1
|
Song J, Xu Z, Xie L, Shen J. Recent Advances in Studying In Vitro Drug Permeation Across Mucosal Membranes. Pharmaceutics 2025; 17:256. [PMID: 40006623 PMCID: PMC11858820 DOI: 10.3390/pharmaceutics17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Transmucosal drug products, such as aerosols, films, semisolids, suppositories, and tablets, have been developed for the treatment of various human diseases and conditions. Transmucosal drug absorption is highly influenced by the biological structures of the mucosa and the physiological environment specific to the administration route (e.g., nasal, rectal, and vaginal). Over the last few decades, in vitro permeation testing (IVPT) using animal tissues or in vitro cell cultures have been utilized as a cost-effective and efficient tool for evaluating drug release and permeation behavior, assisting in formulation development and quality control of transmucosal drug delivery systems. This review summarizes the key mucosal permeation barriers associated with representative transmucosal administration routes, as well as considerations for IVPT method development. It highlights various IVPT methods, including vertical diffusion cell, flow-through diffusion cell, Ussing chamber, and transwell systems. Additionally, future perspectives are discussed, such as the use of optical methods to study in vitro drug permeation and the development of in vitro-in vivo correlation (IVIVC) for transmucosal drug development. The potential of IVPT as part of in vitro bioequivalence assessment strategies for locally acting transmucosal drug products is also highlighted.
Collapse
Affiliation(s)
- Juan Song
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Zizhao Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA;
| | - Lingxiao Xie
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Jie Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
2
|
Steyn JD, Haasbroek-Pheiffer A, Pheiffer W, Weyers M, van Niekerk SE, Hamman JH, van Staden D. Evaluation of Drug Permeation Enhancement by Using In Vitro and Ex Vivo Models. Pharmaceuticals (Basel) 2025; 18:195. [PMID: 40006008 PMCID: PMC11859300 DOI: 10.3390/ph18020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Drugs administered by means of extravascular routes of drug administration must be absorbed into the systemic circulation, which involves the movement of the drug molecules across biological barriers such as epithelial cells that cover mucosal surfaces or the stratum corneum that covers the skin. Some drugs exhibit poor permeation across biological membranes or may experience excessive degradation during first-pass metabolism, which tends to limit their bioavailability. Various strategies have been used to improve drug bioavailability. Absorption enhancement strategies include the co-administration of chemical permeation enhancers, enzymes, and/or efflux transporter inhibitors, chemical changes, and specialized dosage form designs. Models with physiological relevance are needed to evaluate the efficacy of drug absorption enhancement techniques. Various in vitro cell culture models and ex vivo tissue models have been explored to evaluate and quantify the effectiveness of drug permeation enhancement strategies. This review deliberates on the use of in vitro and ex vivo models for the evaluation of drug permeation enhancement strategies for selected extravascular drug administration routes including the nasal, oromucosal, pulmonary, oral, rectal, and transdermal routes of drug administration.
Collapse
Affiliation(s)
- Johan D. Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Anja Haasbroek-Pheiffer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Wihan Pheiffer
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa;
| | - Morné Weyers
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Suzanne E. van Niekerk
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Josias H. Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Daniélle van Staden
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| |
Collapse
|
3
|
Sitovs A, Mohylyuk V. Ex vivo permeability study of poorly soluble drugs across gastrointestinal membranes: acceptor compartment media composition. Drug Discov Today 2024; 29:104214. [PMID: 39428083 DOI: 10.1016/j.drudis.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Ex vivo drug permeability testing across gastrointestinal (GI) membranes is crucial in drug discovery and oral drug delivery. It is a reliable method for drugs with good solubility, but it poses challenges for poorly soluble drugs, which are common in development pipelines today. Although enabling formulations increase the apparent solubility in the GI compartment (dissolution vessel or permeation chamber's donor compartment), maintaining solubilized drug in the acceptor compartment during ex vivo testing remains largely unresolved. This review compiles and critically evaluates the diverse compositions of acceptor media used in ex vivo permeability studies for poorly soluble drugs, highlighting this significant yet underexplored aspect of pharmaceutical science. An algorithm is proposed for selecting solubility-enhancing additives for the acceptor media in ex vivo permeability studies of poorly soluble drugs.
Collapse
Affiliation(s)
- Andrejs Sitovs
- Leading Research Group, Faculty of Pharmacy, Rīga Stradiņš University, Riga, Latvia; Department of Pharmacology, Faculty of Pharmacy, Rīga Stradiņš University, Riga, Latvia
| | - Valentyn Mohylyuk
- Leading Research Group, Faculty of Pharmacy, Rīga Stradiņš University, Riga, Latvia.
| |
Collapse
|
4
|
Thakur K, Telaprolu KC, Paterson D, Salem F, Arora S, Polak S. Development and verification of mechanistic vaginal absorption and metabolism model to predict systemic exposure after vaginal ring and gel application. Br J Clin Pharmacol 2024; 90:1428-1449. [PMID: 38450818 DOI: 10.1111/bcp.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
AIMS The current work describes the development of mechanistic vaginal absorption and metabolism model within Simcyp Simulator to predict systemic concentrations following vaginal application of ring and gel formulations. METHODS Vaginal and cervix physiology parameters were incorporated in the model development. The study highlights the model assumptions including simulation results comparing systemic concentrations of 5 different compounds, namely, dapivirine, tenofovir, lidocaine, ethinylestradiol and etonogestrel, administered as vaginal ring or gel. Due to lack of data, the vaginal absorption parameters were calculated based on assumptions or optimized. The model uses release rate/in vitro release profiles with formulation characteristics to predict drug mass transfer across vaginal tissue into the systemic circulation. RESULTS For lidocaine and tenofovir vaginal gel, the predicted to observed AUC0-t and Cmax ratios were well within 2-fold error limits. The average fold error (AFE) and absolute AFE indicating bias and precision of predictions range from 0.62 to 1.61. For dapivirine, the pharmacokinetic parameters are under and overpredicted in some studies due to lack of formulation composition details and relevance of release rate used in ring model. The predicted to observed AUC0-t and Cmax ratios were well within 2-fold error limits for etonogestrel and ethinylestradiol vaginal ring (AFEs and absolute AFEs from 0.84 to 1.83). CONCLUSION The current study provides first of its kind physiologically based pharmacokinetic framework integrating physiology, population and formulation data to carry out in silico mechanistic vaginal absorption studies, with the potential for virtual bioequivalence assessment in the future.
Collapse
Affiliation(s)
| | | | | | - Farzaneh Salem
- Simcyp Division, Certara UK Limited, Sheffield, UK
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, UK
| | - Sumit Arora
- Simcyp Division, Certara UK Limited, Sheffield, UK
- Janssen Pharmaceutical, Companies of Johnson & Johnson, Beerse, Belgium
| | - Sebastian Polak
- Simcyp Division, Certara UK Limited, Sheffield, UK
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Tiboni M, Cespi M, Casettari L, Palmieri GF, Perinelli DR, Bonacucina G. Hydrogel containing mPEG-PLGA nanoparticles for the vaginal delivery of saquinavir mesylate against HIV infection. Eur J Pharm Sci 2023; 191:106599. [PMID: 37774955 DOI: 10.1016/j.ejps.2023.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Saquinavir mesylate (SQV) is a protease inhibitor commonly employed for the treatment of human immunodeficiency virus-1 infection. It is generally administered orally as tablets in combination with other antiviral drugs. Another promising route of administration can be represented by the vaginal one through topically applied formulations. This delivery can reduce the first-pass effect in the case of systemic drug adsorption or prevent HIV infection. We propose the formulation of a Carbopol® 974 (C974) hydrogel containing biodegradable mPEG-PL(L)GA nanoparticles (NPs) for the vaginal delivery of SQV, intended both as a prevention and a therapeutic strategy. mPEG-PL(L)GA NPs were incorporated into the C974 polymeric matrix, leading to a reduction of the hydrogel consistency dependent on NPs and C974 concentrations. Despite the moderate drug loading into NPs, the presence of the NPs had an impact on the in vitro release of the drug from the hydrogel at pH 5.5 using immersion cells. A higher amount of the drug was released, probably due to the effect of NPs in promoting the incorporation of the drug into the hydrogel at a high SQV dose. These findings can be useful for the development of topically applied hydrogels for SQV delivery, possibly having improved in vivo therapeutic outcomes.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6 61029, Urbino, PU, Italy
| | - Marco Cespi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6 61029, Urbino, PU, Italy
| | - Giovanni Filippo Palmieri
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Diego Romano Perinelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy.
| | - Giulia Bonacucina
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| |
Collapse
|
6
|
Mast MP, Mesquita L, Gan K, Gelperina S, das Neves J, Wacker MG. Encapsulation and release of hydrocortisone from proliposomes govern vaginal delivery. Drug Deliv Transl Res 2023; 13:1022-1034. [PMID: 36585558 DOI: 10.1007/s13346-022-01263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/31/2022]
Abstract
Topical preparations of hydrocortisone can be used for the anti-inflammatory treatment of the female genital area. Although the drug is a low-strength corticosteroid, systemic absorption and distribution of the drug are the most common safety risks associated with this therapy. In the current investigation, we elucidate the physicochemical properties of lipid-based drug carrier systems that govern the local bioavailability of hydrocortisone for intravaginal administration. For this purpose, we compared various proliposome formulations with a commercial cream. Depending on the availability of physiological acceptors, encapsulation and drug release from the lipid phase were found to be the most important drivers of drug bioavailability. The high permeability of hydrocortisone leads to rapid transport of the drug across the mucosal cell layer as indicated by experiments using HEC-1-A and CaSki cell monolayer models. Under sink conditions, differences in the release from the liposomes as determined in the Dispersion Releaser were almost negligible. However, under non-sink conditions, the drug release plateaued at levels corresponding to the encapsulation efficiency. After redispersion, all liposomal formulations performed better than the commercial drug product indicating that the encapsulation into the lipid phase is the main driver sustaining the release.
Collapse
Affiliation(s)
- Marc-Phillip Mast
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt/Main, Germany
- Goethe University, Max-Von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Letícia Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Kennard Gan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore, Singapore
| | - Svetlana Gelperina
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
| | - José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IUCS-Instituto Universitário de Ciências da Saúde, Universidade do Porto, 4585-116, Gandra, Portugal.
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore, Singapore.
| |
Collapse
|
7
|
Patel R, Yadav BK, Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:208-227. [PMID: 35762539 DOI: 10.2174/1872210516666220628150447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. OBJECTIVE This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy. METHODS Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. RESULTS The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. CONCLUSION Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.
Collapse
Affiliation(s)
- Riya Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
8
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
Rathi R, Sanshita, Kumar A, Vishvakarma V, Huanbutta K, Singh I, Sangnim T. Advancements in Rectal Drug Delivery Systems: Clinical Trials, and Patents Perspective. Pharmaceutics 2022; 14:2210. [PMID: 36297645 PMCID: PMC9609333 DOI: 10.3390/pharmaceutics14102210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
The rectal route is an effective route for the local and systemic delivery of active pharmaceutical ingredients. The environment of the rectum is relatively constant with low enzymatic activity and is favorable for drugs having poor oral absorption, extensive first-pass metabolism, gastric irritation, stability issues in the gastric environment, localized activity, and for drugs that cannot be administered by other routes. The present review addresses the rectal physiology, rectal diseases, and pharmaceutical factors influencing rectal delivery of drugs and discusses different rectal drug delivery systems including suppositories, suspensions, microspheres, nanoparticles, liposomes, tablets, and hydrogels. Clinical trials on various rectal drug delivery systems are presented in tabular form. Applications of different novel drug delivery carriers viz. nanoparticles, liposomes, solid lipid nanoparticles, microspheres, transferosomes, nano-niosomes, and nanomicelles have been discussed and demonstrated for their potential use in rectal administration. Various opportunities and challenges for rectal delivery including recent advancements and patented formulations for rectal drug delivery have also been included.
Collapse
Affiliation(s)
- Ritu Rathi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanshita
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Alpesh Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | | | | | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
10
|
Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022; 213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Antiretroviral drugs employed for the treatment of human immunodeficiency virus (HIV) infections have remained largely ineffective due to their poor bioavailability, numerous adverse effects, modest uptake in infected cells, undesirable drug-drug interactions, the necessity for long-term drug therapy, and lack of access to tissues and reservoirs. Nanotechnology-based interventions could serve to overcome several of these disadvantages and thereby improve the therapeutic efficacy of antiretrovirals while reducing the morbidity and mortality due to the disease. However, attempts to use nanocarriers for the delivery of anti-retroviral drugs have started gaining momentum only in the past decade. This review explores in-depth the various nanocarriers that have been employed for the treatment of HIV infections highlighting their merits and possible demerits.
Collapse
|
11
|
Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021; 178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Recent years have, surprisingly, witnessed an increase in incidence of sexually transmitted infections (STIs). At the same time, antimicrobial therapy came under the threat of ever rising antimicrobial resistance (AMR), resulting in STIs with extremely limited therapy options. In this review, we addressed the challenges of treating vaginal infections in an era of AMR. We focused on published work regarding nanomedicine destined for localized treatment of vaginal infections. Localized therapy offers numerous advantages such as assuring high drug concentration at the infection site, limiting systemic drug exposure that can lead to faster development of AMR reduction in the systemic side effects and potentially safe therapy in pregnancy. We provided a state-of-the-art overview of nanoformulations proposed to topically treat STIs, emphasizing the challenges and advantages of each type of nanocarriers, as well as issues of potential toxicity.
Collapse
|
12
|
Umar Y, Al-Batty S, Rahman H, Ashwaq O, Sarief A, Sadique Z, Sreekumar PA, Haque SKM. Polymeric Materials as Potential Inhibitors Against SARS-CoV-2. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:1244-1263. [PMID: 34518763 PMCID: PMC8426594 DOI: 10.1007/s10924-021-02272-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 05/02/2023]
Abstract
Recently discovered SARS-CoV-2 caused a pandemic that triggered researchers worldwide to focus their research on all aspects of this new peril to humanity. However, in the absence of specific therapeutic intervention, some preventive strategies and supportive treatment minimize the viral transmission as studied by some factors such as basic reproduction number, case fatality rate, and incubation period in the epidemiology of viral diseases. This review briefly discusses coronaviruses' life cycle of SARS-CoV-2 in a human host cell and preventive strategies at some selected source of infection. The antiviral activities of synthetic and natural polymers such as chitosan, hydrophobically modified chitosan, galactosylated chitosan, amine-based dendrimers, cyclodextrin, carrageenans, polyethyleneimine, nanoparticles are highlighted in this article. Mechanism of virus inhibition, detection and diagnosis are also presented. It also suggests that polymeric materials and nanoparticles can be effective as potential inhibitors and immunization against coronaviruses which would further develop new technologies in the field of polymer and nanoscience.
Collapse
Affiliation(s)
- Yunusa Umar
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Sirhan Al-Batty
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Habibur Rahman
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Omar Ashwaq
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Abdulla Sarief
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Zakariya Sadique
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - P. A. Sreekumar
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - S. K. Manirul Haque
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| |
Collapse
|
13
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
14
|
Zierden HC, Josyula A, Shapiro RL, Hsueh H, Hanes J, Ensign LM. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery. Trends Mol Med 2021; 27:436-450. [PMID: 33414070 PMCID: PMC8087626 DOI: 10.1016/j.molmed.2020.12.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
The efficacy of drugs administered by traditional routes is limited by numerous biological barriers that preclude reaching the intended site of action. Further, full body systemic exposure leads to dose-limiting, off-target side effects. Topical formulations may provide more efficacious drug and nucleic acid delivery for diseases and conditions affecting mucosal tissues, but the mucus protecting our epithelial surfaces is a formidable barrier. Here, we describe recent advances in mucus-penetrating approaches for drug and nucleic acid delivery to the ocular surface, the female reproductive tract, the gastrointestinal tract, and the airways.
Collapse
Affiliation(s)
- Hannah C. Zierden
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Aditya Josyula
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Henry Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287,Departments Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Correspondence: (L.M. Ensign)
| |
Collapse
|
15
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
16
|
Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater 2021; 125:312-321. [PMID: 33639312 DOI: 10.1016/j.actbio.2021.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/15/2023]
Abstract
Vulvovaginal candidiasis (VVC) represents a considerable health burden for women. Despite the availability of a significant array of antifungal drugs and topical products, the management of the infection is not always effective, and new approaches are needed. Here, we explored cationic N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles (NPs) as carriers of clotrimazole (CLT) for the topical treatment of VVC. CLT-NPs with approximately 280 nm in diameter were obtained by self-assembly in water and subsequent stabilization by ionic crosslinking with tripolyphosphate. The nanosystem featured pH-independent sustained drug release up to 24 h, which affected both in vitro anti-Candida activity and cytotoxicity. The CLT-loaded nanostructured platform yielded favorable selectivity index values for a panel of standard strains and clinical isolates of Candida spp. and female genital tract cell lines (HEC-1-A, Ca Ski and HeLa), as compared to the free drug. CLT-NPs also improved in vitro drug permeability across HEC-1-A and Ca Ski cell monolayers, thus suggesting that the nanocarrier may provide higher mucosal tissue levels of the active compound. Overall, data support that CLT-NPs may be a valuable asset for the topical treatment of VVC. STATEMENT OF SIGNIFICANCE: Topical azoles such as clotrimazole (CLT) are first line antifungal drugs for the management of vulvovaginal candidiasis (VVC), but their action may be limited by issues such as toxicity and poor capacity to penetrate the genital mucosa. Herein, we report on the ability of a new cationic N-(2‑hydroxy)-propyl-3-trimethylammonium, O-dipalmitoyl chitosan derivative (DPCat35) to yield tripolyphosphate-reinforced micelle-like nanostructures that are suitable carriers for CLT. In particular, these nanosystems were able to improve the in vitro selectivity index of the drug and to provide enhanced epithelial drug permeability when tested in cell monolayer models. These data support that CLT-loaded DPCat35 nanoparticles feature favorable properties for the development of new nanomedicines for the topical management of VVC.
Collapse
|
17
|
Notario-Pérez F, Galante J, Martín-Illana A, Cazorla-Luna R, Sarmento B, Ruiz-Caro R, das Neves J, Veiga MD. Development of pH-sensitive vaginal films based on methacrylate copolymers for topical HIV-1 pre-exposure prophylaxis. Acta Biomater 2021; 121:316-327. [PMID: 33333257 DOI: 10.1016/j.actbio.2020.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023]
Abstract
Interest is growing in "smart" vaginal microbicides as a strategy to protect women from sexual transmission of human immunodeficiency virus (HIV). The concept is based on the development of products featuring low drug release in acidic media such as vaginal fluid but switch to a fast release profile when the medium becomes neutral or slightly alkaline. This mimics the surge in pH occurring in the vagina after sexual intercourse due to the seminal fluid. Semen is the main vehicle for HIV-1, and increasing antiretroviral drug levels in the vagina upon ejaculation may contribute to enhanced protection against viral sexual transmission. This work explores the use of different pharmaceutical-grade methacrylic acid-based polymers (EudragitⓇ RL, RS, L and S) for developing vaginal films allowing the pH-dependant release of the antiretroviral drug tenofovir (TFV). EudragitⓇ L 100 and EudragitⓇ S 100, containing triethyl citrate as plasticiser, proved to be suitable for manufacturing films with optimal dual in vitro drug-release behaviour. TFV-release can be sustained for several days after film administration and all the drug is released in a few hours in conditions simulating ejaculation. The films' mechanical properties were also deemed suitable for comfortable vaginal administration. Two optimized films were further assessed using HEC-1-A and Ca Ski cell monolayer models and were found to possess favourable drug permeability profiles and drug levels associated to cell monolayer as compared to free TFV. Overall, pH-dependant films containing tenofovir may constitute promising candidates for "smart" vaginal microbicides to protect women from sexual HIV transmission.
Collapse
|
18
|
Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent Advances in Nanosystems and Strategies for Vaginal Delivery of Antimicrobials. NANOMATERIALS 2021; 11:nano11020311. [PMID: 33530510 PMCID: PMC7912580 DOI: 10.3390/nano11020311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Vaginal infections such as bacterial vaginosis (BV), chlamydia, gonorrhea, genital herpes, candidiasis, and trichomoniasis affect millions of women each year. They are caused by an overgrowth of microorganisms, generally sexually transmitted, which in turn can be favored by alterations in the vaginal flora. Conventional treatments of these infections consist in systemic or local antimicrobial therapies. However, in the attempt to reduce adverse effects and to contrast microbial resistance and infection recurrences, many efforts have been devoted to the development of vaginal systems for the local delivery of antimicrobials. Several topical dosage forms such as aerosols, lotions, suppositories, tablets, gels, and creams have been proposed, although they are sometimes ineffective due to their poor penetration and rapid removal from the vaginal canal. For these reasons, the development of innovative drug delivery systems, able to remain in situ and release active agents for a prolonged period, is becoming more and more important. Among all, nanosystems such as liposomes, nanoparticles (NPs), and micelles with tunable surface properties, but also thermogelling nanocomposites, could be exploited to improve local drug delivery, biodistribution, retention, and uptake in vulvovaginal tissues. The aim of this review is to provide a survey of the variety of nanoplatforms developed for the vaginal delivery of antimicrobial agents. A concise summary of the most common vaginal infections and of the conventional therapies is also provided.
Collapse
|
19
|
Notario-Pérez F, Cazorla-Luna R, Martín-Illana A, Galante J, Ruiz-Caro R, Sarmento B, das Neves J, Veiga MD. Influence of Plasticizers on the pH-Dependent Drug Release and Cellular Interactions of Hydroxypropyl Methylcellulose/Zein Vaginal Anti-HIV Films Containing Tenofovir. Biomacromolecules 2021; 22:938-948. [PMID: 33405910 DOI: 10.1021/acs.biomac.0c01609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vaginal films featuring the pH-dependent release of tenofovir (TFV) were developed for the prevention of sexual transmission of human immunodeficiency syndrome (HIV). Films based on hydroxypropyl methylcellulose and zein were prepared incorporating different plasticizers [oleic acid, lactic acid, glycerol, and polyethylene glycol 400 (PEG)] and evaluated for in vitro drug release in an acidic simulated vaginal fluid (pH 4.2) and a slightly alkaline mixture of simulated seminal and vaginal fluids (pH 7.5). Results revealed that optimal biphasic TFV release was possible with proper combination of plasticizers (PEG and oleic acid, 1:7 w/w) and by adjusting the plasticizer/matrix-forming material ratio. The films had similar or higher levels of TFV associated with genital epithelial cells (Ca Ski or HEC-1-A cells) but lower drug permeability compared to the free drug. These data confirm that films have the potential to achieve suitable mucosal levels of TFV with low systemic exposure. The films developed could protect women from HIV sexual transmission.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Raúl Cazorla-Luna
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Araceli Martín-Illana
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Joana Galante
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
20
|
Stability, biological and biopharmaceutical evaluation of the inclusion complexes of the antifungal and antiprotozoal drug candidate 2-(2-nitrovinyl) furan (G-0) with beta cyclodextrin derivatives. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Tyo KM, Lasnik AB, Zhang L, Mahmoud M, Jenson AB, Fuqua JL, Palmer KE, Steinbach-Rankins JM. Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. J Control Release 2020; 321:84-99. [PMID: 32035194 DOI: 10.1016/j.jconrel.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV-1) and herpes simplex virus 2 (HSV-2) affect hundreds of millions of people worldwide. The antiviral lectin, Griffithsin (GRFT), has been shown to be both safe and efficacious against HSV-2 and HIV-1 infections in vivo. The goal of this work was to develop a multilayered nanoparticle (NP)-electrospun fiber (EF) composite to provide sustained-release of GRFT, and to examine its safety and efficacy in a murine model of lethal HSV-2 infection. Composites were fabricated from polycaprolactone (PCL) fibers surrounding polyethylene oxide (PEO) fibers that incorporated methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) GRFT NPs. GRFT loading and release were determined via ELISA, showing that NP-EF composites achieved high GRFT loading, and provided sustained-release of GRFT for up to 90 d. The in vitro efficacy of GRFT NP-EFs was assessed using HIV-1 pseudovirus assays, demonstrating complete in vitro protection against HIV-1 infection. Additionally, sustained-release NP-EFs, administered 24 h prior to infection, prevented against a lethal dose of HSV-2 infection in a murine model. In parallel, histology and cytokine expression from murine reproductive tracts and vaginal lavages collected 24 and 72 h post-administration were similar to untreated mice, suggesting that NP-EF composites may be a promising and safe sustained-delivery platform to prevent HSV-2 infection. Future work will evaluate the ability to provide prolonged protection against multiple virus challenges, and different administration times with respect to infection.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Amanda B Lasnik
- Center for Predictive Medicine, Louisville, KY, United States
| | - Longyun Zhang
- Center for Predictive Medicine, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Mohamed Mahmoud
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| | - Joshua L Fuqua
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States.
| |
Collapse
|
22
|
Sharifzadeh G, Hezaveh H, Muhamad II, Hashim S, Khairuddin N. Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 110:110609. [PMID: 32204060 DOI: 10.1016/j.msec.2019.110609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 01/21/2023]
Abstract
Vaginal drug delivery is regarded as a promising route against women-related health issues such as unwanted pregnancies and sexually transmitted infections. However, only a very few studies have been reported on the use of hydrogel rings with low cytotoxicity for vaginal drug delivery applications. Moreover, the effect of nanoparticles on hydrogel vaginal rings has not been clearly evaluated. To overcome these challenges, we hereby developed nanocomposite hydrogel rings based on polyacrylamide-sodium carboxymethyl cellulose-montmorillonite nanoparticles in the ring-shaped aluminum mold for controlled drug delivery. The hydrogel rings were synthesized by using N,N'-methylene bisacrylamide, N,N,N',N'-tetramethyl ethylene diamine, and ammonium persulfate, as a crosslinker, accelerator, and initiator, respectively. The obtained rings were 5.5 cm in diameters and 0.5 cm in rims. Chemical structures of the nanocomposite rings were confirmed by Fourier transform infrared, and Nuclear Magnetic Resonance spectroscopies. Additionally, the swelling ratio of hydrogels was appeared to be adjusted by the introduction of nanoparticles. In vitro release experiment of methylene blue, as a hydrophilic model drug, revealed that the nanocomposite rings could not only reduce burst effect (almost more than twice), but also achieve prolonged release for 15 days in the vaginal fluid simulant which mimic the vaginal conditions at pH of almost 4.2, and a temperature of 37 °C. Importantly, the resultant hydrogel rings with or without various concentrations of montmorillonite showed low cytotoxicity toward human skin fibroblasts. Furthermore, different antibacterial activities against Escherichia coli were observed for various concentrations of montmorillonite in hydrogels. These results suggest the great potential of montmorillonite-based hydrogel rings for vaginal drug delivery.
Collapse
Affiliation(s)
- Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, 81310, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Hadi Hezaveh
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3169, Australia
| | - Ida Idayu Muhamad
- Food and Biomaterial Engineering Research Group (FoBERG), Bioprocess and Polymer Engineering Department, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; Biomaterials Cluster, IJN-UTM Cardiovascular Engineering Centre, Block B, V01, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
| | - Shahrir Hashim
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Nozieana Khairuddin
- Department of Basic Science and Engineering, Faculty of Agriculture and Food Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, P.O. Box 396, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
| |
Collapse
|
23
|
Hua S. Physiological and Pharmaceutical Considerations for Rectal Drug Formulations. Front Pharmacol 2019; 10:1196. [PMID: 31680970 PMCID: PMC6805701 DOI: 10.3389/fphar.2019.01196] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Although the oral route is the most convenient route for drug administration, there are a number of circumstances where this is not possible from either a clinical or pharmaceutical perspective. In these cases, the rectal route may represent a practical alternative and can be used to administer drugs for both local and systemic actions. The environment in the rectum is considered relatively constant and stable and has low enzymatic activity in comparison to other sections of the gastrointestinal tract. In addition, drugs can partially bypass the liver following systemic absorption, which reduces the hepatic first-pass effect. Therefore, rectal drug delivery can provide significant local and systemic levels for various drugs, despite the relatively small surface area of the rectal mucosa. Further development and optimization of rectal drug formulations have led to improvements in drug bioavailability, formulation retention, and drug release kinetics. However, despite the pharmaceutical advances in rectal drug delivery, very few of them have translated to the clinical phase. This review will address the physiological and pharmaceutical considerations influencing rectal drug delivery as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be discussed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
24
|
Fulcher JA, Tamshen K, Wollenberg AL, Kickhoefer VA, Mrazek J, Elliott J, Ibarrondo FJ, Anton PA, Rome LH, Maynard HD, Deming T, Yang OO. Human Vault Nanoparticle Targeted Delivery of Antiretroviral Drugs to Inhibit Human Immunodeficiency Virus Type 1 Infection. Bioconjug Chem 2019; 30:2216-2227. [PMID: 31265254 DOI: 10.1021/acs.bioconjchem.9b00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1.
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Kyle Tamshen
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Alexander L Wollenberg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Valerie A Kickhoefer
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Jan Mrazek
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Julie Elliott
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - F Javier Ibarrondo
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Peter A Anton
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| | - Leonard H Rome
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Timothy Deming
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Otto O Yang
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| |
Collapse
|
25
|
Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 18:196-220. [PMID: 30904587 PMCID: PMC7106268 DOI: 10.1016/j.nano.2019.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NIV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.
Collapse
Affiliation(s)
- Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Santosh Malik
- Departmentof Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Sabuj Sahoo
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India.
| |
Collapse
|
26
|
Yap PK, Loo Xin GL, Tan YY, Chellian J, Gupta G, Liew YK, Collet T, Dua K, Chellappan DK. Antiretroviral agents in pre-exposure prophylaxis: emerging and advanced trends in HIV prevention. ACTA ACUST UNITED AC 2019; 71:1339-1352. [PMID: 31144296 DOI: 10.1111/jphp.13107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/05/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Antiretroviral agents (ARVs) have been the most promising line of therapy in the management of human immunodeficiency virus (HIV) infections. Some of these ARVs are used in the pre-exposure prophylaxis (PrEP) to suppress the transmission of HIV. Prophylaxis is primarily used in uninfected people, before exposure, to effectively prevent HIV infection. Several studies have shown that ART PrEP prevents HIV acquisition from sexual, blood and mother-to-child transmissions. However, there are also several challenges and limitations to PrEP. This review focuses on the current antiretroviral therapies used in PrEP. KEY FINDINGS Among ARVs, the most common drugs employed from the class of entry inhibitors are maraviroc (MVC), which is a CCR5 receptor antagonist. Other entry inhibitors like emtricitabine (FTC) and tenofovir (TFV) are also used. Rilpivirine (RPV) and dapivirine (DPV) are the most common drugs employed from the Non-nucleoside reverse transcriptase inhibitor (NNRTIs) class, whereas, tenofovir disoproxil fumarate (TDF) is primarily used in the Nucleoside Reverse Transcriptase Inhibitor (NRTIs) class. Cabotegravir (CAB) is an analog of dolutegravir, and it is an integrase inhibitor. Some of these drugs are also used in combination with other drugs from the same class. SUMMARY Some of the most common pre-exposure prophylactic strategies employed currently are the use of inhibitors, namely entry inhibitors, non-nucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, integrase and protease inhibitors. In addition, we have also discussed on the adverse effects caused by ART in PrEP, pharmacoeconomics factors and the use of antiretroviral prophylaxis in serodiscordant couples.
Collapse
Affiliation(s)
- Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Griselda Lim Loo Xin
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Grande F, Ioele G, Occhiuzzi MA, De Luca M, Mazzotta E, Ragno G, Garofalo A, Muzzalupo R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019; 11:E197. [PMID: 31035595 PMCID: PMC6572254 DOI: 10.3390/pharmaceutics11050197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
An in-depth analysis of nanotechnology applications for the improvement of solubility, distribution, bioavailability and stability of reverse transcriptase inhibitors is reported. Current clinically used nucleoside and non-nucleoside agents, included in combination therapies, were examined in the present survey, as drugs belonging to these classes are the major component of highly active antiretroviral treatments. The inclusion of such agents into supramolecular vesicular systems, such as liposomes, niosomes and lipid solid NPs, overcomes several drawbacks related to the action of these drugs, including drug instability and unfavorable pharmacokinetics. Overall results reported in the literature show that the performances of these drugs could be significantly improved by inclusion into nanosystems.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
28
|
Design of Poly(lactic- co-glycolic Acid) (PLGA) Nanoparticles for Vaginal Co-Delivery of Griffithsin and Dapivirine and Their Synergistic Effect for HIV Prophylaxis. Pharmaceutics 2019; 11:pharmaceutics11040184. [PMID: 30995761 PMCID: PMC6523646 DOI: 10.3390/pharmaceutics11040184] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
Long-acting topical products for pre-exposure prophylaxis (PrEP) that combine antiretrovirals (ARVs) inhibiting initial stages of infection are highly promising for prevention of HIV sexual transmission. We fabricated core-shell poly(lactide-co-glycolide) (PLGA) nanoparticles, loaded with two potent ARVs, griffithsin (GRFT) and dapivirine (DPV), having different physicochemical properties and specifically targeting the fusion and reverse transcription steps of HIV replication, as a potential long-acting microbicide product. The nanoparticles were evaluated for particle size and zeta potential, drug release, cytotoxicity, cellular uptake and in vitro bioactivity. PLGA nanoparticles, with diameter around 180–200 nm, successfully encapsulated GRFT (45% of initially added) and DPV (70%). Both drugs showed a biphasic release with initial burst phase followed by a sustained release phase. GRFT and DPV nanoparticles were non-toxic and maintained bioactivity (IC50 values of 0.5 nM and 4.7 nM, respectively) in a cell-based assay. The combination of drugs in both unformulated and encapsulated in nanoparticles showed strong synergistic drug activity at 1:1 ratio of IC50 values. This is the first study to co-deliver a protein (GRFT) and a hydrophobic small molecule (DPV) in PLGA nanoparticles as microbicides. Our findings demonstrate that the combination of GRFT and DPV in nanoparticles is highly potent and possess properties critical to the design of a sustained release microbicide.
Collapse
|
29
|
Mesquita L, Galante J, Nunes R, Sarmento B, das Neves J. Pharmaceutical Vehicles for Vaginal and Rectal Administration of Anti-HIV Microbicide Nanosystems. Pharmaceutics 2019; 11:pharmaceutics11030145. [PMID: 30917532 PMCID: PMC6472048 DOI: 10.3390/pharmaceutics11030145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Prevention strategies play a key role in the fight against HIV/AIDS. Vaginal and rectal microbicides hold great promise in tackling sexual transmission of HIV-1, but effective and safe products are yet to be approved and made available to those in need. While most efforts have been placed in finding and testing suitable active drug candidates to be used in microbicide development, the last decade also saw considerable advances in the design of adequate carrier systems and formulations that could lead to products presenting enhanced performance in protecting from infection. One strategy demonstrating great potential encompasses the use of nanosystems, either with intrinsic antiviral activity or acting as carriers for promising microbicide drug candidates. Polymeric nanoparticles, in particular, have been shown to be able to enhance mucosal distribution and retention of promising antiretroviral compounds. One important aspect in the development of nanotechnology-based microbicides relates to the design of pharmaceutical vehicles that allow not only convenient vaginal and/or rectal administration, but also preserve or even enhance the performance of nanosystems. In this manuscript, we revise relevant work concerning the selection of vaginal/rectal dosage forms and vehicle formulation development for the administration of microbicide nanosystems. We also pinpoint major gaps in the field and provide pertinent hints for future work.
Collapse
Affiliation(s)
- Letícia Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Joana Galante
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| | - José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
30
|
Melo M, Nunes R, Sarmento B, das Neves J. Colorectal distribution and retention of polymeric nanoparticles following incorporation into a thermosensitive enema. Biomater Sci 2019; 7:3801-3811. [DOI: 10.1039/c9bm00759h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The incorporation of nanoparticles into a thermosensitive enema enhances colorectal distribution and retention.
Collapse
Affiliation(s)
- Mélanie Melo
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - Rute Nunes
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - José das Neves
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| |
Collapse
|
31
|
Melo M, Nunes R, Sarmento B, das Neves J. Rectal administration of nanosystems: from drug delivery to diagnostics. MATERIALS TODAY CHEMISTRY 2018; 10:128-141. [DOI: 10.1016/j.mtchem.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Bücker R, Schaefer C, Gruber AD, Hoppe J, Lazzerini L, Barinoff J, Sehouli J, Cichon G. Establishment of a Mucin Secreting Cell Line Cx-03 from an Uterine Carcino Sarcoma. Pharm Res 2018; 36:7. [PMID: 30411161 DOI: 10.1007/s11095-018-2533-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The identification of novel cell lines which combine the most important properties of mucosal membranes in terms of drug absorption, transmembrane transport and mucus secretion can help to establish improved and meaningful test systems for pharmacological and infectiological studies. METHODS We have established a novel mucus secreting tumor cell line (Cx-03) derived from a female patient who underwent radical hysterectomy after diagnosis of a large malignant carcino sarcoma (Muellerian mixed tumor). Via xenotransplantation in SCID beige mice, recultivation and subcloning a stable cell line was established from primary tumor cells. RESULTS Human origin and novelty of the cell line was determined by karyotype analysis and STR fingerprint. During growth cells produce considerable amounts of a PAS positive viscoelastic mucus. Immunostaining revealed expression of mucins and the mucin modifier CLCA1. We demonstrate in initial electrophysiological experiments that confluent, polarized monolayers of Cx-03 are formed (on PCF-filter supports) that exhibit stable electrical resistance (> 600 Ω cm2). Confluent Cx-03 monolayers express barrier-forming tight junction proteins claudin-1 and -4 which co-localize with zonula occludens protein-1 (ZO-1) at cell-cell contacts. CONCLUSIONS Mucus secretion is a rare property among mammalian cell lines. In combination with its ability to form polarized monolayers Cx-03 might contribute as a novel cell based model for drug absorption, transport and barrier studies.
Collapse
Affiliation(s)
- R Bücker
- Department of Gastroenterology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - C Schaefer
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - A D Gruber
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - J Hoppe
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - L Lazzerini
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - J Barinoff
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - J Sehouli
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Günter Cichon
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
33
|
Sims LB, Frieboes HB, Steinbach-Rankins JM. Nanoparticle-mediated drug delivery to treat infections in the female reproductive tract: evaluation of experimental systems and the potential for mathematical modeling. Int J Nanomedicine 2018; 13:2709-2727. [PMID: 29760551 PMCID: PMC5937491 DOI: 10.2147/ijn.s160044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A variety of drug-delivery platforms have been employed to deliver therapeutic agents across cervicovaginal mucus (CVM) and the vaginal mucosa, offering the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract (FRT). Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, polymeric NPs represent a promising option that has shown improved distribution through the CVM. These NPs are typically fabricated from nontoxic, non-inflammatory, US Food and Drug Administration-approved polymers that improve biocompatibility. This review summarizes recent experimental studies that have evaluated NP transport in the FRT, and highlights research areas that more thoroughly and efficiently inform polymeric NP design, including mathematical modeling. An overview of the in vitro, ex vivo, and in vivo NP studies conducted to date – whereby transport parameters are determined, extrapolated, and validated – is presented first. The impact of different NP design features on transport through the FRT is summarized, and gaps that exist due to the limitations of iterative experimentation alone are identified. The potential of mathematical modeling to complement the characterization and evaluation of diffusion and transport of delivery vehicles and active agents through the CVM and mucosa is discussed. Lastly, potential advancements combining experimental and mathematical knowledge are suggested to inform next-generation NP designs, such that infections in the FRT may be more effectively treated.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
34
|
Lechanteur A, das Neves J, Sarmento B. The role of mucus in cell-based models used to screen mucosal drug delivery. Adv Drug Deliv Rev 2018; 124:50-63. [PMID: 28751201 DOI: 10.1016/j.addr.2017.07.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 12/23/2022]
Abstract
The increasing interest in developing tools to predict drug absorption through mucosal surfaces is fostering the establishment of epithelial cell-based models. Cell-based in vitro techniques for drug permeability assessment are less laborious, cheaper and address the concerns of using laboratory animals. Simultaneously, in vitro barrier models that thoroughly simulate human epithelia or mucosae may provide useful data to speed up the entrance of new drugs and new drug products into the clinics. Nevertheless, standard cell-based in vitro models that intend to reproduce epithelial surfaces often discard the role of mucus in influencing drug permeation/absorption. Biomimetic models of mucosae in which mucus production has been considered may not be able to fully reproduce the amount and architecture of mucus, resulting in biased characterization of permeability/absorption. In these cases, artificial mucus may be used to supplement cell-based models but still proper identification and quantification are required. In this review, considerations regarding the relevance of mucus in the development of cell-based epithelial and mucosal models mimicking the gastro-intestinal tract, the cervico-vaginal tract and the respiratory tract, and the impact of mucus on the permeability mechanisms are addressed. From simple epithelial monolayers to more complex 3D structures, the impact of the presence of mucus for the extrapolation to the in vivo scenario is critically analyzed. Finally, an overview is provided on several techniques and methods to characterize the mucus layer over cell-based barriers, in order to intimately reproduce human mucosal layer and thereby, improve in vitro/in vivo correlation.
Collapse
|
35
|
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018. [PMCID: PMC7156018 DOI: 10.1016/b978-0-323-48063-5.00001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology is an enabling technology with great potential for applications in stem cell research and regenerative medicine. Fluorescent nanodiamond (FND), an inherently biocompatible and nontoxic nanoparticle, is well suited for such applications. We had developed a prospective isolation method using CD157, CD45, and CD54 to obtain lung stem cells. Labeling of CD45−CD54+CD157+ cells with FNDs did not eliminate their abilities for self-renewal and differentiation. The FND labeling in combination with cell sorting, fluorescence lifetime imaging microscopy, and immunostaining identified transplanted stem cells allowed tracking of their engraftment and regenerative capabilities with single-cell resolution. Time-gated fluorescence (TGF) imaging in mouse tissue sections indicated that they reside preferentially at the bronchoalveolar junctions of lungs, especially in naphthalene-injured mice. Our results presented in Subchapter 1.1 demonstrate not only the remarkable homing capacity and regenerative potential of the isolated stem cells, but also the ability of finding rare lung stem cells in vivo using FNDs. The topical use of antiretroviral-based microbicides, namely of a dapivirine ring, has been recently shown to partially prevent transmission of HIV through the vaginal route. Among different formulation approaches, nanotechnology tools and principles have been used for the development of tentative vaginal and rectal microbicide products. Subchapter 1.2 provides an overview of antiretroviral drug nanocarriers as novel microbicide candidates and discusses recent and relevant research on the topic. Furthermore, advances in developing vaginal delivery platforms for the administration of promising antiretroviral drug nanocarriers are reviewed. Although mostly dedicated to the discussion of nanosystems for vaginal use, the development of rectal nanomicrobicides is also addressed. Infectious diseases are currently responsible for over 8 million deaths per year. Efficient treatments require accurate recognition of pathogens at low concentrations, which in the case of blood infection (septicemia) can go as low as 1 mL–1. Detecting and quantifying bacteria at such low concentrations is challenging and typically demands cultures of large samples of blood (∼1 mL) extending over 24–72 h. This delay seriously compromises the health of patients and is largely responsible for the death toll of bacterial infections. Recent advances in nanoscience, spectroscopy, plasmonics, and microfluidics allow for the development of optical devices capable of monitoring minute amounts of analytes in liquid samples. In Subchapter 1.3 we critically discuss these recent developments that will, in the future, enable the multiplex identification and quantification of microorganisms directly on their biological matrix with unprecedented speed, low cost, and sensitivity. Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of biomedical applications. They may be used to detect and characterize diseases, to deliver relevant therapeutics, and to study the pharmacokinetic/pharmacodynamic parameters of nanomaterials. The use of radiotracer techniques in the research of novel NPs offers many advantages, but there are still some limitations. The binding of radionuclides to NPs has to be irreversible to prevent their escape to other tissues or organs. Due to the short half-lives of radionuclides, the manufacturing process is time limited and difficult, and there is also a risk of contamination. Subchapter 1.4 presents the main selection criteria for radionuclides and applicable radiolabeling procedures used for the radiolabeling of various NPs. Also, an overview of different types of NPs that have so far been labeled with radionuclides is presented.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan
| | - Hsiao-Yu Chiu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,Institute of Cellular and Organismic Biology, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Talkar S, Dhoble S, Majumdar A, Patravale V. Transmucosal Nanoparticles: Toxicological Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:37-57. [PMID: 29453531 DOI: 10.1007/978-3-319-72041-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticles have specific physicochemical properties different to bulk materials of the same composition and such properties make them very attractive for commercial and medical applications. Mucoadhesive nanoparticulate dosage forms are designed to enable prolonged retention of these nanoparticles at the site of application, providing a controlled drug release for improved therapeutic outcome. Moreover, drug delivery across the mucosa bypasses the first-pass hepatic metabolism and avoids the degradation by gastrointestinal enzymes. However, like most new technologies, there is a rising debate concerning the possible transmucosal side effects resulting from the use of particles at the nano level. In fact, these nanoparticles on entering the body, deposit in several organs and may cause adverse biological reactions by modifying the physiochemical properties of living matter. Several investigators have found nanoparticles responsible for toxicity in different organs. In addition, the toxicity of nanoparticles also depends on whether they are persistent or cleared from the different organs of entry and whether the host can raise an effective response to sequester or dispose of the particles. In contrast to many efforts aimed at exploiting desirable properties of nanoparticles for medicine, there are limited attempts to evaluate potentially undesirable effects of these particles when administered intentionally for medical purposes. This chapter focuses on the overview of the mucosal systems, fate of nanoparticles, mechanism of nanoparticle's toxicity and the various toxicity issues associated with nanoparticles through mucosal routes.
Collapse
Affiliation(s)
- Swapnil Talkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Anuradha Majumdar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Mumbai, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
37
|
Ariza-Sáenz M, Espina M, Bolaños N, Calpena AC, Gomara MJ, Haro I, García ML. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model. Eur J Pharm Biopharm 2017; 120:98-106. [DOI: 10.1016/j.ejpb.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/22/2017] [Accepted: 08/14/2017] [Indexed: 01/24/2023]
|
38
|
Targeted microbicides for preventing sexual HIV transmission. J Control Release 2017; 266:119-128. [PMID: 28951320 DOI: 10.1016/j.jconrel.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Sexual transmission remains one of the most significant hurdles in the fight against HIV infection. The use of vaginal or rectal microbicides has been proposed for topical pre-exposure prophylaxis but available results from clinical trials of candidate products have been, at best, less than optimal. While waiting for the first product to get regulatory approval, novel approaches are being explored in order to enhance efficacy, as well as to assure safety. Strategies involving specific delivery of antiviral agents to key players involved in the early steps of sexual transmission have the potential to help achieving such purposes. Engineering systems that allow targeting cells, tissues or other biological structures of interest may provide a way to modulate local pharmacokinetics of promising microbicide molecules and, thus, maximize protection. This concise review discusses the identification and use of potential targets for such purpose, while detailing on several examples of targeted systems engineered as potential microbicide candidates. Furthermore, remaining challenges and hints for future work in the field of targeted microbicides are addressed.
Collapse
|
39
|
Machado RM, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Vaginal semisolid products: Technological performance considering physiologic parameters. Eur J Pharm Sci 2017; 109:556-568. [PMID: 28887234 DOI: 10.1016/j.ejps.2017.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 11/29/2022]
Abstract
Vaginal semisolid products are frequently used to treat vaginal infections and atrophy-related symptoms of menopause. Formulations composition and the methods for their characterization, especially those developed concerning the target epithelia, are key tools to predict in vivo results at early stages of product development. However, recent studies on this subject have been almost exclusively focused on anti-HIV preparations. The aim of this work consists on improving traditional characterization methods by using physiological parameters in order to construct predictive tools to characterize a new ideal vaginal semisolid formulation whatever target it may have. Ten vaginal antimicrobial and hormonal products already available in the market were studied (Gino-Canesten®, Sertopic®, Dermofix®, Gyno-pevaryl®, Lomexin®, Gino Travogen®, Dalacin V®, Ovestin®, Blissel®, Colpotrophine®). Furthermore, Universal Placebo gel and Replens® were used for comparison. Products were characterized in terms of: pH and buffering capacity in a vaginal fluid simulant (VFS); osmolality - directly and upon dilution in VFS; textural parameters (firmness, adhesiveness and bioadhesion) using vaginal ex vivo porcine epithelium; and viscosity (including VFS dilution at 37°C and after administration on an ex vivo model). Interestingly, the majority of the tested commercial vaginal formulations did not present technological characteristics close to the ideal ones when tested under target biological conditions. The inclusion of such methodologic adaptations is expected to optimize cost-efficiency of new formulations development by predicting efficacy and safety profiles at early stages of product development.
Collapse
Affiliation(s)
- Rita Monteiro Machado
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Labfit, HPRD - Health Products Research and Development, Lda, Edifício UBIMEDICAL, Estrada Municipal 506, 6200-284 Covilhã, Portugal.
| | - Ana Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Labfit, HPRD - Health Products Research and Development, Lda, Edifício UBIMEDICAL, Estrada Municipal 506, 6200-284 Covilhã, Portugal.
| | - José Martinez-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Child and Woman's Health Department, Centro Hospitalar Cova da Beira EPE, Quinta do Alvito, 6200-251 Covilhã, Portugal.
| | - Rita Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Labfit, HPRD - Health Products Research and Development, Lda, Edifício UBIMEDICAL, Estrada Municipal 506, 6200-284 Covilhã, Portugal; Pharmacy Department, Centro Hospitalar Cova da Beira EPE, Quinta do Alvito, 6200-251 Covilhã, Portugal.
| |
Collapse
|
40
|
Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD. Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1767-1787. [PMID: 28670111 PMCID: PMC5479294 DOI: 10.2147/dddt.s133170] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection with human immunodeficiency virus (HIV) remains a global public health concern and is particularly serious in low- and middle-income countries. Widespread sexual violence and poverty, among other factors, increase the risk of infection in women, while currently available prevention methods are outside the control of most. This has driven the study of vaginal microbicides to prevent sexual transmission of HIV from men to women in recent decades. The first microbicides evaluated were formulated as gels for daily use and contained different substances such as surfactants, acidifiers and monoclonal antibodies, which failed to demonstrate efficacy in clinical trials. A gel containing the reverse transcriptase inhibitor tenofovir showed protective efficacy in women. However, the lack of adherence by patients led to the search for dosage forms capable of releasing the active principle for longer periods, and hence to the emergence of the vaginal ring loaded with dapivirine, which requires a monthly application and is able to reduce the sexual transmission of HIV. The future of vaginal microbicides will feature the use of alternative dosage forms, nanosystems for drug release and probiotics, which have emerged as potential microbicides but are still in the early stages of development. Protecting women with vaginal microbicide formulations would, therefore, be a valuable tool for avoiding sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Dolores Veiga-Ochoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Timur SS, Şahin A, Aytekin E, Öztürk N, Polat KH, Tezel N, Gürsoy RN, Çalış S. Design and in vitro evaluation of tenofovir-loaded vaginal gels for the prevention of HIV infections. Pharm Dev Technol 2017; 23:301-310. [PMID: 28503983 DOI: 10.1080/10837450.2017.1329835] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infection with the human immunodeficiency virus (HIV) is affecting women disproportionally with increasing incidence rates over the last decades. Tenofovir is one of the most commonly used antiretroviral agents, which belongs to the nucleoside/nucleotide reverse transcriptase inhibitor family, for the prevention of HIV acquisition. In scope of this study, a thermogelling system containing tenofovir-loaded chitosan nanoparticles for the controlled release of tenofovir was developed and characterized. The in vitro release studies have shown that the burst release effect was decreased to 27% with f-TFV CS NPs-Gel. Gelation temperature of developed formulation was found as 26.6 ± 0.2 °C, which provides ease of administration while gelation occurs after the administration to the vagina. The work of adhesion values was used as parameters for comparison of mucoadhesive performance and the mucoadhesion of f-TFV CS NPs-Gel was found as 0.516 ± 0.136 N.s at 37 °C. The biocompatibility of blank formulations was evaluated by cell viability studies using L929 cells, in which Gel + CS NPs formulation was found to be safe with 82.4% and 90.2% cell viability for 1:16 and 1:32 dilutions, respectively. In conclusion, an improved tenofovir containing vaginal gel formulation was successfully developed and evaluated for preventing HIV transmission.
Collapse
Affiliation(s)
- Selin Seda Timur
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Adem Şahin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Eren Aytekin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Naile Öztürk
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Kerem Heybet Polat
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Nurten Tezel
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Reyhan Neslihan Gürsoy
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Sema Çalış
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| |
Collapse
|
42
|
Lechanteur A, Furst T, Evrard B, Delvenne P, Piel G, Hubert P. Promoting Vaginal Distribution of E7 and MCL-1 siRNA-Silencing Nanoparticles for Cervical Cancer Treatment. Mol Pharm 2017; 14:1706-1717. [PMID: 28350964 DOI: 10.1021/acs.molpharmaceut.6b01154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is an urgent need to develop a less aggressive and more effective treatment against cervical lesions induced by different high-risk human papillomavirus (HR-HPV). We investigated the potential of a cocktail of small interfering RNA (siRNA) directed against the oncoprotein E6 (E6), the oncoprotein E7 (E7), or the antiapoptotic protein MCL-1 (MCL-1). The combination of siRNA anti-E7 and anti-MCL-1 demonstrated high efficacy on multiple HPV16 and HPV18 cell lines and no effects on healthy keratinocytes. This gene therapy has been considered for a vaginal administration since this route of application holds high potential for the treatment of diseases in the female reproductive tracts. Therefore, PEGylated lipoplexes have been designed and characterized to protect siRNA and to diffuse in the mucosal environment before they reach the cervico/vaginal epithelium. This new nanovector complexed to the combination of active siRNA induced an efficient mRNA knockdown since biological effects were obtained in vitro. This work also provided evidence that the PEGylated lipoplexes had appropriate physicochemical properties to diffuse into a mucin network according to size measurement experiments in artificial mucus. After demonstrating the distribution and the efficacy of siRNA into a 3D-cervical model lesion and through porcine vaginal mucosa, in vivo experiments in mouse have been performed under physiological conditions. This study revealed a complete and sustained coverage of the mucosal epithelium following an unique vaginal administration of fluorescent PEGylated lipoplexes. Overall, our results showed the potential of the PEGylated lipoplexes for the prolonged delivery of active siRNA to treat HPV-induced lesions.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Pascale Hubert
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| |
Collapse
|
43
|
Jøraholmen MW, Basnet P, Acharya G, Škalko-Basnet N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur J Pharm Biopharm 2017; 113:132-139. [PMID: 28087379 DOI: 10.1016/j.ejpb.2016.12.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/26/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022]
Abstract
Recent studies regarding mucosal drug delivery indicate that nanosystems with surface-available polyethylene glycol (PEG) are able to penetrate mucus barrier, assure closer contact with the epithelium, and improve drug delivery to vagina. In the present work, we developed the mucus-penetrating PEGylated liposomes containing interferon alpha-2b (IFN α-2b), destined to provide localized therapy for human papilloma virus (HPV) vaginal infections. The PEGylated liposomes were of a mean size of 181±8nm, bearing a negative zeta potential of - 13mV and an entrapment efficiency of 81±10%. In vitro release experiments on model membrane showed a nearly non-existent IFN α-2b release from both the control and liposomally-associated IFN α-2b. However, the ex vivo penetration studies performed on the vaginal tissue obtained from pregnant sheep, showed the clear elevated IFN α-2b penetration from PEGylated liposomes as compared to the control. Furthermore, mucin studies confirmed the absence of interaction between the PEG-modified liposomes and mucin, confirming their ability to penetrate mucus and reach the deeper epithelium. The system holds a promise in improving topical delivery of IFN α-2b through enhanced efficacy of local anti-viral therapy.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| | - Purusotam Basnet
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien 5738, 9038 Tromsø, Norway.
| | - Ganesh Acharya
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien 5738, 9038 Tromsø, Norway; Department of Clinical Science, Intervention & Technology, Karolinska Institute, 141 86 Stockholm, Sweden.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| |
Collapse
|
44
|
de Abreu LCL, Todaro V, Sathler PC, da Silva LCRP, do Carmo FA, Costa CM, Toma HK, Castro HC, Rodrigues CR, de Sousa VP, Cabral LM. Development and Characterization of Nisin Nanoparticles as Potential Alternative for the Recurrent Vaginal Candidiasis Treatment. AAPS PharmSciTech 2016; 17:1421-1427. [PMID: 26810491 DOI: 10.1208/s12249-016-0477-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was the development and characterization of nisin-loaded nanoparticles and the evaluation of its potential antifungal activity. Candidiasis is a fungal infection caused by Candida sp. considered as one of the major public health problem currently. The discovery of antifungal agents that present a reduced or null resistance of Candida sp. and the development of more efficient drug release mechanisms are necessary for the improvement of candidiasis treatment. Nisin, a bacteriocin commercially available for more than 50 years, exhibits antibacterial action in food products with potential antifungal activity. Among several alternatives used to modulate antifungal activity of bacteriocins, polymeric nanoparticles have received great attention due to an effective drug release control and reduction of therapeutic dose, besides the minimization of adverse effects by the preferential accumulation in specific tissues. The nisin nanoparticles were prepared by double emulsification and solvent evaporation methods. Nanoparticles were characterized by dynamic light scattering, zeta potential, Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. Antifungal activity was accessed by pour plate method and cell counting using Candida albicans strains. The in vitro release profile and in vitro permeation studies were performed using dialysis bag method and pig vaginal mucosa in Franz diffusion cell, respectively. The results revealed nisin nanoparticles (300 nm) with spherical shape and high loading efficiency (93.88 ± 3.26%). In vitro test results suggest a promising application of these nanosystems as a prophylactic agent in recurrent vulvovaginal candidiasis and other gynecological diseases.
Collapse
|
45
|
Lechanteur A, Furst T, Evrard B, Delvenne P, Hubert P, Piel G. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness. Eur J Pharm Sci 2016; 93:493-503. [PMID: 27593989 DOI: 10.1016/j.ejps.2016.08.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNA (siRNA) is an attractive therapeutic approach to treat several pathologies, such as viral infections or cancers. However, the stability and the efficacy of these biotherapies are still a major obstacle to their use. Cationic liposomes (DOTAP/Chol/DOPE 1/0.75/0.5M ratio) have been complexed to siRNA (lipoplexes) in order to be administrated by the vaginal route, in the context of HPV16 induced cervical preneoplastic lesions. To overcome the constraint of the cervico-vaginal mucus, PEGylation is required to allow the diffusion of lipoplexes through it. Thereby, PEGylated lipoplexes coated with three types of polyethylene glycol (PEG) as DSPE-PEG2000, DSPE-PEG750 or C8-PEG2000-Ceramide (Ceramide-PEG2000) at different densities have been developed and characterized. PEGylated lipoplexes were successfully prepared and showed a hydrodynamic diameter around 200nm, appropriate for vaginal application. In vitro assays on HPV16 positive cell lines revealed that a positive charge of PEGylated lipoplexes allows a higher mRNA knockdown by siRNA. However, the cationic property is also associated to cytotoxicity. The addition of a high percentage of PEG prevented this toxicity but seemed also to reduce siRNA endosomal escape, probably by steric hindrance. The decreasing of PEG density of Ceramide-PEG2000 to 20% allows the release of siRNA and in consequence, biological activities, contrarily to DSPE-PEG. These results suggest that Ceramide-PEG is more appropriate for siRNA delivery compared to DSPE-PEG. In conclusion, the right balance between cytotoxicity and siRNA effectiveness has been found with the transfection of lipoplexes coated with 20% of Ceramide-PEG2000. This new nanovector could have a high potential against multiple mucosal diseases, such as human papillomavirus-induced genital lesions.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium; Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium.
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
46
|
Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Adv Drug Deliv Rev 2016; 103:5-19. [PMID: 27117711 DOI: 10.1016/j.addr.2016.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023]
Abstract
Acquired immune deficiency syndrome has been one of the most devastating epidemics of the last century. The current estimate for people living with the HIV is 36.9 million. Today, despite availability of potent and safe drugs for effective treatment, lifelong therapy is required for preventing HIV re-emergence from a pool of latently infected cells. However, recent evidence show the importance to expand HIV testing, to offer antiretroviral treatment to all infected individuals, and to ensure retention through all the cascade of care. In addition, circumcision, pre-exposure prophylaxis, and other biomedical tools are now available for included in a comprehensive preventive package. Use of all the available tools might allow cutting the HIV transmission in 2030. In this article, we review the status of the epidemic, the latest advances in prevention and treatment, the concept of treatment as prevention and the challenges and opportunities for the HIV cure agenda.
Collapse
|
47
|
das Neves J, Martins JP, Sarmento B. Will dapivirine redeem the promises of anti-HIV microbicides? Overview of product design and clinical testing. Adv Drug Deliv Rev 2016; 103:20-32. [PMID: 26732684 DOI: 10.1016/j.addr.2015.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
Microbicides are being developed in order to prevent sexual transmission of HIV. Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is one of the leading drug candidates in the field, currently being tested in various dosage forms, namely vaginal rings, gels, and films. In particular, a ring allowing sustained drug release for 1month is in an advanced stage of clinical testing. Two parallel phase III clinical trials are underway in sub-Saharan Africa and results are expected to be released in early 2016. This article overviews the development of dapivirine and its multiple products as potential microbicides, with particular emphasis being placed on clinical evaluation. Also, critical aspects regarding regulatory approval, manufacturing, distribution, and access are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - João Pedro Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| |
Collapse
|
48
|
das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016; 103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
49
|
Fahmi MZ, Sukmayani W, Khairunisa SQ, Witaningrum AM, Indriati DW, Matondang MQY, Chang JY, Kotaki T, Kameoka M. Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv 2016. [DOI: 10.1039/c6ra21062g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The development of gp120 targeted human immunodeficiency virus (HIV) drug has improved antiretroviral therapies owing to its effects on attachment to target cells.
Collapse
Affiliation(s)
- M. Z. Fahmi
- Department of Chemistry
- Airlangga University
- Surabaya 61115
- Indonesia
- Institute of Tropical Disease
| | - W. Sukmayani
- Department of Chemistry
- Airlangga University
- Surabaya 61115
- Indonesia
| | | | - A. M. Witaningrum
- Institute of Tropical Disease
- Airlangga University
- Surabaya 61115
- Indonesia
| | - D. W. Indriati
- Institute of Tropical Disease
- Airlangga University
- Surabaya 61115
- Indonesia
- Department of Health
| | - M. Q. Y. Matondang
- Institute of Tropical Disease
- Airlangga University
- Surabaya 61115
- Indonesia
| | - J.-Y. Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Republic of China
| | - T. Kotaki
- Center of Infectious Disease
- Graduate School of Medicine
- Kobe University
- Hyogo 654-0142
- Japan
| | - M. Kameoka
- Department of International Health
- Kobe University Graduate School of Health Science
- Kobe 654-0142
- Japan
| |
Collapse
|
50
|
Nelson AG, Zhang X, Ganapathi U, Szekely Z, Flexner CW, Owen A, Sinko PJ. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J Control Release 2015; 219:669-680. [PMID: 26315816 PMCID: PMC4879940 DOI: 10.1016/j.jconrel.2015.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
The year 2016 will mark an important milestone - the 35th anniversary of the first reported cases of HIV/AIDS. Antiretroviral Therapy (ART) including Highly Active Antiretroviral Therapy (HAART) drug regimens is widely considered to be one of the greatest achievements in therapeutic drug research having transformed HIV infection into a chronically managed disease. Unfortunately, the lack of widespread preventive measures and the inability to eradicate HIV from infected cells highlight the significant challenges remaining today. Moving forward there are at least three high priority goals for anti-HIV drug delivery (DD) research: (1) to prevent new HIV infections from occurring, (2) to facilitate a functional cure, i.e., when HIV is present but the body controls it without drugs and (3) to eradicate established infection. Pre-exposure Prophylaxis (PrEP) represents a significant step forward in preventing the establishment of chronic HIV infection. However, the ultimate success of PrEP will depend on achieving sustained antiretroviral (ARV) tissue concentrations and will require strict patient adherence to the regimen. While first generation long acting/extended release (LA/ER) DD Systems (DDS) currently in development show considerable promise, significant DD treatment and prevention challenges persist. First, there is a critical need to improve cell specificity through targeting in order to selectively achieve efficacious drug concentrations in HIV reservoir sites to control/eradicate HIV as well as mitigate systemic side effects. In addition, approaches for reducing cellular efflux and metabolism of ARV drugs to prolong effective concentrations in target cells need to be developed. Finally, given the current understanding of HIV pathogenesis, next generation anti-HIV DDS need to address selective DD to the gut mucosa and lymph nodes. The current review focuses on the DDS technologies, critical challenges, opportunities, strategies, and approaches by which novel delivery systems will help iterate towards prevention, functional cure and eventually the eradication of HIV infection.
Collapse
Affiliation(s)
- Antoinette G Nelson
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Usha Ganapathi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Charles W Flexner
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Andrew Owen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|