1
|
El-Kadiry AEH, Beaudoin S, Plouffe S, Rafei M. Accum™ Technology: A Novel Conjugable Primer for Onco-Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123807. [PMID: 35744930 PMCID: PMC9227040 DOI: 10.3390/molecules27123807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022]
Abstract
Compromised activity is a common impediment for biologics requiring endosome trafficking into target cells. In cancer cells, antibody-drug conjugates (ADCs) are trapped in endosomes or subsequently pumped extracellularly, leading to a reduction in intracellular accumulation. In subsets of dendritic cells (DCs), endosome-engulfed antigens face non-specific proteolysis and collateral damage to epitope immunogenicity before proteasomal processing and subsequent surface presentation. To bypass these shortcomings, we devised Accum™, a conjugable biotechnology harboring cholic acid (ChAc) and a nuclear localization signal (NLS) sequence for endosome escape and prompt nuclear targeting. Combined, these mechanisms culminate in enhanced intracellular accumulation and functionalization of coupled biologics. As proof-of-principle, we have biochemically characterized Accum, demonstrating its adaptability to ADCs or antigens in different cancer settings. Additionally, we have validated that endosome escape and nuclear routing are indispensable for effective intracellular accumulation and guaranteed target cell selectivity. Importantly, we have demonstrated that the unique mechanism of action of Accum translates into enhanced tumor cytotoxicity when coupled to ADCs, and durable therapeutic and prophylactic anti-cancer immunogenicity when coupled to tumor antigens. As more pre-clinical evidence accumulates, the adaptability, unique mechanism of action, and high therapeutic potency of Accum signal a promising transition into clinical investigations in the context of onco-immunotherapy.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Simon Beaudoin
- Defence Therapeutics Inc., Research and Development Branch, Vancouver, BC V6C 3L6, Canada; (S.B.); (S.P.)
| | - Sebastien Plouffe
- Defence Therapeutics Inc., Research and Development Branch, Vancouver, BC V6C 3L6, Canada; (S.B.); (S.P.)
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-(514)-343-6931
| |
Collapse
|
2
|
Wang S. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Front Chem 2021; 9:645297. [PMID: 33834015 PMCID: PMC8021698 DOI: 10.3389/fchem.2021.645297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The intracellular delivery of emerging biomacromolecular therapeutics, such as genes, peptides, and proteins, remains a great challenge. Unlike small hydrophobic drugs, these biotherapeutics are impermeable to the cell membrane, thus relying on the endocytic pathways for cell entry. After endocytosis, they are entrapped in the endosomes and finally degraded in lysosomes. To overcome these barriers, many carriers have been developed to facilitate the endosomal escape of these biomacromolecules. This mini-review focuses on the development of anionic pH-responsive amphiphilic carboxylate polymers for endosomal escape applications, including the design and synthesis of these polymers, the mechanistic insights of their endosomal escape capability, the challenges in the field, and future opportunities.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
4
|
Liu J, Fraire JC, De Smedt SC, Xiong R, Braeckmans K. Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000146. [PMID: 32351015 DOI: 10.1002/smll.202000146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Extrinsic probes have outstanding properties for intracellular labeling to visualize dynamic processes in and of living cells, both in vitro and in vivo. Since extrinsic probes are in many cases cell-impermeable, different biochemical, and physical approaches have been used to break the cell membrane barrier for direct delivery into the cytoplasm. In this Review, these intracellular delivery strategies are discussed, briefly explaining the mechanisms and how they are used for live-cell labeling applications. Methods that are discussed include three biochemical agents that are used for this purpose-purpose-different nanocarriers, cell penetrating peptides and the pore-foraming bacterial toxin streptolysin O. Most successful intracellular label delivery methods are, however, based on physical principles to permeabilize the membrane and include electroporation, laser-induced photoporation, micro- and nanoinjection, nanoneedles or nanostraws, microfluidics, and nanomachines. The strengths and weaknesses of each strategy are discussed with a systematic comparison provided. Finally, the extrinsic probes that are reported for intracellular labeling so-far are summarized, together with the delivery strategies that are used and their performance. This combined information should provide for a useful guide for choosing the most suitable delivery method for the desired probes.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
5
|
Yang Q, Deng Z, Wang D, He J, Zhang D, Tan Y, Peng T, Wang XQ, Tan W. Conjugating Aptamer and Mitomycin C with Reductant-Responsive Linker Leading to Synergistically Enhanced Anticancer Effect. J Am Chem Soc 2020; 142:2532-2540. [PMID: 31910340 DOI: 10.1021/jacs.9b12409] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitomycin C (MMC) has been using for the treatment of a variety of digestive tract cancers. However, its nonspecific DNA-alkylating ability usually causes severe side effects, thus largely limiting its clinical applications. The utilization of an efficient active targeted drug delivery technique would address this issue. Accordingly, we report the design and development of aptamer-mitomycin C conjugates that use different cross-linking chemistry. The targeted delivery ability and cytotoxicity of these conjugates were carefully studied. It is worth noting that a linker-dependent cytotoxicity effect was observed for these conjugates. The use of a reductant-sensitive disulfide bond cross-linking strategy resulted in significantly enhanced cytotoxicity of MMC against the target cancer cell lines. Importantly, this cytotoxicity enhancement was suited to different types of aptamers, demonstrating the success of our design. Mechanistic studies of the enhanced cytotoxicity effect indicated that the target recognition, specific binding, and receptor-mediated internalization of aptamer were also critical for the observed effect.
Collapse
Affiliation(s)
- Qiuxia Yang
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Zhengyu Deng
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Dan Wang
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Jiaxuan He
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Dailiang Zhang
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Yan Tan
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Tianhuan Peng
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Xue-Qiang Wang
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China.,Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China.,Institute of Cancer and Basic Medicine (IBMC) , Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences , Hangzhou , Zhejiang 310022 , China
| |
Collapse
|
6
|
Nath S, Saad MA, Pigula M, Swain JW, Hasan T. Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease. Cancers (Basel) 2019; 11:E1887. [PMID: 31783651 PMCID: PMC6966499 DOI: 10.3390/cancers11121887] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer (OvCa) is the leading cause of gynecological cancer-related deaths in the United States, with five-year survival rates of 15-20% for stage III cancers and 5% for stage IV cancers. The standard of care for advanced OvCa involves surgical debulking of disseminated disease in the peritoneum followed by chemotherapy. Despite advances in treatment efficacy, the prognosis for advanced stage OvCa patients remains poor and the emergence of chemoresistant disease localized to the peritoneum is the primary cause of death. Therefore, a complementary modality that is agnostic to typical chemo- and radio-resistance mechanisms is urgently needed. Photodynamic therapy (PDT), a photochemistry-based process, is an ideal complement to standard treatments for residual disease. The confinement of the disease in the peritoneal cavity makes it amenable for regionally localized treatment with PDT. PDT involves photochemical generation of cytotoxic reactive molecular species (RMS) by non-toxic photosensitizers (PSs) following exposure to non-harmful visible light, leading to localized cell death. However, due to the complex topology of sensitive organs in the peritoneum, diffuse intra-abdominal PDT induces dose-limiting toxicities due to non-selective accumulation of PSs in both healthy and diseased tissue. In an effort to achieve selective damage to tumorous nodules, targeted PS formulations have shown promise to make PDT a feasible treatment modality in this setting. This targeted strategy involves chemical conjugation of PSs to antibodies, referred to as photoimmunoconjugates (PICs), to target OvCa specific molecular markers leading to enhanced therapeutic outcomes while reducing off-target toxicity. In light of promising results of pilot clinical studies and recent preclinical advances, this review provides the rationale and methodologies for PIC-based PDT, or photo-immunotherapy (PIT), in the context of OvCa management.
Collapse
Affiliation(s)
| | | | | | | | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.A.S.); (M.P.)
| |
Collapse
|
7
|
O’Mahony T, Petz J, Cook J, Cheng K, Rolandi M. The Design Help Desk: A collaborative approach to design education for scientists and engineers. PLoS One 2019; 14:e0212501. [PMID: 31042751 PMCID: PMC6493711 DOI: 10.1371/journal.pone.0212501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/04/2019] [Indexed: 11/29/2022] Open
Abstract
Visual design, learning sciences, and nanotechnology may be strange bedfellows; yet, as this paper highlights, peer interaction between a designer and a scientist is an effective method for helping scientists acquire visual design skills. We describe our findings from observing twelve sessions at the Design Help Desk, a tutoring center at the University of Washington. At each session, a scientist (who is expert in his own domain but a novice in design) consulted a designer (who is expert in design but a novice in science) in order to receive advice and guidance on how to improve a scientific visualization. At the Design Help Desk, this pairing consistently produced a momentary disequilibrium in the scientist's thought process: a disequilibrium that led to agency (where the scientist gained ownership of his/her own learning) and conceptual change in the scientist's understanding of visual design. Scientists who visited the Design Help Desk were satisfied with their experience, and their published work demonstrated an improved ability to visually communicate research findings-a skill critical to the advancement of science. To our knowledge, the Design Help Desk is a unique effort to educate scientists in visual design; we are not aware of any other design-advice/tutoring centers at public or private universities in the United States or abroad.
Collapse
Affiliation(s)
- Timothy O’Mahony
- Institute for Connecting Neuroscience with Teaching and Learning (iCNtl), Seattle, WA, United States of America
- LIFE (Learning in Informal and Formal Environments) Center, College of Education, University of Washington, Seattle, WA, United States of America
| | - Jason Petz
- Division of Design, School of Art + Art History + Design, University of Washington, Seattle, WA, United States of America
| | - Jonathan Cook
- Division of Design, School of Art + Art History + Design, University of Washington, Seattle, WA, United States of America
| | - Karen Cheng
- Division of Design, School of Art + Art History + Design, University of Washington, Seattle, WA, United States of America
| | - Marco Rolandi
- Institute for Connecting Neuroscience with Teaching and Learning (iCNtl), Seattle, WA, United States of America
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| |
Collapse
|
8
|
Kilchrist KV, Dimobi SC, Jackson MA, Evans BC, Werfel TA, Dailing EA, Bedingfield SK, Kelly IB, Duvall CL. Gal8 Visualization of Endosome Disruption Predicts Carrier-Mediated Biologic Drug Intracellular Bioavailability. ACS NANO 2019; 13:1136-1152. [PMID: 30629431 PMCID: PMC6995262 DOI: 10.1021/acsnano.8b05482] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endolysosome entrapment is one of the key barriers to the therapeutic use of biologic drugs that act intracellularly. The screening of prospective nanoscale endosome-disrupting delivery technologies is currently limited by methods that are indirect and cumbersome. Here, we statistically validate Galectin 8 (Gal8) intracellular tracking as a superior approach that is direct, quantitative, and predictive of therapeutic cargo intracellular bioactivity through in vitro high-throughput screening and in vivo validation. Gal8 is a cytosolically dispersed protein that, when endosomes are disrupted, redistributes by binding to glycosylation moieties selectively located on the inner face of endosomal membranes. The quantitative redistribution of a Gal8 fluorescent fusion protein from the cytosol into endosomes is demonstrated as a real-time, live-cell assessment of endosomal integrity that does not require labeling or modification of either the carrier or the biologic drug and that allows quantitative distinction between closely related, endosome-disruptive drug carriers. Through screening two families of siRNA polymeric carrier compositions at varying dosages, we show that Gal8 endosomal recruitment correlates strongly ( r = 0.95 and p < 10-4) with intracellular siRNA bioactivity. Through this screen, we gathered insights into how composition and molecular weight affect endosome disruption activity of poly[(ethylene glycol)- b-[(2-(dimethylamino)ethyl methacrylate)- co-(butyl methacrylate)]] [PEG-(DMAEMA- co-BMA)] siRNA delivery systems. Additional studies showed that Gal8 recruitment predicts intracellular bioactivity better than current standard methods such as Lysotracker colocalization ( r = 0.35, not significant), pH-dependent hemolysis (not significant), or cellular uptake ( r = 0.73 and p < 10-3). Importantly, the Gal8 recruitment method is also amenable to fully objective high-throughput screening using automated image acquisition and quantitative image analysis, with a robust estimated Z' of 0.6 (whereas assays with Z' > 0 have high-throughput screening utility). Finally, we also provide measurements of in vivo endosomal disruption based on Gal8 visualization ( p < 0.03) of a nanocarrier formulation confirmed to produce significant cytosolic delivery and bioactivity of siRNA within tumors ( p < 0.02). In sum, this report establishes the utility of Gal8 subcellular tracking for the rapid optimization and high-throughput screening of the endosome disruption potency of intracellular delivery technologies.
Collapse
Affiliation(s)
- Kameron V. Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Somtochukwu C. Dimobi
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Meredith A. Jackson
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Brian C. Evans
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | | | - Eric A. Dailing
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Sean K. Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Isom B. Kelly
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| |
Collapse
|
9
|
Qiu F, Becker KW, Knight FC, Baljon JJ, Sevimli S, Shae D, Gilchuk P, Joyce S, Wilson JT. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials 2018; 182:82-91. [PMID: 30107272 PMCID: PMC6778406 DOI: 10.1016/j.biomaterials.2018.07.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Abstract
Cancer vaccines targeting patient-specific tumor neoantigens have recently emerged as a promising component of the rapidly expanding immunotherapeutic armamentarium. However, neoantigenic peptides typically elicit weak CD8+ T cell responses, and so there is a need for universally applicable vaccine delivery strategies to enhance the immunogenicity of these peptides. Ideally, such vaccines could also be rapidly fabricated using chemically synthesized peptide antigens customized to an individual patient. Here, we describe a strategy for simple and rapid packaging of peptide antigens into pH-responsive nanoparticles with endosomal escape activity. Electrostatically-stabilized polyplex nanoparticles (nanoplexes) can be assembled instantaneously by mixing decalysine-modified antigenic peptides and poly(propylacrylic acid) (pPAA), a polyanion with pH-dependent, membrane destabilizing activity. These nanoplexes increase and prolong antigen uptake and presentation on MHC-I (major histocompatibility complex class I) molecules expressed by dendritic cells, resulting in enhanced activation of CD8+ T cells. Using an intranasal immunization route, nanoplex vaccines inhibit formation of lung metastases in a murine melanoma model. Additionally, nanoplex vaccines strongly synergize with the adjuvant α-galactosylceramide (α-GalCer) in stimulating robust CD8+ T cell responses, significantly increasing survival time in mice with established melanoma tumors. Collectively, these findings demonstrate that peptide/pPAA nanoplexes offer a facile and versatile platform for enhancing CD8+ T cell responses to peptide antigens, with potential to complement ongoing advancements in the development of neoantigen-targeted cancer vaccines.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kyle W Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Frances C Knight
- Department of Biomedical Engineering, Vanderbilt University, USA
| | | | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, USA; Department of Veterans Administration Tennessee Valley Healthcare System, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, USA; Department of Veterans Administration Tennessee Valley Healthcare System, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, USA.
| |
Collapse
|
10
|
Qiu L, Dong C, Kan X. Lymphoma-targeted treatment using a folic acid-decorated vincristine-loaded drug delivery system. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:863-872. [PMID: 29713144 PMCID: PMC5909786 DOI: 10.2147/dddt.s152420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose B-cell lymphoma is the most frequently diagnosed lymphoid tumor. Folic acid (FA)-decorated systems were found to be preferentially internalized on the B-cell lymphoma cell line which is reported to express the folate receptor. This study was designed to develop an FA-decorated vincristine (VCR)-loaded system for targeted lymphoma treatment. Methods FA-decorated lipid was synthesized. VCR-loaded lipid-polymer hybrid nanoparticles (LPNs) were fabricated. In vitro cell lines and an in vivo lymphoma animal model was used to evaluate the anti B-cell lymphoma effect. Results FA-decorated, VCR-loaded LPNs (FA-VCR/LPNs) have shown a targeted effect in delivery to B-cell lymphoma cells. FA-VCR/LPNs also showed the highest anti-tumor effect in murine-bearing lymphoma xenografts. Conclusion FA-VCR/LPNs can achieve targeted delivery of VCR, bring about an outstanding therapeutic effect to treat lymphoma, and also reduce the systemic toxicity. FA-VCR/LPNs could be an excellent system for lymphoma therapy.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong Province, People's Republic of China
| | - Chao Dong
- Department of Oncology, 105 Hospital of People's Liberation Army, Heifei, Anhui Province, People's Republic of China
| | - Xuan Kan
- Department of Oncology, Hospital of Traditional Chinese Medicine of Laiwu City, Laiwu, Shandong Province, People's Republic of China
| |
Collapse
|
11
|
Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell MV. Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev 2018; 46:6553-6569. [PMID: 28902203 DOI: 10.1039/c7cs00536a] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins and their interactions in and out of cells must be well-orchestrated for the healthy functioning and regulation of the body. Even the slightest disharmony can cause diseases. Therapeutic peptides are short amino acid sequences (generally considered <50 amino acids) that can naturally mimic the binding interfaces between proteins and thus, influence protein-protein interactions. Because of their fidelity of binding, peptides are a promising next generation of personalized medicines to reinstate biological harmony. Peptides as a group are highly selective, relatively safe, and biocompatible. However, they are also vulnerable to many in vivo pharmacologic barriers limiting their clinical translation. Current advances in molecular, chemical, and nanoparticle engineering are helping to overcome these previously insurmountable obstacles and improve the future of peptides as active and highly selective therapeutics. In this review, we focus on self-assembled vehicles as nanoparticles to carry and protect therapeutic peptides through this journey, and deliver them to the desired tissue.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
12
|
Paquette M, Beaudoin S, Tremblay MA, Jean S, Lopez AF, Lecomte R, Guérin B, Bentourkia M, Sabbagh R, Leyton JV. NLS-Cholic Acid Conjugation to IL-5Rα-Specific Antibody Improves Cellular Accumulation and In Vivo Tumor-Targeting Properties in a Bladder Cancer Model. Bioconjug Chem 2018; 29:1352-1363. [PMID: 29433309 DOI: 10.1021/acs.bioconjchem.8b00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor-mediated internalization followed by trafficking and degradation of antibody-conjugates (ACs) via the endosomal-lysosomal pathway is the major mechanism for delivering molecular payloads inside target tumor cells. Although a mainstay for delivering payloads with clinically approved ACs in cancer treatment and imaging, tumor cells are often able to decrease intracellular payload concentrations and thereby reduce the effectiveness of the desired application. Thus, increasing payload intracellular accumulation has become a focus of attention for designing next-generation ACs. We developed a composite compound (ChAcNLS) that enables ACs to escape endosome entrapment and route to the nucleus resulting in the increased intracellular accumulation as an interleukin-5 receptor α-subunit (IL-5Rα)-targeted agent for muscle invasive bladder cancer (MIBC). We constructed 64Cu-A14-ChAcNLS, 64Cu-A14-NLS, and 64Cu-A14 and evaluated their performance by employing mechanistic studies for endosome escape coupled to nuclear routing and determining whether this delivery system results in improved 64Cu cellular accumulation. ACs consisting of ∼20 ChAcNLS or NLS moieties per 64Cu-A14 were prepared in good yield, high monomer content, and maintaining high affinity for IL-5Rα. Confocal microscopy analysis demonstrated ChAcNLS mediated efficient endosome escape and nuclear localization. 64Cu-A14-ChAcNLS increased 64Cu cellular accumulation in HT-1376 and HT-B9 cells relative to 64Cu-A14 and 64Cu-A14-NLS. In addition, we tested 64Cu-A14-ChAcNLS in vivo to evaluate its tissue distribution properties and, ultimately, tumor uptake and targeting. A model of human IL-5Rα MIBC was developed by implanting NOD/SCID mice with subcutaneous HT-1376 or HT-B9MIBC tumors, which grow containing high and low IL-5Rα-positive tumor cell densities, respectively. ACs were intravenously injected, and daily blood sampling, biodistribution at 48 and 96 h, and positron emission tomography (PET) at 24 and 48 h were performed. Region of interest (ROI) analysis was also performed on reconstructed PET images. Pharmacokinetic analysis and biodistribution studies showed that 64Cu-A14-ChAcNLS had faster clearance rates from the blood and healthy organs relative to 64Cu-A14. However, 64Cu-A14-ChAcNLS maintained comparable tumor accumulation relative to 64Cu-A14. This resulted in 64Cu-A14-ChAcNLS having superior tumor/normal tissue ratios at both 48 and 96 h biodistribution time points. Visualization of AC distribution by PET and ROI analysis confirmed that 64Cu-A14-ChAcNLS had improved targeting of MIBC tumor relative to 64Cu-A14. In addition, 64Cu-A14 modified with only NLS had poor tumor targeting. This was a result of poor tumor uptake due to extremely rapid clearance. Thus, the overall findings in this model of human IL-5Rα-positive MIBC describe an endosome escape-nuclear localization cholic-acid-linked peptide that substantially enhances AC cellular accumulation and tumor targeting.
Collapse
Affiliation(s)
| | | | | | | | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology , The University of South Australia , Frome Road , Adelaide , South Australia 5000 , Australia
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| | - Brigitte Guérin
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| | - M'hamed Bentourkia
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| | | | - Jeffrey V Leyton
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| |
Collapse
|
13
|
Riber CF, Andersen AHF, Rolskov LA, Zuwala K, Gajda P, Løvschall KB, Dagnæs-Hansen F, Banda DH, Pietschmann T, Tolstrup M, Zelikin AN. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells. ACS Macro Lett 2017; 6:935-940. [PMID: 35650894 DOI: 10.1021/acsmacrolett.7b00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast, synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological, and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view on synthetic polymers as curative, functional agents and present PEAA as a unique biomedical tool with applications related to health of the human liver.
Collapse
Affiliation(s)
- Camilla Frich Riber
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Anna Halling Folkmar Andersen
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Lærke Anegaard Rolskov
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Kaja Zuwala
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Paulina Gajda
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Kaja Borup Løvschall
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | | | - Dominic H. Banda
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Thomas Pietschmann
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Martin Tolstrup
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Alexander N. Zelikin
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
14
|
Gao L, Han L, Ding X, Xu J, Wang J, Zhu J, Lu W, Sun J, Yu L, Yan Z, Wang Y. An effective intracellular delivery system of monoclonal antibody for treatment of tumors: erythrocyte membrane-coated self-associated antibody nanoparticles. NANOTECHNOLOGY 2017; 28:335101. [PMID: 28657549 DOI: 10.1088/1361-6528/aa7c43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibody-based drugs have attracted much attention for their targeting ability, high efficacy and low toxicity. But it is difficult for those intrabodies, a kind of antibody whose targets are intracellular biomarkers, to become effective drugs due to the lack of intracellular delivery strategy and their short circulation time in blood. Human telomerase reverse transcriptase (hTERT), an important biomarker for tumors, is expressed only in cytoplasm instead of on cell membrane. In this study, the anti-hTERT blocking monoclonal antibody (mAb), as the model intrabody, was used to prepare nanoparticles (NPs), followed by the encapsulation of erythrocyte membrane (EM), to obtain the EM-coated anti-hTERT mAb NPs delivery system. The final NPs showed a z-average hydrodynamic diameter of about 197.3 nm. The in vitro cellular uptake by HeLa cells confirmed that compared with free anti-hTERT mAb, the EM-coated anti-hTERT mAb NPs exhibited a significantly increased uptake by tumor cells. Besides, the pharmacokinetic study confirmed that the EM encapsulation can remarkably prolong the circulation time and increase the area under curve (AUC) of NPs in blood. The EM-coated anti-hTERT mAb NPs exhibited a remarkably decreased uptake by macrophages than uncoated NPs, which may be responsible for the prolonged circulation time and increased AUC. Furthermore, the frozen section of tumor tissue was performed and proved that the EM-coated anti-hTERT mAb NPs can be more effectively accumulated in tumor tissues than the free mAb and uncoated NPs. In summary, this study indicated that EM-coated anti-hTERT mAb NPs are an effective delivery system for the long circulation and intracellular delivery of an intrabody, and make it possible for the intracellular biomarkers to become the potential targets of drugs.
Collapse
Affiliation(s)
- Lipeng Gao
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hematological malignancies manifest as lymphoma, leukemia, and myeloma, and remain a burden on society. From initial therapy to endless relapse-related treatment, societal burden is felt not only in the context of healthcare cost, but also in the compromised quality of life of patients. Long-term therapeutic strategies have become the standard in keeping hematological malignancies at bay as these cancers develop resistance to each round of therapy with time. As a result, there is a continual need for the development of new drugs to combat resistant disease in order to prolong patient life, if not to produce a cure. This review aims to summarize advances in targeting lymphoma, leukemia, and myeloma through both cutting-edge and well established platforms. Current standard of treatment will be reviewed for these malignancies and emphasis will be made on new therapy development in the areas of antibody engineering, epigenetic small molecule inhibiting drugs, vaccine development, and chimeric antigen receptor cell engineering. In addition, platforms for the delivery of these and other drugs will be reviewed including antibody-drug conjugates, micro- and nanoparticles, and multimodal hydrogels. Lastly, we propose that tissue engineered constructs for hematological malignancies are the missing link in targeted drug discovery alongside mouse and patient-derived xenograft models.
Collapse
|
16
|
Yang J, Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J Control Release 2016; 240:9-23. [DOI: 10.1016/j.jconrel.2015.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023]
|
17
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Kilchrist KV, Evans BC, Brophy CM, Duvall CL. Mechanism of Enhanced Cellular Uptake and Cytosolic Retention of MK2 Inhibitory Peptide Nano-polyplexes. Cell Mol Bioeng 2016; 9:368-381. [PMID: 27818713 PMCID: PMC5089375 DOI: 10.1007/s12195-016-0446-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022] Open
Abstract
Electrostatic complexation of a cationic MAPKAP kinase 2 inhibitory (MK2i) peptide with the anionic, pH-responsive polymer poly(propylacrylic acid) (PPAA) yields MK2i nano-polyplexes (MK2i-NPs) that significantly increase peptide uptake and intracellular retention. This study focused on elucidating the mechanism of MK2i-NP cellular uptake and intracellular trafficking in vascular smooth muscle cells. Small molecule inhibition of various endocytic pathways showed that MK2i-NP cellular uptake involves both macropinocytosis and clathrin mediated endocytosis, whereas the free peptide exclusively utilizes clathrin mediated endocytosis for cell entry. Scanning electron microscopy studies revealed that MK2i-NPs, but not free MK2i peptide, induce cellular membrane ruffling consistent with macropinocytosis. TEM confirmed that MK2i-NPs induce macropinosome formation and achieve MK2i endo-lysosomal escape and cytosolic delivery. Finally, a novel technique based on recruitment of Galectin-8-YFP was utilized to demonstrate that MK2i-NPs cause endosomal disruption within 30 minutes of uptake. These new insights on the relationship between NP physicochemical properties and cellular uptake and trafficking can potentially be applied to further optimize the MK2i-NP system and more broadly toward the rational engineering of nano-scale constructs for the intracellular delivery of biologic drugs.
Collapse
Affiliation(s)
- Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Brian C Evans
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Brophy
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Medical Center, VA Tennessee Valley Healthcare System, Nashville TN 37212, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
19
|
Beaudoin S, Rondeau A, Martel O, Bonin MA, van Lier JE, Leyton JV. ChAcNLS, a Novel Modification to Antibody-Conjugates Permitting Target Cell-Specific Endosomal Escape, Localization to the Nucleus, and Enhanced Total Intracellular Accumulation. Mol Pharm 2016; 13:1915-26. [PMID: 27112376 DOI: 10.1021/acs.molpharmaceut.6b00075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high selectivity for IL-3Rα-positive cells. In contrast, 7G3 ACs with the ability to either escape endosome entrapment or traffic to the nucleus was not superior to 7G3-ChAcNLS for increasing intracellular accumulation. Transportation of (64)Cu when complexed to 7G3-ChAcNLS also resulted in increased nuclear and intracellular radioactivity accumulation. Thus, ChAcNLS is a novel mAb functionalizing technology that demonstrates its ability to increase AC intracellular accumulation in target cells through escaping endosome entrapment coupled to nuclear trafficking.
Collapse
Affiliation(s)
- Simon Beaudoin
- Departément de médecine nucléaire et radiobiologie, ‡Plateforme de synthèse de peptides et de sondes d'imageries, Faculté de médecine et sciences de la santé, and §Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke, Québec J1H5N4, Canada
| | - Andreanne Rondeau
- Departément de médecine nucléaire et radiobiologie, ‡Plateforme de synthèse de peptides et de sondes d'imageries, Faculté de médecine et sciences de la santé, and §Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke, Québec J1H5N4, Canada
| | - Olivier Martel
- Departément de médecine nucléaire et radiobiologie, ‡Plateforme de synthèse de peptides et de sondes d'imageries, Faculté de médecine et sciences de la santé, and §Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke, Québec J1H5N4, Canada
| | - Marc-Andre Bonin
- Departément de médecine nucléaire et radiobiologie, ‡Plateforme de synthèse de peptides et de sondes d'imageries, Faculté de médecine et sciences de la santé, and §Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke, Québec J1H5N4, Canada
| | - Johan E van Lier
- Departément de médecine nucléaire et radiobiologie, ‡Plateforme de synthèse de peptides et de sondes d'imageries, Faculté de médecine et sciences de la santé, and §Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke, Québec J1H5N4, Canada
| | - Jeffrey V Leyton
- Departément de médecine nucléaire et radiobiologie, ‡Plateforme de synthèse de peptides et de sondes d'imageries, Faculté de médecine et sciences de la santé, and §Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke, Québec J1H5N4, Canada
| |
Collapse
|
20
|
Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye. J Immunol Methods 2016; 431:11-21. [DOI: 10.1016/j.jim.2016.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
|
21
|
Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. J Drug Target 2015; 23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Li W, Wei H, Li H, Gao J, Feng SS, Guo Y. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology. Nanomedicine (Lond) 2015; 9:2587-605. [PMID: 25490427 DOI: 10.2217/nnm.14.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is a promising option for cancer treatment that might cure cancer with fewer side effects by primarily activating the host's immune system. However, the effect of traditional immunotherapy is modest, frequently due to tumor escape and resistance of multiple mechanisms. Pharmaceutical nanotechnology, which is also called cancer nanotechnology or nanomedicine, has provided a practical solution to solve the limitations of traditional immunotherapy. This article reviews the latest developments in immunotherapy and nanomedicine, and illustrates how nanocarriers (including micelles, liposomes, polymer-drug conjugates, solid lipid nanoparticles and biodegradable nanoparticles) could be used for the cellular transfer of immune effectors for active and passive nanoimmunotherapy. The fine engineering of nanocarriers based on the unique features of the tumor microenvironment and extra-/intra-cellular conditions of tumor cells can greatly tip the triangle immunobalance among host, tumor and nanoparticulates in favor of antitumor responses, which shows a promising prospect for nanoimmunotherapy.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Graham DJ, Wilson JT, Lai JJ, Stayton PS, Castner DG. Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS. Biointerphases 2015; 11:02A304. [PMID: 26531772 PMCID: PMC4636497 DOI: 10.1116/1.4934795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) three-dimensional (3D) depth profiling and a novel background subtraction method were used to localize polymeric nanoparticles within cells. Results showed that ToF-SIMS 3D depth profiling is capable of localizing polymer nanoparticles within HeLa cells. ToF-SIMS results compared well with optical images of cells incubated with fluorescently labeled polymer nanoparticles, with both imaging techniques demonstrating clustering of nanoparticles in punctate regions consistent with endosomal localization as anticipated based on the nanoparticle design.
Collapse
Affiliation(s)
- Daniel J Graham
- National ESCA and Surface Analysis Center for Biomedical Problems, Seattle, Washington, 98195 and Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - John T Wilson
- Department of Bioengineering, University of Washington, Seattle, Washington 98195 and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Seattle, Washington, 98195; Department of Bioengineering, University of Washington, Seattle, Washington 98195; and Department of Chemical Engineering, University of Washington, Seattle, Washington 98185
| |
Collapse
|
24
|
Intracellular delivery system for antibody-Peptide drug conjugates. Mol Ther 2015; 23:907-917. [PMID: 25669432 DOI: 10.1038/mt.2015.22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/21/2015] [Indexed: 12/11/2022] Open
Abstract
Antibodies armed with biologic drugs could greatly expand the therapeutic potential of antibody-drug conjugates for cancer therapy, broadening their application to disease targets currently limited by intracellular delivery barriers. Additional selectivity and new therapeutic approaches could be realized with intracellular protein drugs that more specifically target dysregulated pathways in hematologic cancers and other malignancies. A multifunctional polymeric delivery system for enhanced cytosolic delivery of protein drugs has been developed that incorporates endosomal-releasing activity, antibody targeting, and a biocompatible long-chain ethylene glycol component for optimized safety, pharmacokinetics, and tumor biodistribution. The pH-responsive polymeric micelle carrier, with an internalizing anti-CD22 monoclonal targeting antibody, effectively delivered a proapoptotic Bcl-2 interacting mediator (BIM) peptide drug that suppressed tumor growth for the duration of treatment and prolonged survival in a xenograft mouse model of human B-cell lymphoma. Antitumor drug activity was correlated with a mechanistic induction of the Bcl-2 pathway biomarker cleaved caspase-3 and a marked decrease in the Ki-67 proliferation biomarker. Broadening the intracellular target space by more effective delivery of protein/peptide drugs could expand the repertoire of antibody-drug conjugates to currently undruggable disease-specific targets and permit tailored drug strategies to stratified subpopulations and personalized medicines.
Collapse
|
25
|
Wu Y, Ng DYW, Kuan SL, Weil T. Protein–polymer therapeutics: a macromolecular perspective. Biomater Sci 2015. [DOI: 10.1039/c4bm00270a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of protein–polymer hybrids emerged several decades ago with the vision that their synergistic combination will offer macromolecular hybrids with manifold features to succeed as the next generation therapeutics.
Collapse
Affiliation(s)
- Yuzhou Wu
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| | - David Y. W. Ng
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| | - Seah Ling Kuan
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| | - Tanja Weil
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| |
Collapse
|
26
|
|
27
|
Hu J, Liu G, Wang C, Liu T, Zhang G, Liu S. Spatiotemporal Monitoring Endocytic and Cytosolic pH Gradients with Endosomal Escaping pH-Responsive Micellar Nanocarriers. Biomacromolecules 2014; 15:4293-301. [DOI: 10.1021/bm501296d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cheng Wang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
Knapp CM, Whitehead KA. In pursuit of a moving target: nanotherapeutics for the treatment of non-Hodgkin B-cell lymphoma. Expert Opin Drug Deliv 2014; 11:1923-37. [DOI: 10.1517/17425247.2014.945419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 2014; 157:1644-1656. [PMID: 24949974 PMCID: PMC4079535 DOI: 10.1016/j.cell.2014.04.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/13/2014] [Accepted: 04/15/2014] [Indexed: 11/25/2022]
Abstract
Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates.
Collapse
Affiliation(s)
- Erik Procko
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Geoffrey Y. Berguig
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Betty W. Shen
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Shani Frayo
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Garrett Booth
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | - Oliver W. Press
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, Zanzonico P, Larson SM. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging 2014; 41:985-94. [PMID: 24604591 DOI: 10.1007/s00259-013-2679-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE The PET tracer, (124)I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for presurgical diagnosis of clear-cell renal cell carcinoma (ccRCC) (Divgi et al. in Lancet Oncol 8:304-310, 2007; Divgi et al. in J Clin Oncol 31:187-194, 2013). The radiometal (89)Zr, however, may offer advantages as a surrogate PET nuclide over (124)I in terms of greater tumor uptake and retention (Rice et al. in Semin Nucl Med 41:265-282, 2011). We have developed a nonlinear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between (124)I-cG250 and (89)Zr-cG250 using a human ccRCC xenograft tumor model in mice. We believe that this unique model better relates quantitative imaging data to the salient biological features of tumor antibody-antigen binding and turnover. METHODS We conducted experiments with (89)Zr-cG250 and (124)I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial PET imaging was performed in mice bearing subcutaneous ccRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumors were derived from the PET images using nonlinear compartmental modeling. RESULTS The two tracers demonstrated virtually identical tumor cell binding and internalization but showed markedly different retentions in vitro. Superior PET images were obtained using (89)Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous washout from normal tissues. Estimates of cG250/CAIX complex turnover were 1.35 - 5.51 × 10(12) molecules per hour per gram of tumor (20 % of receptors internalized per hour), and the ratio of (124)I/(89)Zr atoms released per unit time by tumor was 17.5. CONCLUSION Pairwise evaluation of (89)Zr-cG250 and (124)I-cG250 provided the basis for a nonlinear immunokinetic model which yielded quantitative information about the binding and internalization of radioantibody bound to CAIX on tumor cells in vivo. (89)Zr-cG250 is likely to provide high-quality PET images and may be a useful tool to quantify CAIX/cG250 receptor turnover and cG250-accessible antigen density noninvasively in humans.
Collapse
Affiliation(s)
- Sarah M Cheal
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu P, Cai Z, Kang JW, Boyle AJ, Adams J, Lu Y, Ngo Ndjock Mbong G, Sidhu S, Reilly RM, Winnik MA. Intracellular routing in breast cancer cells of streptavidin-conjugated trastuzumab Fab fragments linked to biotinylated doxorubicin-functionalized metal chelating polymers. Biomacromolecules 2014; 15:715-25. [PMID: 24506198 DOI: 10.1021/bm401483a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We describe the synthesis of a heterotelechelic metal-chelating polymer (Bi-MCP-Dox), a polyacrylamide with a number average degree of polymerization DPn = 50 (PDI = 1.2), with biotin (Bi) and doxorubicin (Dox) as functional chain ends and diethylenetriaminepentaacetic acid (DTPA) pendant groups as the binding sites for metal ions. We compared its behavior in cell-uptake experiments with a similar polymer (Bi-MCP) without Dox. These MCPs were complexed with trastuzumab Fab (tmFab) fragments covalently linked to streptavidin (SAv) to form tmFab-SAv-Bi-MCP-Dox and tmFab-SAv-Bi-MCP via the strong affinity between Bi and SAv. tmFab targets human epidermal growth factor receptor-2 (HER2), which is overexpressed on certain human breast cancer cells. Surface plasmon resonance (SPR) experiments with the extracellular domain (ECD) of HER2 showed that incorporation of the MCPs in these complexes had no significant effect on the association or dissociation rate with the HER2 ECD and the dissociation constants. The tmFab-complexed MCPs were subsequently labeled with (111)In (an Auger electron emitting radionuclide). Auger electrons can cause lethal DNA double strand breaks (DSBs) but only if they are emitted intracellularly and especially, in close proximity to the nucleus. To evaluate the cellular and nuclear uptake of tmFab-SAv-Bi-MCP-Dox, we incubated HER2+ SK-BR-3 human breast cancer cells with the complexes saturated with stable In(3+) and visualized their distribution by confocal fluorescence microscopy, monitoring the fluorescence of Dox. In parallel, we carried out cell fractionation studies on tmFab-SAv-Bi-MCP-Dox and on tmFab-SAv-Bi-MCP labeled with (111)In. Both radiolabeled complexes showed cell internalization and nuclear localization. We conclude that metal-chelating polymers with this composition appear to encourage internalization, nuclear uptake, and chromatin (DNA) binding of trastuzumab fragments modified with streptavidin in human breast cancer cells expressing HER2. Further study is needed to understand the impact of polymer charge on cellular uptake and distribution to intracellular compartments.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada , M5S 3H6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Intracellular delivery of functionally active proteins using self-assembling pyridylthiourea-polyethylenimine. J Control Release 2014; 178:86-94. [PMID: 24476809 DOI: 10.1016/j.jconrel.2014.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/12/2014] [Accepted: 01/17/2014] [Indexed: 11/23/2022]
Abstract
Intracellular delivery of functionally active proteins into cells is emerging as a novel strategy for research and therapeutic applications. Here, we present the properties of a self-assembling pyridylthiourea-modified polyethylenimine (πPEI), which interacts with proteins and promotes their delivery into the cytosol of mammalian cells. In aqueous medium at pH7.4, self-association of πPEI in the presence of green fluorescent proteins (GFP) leads to supramolecular protein-entrapped assemblies. These assemblies protect GFP from losing its fluorescence upon pH variation and assist delivery/translocation into the cytosol of mammalian cells via the endocytic pathway. The scope of application of this delivery system was extended to antibodies against intracellular targets as illustrated using a monoclonal antibody directed against the HPV-16 viral E6 oncoprotein and an antibody directed against the threonine-927 phosporylation site of the EG5 kinesin spindle protein. The πPEI-mediated delivery of native anti-E6 antibodies or anti-E6 antibodies equipped with a nuclear localization signal (NLS), led to regeneration of the p53 tumor suppression protein in E6-transformed CaSki cells. Delivery of functionally active anti-EG5 antibodies, with the same polymer, reduced HeLa cell viability and appeared to perturb, as expected, chromosome segregation during mitosis. Altogether, these results provide an easy to use delivery system for extending the scope of application of antibodies for epitope recognition within living cells and may provide novel opportunities for selective interference of cell function by a steric hindrance modality.
Collapse
|
33
|
|
34
|
Qi Y, Chilkoti A. Growing polymers from peptides and proteins: a biomedical perspective. Polym Chem 2014. [DOI: 10.1039/c3py01089a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|