muenster, Germany
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 6 and 12, 27100, Pavia, Italy.
| |
Collapse
|
21
|
Carta A, Briguglio I, Piras S, Corona P, Ibba R, Laurini E, Fermeglia M, Pricl S, Desideri N, Atzori E, La Colla P, Collu G, Delogu I, Loddo R. A combined in silico / in vitro approach unveils common molecular requirements for efficient BVDV RdRp binding of linear aromatic N-polycyclic systems. Eur J Med Chem 2016; 117:321-34. [DOI: 10.1016/j.ejmech.2016.03.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 12/14/2022]
|
22
|
Estrada M, Pérez C, Soriano E, Laurini E, Romano M, Pricl S, Morales-García JA, Pérez-Castillo A, Rodríguez-Franco MI. New neurogenic lipoic-based hybrids as innovative Alzheimer's drugs with σ-1 agonism and β-secretase inhibition. Future Med Chem 2016; 8:1191-207. [PMID: 27402296 DOI: 10.4155/fmc-2016-0036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurogenic agents emerge as innovative drugs for the treatment of Alzheimer's disease (AD), whose pathological complexity suggests strengthening research in the multi-target directed ligands strategy. RESULTS By combining the lipoic acid structure with N-benzylpiperidine or N,N-dibenzyl(N-methyl)amine fragments, new multi-target directed ligands were obtained that act at three relevant targets in AD: σ-1 receptor (σ1R), β-secretase-1 (BACE1) and acetylcholinesterase (AChE). Moreover, they show potent neurogenic properties, good antioxidant capacity and favorable CNS permeability. Molecular modeling studies on AChE, σ1R and BACE1 highlight relevant drug-protein interactions that may contribute to the development of new disease-modifying drugs. CONCLUSION New lipoic-based σ1 agonists endowed with neurogenic, antioxidant, cholinergic and amyloid β-peptide-reducing properties have been discovered for the potential treatment of AD.
Collapse
Affiliation(s)
- Martín Estrada
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Elena Soriano
- Instituto de Química Orgánica General (IQOG-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 - Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
- National Interuniversity Consortium for Material Science & Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste, Italy
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | | |
Collapse
|
23
|
Weber F, Brune S, Börgel F, Lange C, Korpis K, Bednarski PJ, Laurini E, Fermeglia M, Pricl S, Schepmann D, Wünsch B. Rigidity versus Flexibility: Is This an Issue in σ1 Receptor Ligand Affinity and Activity? J Med Chem 2016; 59:5505-19. [PMID: 27156565 DOI: 10.1021/acs.jmedchem.6b00585] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stereoisomeric 2,5-diazabicyclo[2.2.2]octanes 14 and 15 were prepared in a chiral-pool synthesis starting from (S)- or (R)-aspartate. The key step in the synthesis was a Dieckmann-analogous cyclization of (dioxopiperazinyl)acetates 8, which involved trapping of the intermediate hemiketal anion with Me3SiCl. The σ1 affinity was tested using membrane preparations from animal (guinea pig) and human origin. The binding of bicyclic compounds was analyzed by molecular dynamics simulations based on a 3D homology model of the σ1 receptor. The good correlation between Ki values observed in the σ1 assays and calculated free binding energy, coupled with the identification of four crucial ligand/receptor interactions, allowed the formulation of structure-affinity relationships. In an in vitro antitumor assay with seven human tumor cell lines, the bicyclic compounds inhibited selectively the growth of the cell line A427, which is due to induction of apoptosis. In this assay, the compounds behave like the known σ1 receptor antagonist haloperidol.
Collapse
Affiliation(s)
- Frauke Weber
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Stefanie Brune
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Frederik Börgel
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Carsten Lange
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Katharina Korpis
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Erik Laurini
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy.,National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste , Via Valerio 6, 32127 Trieste, Italy
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
24
|
Beiranvand Z, Bani F, Kakanejadifard A, Laurini E, Fermeglia M, Pricl S, Adeli M. Anticancer drug delivery systems based on specific interactions between albumin and polyglycerol. RSC Adv 2016. [DOI: 10.1039/c5ra25463a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Since albumin is the main transporter and the most abundant protein in the blood, interactions between this protein and drug/gene nanocarriers are of great importance to ensure successful delivery to target tissue(s) in the body.
Collapse
Affiliation(s)
- Zahra Beiranvand
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Farhad Bani
- Institue of Biochemistry and Biophysic
- University of Tehran
- Iran
| | - Ali Kakanejadifard
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory
- DEA
- University of Trieste
- 34127 Trieste
- Italy
| | - Maurizio Fermeglia
- Molecular Simulation Engineering (MOSE) Laboratory
- DEA
- University of Trieste
- 34127 Trieste
- Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory
- DEA
- University of Trieste
- 34127 Trieste
- Italy
| | - Mohsen Adeli
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
25
|
Briguglio I, Loddo R, Laurini E, Fermeglia M, Piras S, Corona P, Giunchedi P, Gavini E, Sanna G, Giliberti G, Ibba C, Farci P, La Colla P, Pricl S, Carta A. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone derivatives. Eur J Med Chem 2015; 105:63-79. [DOI: 10.1016/j.ejmech.2015.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 10/23/2022]
|
26
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
27
|
Brambilla L, Genini D, Laurini E, Merulla J, Perez L, Fermeglia M, Carbone GM, Pricl S, Catapano CV. Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the Signal Transducer and Activator of Transcription 3 (STAT3). Mol Oncol 2015; 9:1194-206. [PMID: 25777967 DOI: 10.1016/j.molonc.2015.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
STAT3 is a key element in many oncogenic pathways and, like other transcription factors, is an attractive target for development of novel anticancer drugs. However, interfering with STAT3 functions has been a difficult task and very few small molecule inhibitors have made their way to the clinic. OPB-31121, an anticancer compound currently in clinical trials, has been reported to affect STAT3 signaling, although its mechanism of action has not been unequivocally demonstrated. In this study, we used a combined computational and experimental approach to investigate the molecular target and the mode of interaction of OPB-31121 with STAT3. In parallel, similar studies were performed with known STAT3 inhibitors (STAT3i) to validate our approach. Computational docking and molecular dynamics simulation (MDS) showed that OPB-31121 interacted with high affinity with the SH2 domain of STAT3. Interestingly, there was no overlap of the OPB-31121 binding site with those of the other STAT3i. Computational predictions were confirmed by in vitro binding assays and competition experiments along with site-directed mutagenesis of critical residues in the STAT3 SH2 domain. Isothermal titration calorimetry experiments demonstrated the remarkably high affinity of OPB-31121 for STAT3 with Kd (10 nM) 2-3 orders lower than other STAT3i. Notably, a similar ranking of the potency of the compounds was observed in terms of inhibition of STAT3 phosphorylation, cancer cell proliferation and clonogenicity. These results suggest that the high affinity and efficacy of OPB-31121 might be related to the unique features and mode of interaction of OPB-31121 with STAT3. These unique characteristics make OPB-31121 a promising candidate for further development and an interesting lead for designing new, more effective STAT3i.
Collapse
Affiliation(s)
- Lara Brambilla
- Institute of Oncology Research (IOR), Via Vela 6, 6500 Bellinzona, Switzerland
| | - Davide Genini
- Institute of Oncology Research (IOR), Via Vela 6, 6500 Bellinzona, Switzerland
| | - Erik Laurini
- Molecular Simulation Laboratory (MOSE), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Jessica Merulla
- Institute of Oncology Research (IOR), Via Vela 6, 6500 Bellinzona, Switzerland
| | - Laurent Perez
- Institute of Research in Biomedicine (IRB), Via Vela 6, 6500 Bellinzona, Switzerland
| | - Maurizio Fermeglia
- Molecular Simulation Laboratory (MOSE), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Via Vela 6, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland (IOSI), Via Vela 6, 6500 Bellinzona, Switzerland
| | - Sabrina Pricl
- Molecular Simulation Laboratory (MOSE), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Via Vela 6, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland (IOSI), Via Vela 6, 6500 Bellinzona, Switzerland.
| |
Collapse
|
28
|
Mishra AK, Mavlyutov T, Singh DR, Biener G, Yang J, Oliver JA, Ruoho A, Raicu V. The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 2015; 466:263-271. [PMID: 25510962 PMCID: PMC4500508 DOI: 10.1042/bj20141321] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sigma-1 receptor (S1R) is a 223-amino-acid membrane protein that resides in the endoplasmic reticulum and the plasma membrane of some mammalian cells. The S1R is regulated by various synthetic molecules including (+)-pentazocine, cocaine and haloperidol and endogenous molecules such as sphingosine, dimethyltryptamine and dehydroepiandrosterone. Ligand-regulated protein chaperone functions linked to oxidative stress and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and neuropathic pain have been attributed to the S1R. Several client proteins that interact with S1R have been identified including various types of ion channels and G-protein coupled receptors (GPCRs). When S1R constructs containing C-terminal monomeric GFP2 and YFP fusions were co-expressed in COS-7 cells and subjected to FRET spectrometry analysis, monomers, dimers and higher oligomeric forms of S1R were identified under non-liganded conditions. In the presence of the prototypic S1R agonist, (+)-pentazocine, however, monomers and dimers were the prevailing forms of S1R. The prototypic antagonist, haloperidol, on the other hand, favoured higher order S1R oligomers. These data, in sum, indicate that heterologously expressed S1Rs occur in vivo in COS-7 cells in multiple oligomeric forms and that S1R ligands alter these oligomeric structures. We suggest that the S1R oligomerization states may regulate its function(s).
Collapse
Affiliation(s)
- Ashish K. Mishra
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Timur Mavlyutov
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Deo R. Singh
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Julie A. Oliver
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Arnold Ruoho
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| |
Collapse
|
29
|
Zampieri D, Laurini E, Vio L, Fermeglia M, Pricl S, Wünsch B, Schepmann D, Mamolo MG. Improving selectivity preserving affinity: new piperidine-4-carboxamide derivatives as effective sigma-1-ligands. Eur J Med Chem 2015; 90:797-808. [PMID: 25528334 DOI: 10.1016/j.ejmech.2014.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
We report the design, synthesis and binding evaluation against σ1 and σ2 receptors of a series of new piperidine-4-carboxamide derivatives variously substituted on the amide nitrogen atom. Specifically, we assessed the effects exerted on σ receptor affinity by substituting the N-benzylcarboxamide group present on a series of compounds previously synthesized in our laboratory with different cyclic or linear moieties. The synthesized compounds 2a-o were tested to estimate their affinity and selectivity toward σ1 and σ2 receptors. Very high σ1 affinity (Ki = 3.7 nM) and Kiσ2/Kiσ1 selectivity ratio (351) were found for the tetrahydroquinoline derivative 2k, featuring a 4-chlorobenzyl moiety linked to the piperidine nitrogen atom.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy.
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Luciano Vio
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy; National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste, Italy.
| | - Bernhard Wünsch
- Department of Pharmaceutical and Medicinal Chemistry, Corrensstrasse 48, 48149 Münster, Germany
| | - Dirk Schepmann
- Department of Pharmaceutical and Medicinal Chemistry, Corrensstrasse 48, 48149 Münster, Germany
| | - Maria Grazia Mamolo
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
30
|
Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G. The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Drug Discov Today 2015; 20:686-702. [PMID: 25615716 DOI: 10.1016/j.drudis.2015.01.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Among all tools available to design new drugs, molecular dynamics (MD) simulations have become an essential technique. Initially developed to investigate molecular models with a limited number of atoms, computers now enable investigations of large macromolecular systems with a simulation time reaching the microsecond range. The reviewed articles cover four years of research to give an overview on the actual impact of MD on the current medicinal chemistry landscape with a particular emphasis on studies of ligand-protein interactions. With a special focus on studies combining computational approaches with data gained from other techniques, this review shows how deeply embedded MD simulations are in drug design strategies and articulates what the future of this technique could be.
Collapse
Affiliation(s)
- Jérémie Mortier
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany.
| | - Christin Rakers
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | - Manuela S Murgueitio
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany.
| |
Collapse
|
31
|
Rossi D, Marra A, Rui M, Laurini E, Fermeglia M, Pricl S, Schepmann D, Wuensch B, Peviani M, Curti D, Collina S. A step forward in the sigma enigma: a role for chirality in the sigma1 receptor–ligand interaction? MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00349g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the role of chirality in the ligand–σ1 receptor interaction, a series of enantiomeric arylalkylaminoalcohols and arylpyrrolidinols was evaluated by means of both in silico and in vitro studies.
Collapse
|
32
|
Laurini E, Harel D, Marson D, Schepmann D, Schmidt TJ, Pricl S, Wünsch B. Identification, pharmacological evaluation and binding mode analysis of novel chromene and chromane based σ1 receptor ligands. Eur J Med Chem 2014; 83:526-33. [DOI: 10.1016/j.ejmech.2014.06.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
33
|
Almansa C, Vela JM. Selective sigma-1 receptor antagonists for the treatment of pain. Future Med Chem 2014; 6:1179-99. [PMID: 25078137 DOI: 10.4155/fmc.14.54] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The sigma-1 receptor (σ1R) is located in areas of the CNS key for pain control and belongs to a unique target class with chaperoning functions over different molecular targets involved in transmission and amplification of nociceptive messages. Preclinical evidence supports a role for σ1R antagonists in the treatment of pain states where hypersensitivity develops as hyperalgesia and allodynia, two common symptoms encountered in neuropathic and other chronic pain conditions. Additionally, σ1R antagonists increase opioid analgesia without increasing opioid-related unwanted effects, which point to their potential use as opioid adjuvant therapy. This review summarizes the structure and function of the σ1R as well as the medicinal chemistry and pharmacological studies directed to the identification of σ1R antagonists for the treatment of pain.
Collapse
Affiliation(s)
- Carmen Almansa
- Drug Discovery and Preclinical Development, ESTEVE, Baldiri Reixach, 4-8, 08028 Barcelona, Spain
| | | |
Collapse
|
34
|
Brune S, Schepmann D, Klempnauer KH, Marson D, Dal Col V, Laurini E, Fermeglia M, Wünsch B, Pricl S. The sigma enigma: in vitro/in silico site-directed mutagenesis studies unveil σ1 receptor ligand binding. Biochemistry 2014; 53:2993-3003. [PMID: 24766040 DOI: 10.1021/bi401575g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The σ1 receptor is an integral membrane protein that shares no homology with other receptor systems, has no unequivocally identified natural ligands, but appears to play critical roles in a wide variety of cell functions. While the number of reports of the possible functions of the σ1 receptor is increasing, almost no information about the three-dimensional structure of the receptor and/or possible modes of interaction of the σ1 protein with its ligands have been described. Here we performed an in vitro/in silico investigation to analyze the molecular interactions of the σ1 receptor with its prototypical agonist (+)-pentazocine. Accordingly, 23 mutant σ1 isoforms were generated, and their interactions with (+)-pentazocine were determined experimentally. All direct and/or indirect effects exerted by the mutant residues on the receptor-agonist interactions were reproduced and rationalized in silico, thus shining new light on the three-dimensional structure of the σ1 receptor and its ligand binding site.
Collapse
Affiliation(s)
- S Brune
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstraße 48, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Weber F, Brune S, Korpis K, Bednarski PJ, Laurini E, Dal Col V, Pricl S, Schepmann D, Wünsch B. Synthesis, Pharmacological Evaluation, and σ1 Receptor Interaction Analysis of Hydroxyethyl Substituted Piperazines. J Med Chem 2014; 57:2884-94. [DOI: 10.1021/jm401707t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Frauke Weber
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Stefanie Brune
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Katharina Korpis
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Patrick J. Bednarski
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Erik Laurini
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Valentina Dal Col
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
- National
Interuniversity Consortium for Material Science and Technology (INSTM),
Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127 Trieste, Italy
| | - Dirk Schepmann
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
36
|
Zampieri D, Laurini E, Vio L, Golob S, Fermeglia M, Pricl S, Mamolo MG. Synthesis and receptor binding studies of some new arylcarboxamide derivatives as sigma-1 ligands. Bioorg Med Chem Lett 2014; 24:1021-5. [PMID: 24486131 DOI: 10.1016/j.bmcl.2014.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 11/26/2022]
Abstract
We describe here the synthesis and the binding interaction with σ1 and σ2 receptors of a series of new arylcarboxamide derivatives variously substituted on the aromatic portions. Maintaining a partial scaffold of a series of compounds previously synthesized by us, we evaluate the effect of the substitution on σ binding. The synthesized compounds have been tested to estimate their affinity and selectivity toward σ1 and σ2 receptors. Two out of 16 derivatives showed an interesting σ1 affinity (21.2 and 13.6 nM-compounds 2m and 2p) and a good selectivity (Ki(σ2)/Ki(σ1) >140 and >40, respectively).
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy.
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy.
| | - Luciano Vio
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Samuel Golob
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy.
| | - Maria Grazia Mamolo
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
37
|
Abstract
The exact 3D structure of the enigmatic σ1 receptor is unknown, as the crystal structure of this protein has not been solved so far. Many efforts have been devoted to unveiling the structure of the σ1 receptor and specifically its binding site, which include photoaffinity labeling, site directed mutagenesis, and homology modeling. The aim of the present miniperspective is to give a short overview of all results that contribute to the current knowledge of the σ1 receptor and its ligand binding site.
Collapse
Affiliation(s)
- Stefanie Brune
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48, D-48149 Münster, Germany
| | | | | |
Collapse
|
38
|
From NMDA receptor antagonists to discovery of selective σ₂ receptor ligands. Bioorg Med Chem 2013; 22:393-7. [PMID: 24290063 DOI: 10.1016/j.bmc.2013.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/29/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
Abstract
Following previous studies focused on the search for new molecules targeting GluN2B-containing NMDA, a small series of 1-(1H-indol-3-yl)-2-(4-phenylpiperidin-1-yl)ethanone derivatives has been synthesized by using Microwave Assisted Organic Synthesis (MAOS). Given that GluN2B ligands frequently exert off-target effects we also tested their affinity towards sigma receptors. Binding assay revealed that only the 1-(5-hydroxy-1H-indol-3-yl)-2-(4-phenylpiperidin-1-yl)ethanone (7a) retained GluN2B affinity. Interestingly, the 5-methoxyindoles 5a and 6a were efficient and selective ligands toward σ₂ receptor (Ki values of 10nM and 20 nM, respectively). Thus, in this case the discovery of new σ₂ receptor selective ligands was an unexpected result emerging from the screening of cross-activity against other CNS receptors.
Collapse
|
39
|
Torres-Gómez H, Lehmkuhl K, Schepmann D, Wünsch B. Design, synthesis and receptor affinity of novel conformationally restricted σ ligands based on the [4.3.3]propellane scaffold. Eur J Med Chem 2013; 70:78-87. [PMID: 24140950 DOI: 10.1016/j.ejmech.2013.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
A series of novel diastereoisomeric σ ligands 3 was designed, synthesized and pharmacologically evaluated. The highly rigid [4.3.3]propellane scaffold was used to fix the three dimensional orientation of the pharmacophoric moieties required for σ affinity. The syn,syn-configured aminocarbamate syn,syn-3a reveals the most promising σ₁ affinity (Ki = 77 nM) and selectivity over the σ₂ subtype (21-fold). The σ₂ affinity of all four diastereomers 3 was in the low micromolar range. Analysis of the distance between the hydrophobic regions (phenyl moieties) of the diastereomers 3 led to the longest range of distances (10.3-15.2 Å) for the most potent σ₁ ligand syn,syn-3a, which is in good agreement with pharmacophore models.
Collapse
Affiliation(s)
- Héctor Torres-Gómez
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
40
|
Rossi D, Pedrali A, Gaggeri R, Marra A, Pignataro L, Laurini E, Dal Col V, Fermeglia M, Pricl S, Schepmann D, Wünsch B, Peviani M, Curti D, Collina S. Chemical, Pharmacological, and in vitro Metabolic Stability Studies on Enantiomerically Pure RC‐33 Compounds: Promising Neuroprotective Agents Acting as σ
1
Receptor Agonists. ChemMedChem 2013; 8:1514-27. [DOI: 10.1002/cmdc.201300218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Alice Pedrali
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Raffaella Gaggeri
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Annamaria Marra
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Istituto di Scienze e Tecnologie Molecolari (ISTM) del CNR, Via Golgi 19, 20133 Milan (Italy)
| | - Erik Laurini
- MOSE‐DEA, University of Trieste, Via Valerio 10, 34127 Trieste (Italy)
| | - Valentina Dal Col
- MOSE‐DEA, University of Trieste, Via Valerio 10, 34127 Trieste (Italy)
| | | | - Sabrina Pricl
- MOSE‐DEA, University of Trieste, Via Valerio 10, 34127 Trieste (Italy)
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE‐DEA, University of Trieste, Trieste (Italy)
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149 Münster (Germany)
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149 Münster (Germany)
| | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cellular and Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy)
| | - Daniela Curti
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cellular and Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| |
Collapse
|
41
|
Rossi D, Marra A, Picconi P, Serra M, Catenacci L, Sorrenti M, Laurini E, Fermeglia M, Pricl S, Brambilla S, Almirante N, Peviani M, Curti D, Collina S. Identification of RC-33 as a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Part 2: g-scale synthesis, physicochemical characterization and in vitro metabolic stability. Bioorg Med Chem 2013; 21:2577-86. [PMID: 23498917 DOI: 10.1016/j.bmc.2013.02.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/14/2013] [Indexed: 11/18/2022]
Abstract
Strong pharmacological evidences indicate that σ1 receptors are implicated in the pathophysiology of all major CNS disorders. In the last years our research group has conducted extensive studies aimed at discovering novel σ1 ligands and we recently selected (R/S)-RC-33 as a novel potent and selective σ1 receptor agonist. As continuation of our work in this field, here we report our efforts in the development of this new σ1 receptor agonist. Initially, we investigated the binding of (R) and (S) enantiomers of RC-33 to the σ1 receptor by in silico experiments. The close values of the predicted affinity of (R)-RC-33 and (S)-RC-33 for the protein evidenced the non-stereoselective binding of RC-33 to the σ1 receptor; this, in turn, supported further development and characterization of RC-33 in its racemic form. Subsequently, we set-up a scaled-up, optimized synthesis of (R/S)-RC-33 along with some compound characterization data (e.g., solubility in different media and solid state characterization by thermal analysis techniques). Finally, metabolic studies of RC-33 in different biological matrices (e.g., plasma, blood, and hepatic S9 fraction) of different species (e.g., rat, mouse, dog, and human) were performed. (R/S)-RC-33 is generally stable in all examined biological matrices, with the only exception of rat and human liver S9 fractions in the presence of NADPH. In such conditions, the compound is subjected to a relevant oxidative metabolism, with a degradation of approximately 65% in rat and 69% in human. Taken together, our results demonstrated that (R/S)-RC-33 is a highly potent, selective, metabolically stable σ1 agonist, a promising novel neuroprotective drug candidate.
Collapse
Affiliation(s)
- Daniela Rossi
- Medicinal Chemistry Laboratory, Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section (MCPTS), University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Laurini E, Da Col V, Wünsch B, Pricl S. Analysis of the molecular interactions of the potent analgesic S1RA with the σ1 receptor. Bioorg Med Chem Lett 2013; 23:2868-71. [PMID: 23582276 DOI: 10.1016/j.bmcl.2013.03.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
The highly selective σ1 receptor antagonist S1RA is endowed with a surprisingly high affinity for its target protein given a missing fundamental hydrophobic pharmacophoric requirement. Here we show that, with respect to other potent σ1 ligands, S1RA is able to compensate this loss by fulfilling all other pharmacophoric requirements and by gaining in solvation energy.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory - DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | | | | | | |
Collapse
|