1
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
2
|
Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications-A Comprehensive Review. Polymers (Basel) 2024; 16:2568. [PMID: 39339032 PMCID: PMC11434959 DOI: 10.3390/polym16182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their efficacy. We delve into the distinctive interplay between microneedles and dermal layers, underscoring the mechanisms by which this synergy enhances drug absorption and precision targeting. Moreover, we examine the acupoint-target organ-ganglion nexus, an innovative strategy that steers drug concentration to specific targets, offering a paradigm for precision medicine. A thorough analysis of the clinical applications of polymeric microneedle systems is presented, highlighting their adaptability and impact across a spectrum of therapeutic domains. This review also accentuates the systems' promise to bolster patient compliance, attributed to their minimally invasive and painless mode of drug delivery. We present forward-looking strategies aimed at optimizing stimulation sites to amplify therapeutic benefits. The anticipation is set for the introduction of superior biocompatible materials with advanced mechanical properties, customizing microneedles to cater to specialized clinical demands. In parallel, we deliberate on safety strategies aimed at boosting drug loading capacities and solidifying the efficacy of microneedle-based therapeutics. In summation, this review accentuates the pivotal role of polymeric microneedle technology in contemporary healthcare, charting a course for future investigative endeavors and developmental strides within this burgeoning field.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiyue Mao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijia Han
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Liu X, Sun X, Zhu H, Yan R, Xu C, Zhu F, Xu R, Xia J, Dong H, Yi B, Zhou Q. A mosquito proboscis-inspired cambered microneedle patch for ophthalmic regional anaesthesia. J Adv Res 2024:S2090-1232(24)00304-7. [PMID: 39067695 DOI: 10.1016/j.jare.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION One of the methods for pain management involves the use of local anesthesia, which numbs sensations in specific body regions while maintaining consciousness. OBJECTIVES Considering the certain limitations (e.g., pain, the requirement of skilled professionals, or slow passive diffusion) of conventional delivery methods of local anesthetics, developing alternative strategies that offer minimally invasive yet therapeutically effective delivery systems is of great concern for ophthalmic regional anesthesia. METHODS AND RESULTS In this study, a rapidly dissolving cambered microneedle (MNs) patch, composed of poly(vinylpyrrolidone) (PVP) and hyaluronic acid (HA) and served as a delivery system for lidocaine (Lido) in local anesthesia, was developed taking inspiration from the mosquito proboscis's ability to extract blood unnoticed. The lidocaine-containing MNs patch (MNs@Lido) consisted of 25 microneedles with a four-pronged cone structure (height: 500 μm, base width: 275 μm), arranged in a concentric circle pattern on the patch, and displays excellent dissolubility for effective drug delivery of Lido. After confirming good cytocompatibility, MNs@Lido was found to possess adequate rigidity to penetrate the cornea without causing any subsequent injury, and the created corneal pinhole channels completely self-healed within 24 h. Interestingly, MNs@Lido exhibited effective analgesic effects for local anesthesia on both heel skin and eyeball, with the sustained anesthetic effect lasting for at least 30 min. CONCLUSIONS These findings indicate that the mosquito proboscis-inspired cambered MNs patch provides rapid and painless local anesthesia, overcoming the limitations of conventional delivery methods of local anesthetics, thus opening up new possibilities in the treatment of ophthalmic diseases.
Collapse
Affiliation(s)
- Xuequan Liu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China; Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xuequan Sun
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Hongyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Rubing Yan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Chang Xu
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Fangxing Zhu
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Ruijie Xu
- School of Electronic Information, Qingdao University, Qingdao 266023, China
| | - Jing Xia
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China.
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China.
| |
Collapse
|
4
|
Biswas AA, Dhondale MR, Singh M, Agrawal AK, Muthudoss P, Mishra B, Kumar D. Development and comparison of machine learning models for in-vitro drug permeation prediction from microneedle patch. Eur J Pharm Biopharm 2024; 199:114311. [PMID: 38710374 DOI: 10.1016/j.ejpb.2024.114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The field of machine learning (ML) is advancing to a larger extent and finding its applications across numerous fields. ML has the potential to optimize the development process of microneedle patch by predicting the drug release pattern prior to its fabrication and production. The early predictions could not only assist the in-vitro and in-vivo experimentation of drug release but also conserve materials, reduce cost, and save time. In this work, we have used a dataset gleaned from the literature to train and evaluate different ML models, such as stacking regressor, artificial neural network (ANN) model, and voting regressor model. In this study, models were developed to improve prediction accuracy of the in-vitro drug release amount from the hydrogel-type microneedle patch and the in-vitro drug permeation amount through the micropores created by solid microneedles on the skin. We compared the performance of these models using various metrics, including R-squared score (R2 score), root mean squared error (RMSE), and mean absolute error (MAE). Voting regressor model performed better with drug permeation percentage as an outcome feature having RMSE value of 3.24. In comparison, stacking regressor have a RMSE value of 16.54, and ANN model has shown a RMSE value of 14. The value of permeation amount calculated from the predicted percentage is found to be more accurate with RMSE of 654.94 than direct amount prediction, having a RMSE of 669.69. All our models have performed far better than the previously developed model before this research, which had a RMSE of 4447.23. We then optimized voting regressor model's hyperparameter and cross validated its performance. Furthermore, it was deployed in a webapp using Flask framework, showing a way to develop an application to allow other users to easily predict drug permeation amount from the microneedle patch at a particular time period. This project demonstrates the potential of ML to facilitate the development of microneedle patch and other drug delivery systems.
Collapse
Affiliation(s)
- Anuj A Biswas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| | - Ashish K Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| | - Prakash Muthudoss
- A2Z4.0 Research and Analytics Private Limited, Chennai 600062, Tamilnadu, India; NuAxon Bioscience Inc., Bloomington, IN 47401-6301, USA; School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Velan Nagar P.V. Vaithiyalingam Road Pallavaram, 600117 Chennai, Tamilnadu, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
5
|
Morarad R, Uerpairojkit K, Chalermkitpanit P, Sirivat A. Comparative study of iontophoresis-assisted transdermal delivery of bupivacaine and lidocaine as anesthetic drugs. Drug Deliv Transl Res 2024:10.1007/s13346-024-01627-5. [PMID: 38782881 DOI: 10.1007/s13346-024-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Postoperative pain management is an important aspect of the overall surgical care process. Effective pain management not only provides patient comfort but also promotes faster recovery and reduces the risk of complications. Bupivacaine (BUP) and Lidocaine (LID) transdermal drug deliveries via thermoplastic polyurethane matrix (TPU) and iontophoresis technique are proposed here as alternative routes for postoperative pain instead of the injection route. Under applied electric field, the amounts of BUP and LID released were 95% and 97% from the loaded amounts, which were higher than the passive patch of 40%. The time to equilibrium of BUP turned out to be faster than the time to equilibrium of LID by approximately 1.5 times. This was due to 2 factors namely the drug molecular weight and the drug pKa value; they play an important role in the selection of a suitable drug for fast-acting or long-acting for the postoperative patients. By using this transdermal patch via iontophoresis system, BUP was deemed as the suitable drug for fast-acting due to the shorter time to equilibrium, whereas LID was the suitable drug for long-acting. The in-vitro drug release - permeation study through a porcine skin indicated the efficiency and potential of the system with the amounts of drug permeated up to 76% for BUP and 81% for LID. The TPU transdermal system was demonstrated here as potential to deliver BUP and LID for postoperative patients.
Collapse
Affiliation(s)
- Rawita Morarad
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketchada Uerpairojkit
- Department of Anesthesiology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpan Chalermkitpanit
- Pain Management Research Unit, Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Meng F, Qiao X, Xin C, Ju X, He M. Recent progress of polymeric microneedle-assisted long-acting transdermal drug delivery. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12434. [PMID: 38571937 PMCID: PMC10987780 DOI: 10.3389/jpps.2024.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Microneedle (MN)-assisted drug delivery technology has gained increasing attention over the past two decades. Its advantages of self-management and being minimally invasive could allow this technology to be an alternative to hypodermic needles. MNs can penetrate the stratum corneum and deliver active ingredients to the body through the dermal tissue in a controlled and sustained release. Long-acting polymeric MNs can reduce administration frequency to improve patient compliance and therapeutic outcomes, especially in the management of chronic diseases. In addition, long-acting MNs could avoid gastrointestinal reactions and reduce side effects, which has potential value for clinical application. In this paper, advances in design strategies and applications of long-acting polymeric MNs are reviewed. We also discuss the challenges in scale manufacture and regulations of polymeric MN systems. These two aspects will accelerate the effective clinical translation of MN products.
Collapse
Affiliation(s)
- Fanda Meng
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Qiao
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chenglong Xin
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaoli Ju
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| | - Meilin He
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| |
Collapse
|
7
|
Zhu D, Peng X, Li L, Zhang J, Xiao P. 3D Printed Ion-Responsive Personalized Transdermal Patch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14113-14123. [PMID: 38442338 DOI: 10.1021/acsami.3c18036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Microneedle patches are easy-to-use medical devices for transdermal administration. However, the insufficient insertion of microneedles due to the gap between planar patches and contoured skin affects drug delivery. Herein, we formulate a prepolymer for high-fidelity three-dimensional (3D) printed personalized transdermal patches. With the excellent photoinitiation ability of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (Tz), a high-fidelity and precise microneedle patch is successfully fabricated. Upon irradiation of the white illuminator, the doped gold nanoparticles (AuNPs) in the patch release heat and promisingly induce sweat production. With the introduction of Na+, the dominant component of sweat, the curvature of the produced transdermal patch is observed due to the ion-induced network rearrangement. The alkanethiol-stabilized AuNP with an end group of a carboxyl group causes controlled drug release behavior. Furthermore, the irradiation-induced photothermal heating of AuNP can facilitate the sustainability of drug release thanks to the substantially increased particle size of AuNP. These findings demonstrate that the developed prepolymer is a promising candidate for the production of transdermal patches fitting the curvature of the body surface.
Collapse
Affiliation(s)
- D Zhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - X Peng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - L Li
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - J Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - P Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
8
|
Che Ab Rahman A, Matteini P, Kim SH, Hwang B, Lim S. Development of stretchable microneedle arrays via single-step digital light-processing printing for delivery of rhodamine B into skin tissue. Int J Biol Macromol 2024; 262:129987. [PMID: 38342256 DOI: 10.1016/j.ijbiomac.2024.129987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
This paper introduces a novel approach for loading and releasing Rhodamine B (RhB) into the skin using minimally-invasive microneedle technology developed through digital light-processing (DLP) printing. Notably, this process involves the direct 3D fabrication of rigid microneedle arrays affixed to a flexible patch, marking a pioneering application of DLP printing in this context. The stretchable and durable design of the microneedle substrate enables it to adapt to dynamic movements associated with human activities. Moreover, the microneedle features a pore on each side of the pyramid needle, effectively optimizing its drug-loading capabilities. Results indicate that the microneedle patch can withstand up to 50 % strain without failure and successfully penetrates rat skin. In vitro drug release profiles, conducted through artificial and rat skin, were observed over a 70 h period. This study establishes the potential of a simple manufacturing process for the creation of pore-designed microneedle arrays with a stretchable substrate, showcasing their viability in transdermal drug delivery applications.
Collapse
Affiliation(s)
- Aqila Che Ab Rahman
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", Italian National Research Council, via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Byungil Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
9
|
Yuan Y, Han Y, Yap CW, Kochhar JS, Li H, Xiang X, Kang L. Prediction of drug permeation through microneedled skin by machine learning. Bioeng Transl Med 2023; 8:e10512. [PMID: 38023708 PMCID: PMC10658566 DOI: 10.1002/btm2.10512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Stratum corneum is the outermost layer of the skin preventing external substances from entering human body. Microneedles (MNs) are sharp protrusions of a few hundred microns in length, which can penetrate the stratum corneum to facilitate drug permeation through skin. To determine the amount of drug delivered through skin, in vitro drug permeation testing is commonly used, but the testing is costly and time-consuming. To address this issue, machine learning methods were employed to predict drug permeation through the skin, circumventing the need of conducting skin permeation experiments. By comparing the experimental data and simulated results, it was found extreme gradient boosting (XGBoost) was the best among the four simulation methods. It was also found that drug loading, permeation time, and MN surface area were critical parameters in the models. In conclusion, machine learning is useful to predict drug permeation profiles for MN-facilitated transdermal drug delivery.
Collapse
Affiliation(s)
- Yunong Yuan
- School of Pharmacy, Faculty of Medicine and HealthUniversity of SydneyNew South Wales2006Australia
| | - Yiting Han
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghai201203China
- Harvard T.H. Chan School of Public Health677 Huntington AvenueBostonMassachusetts02115USA
| | - Chun Wei Yap
- National Healthcare Group1 Fusionopolis LinkSingapore138542Singapore
| | | | - Hairui Li
- MGI Tech21 Biopolis Road, NucleosSingapore138567Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghai201203China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and HealthUniversity of SydneyNew South Wales2006Australia
| |
Collapse
|
10
|
Baker-Sediako RD, Richter B, Blaicher M, Thiel M, Hermatschweiler M. Industrial perspectives for personalized microneedles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:857-864. [PMID: 37615014 PMCID: PMC10442529 DOI: 10.3762/bjnano.14.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Microneedles and, subsequently, microneedle arrays are emerging miniaturized medical devices for painless transdermal drug delivery. New and improved additive manufacturing methods enable novel microneedle designs to be realized for preclinical and clinical trial assessments. However, current literature reviews suggest that industrial manufacturers and researchers have focused their efforts on one-size-fits-all designs for transdermal drug delivery, regardless of patient demographic and injection site. In this perspective article, we briefly review current microneedle designs, microfabrication methods, and industrialization strategies. We also provide an outlook where microneedles may become personalized according to a patient's demographic in order to increase drug delivery efficiency and reduce healing times for patient-centric care.
Collapse
Affiliation(s)
| | - Benjamin Richter
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Blaicher
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Thiel
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Hermatschweiler
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Bahmani S, Khajavi R, Ehsani M, Rahimi MK, Kalaee MR. Transdermal drug delivery system of lidocaine hydrochloride based on dissolving gelatin/sodium carboxymethylcellulose microneedles. AAPS OPEN 2023. [DOI: 10.1186/s41120-023-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
AbstractIn this study, it was aimed to introduce a transdermal drug delivery system with dissolving microneedles (DMNs) based on gelatin (GEL) and sodium carboxymethyl cellulose (NaCMC) for lidocaine hydrochloride (LidoHCl) delivery. Different ratios of GEL and NaCMC were mixed, loaded with an active agent of LidoHCl, and treated with glutaraldehyde (GTA) as a crosslinker agent. Prepared hydrogels were cast into a silicon mold. Hereby, microneedles (MNs) with 500 µm height, 35° needle angle, 40-µm tip radius, and 960-µm tip-to-tip distance were fabricated. Samples containing LidoHCl 40%, GEL/NaCMC 5:1 (wt/wt), and polymer/GTA ratio 3.1 (wt/wt) showed the highest drug release ability (t < 10 min) with proper mechanical properties in comparison with other samples. Due to the drug release in a short time (fewer than 10 min), this drug delivery system can be used for rapid local anesthesia for pain relief as well as before minor skin surgeries.
Graphical Abstract
Collapse
|
12
|
Sargioti N, Levingstone TJ, O’Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic Microneedles for Transdermal Drug Delivery: Applications, Fabrication Techniques and the Effect of Geometrical Characteristics. Bioengineering (Basel) 2022; 10:24. [PMID: 36671595 PMCID: PMC9855189 DOI: 10.3390/bioengineering10010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Current procedures for transdermal drug delivery (TDD) have associated limitations including poor administration of nucleic acid, small or large drug molecules, pain and stress for needle phobic people. A painless micro-sized device capable of delivering drugs easily and efficiently, eliminating the disadvantages of traditional systems, has yet to be developed. While polymeric-based microneedle (MN) arrays have been used successfully and clinically as TDD systems, these devices lack mechanical integrity, piercing capacity and the ability to achieve tailored drug release into the systemic circulation. Recent advances in micro/nano fabrication techniques using Additive Manufacturing (AM), also known as 3D printing, have enabled the fabrication of metallic MN arrays, which offer the potential to overcome the limitations of existing systems. This review summarizes the different types of MNs used in TDD and their mode of drug delivery. The application of MNs in the treatment of a range of diseases including diabetes and cancer is discussed. The potential role of solid metallic MNs in TDD, the various techniques used for their fabrication, and the influence of their geometrical characteristics (e.g., shape, size, base diameter, thickness, and tip sharpness) on effective TDD are explored. Finally, the potential and the future directions relating to the optimization of metallic MN arrays for TDD are highlighted.
Collapse
Affiliation(s)
- Nikoletta Sargioti
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
| | - Eoin D. O’Cearbhaill
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Helen O. McCarthy
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
13
|
Kshirsagar SM, Kipping T, Banga AK. Fabrication of Polymeric Microneedles using Novel Vacuum Compression Molding Technique for Transdermal Drug Delivery. Pharm Res 2022; 39:3301-3315. [PMID: 36195823 DOI: 10.1007/s11095-022-03406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/28/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE To demonstrate the feasibility of vacuum compression molding as a novel technique for fabricating polymeric poly (D, L-lactic-co-glycolic acid) microneedles. METHODS First, polydimethylsiloxane molds were prepared using metal microneedle templates and fixed in the MeltPrep® Vacuum Compression Molding tool. Poly (D, L-lactic-co-glycolic acid) (EXPANSORB® DLG 50-5A) was added, enclosed, and heated at 130°C for 15 min under a vacuum of -15 psi, cooled with compressed air for 15 min, followed by freezing at -20°C for 30 min, and stored in a desiccator. The microneedles and microchannels were characterized by a variety of imaging techniques. In vitro permeation of model drug lidocaine as base and hydrochloride salt was demonstrated across intact and microporated dermatomed human skin. RESULTS Fabricated PLGA microneedles were pyramid-shaped, sharp, uniform, and mechanically robust. Scanning electron microscopy, skin integrity, dye-binding, histology, and confocal laser microscopy studies confirmed the microchannel formation. The receptor delivery of lidocaine salt increased significantly in microporated (270.57 ± 3.73 μg/cm2) skin as compared to intact skin (142.19 ± 13.70 μg/cm2) at 24 h. The receptor delivery of lidocaine base from microporated skin was significantly higher (312.37 ± 10.57 μg/cm2) than intact skin (169.68 ± 24.09 μg/cm2) up to 8 h. Lag time decreased significantly for the base (2.24 ± 0.17 h to 0.64 ± 0.05 h) and salt (4.76 ± 0.31 h to 1.47 ± 0.21 h) after microporation. CONCLUSION Vacuum compression molding was demonstrated as a novel technique to fabricate uniform, solvent-free, strong polymer microneedles in a short time.
Collapse
Affiliation(s)
- Sharvari M Kshirsagar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | - Thomas Kipping
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA.
| |
Collapse
|
14
|
De Martino S, Battisti M, Napolitano F, Palladino A, Serpico L, Amendola E, Martone A, De Girolamo P, Squillace A, Dardano P, De Stefano L, Dello Iacono S. Effect of microneedles shape on skin penetration and transdermal drug administration. BIOMATERIALS ADVANCES 2022; 142:213169. [PMID: 36302329 DOI: 10.1016/j.bioadv.2022.213169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Microneedle (MN) patches are highly efficient and versatile tools for transdermal drug administration, in particular for pain-free, self-medication and rapid local applications. Diffraction ultraviolet (UV) light lithography offers an advanced method in fabricating poly(ethylene glycol)-based MNs with different shapes, by changing both the UV-light exposure time and photomask design. The exposure time interval is limited at obtaining conical structures with aspect ratio < 1:3, otherwise MNs exhibit reduced fracture load and poor indentation ability, not suitable for practical application. Therefore, this work is focused on a systematic analysis of the MN's base shapes effects on the structural characteristics, skin penetration and drug delivery. Analyzing four different base shapes (circle, triangle, square and star), it has been found that the number of vertices in the polygon base heavily affects these properties. The star-like MNs reveal the most efficient skin penetration ability (equal to 40 % of -their length), due to the edges action on the skin during the perforation. Furthermore, the quantification of the drug delivered by the MNs through ex-vivo porcine skin shows that the amounts of small molecules released over 24 h by star-like MNs coated by local anesthetic (Lidocaine) and an anti-inflammatory (Diclofenac epolamine) drugs are 1.5× and 2× higher than the circular-MNs, respectively.
Collapse
Affiliation(s)
| | - Mario Battisti
- Materias Srl, Corso Nicolangelo Protopisani 50, Naples, Italy
| | - Francesco Napolitano
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", P.le Tecchio 80, 80125 Naples, Italy
| | - Antonio Palladino
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy
| | - Luigia Serpico
- Materias Srl, Corso Nicolangelo Protopisani 50, Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples 80131, Italy
| | - Eugenio Amendola
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055 Portici, NA, Italy
| | - Alfonso Martone
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055 Portici, NA, Italy
| | - Paolo De Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", via Veterinaria 1, 80137 Naples, Italy
| | - Antonino Squillace
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", P.le Tecchio 80, 80125 Naples, Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples 80131, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples 80131, Italy
| | - Stefania Dello Iacono
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples 80131, Italy.
| |
Collapse
|
15
|
Priya S, Singhvi G. Microneedles-based drug delivery strategies: A breakthrough approach for the management of pain. Biomed Pharmacother 2022; 155:113717. [PMID: 36174381 DOI: 10.1016/j.biopha.2022.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Pain is a personalized event or body alarm system that can limit a patient's activities and lead to negative repercussions. The commercially available conventional treatment strategies like oral, parenteral, and topical drug delivery systems for pain management are associated with side effects and poor patient compliance. The transdermal route is eminent for its painless distribution. Among transdermal drug delivery system, microneedles (MNs) are gaining attention for their application with delivery at the deeper dermal layer because it bypasses the major barrier of the skin, easily accesses the skin dermal microcirculation, prevents damage to dermal blood vessels, and can be simply inserted into the skin without utilizing any additional applicator devices. Hence, considered a promising drug delivery strategy with high patient compliance. This review highlights the recent advancements of MNs in pain management. The present work mainly emphasizes all the case studies reported from the past 10 years that utilize MNs containing therapeutics in the treatment of chronic pain-associated diseases like rheumatoid arthritis, neuropathic pain, osteoarthritis, psoriatic arthritis, and atopic dermatitis. These studies have proven the efficacious application of MNs in the management of chronic pain and inflammation. The review also covered the clinical trials, patents, and future goals of pain management by using MNs.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
16
|
Falcón-González JM, Cantú-Cárdenas LG, García-González A, Carrillo-Tripp M. Differences in the local anaesthesia effect by lidocaine and bupivacaine based on free energy analysis. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2053118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- José Marcos Falcón-González
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria, Guanajuato, México
| | - Lucía Guadalupe Cantú-Cárdenas
- Facultad de Ciencias Químicas, Laboratorio de Fisicoquímica de Interfases, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Alcione García-González
- Facultad de Ciencias Químicas, Laboratorio de Fisicoquímica de Interfases, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
17
|
Lidocaine-Loaded Hyaluronic Acid Adhesive Microneedle Patch for Oral Mucosal Topical Anesthesia. Pharmaceutics 2022; 14:pharmaceutics14040686. [PMID: 35456520 PMCID: PMC9025765 DOI: 10.3390/pharmaceutics14040686] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 01/22/2023] Open
Abstract
The pain and fear caused by direct local injection of anesthetic or the poor experience with surface anesthetic cream increase the difficulty of clinical treatment for oral diseases. To address this problem, a hyaluronic acid microneedle patch (Li-HAMNs) that consists of fast-dissolving lidocaine hydrochloride (LDC)-loaded tips and a wet-adhesive backing layer made of polyvinyl alcohol (PVA)/carboxymethylcellulose sodium (CMC-Na) was fabricated to explore its potential use in dental topical anesthesia. Li-HAMNs could puncture the stratum corneum with an insertion depth of about 279 μm in the isolated porcine oral mucosal. The fast-dissolving tips could release LDC to improve the patients’ convenience and compliance. Importantly, the backing layer, which has good adhesion ability and water-absorbing properties, could surmount the contraction and extension of oral masticatory muscles and the saliva scour. In the tail flick test, the topical anesthesia efficacy of the Li-HAMNs group was much better than clinical lidocaine cream (EMLA cream, LDC, 1.2 mg) in spite of a relatively lower LDC dose with Li-HAMNs (LDC, 0.5 mg). It is believed that the proposed adhesive microneedle patch could enhance transmucosal delivery of anesthetics and thus open a new chapter in the painless treatment of oral diseases.
Collapse
|
18
|
Sadeqi A, Kiaee G, Zeng W, Rezaei Nejad H, Sonkusale S. Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery. Sci Rep 2022; 12:1853. [PMID: 35115643 PMCID: PMC8813900 DOI: 10.1038/s41598-022-05912-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
Microneedles offer a convenient transdermal delivery route with potential for long term sustained release of drugs. However current microneedle technologies may not have the mechanical properties for reliable and stable penetration (e.g. hydrogel microneedles). Moreover, it is also challenging to realize microneedle arrays with large size and high flexibility. There is also an inherent upper limit to the amount and kind of drugs that can be loaded in the microneedles. In this paper, we present a new class of polymeric porous microneedles made from biocompatible and photo-curable resin that address these challenges. The microneedles are unique in their ability to load solid drug formulation in concentrated form. We demonstrate the loading and release of solid formulation of anesthetic and non-steroidal anti-inflammatory drugs, namely Lidocaine and Ibuprofen. Paper also demonstrates realization of large area (6 × 20 cm2) flexible and stretchable microneedle patches capable of drug delivery on any body part. Penetration studies were performed in an ex vivo porcine model supplemented through rigorous compression tests to ensure the robustness and rigidity of the microneedles. Detailed release profiles of the microneedle patches were shown in an in vitro skin model. Results show promise for large area transdermal delivery of solid drug formulations using these porous microneedles.
Collapse
Affiliation(s)
- Aydin Sadeqi
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.,Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, MA, 02155, USA
| | - Gita Kiaee
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Wenxin Zeng
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.,Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, MA, 02155, USA
| | - Hojatollah Rezaei Nejad
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA. .,Anodyne Nanotech Inc, 38 Wareham St, Boston, MA, 02118, USA.
| | - Sameer Sonkusale
- Nano Lab, Advanced Technology Laboratory, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA. .,Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, MA, 02155, USA.
| |
Collapse
|
19
|
Lu X, Sun Y, Han M, Chen D, Wang A, Sun K. Silk fibroin double-layer microneedles for the encapsulation and controlled release of triptorelin. Int J Pharm 2021; 613:121433. [PMID: 34968682 DOI: 10.1016/j.ijpharm.2021.121433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022]
Abstract
A double-layer silk fibroin microneedles (SF-MNs) was proposed for the transdermal delivery of triptorelin. Two-step pouring and centrifugation were employed to prepare SF-MNs. Triptorelin was wrapped in MNs in the form of microcrystals with a size of ∼1 μm. β-sheet nanocrystals (the secondary structure of silk fibroin) were adjusted in content by methanol-vapor treatment to manipulate the characteristics of SF-MNs prepared with two concentrations of silk fibroin. The mechanical strength of MNs was measured and analyzed in proportion to the β-sheet content. The triptorelin in MNs could be released sustainedly in phosphate-buffered saline for 168 h, and the release amount decreased with increasing β-sheet content. The Ritger-Peppas equation was employed to fit the release data. A linear decreasing relationship was observed between the diffusion coefficient and increased β-sheet content. After administration to rats, SF-MNs exhibited long-term testosterone inhibition and maintained castration levels for ≥7 d. Manipulable mechanical properties and release behavior combined with biocompatibility and biodegradability render SF-MNs as viable long-term transdermal delivery devices for triptorelin.
Collapse
Affiliation(s)
- Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co., Ltd., Yantai 264670, China
| | - Meishan Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
20
|
Forouzandeh F, Ahamed NN, Zhu X, Bazard P, Goyal K, Walton JP, Frisina RD, Borkholder DA. A Wirelessly Controlled Scalable 3D-Printed Microsystem for Drug Delivery. Pharmaceuticals (Basel) 2021; 14:538. [PMID: 34199855 PMCID: PMC8227156 DOI: 10.3390/ph14060538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Here we present a 3D-printed, wirelessly controlled microsystem for drug delivery, comprising a refillable microreservoir and a phase-change peristaltic micropump. The micropump structure was inkjet-printed on the back of a printed circuit board around a catheter microtubing. The enclosure of the microsystem was fabricated using stereolithography 3D printing, with an embedded microreservoir structure and integrated micropump. In one configuration, the microsystem was optimized for murine inner ear drug delivery with an overall size of 19 × 13 × 3 mm3. Benchtop results confirmed the performance of the device for reliable drug delivery. The suitability of the device for long-term subcutaneous implantation was confirmed with favorable results of implantation of a microsystem in a mouse for six months. The drug delivery was evaluated in vivo by implanting four different microsystems in four mice, while the outlet microtubing was implanted into the round window membrane niche for infusion of a known ototoxic compound (sodium salicylate) at 50 nL/min for 20 min. Real-time shifts in distortion product otoacoustic emission thresholds and amplitudes were measured during the infusion, demonstrating similar results with syringe pump infusion. Although demonstrated for one application, this low-cost design and fabrication methodology is scalable for use in larger animals and humans for different clinical applications/delivery sites.
Collapse
Affiliation(s)
- Farzad Forouzandeh
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (K.G.)
| | - Nuzhet N. Ahamed
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (K.G.)
| | - Xiaoxia Zhu
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33620, USA; (X.Z.); (P.B.); (J.P.W.); (R.D.F.)
| | - Parveen Bazard
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33620, USA; (X.Z.); (P.B.); (J.P.W.); (R.D.F.)
| | - Krittika Goyal
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (K.G.)
| | - Joseph P. Walton
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33620, USA; (X.Z.); (P.B.); (J.P.W.); (R.D.F.)
- Department of Chemical, Biological & Materials Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33620, USA
| | - Robert D. Frisina
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33620, USA; (X.Z.); (P.B.); (J.P.W.); (R.D.F.)
- Department of Chemical, Biological & Materials Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33620, USA
| | - David A. Borkholder
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (K.G.)
| |
Collapse
|
21
|
Puri A, Frempong D, Mishra D, Dogra P. Microneedle-mediated transdermal delivery of naloxone hydrochloride for treatment of opioid overdose. Int J Pharm 2021; 604:120739. [PMID: 34048932 DOI: 10.1016/j.ijpharm.2021.120739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/03/2023]
Abstract
Naloxone (NAL) is administered parenterally or intranasally for treating opioid overdose. The short duration of action of NAL calls for frequent re-dosing which may be eliminated by the development of a transdermal system. This study aimed to assess the effect of microneedles on improving the skin permeation of NAL hydrochloride. In vitro permeation of NAL across intact and microneedle-treated (Dr. Pen™ Ultima A6) porcine skin was evaluated. The effect of microneedle length and application duration, and donor concentration on NAL permeation were investigated. In-vitro in-vivo correlation of the permeation results was done to predict the plasma concentration kinetics of NAL in patients. In vitro passive permeation of NAL after 6 h was observed to be 8.25±1.06 µg/cm2. A 56- and 37-fold enhancement was observed with 500 and 250 µm needles applied for 1 min, respectively. Application of 500 µm MNs for 2 min significantly reduced the lag time to ~ 8 min and increasing the donor concentration for the same treatment group doubled the permeation (p < 0.05). Modeling simulations demonstrated the attainment of pharmacokinetic profile of NAL comparable to those obtained with the FDA-approved intramuscular and intranasal devices. Microneedle-mediated transdermal delivery holds potential for rapid and sustained NAL delivery for opioid overdose treatment.
Collapse
Affiliation(s)
- Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Dhruv Mishra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
22
|
Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res 2021; 12:1195-1208. [PMID: 34024015 DOI: 10.1007/s13346-021-01006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biodegradable polymeric microneedle arrays (BPMNAs) could be explored as potential devices for transdermal drug delivery, which can provide a painless and safe drug delivery method. BPMNAs could also provide high drug-loading capacity and prolonged drug delivery once integrated with a drug reservoir. However, the fabrication of MNAs with a drug reservoir is expensive and requires complicated procedures. The present study was conducted to describe the preparation of a reservoir-based BPMNA containing estradiol valerate using polylactic acid (PLA) with the combination of FDM 3D printing and injection volume filling techniques. The tip size of the 3D printed needles decreased to 173 μm utilizing a chemical etching process. The content of estradiol valerate loaded in the 3D printed PLA MNAs was 29.79 ± 0.03 mg, and the release was in a prolonged manner for up to 7 days. The results of mechanical tests revealed that the force needed for the 3D printed PLA MNAs fracture (900 N) was significantly higher than that needed for their skin penetration (4 N). The successful penetration of 3D printed PLA MNAs through the stratum corneum was confirmed via penetration test, methylene blue staining, and histological examination. The results showed that 3D printed PLA MNAs can penetrate into the skin without reaching to the dermal nerves and puncture of blood vessels. In conclusion, in the current study, we explored the practicability of the preparation of drug loaded reservoir-based BPMNAs using the combination of FDM 3D printing and injection volume filling techniques for painless and prolonged transdermal drug delivery.
Collapse
|
23
|
Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021; 217:113372. [PMID: 33744689 DOI: 10.1016/j.ejmech.2021.113372] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most challenging threats to global public health. To improve the therapy efficacy of antidiabetic drugs, numerous drug delivery systems have been developed. Polyethylene glycol (PEG) is a polymeric family sharing the same skeleton but with different molecular weights which is considered as a promising material for drug delivery. In the delivery of antidiabetic drugs, PEG captures much attention in the designing and preparation of sustainable and controllable release systems due to its unique features including hydrophilicity, biocompatibility and biodegradability. Due to the unique architecture, PEG molecules are also able to shelter delivery systems to decrease their immunogenicity and avoid undesirable enzymolysis. PEG has been applied in plenty of delivery systems such as micelles, vesicles, nanoparticles and hydrogels. In this review, we summarized several commonly used PEG-contained antidiabetic drug delivery systems and emphasized the advantages of stimuli-responsive function in these sustainable and controllable formations.
Collapse
Affiliation(s)
- Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ying Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Litao Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
24
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
25
|
Lim SH, Kathuria H, Amir MHB, Zhang X, Duong HT, Ho PCL, Kang L. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release 2021; 329:907-918. [DOI: 10.1016/j.jconrel.2020.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
|
26
|
Transdermal delivery of breakthrough therapeutics for the management of treatment-resistant and post-partum depression. Int J Pharm 2020; 591:120007. [DOI: 10.1016/j.ijpharm.2020.120007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 12/30/2022]
|
27
|
Yang H, Kang G, Jang M, Um DJ, Shin J, Kim H, Hong J, Jung H, Ahn H, Gong S, Lee C, Jung UW, Jung H. Development of Lidocaine-Loaded Dissolving Microneedle for Rapid and Efficient Local Anesthesia. Pharmaceutics 2020; 12:pharmaceutics12111067. [PMID: 33182374 PMCID: PMC7695299 DOI: 10.3390/pharmaceutics12111067] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
Lidocaine is a local anesthetic agent used in the form of injection and topical cream. However, these formulation types have limitations of being either painful or slow-acting, thereby hindering effective and complete clinical performance of lidocaine. Dissolving microneedles (DMNs) are used to overcome these limitations owing to their fast onset time and minimally invasive administration methods. Using hyaluronic acid and lidocaine to produce the drug solution, a lidocaine HCl encapsulated DMN (Li-DMN) was fabricated by centrifugal lithography. The drug delivery rate and local anesthetic quality of Li-DMNs were evaluated using the pig cadaver insertion test and Von Frey behavior test. Results showed that Li-DMNs could deliver sufficient lidocaine for anesthesia that is required to be utilized for clinical level. Results from the von Frey test showed that the anesthetic effect of Li-DMNs was observed within 10 min after administration, thus confirming fast onset time. A toxicity test for appropriate clinical application standard was conducted with a microbial limit test and an animal skin irritation test, showing absence of skin irritation and irritation-related microorganisms. Overall, Li-DMN is a possible alternative drug delivery method for local anesthesia, meeting the requirements for clinical conditions and overcoming the drawbacks of other conventional lidocaine administration methods.
Collapse
Affiliation(s)
- Huisuk Yang
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
| | - Geonwoo Kang
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.J.U.); (J.S.); (C.L.)
| | - Mingyu Jang
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.J.U.); (J.S.); (C.L.)
| | - Daniel Junmin Um
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.J.U.); (J.S.); (C.L.)
| | - Jiwoo Shin
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.J.U.); (J.S.); (C.L.)
| | - Hyeonjun Kim
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
| | - Jintae Hong
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
| | - Hyunji Jung
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
| | - Hyemyoung Ahn
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
| | - Seongdae Gong
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
| | - Chisong Lee
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.J.U.); (J.S.); (C.L.)
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (U.-W.J.); (H.J.)
| | - Hyungil Jung
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea; (H.Y.); (G.K.); (M.J.); (H.K.); (J.H.); (H.J.); (H.A.); (S.G.)
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.J.U.); (J.S.); (C.L.)
- Correspondence: (U.-W.J.); (H.J.)
| |
Collapse
|
28
|
Zhang T, Sun B, Guo J, Wang M, Cui H, Mao H, Wang B, Yan F. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomater 2020; 115:136-147. [PMID: 32853804 DOI: 10.1016/j.actbio.2020.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
As an inflammatory skin disease of pilosebaceous follicles, Propionibacterium acnes (P. acnes) can aggravate local inflammatory responses and forms acne lesions. However, due to the skin barrier, various transdermal measures other than antibiotic creams are necessary. Microneedle (MN) patches are emerging platforms for the transdermal delivery of various therapeutics since it can effectively create transport pathways in the epidermis. Herein, we develop an active pharmaceutical ingredient poly(ionic liquid) (API PIL)-based MN patches containing salicylic acid (SA). The PIL-based MNs are simply prepared through photo-crosslinking of an imidazolium-type ionic liquid (IL) monomer in MN micro-molds, and following by anion exchange with salicylic acid anions (SA-). The fabricated SA-loaded PIL-MNs exhibited therapeutic efficiency in the topical treatment of P. acnes infection in vitro and in vivo. These active pharmaceutical ingredient PIL-based MNs can improve acne treatment, demonstrating potential applications for skin diseases. STATEMENT OF SIGNIFICANCE: Microneedle (MN) patches can be used as platforms for transdermal delivery of various therapeutics to treat bacterial infection. Here, a facile strategy was developed to synthesize active pharmaceutical ingredient poly(ionic liquid)-based microneedle patches by anion-exchange with salicylic acid anion (SA-). The fabricated SA-loaded PIL-MNs are active on not only anti-bacteria but also anti-inflammation in P. acnes treated mice, and may have potential applications for skin acne infection.
Collapse
|
29
|
Chen Z, He J, Qi J, Zhu Q, Wu W, Lu Y. Long-acting microneedles: a progress report of the state-of-the-art techniques. Drug Discov Today 2020; 25:1462-1468. [DOI: 10.1016/j.drudis.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/31/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
|
30
|
Forouzandeh F, Ahamed NN, Hsu MC, Walton JP, Frisina RD, Borkholder DA. A 3D-Printed Modular Microreservoir for Drug Delivery. MICROMACHINES 2020; 11:mi11070648. [PMID: 32629848 PMCID: PMC7407798 DOI: 10.3390/mi11070648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022]
Abstract
Reservoir-based drug delivery microsystems have enabled novel and effective drug delivery concepts in recent decades. These systems typically comprise integrated storing and pumping components. Here we present a stand-alone, modular, thin, scalable, and refillable microreservoir platform as a storing component of these microsystems for implantable and transdermal drug delivery. Three microreservoir capacities (1, 10, and 100 µL) were fabricated with 3 mm overall thickness using stereolithography 3D-printing technology, enabling the fabrication of the device structure comprising a storing area and a refill port. A thin, preformed dome-shaped storing membrane was created by the deposition of parylene-C over a polyethylene glycol sacrificial layer, creating a force-free membrane that causes zero forward flow and insignificant backward flow (2% of total volume) due to membrane force. A septum pre-compression concept was introduced that enabled the realization of a 1-mm-thick septa capable of ~65000 leak-free refill punctures under 100 kPa backpressure. The force-free storing membrane enables using normally-open micropumps for drug delivery, and potentially improves the efficiency and precision of normally-closed micropumps. The ultra-thin septum reduces the thickness of refillable drug delivery devices, and is capable of thousands of leak-free refills. This modular and scalable device can be used for drug delivery in different laboratory animals and humans, as a sampling device, and for lab-on-a-chip and point-of-care diagnostics applications.
Collapse
Affiliation(s)
- Farzad Forouzandeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (M.-C.H.)
| | - Nuzhet N. Ahamed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (M.-C.H.)
| | - Meng-Chun Hsu
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (M.-C.H.)
| | - Joseph P. Walton
- Department of Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33612, USA; (J.P.W.); (R.D.F.)
- Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33612, USA; (J.P.W.); (R.D.F.)
- Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33612, USA
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - David A. Borkholder
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; (F.F.); (N.N.A.); (M.-C.H.)
- Correspondence: ; Tel.: +1-585-475-6067
| |
Collapse
|
31
|
Lee BM, Lee C, Lahiji SF, Jung UW, Chung G, Jung H. Dissolving Microneedles for Rapid and Painless Local Anesthesia. Pharmaceutics 2020; 12:pharmaceutics12040366. [PMID: 32316406 PMCID: PMC7238259 DOI: 10.3390/pharmaceutics12040366] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022] Open
Abstract
Microneedles are emerging drug delivery methods for painless treatment. The current study tested dissolving microneedles containing lidocaine (Li-DMN) for use in local anesthesia. An Li-DMN patch was fabricated by centrifugal lithography with carboxymethyl cellulose as a structural polymer and assessed for physical properties by optical microscopy and a fracture force analyzer. The biocompatibility was evaluated by a histology section in vitro and by ear thickness in vivo. The efficacy of the Li-DMN patch was assessed by electrophysiological recordings in primary cultured sensory neurons in vitro and a von Frey test on rats’ hind paws in vivo. The physical properties of the microneedle showed enough rigidity for transdermal penetration. The maximal capacity of lidocaine-HCl in the Li-DMN patch was 331.20 ± 6.30 µg. The cytotoxicity of the dissolving microneedle to neuronal cells was negligible under an effective dose of lidocaine for 18 h. Electrophysiological recordings verified the inhibitory effect of the voltage-gated sodium channel current by the Li-DMN patch in vitro. A skin reaction to the edema test and histologic analysis of the rats’ ears after application of the Li-DMN patch were negligible. Also, the application of the Li-DMN patch reduced the nocifensive behavior of the rats almost immediately. In conclusion, the dissolving microneedle patch with carboxymethyl cellulose is a promising candidate method for the painless delivery of lidocaine-HCl.
Collapse
Affiliation(s)
- Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea
- Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Chisong Lee
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Shayan Fakhraei Lahiji
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea
- Dental Research Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: (G.C.); (H.J.); Tel.: +82-2-880-2332 (G.C.); +82-2-2123-2884 (H.J.); Fax: +82-2-762-5107 (G.C.); +82-2-362-7265 (H.J.)
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Juvic Biotech, Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
- Correspondence: (G.C.); (H.J.); Tel.: +82-2-880-2332 (G.C.); +82-2-2123-2884 (H.J.); Fax: +82-2-762-5107 (G.C.); +82-2-362-7265 (H.J.)
| |
Collapse
|
32
|
Lim SH, Tiew WJ, Zhang J, Ho PCL, Kachouie NN, Kang L. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide. Biofabrication 2020; 12:035003. [PMID: 31952064 DOI: 10.1088/1758-5090/ab6d37] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetyl-hexapeptide-3 (AHP-3) is a small peptide with good anti-wrinkle efficacy and safety profile. However, due to its hydrophilicity and high molecular weight, its skin permeation is generally poor. An innovative microneedle (MN) patch such as the curved, flexible or personalised MN patch is a viable avenue to deliver AHP-3. However, the well-researched geometrical relationship of MN on a flat MN patch cannot be assumed for these novel MN patches due to a complex mix of axial and shear forces. In this study, 3D printing was used for the fabrication of various MN patches with different MN geometries and curvatures. Both mechanical strength and skin penetration efficiency were used to determine the optimal MN geometry. The optimal MN geometry was then applied to the fabrication of a personalized MN patch (PMNP) for anti-wrinkle therapy, via 3D printing. In all, the general principles of MN geometrical effects on mechanical strength and skin penetration efficiency for a curved and a flat MN patch were similar. A MN height of 800 μm, tip diameter of 100 μm, interspacing of 800 μm and base diameter of 400 μm was observed to be the optimal MN geometry across all curvatures. In vitro skin permeation study demonstrated enhanced transdermal delivery of AHP-3 using the fabricated PMNP. Therefore, PMNP with optimized MN geometry can potentially be a novel approach to augment transdermal delivery of AHP-3 for effective wrinkle management.
Collapse
Affiliation(s)
- Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | | | |
Collapse
|
33
|
Lee KJ, Jeong SS, Roh DH, Kim DY, Choi HK, Lee EH. A practical guide to the development of microneedle systems – In clinical trials or on the market. Int J Pharm 2020; 573:118778. [DOI: 10.1016/j.ijpharm.2019.118778] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
|
34
|
Kathuria H, Kang K, Cai J, Kang L. Rapid microneedle fabrication by heating and photolithography. Int J Pharm 2019; 575:118992. [PMID: 31884060 DOI: 10.1016/j.ijpharm.2019.118992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/07/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
Many fabrication methods for microneedle (MN) involve harsh conditions and long drying time. This study aims to fabricate a dissolving MN patch in a simple and efficient manner under mild conditions, using a combination of thermal and photo polymerisation. The MN patch was fabricated by pre-polymerisation of vinylpyrrolidone solution with heating followed by photolithography. The heating temperature and time of pre-polymer solution curing were optimized based on viscosity measurement. The MN properties including shape, size, skin penetration, dissolution, moisture absorption were determined. The fabricated MNs were sharp and consistent. The heated N-vinylpyrrolidone solution required less UV exposure time, thus reducing the total fabrication time. The percentage of MN penetration in human cadaver skin was more than 33.9%. The MN was dissolved within 1-2 min in water, or 40 min in saturated water vapor.
Collapse
Affiliation(s)
- Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Kristacia Kang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Junyu Cai
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China; School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
35
|
Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109873. [DOI: 10.1016/j.msec.2019.109873] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/24/2023]
|
36
|
He X, Sun J, Zhuang J, Xu H, Liu Y, Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose Response 2019; 17:1559325819878585. [PMID: 31662709 PMCID: PMC6794664 DOI: 10.1177/1559325819878585] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Microneedle (MN) delivery system has been greatly developed to deliver drugs into the skin painlessly, noninvasively, and safety. In the past several decades, various types of MNs have been developed by the newer producing techniques. Briefly, as for the morphologically, MNs can be classified into solid, coated, dissolved, and hollow MN, based on the transdermal drug delivery methods of "poke and patch," "coat and poke," "poke and release," and "poke and flow," respectively. Microneedles also have other characteristics based on the materials and structures. In addition, various manufacturing techniques have been well-developed based on the materials. In this review, the materials, structures, morphologies, and fabricating methods of MNs are summarized. A separate part of the review is used to illustrate the application of MNs to deliver vaccine, insulin, lidocaine, aspirin, and other drugs. Finally, the review ends up with a perspective on the challenges in research and development of MNs, envisioning the future development of MNs as the next generation of drug delivery system.
Collapse
Affiliation(s)
- Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jian Zhuang
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Hong Xu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| |
Collapse
|
37
|
Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability. J Mater Chem B 2019; 7:7515-7524. [DOI: 10.1039/c9tb01994d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microneedles are primarily designed for enhancing transdermal drug delivery in a minimally invasive manner.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Mengmeng Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Ruihao Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Lei Zhang
- Institute of Sericulture and Systems Biology, Southwest University
- Chongqing
- China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| |
Collapse
|
38
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
39
|
Insulin delivery systems combined with microneedle technology. Adv Drug Deliv Rev 2018; 127:119-137. [PMID: 29604374 DOI: 10.1016/j.addr.2018.03.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/24/2022]
Abstract
Diabetes, a metabolic disorder of glucose, is a serious chronic disease and an important public health problem. Insulin is one of the hormones for modulating blood glucose level and the products of which is indispensable for most diabetes patients. Introducing microneedles (MNs) to insulin delivery is promising to pave the way for modulating glucose level noninvasively of diabetes patients, as which born to be painless, easy to handle and no need of any power supply. In this work, we review the process of insulin delivery systems (IDSs) based on MN technology in terms of two categories: drug free MNs and drug loaded MNs. Drug free MNs include solid MNs ("poke and patch"), hollow MNs ("poke and flow") and reservoir-based swelling MNs ("poke and swell R-type"), and drug loaded MNs include coated MNs ("coat and poke"), dissolving MNs ("poke and release") and insulin incorporated swelling MNs ("poke and swell I-type"). Majority researches of MN-based IDSs have been conducted by using hollow MNs or dissolving MNs, and almost all clinical trials for MN-based IDSs have employed hollow MNs. "Poke and patch" approach dramatically increase skin permeability compared to traditional transdermal patch, but MNs fabricated from silicon or metal may leave sharp waste in the skin and cause a safety issue. "Poke and flow" approach, similar to transitional subcutaneous (SC) injection, is capable of producing faster insulin absorption and action than SC injection but may associate with blockage, leakage and low flow rate. Coated MNs are able of retaining the activity of drug, which loaded in a solid phase, for a long time, however have been relatively less studied for insulin application as the low drug dosing. "Poke and release" approach leaves no biohazardous sharp medical waste and is capable of rapid drug release. "Poke and swell R-type" can be seen as a combination of "poke and flow" and "poke and patch" approach, while "poke and swell I-type" is an approach between "coat and poke" and "poke and release" approach. Insulin MNs are promising for painless diabetes therapeutics, and additional efforts for addressing fundamental issues including the drug loading, the PK/PD profile, the storage and the safety of insulin MNs will accelerate the clinical transformation.
Collapse
|
40
|
Ding D, Pan J, Lim SH, Amini S, Kang L, Miserez A. Squid suckerin microneedle arrays for tunable drug release. J Mater Chem B 2017; 5:8467-8478. [PMID: 32264514 DOI: 10.1039/c7tb01507k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microneedles are increasingly used in transdermal delivery of therapeutic agents due to the elimination of first-pass metabolism, simplicity of operation, and lack of pain, which collectively lead to improved patient compliance. However, microneedles are still met by challenges with regard to the choice of biocompatible materials and the control of drug release profiles. Herein, we tackle these limitations by producing microneedles from a biocompatible robust biopolymer, namely squid sucker ring teeth (SRT) proteins (suckerins), using a soft lithography method. Taking advantage of the modular sequence design of suckerins leading to their self-assembly into β-sheet enriched structures, suckerin microneedles display an accurate replication of their templates with robust mechanical properties, endowing them with a high skin penetration capability. Critically, the β-sheet content in the microneedles can be modulated by varying the solvent conditions, which allows tuning of the mechanical response, and in turn the drug release rates by more than one order of magnitude. In vitro skin permeation studies of suckerin microneedles using human cadaver skin samples suggest a fast onset and enhanced skin permeation of drugs compared to flat patches. The skin permeation can also be tailored 10-fold by applying hydrogen bond disruptor solutions. As a proof-of-concept, the anti-bacterial drug kanamycin is encapsulated within the microneedles, leading to efficient anti-bacterial activity and offering an additional benefit to further minimize the risk of infections caused by microneedle-based drug delivery systems. Lastly, suckerin microneedles are found to be biocompatible in cell culture studies, opening the door to further clinical applications.
Collapse
Affiliation(s)
- Dawei Ding
- Center for Biomimetic Sensor Science (CBSS), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | | | | | | | |
Collapse
|
41
|
Davies LB, Gateley C, Holland P, Coulman SA, Birchall JC. Accelerating Topical Anaesthesia Using Microneedles. Skin Pharmacol Physiol 2017; 30:277-283. [DOI: 10.1159/000479530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022]
|
42
|
Yu W, Jiang G, Zhang Y, Liu D, Xu B, Zhou J. Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. J Mater Chem B 2017; 5:9507-9513. [DOI: 10.1039/c7tb02236k] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We successfully developed a microneedle system integrated with a near-infrared light trigger and thermal ablation microneedles for transdermal delivery of metformin on diabetic rats.
Collapse
Affiliation(s)
- Weijiang Yu
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Guohua Jiang
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Yang Zhang
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Depeng Liu
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Bin Xu
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Junyi Zhou
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| |
Collapse
|
43
|
Sanjay ST, Dou M, Fu G, Xu F, Li X. Controlled Drug Delivery Using Microdevices. Curr Pharm Biotechnol 2016; 17:772-87. [PMID: 26813304 PMCID: PMC5135015 DOI: 10.2174/1389201017666160127110440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal concentration of drugs at the desired site. Controlled drug delivery aims to localize the pharmacological activity of the drug to the desired site at desired release rates. The advances made by micro/nanofluidic technologies have provided new opportunities for better-controlled drug delivery. Various components of a drug delivery system can be integrated within a single tiny micro/nanofluidic chip. This article reviews recent advances of controlled drug delivery made by microfluidic/nanofluidic technologies. We first discuss microreservoir-based drug delivery systems. Then we highlight different kinds of microneedles used for controlled drug delivery, followed with a brief discussion about the current limitations and the future prospects of controlled drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - XiuJun Li
- Department of Chemistry, Faculty of University of Texas at El Paso, 500 West University Ave, El Paso, Texas 79968, USA.
| |
Collapse
|
44
|
Chen MC, Chan HA, Ling MH, Su LC. Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system. J Mater Chem B 2016; 5:496-503. [PMID: 32263665 DOI: 10.1039/c6tb02718k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adequate pain control can be achieved using a patient-controlled drug delivery system that can provide analgesia to patients as needed. To achieve this objective, we developed a phototriggered microneedle (MN) system that enables the on-demand delivery of pain medications to the skin under external near-infrared (NIR) light stimulation. In this system, polymeric MNs, containing NIR absorbers and analgesics, are combined with a poly(l-lactide-co-d,l-lactide) supporting array. A "removable design" of the supporting array enables the quick implantation of the MNs into the skin to act as a drug depot, thus shortening the patch application time. Upon irradiation with NIR light, the NIR absorbers in the implanted MNs can absorb light energy and induce a phase transition in the MNs to activate drug release. We demonstrated that lidocaine release can be modulated or repeatedly triggered by varying the duration of irradiation and controlling the on and off status of the laser. Lidocaine delivered by the implanted MNs can be rapidly absorbed into the blood circulation within 10 min and has a bioavailability of at least 95% relative to the subcutaneous injection, showing that the proposed system has the potential to provide a rapid onset of pain relief. Such an implantable device may allow pain sufferers receiving the painkiller without the need for multiple needle injections, and may enable controlling pain more conveniently and comfortably.
Collapse
Affiliation(s)
- Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | |
Collapse
|
45
|
Wang QL, Zhu DD, Liu XB, Chen BZ, Guo XD. Microneedles with Controlled Bubble Sizes and Drug Distributions for Efficient Transdermal Drug Delivery. Sci Rep 2016; 6:38755. [PMID: 27929104 PMCID: PMC5144082 DOI: 10.1038/srep38755] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/14/2016] [Indexed: 01/30/2023] Open
Abstract
Drug loaded dissolving microneedles (DMNs) fabricated with water soluble polymers have received increasing attentions as a safe and efficient transdermal drug delivery system. Usually, to reach a high drug delivery efficiency, an ideal drug distribution is gathering more drugs in the tip or the top part of DMNs. In this work, we introduce an easy and new method to introduce a bubble with controlled size into the body of DMNs. The introduction of bubbles can prevent the drug diffusion into the whole body of the MNs. The heights of the bubbles are well controlled from 75 μm to 400 μm just by changing the mass concentrations of polymer casting solution from 30 wt% to 10 wt%. The drug-loaded bubble MNs show reliable mechanical properties and successful insertion into the skins. For the MNs prepared from 15 wt% PVA solution, bubble MNs achieve over 80% of drug delivery efficiency in 20 seconds, which is only 10% for the traditional solid MNs. Additionally, the bubble microstructures in the MNs are also demonstrated to be consistent and identical regardless the extension of MN arrays. These scalable bubble MNs may be a promising carrier for the transdermal delivery of various pharmaceuticals.
Collapse
Affiliation(s)
- Qi Lei Wang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Dan Dan Zhu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xu Bo Liu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
46
|
Anirudhan T, Nair SS, Nair AS. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr Polym 2016; 152:687-698. [DOI: 10.1016/j.carbpol.2016.06.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 01/23/2023]
|
47
|
Franz-Montan M, Ribeiro LNDM, Volpato MC, Cereda CMS, Groppo FC, Tofoli GR, de Araújo DR, Santi P, Padula C, de Paula E. Recent advances and perspectives in topical oral anesthesia. Expert Opin Drug Deliv 2016; 14:673-684. [DOI: 10.1080/17425247.2016.1227784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv Drug Deliv Rev 2016; 103:144-156. [PMID: 26916628 PMCID: PMC4935562 DOI: 10.1016/j.addr.2016.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Advances in solid drug nanoparticle technologies have resulted in a number of long-acting (LA) formulations with the potential for once monthly or longer administration. Such formulations offer great utility for chronic diseases, particularly when a lack of medication compliance may be detrimental to treatment response. Two such formulations are in clinical development for HIV but the concept of LA delivery has its origins in indications such as schizophrenia and contraception. Many terms have been utilised to describe the LA approach and standardisation would be beneficial. Ultimately, definitions will depend upon specific indications and routes of delivery, but for HIV we propose benchmarks that reflect perceived clinical benefits and available data on patient attitudes. Specifically, we propose dosing intervals of ≥1week, ≥1month or ≥6months, for oral, injectable or implantable strategies, respectively. This review focuses upon the critical importance of potency in achieving the LA outcome for injectable formulations and explores established and emerging technologies that have been employed across indications. Key technological challenges such as the need for consistency and ease of administration for drug combinations, are also discussed. Finally, the review explores the gaps in knowledge regarding the pharmacology of drug release from particulate-based LA injectable suspensions. A number of hypotheses are discussed based upon available data relating to local drug metabolism, active transport systems, the lymphatics, macrophages and patient-specific factors. Greater knowledge of the mechanisms that underpin drug release and protracted exposure will help facilitate further development of this strategy to achieve the promising clinical benefits.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, 70 Pembroke Place, University of Liverpool, Liverpool L693GF, UK
| | - Steve Rannard
- Department of Chemistry, Crown Street, University of Liverpool, L69 3BX, UK
| |
Collapse
|
49
|
Microfabrication for Drug Delivery. MATERIALS 2016; 9:ma9080646. [PMID: 28773770 PMCID: PMC5509096 DOI: 10.3390/ma9080646] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems.
Collapse
|
50
|
Kathuria H, Li H, Pan J, Lim SH, Kochhar JS, Wu C, Kang L. Large Size Microneedle Patch to Deliver Lidocaine through Skin. Pharm Res 2016; 33:2653-67. [DOI: 10.1007/s11095-016-1991-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/30/2016] [Indexed: 01/15/2023]
|