1
|
Fan J, Cheney PP, Bloch S, Xu B, Liang K, Odonkor CA, Edwards WB, Basak S, Mintz R, Biswas P, Achilefu S. Multifunctional Thio-Stabilized Gold Nanoparticles for Near-Infrared Fluorescence Detection and Imaging of Activated Caspase-3. CURR ANAL CHEM 2021; 17:1182-1193. [PMID: 34393690 DOI: 10.2174/1573411017999210112175743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Gold nanoparticles (AuNPs) are commonly used in nanomedicine because of their unique spectral properties, chemical and biological stability, and ability to quench the fluorescence of organic dyes attached to their surfaces. However, the utility of spherical AuNPs for activatable fluorescence sensing of molecular processes have been confined to resonance-matched fluorophores in the 500 nm to 600 nm spectral range to maximize dye fluorescence quenching efficiency. Expanding the repertoire of fluorophore systems into the NIR fluorescence regimen with emission >800 nm will facilitate the analysis of multiple biological events with high detection sensitivity. Objective The primary goal of this study is to determine if spherical AuNP-induced radiative rate suppression of non-resonant near-infrared (NIR) fluorescent probes can serve as a versatile nanoconstruct for highly sensitive detection and imaging of activated caspase-3 in aqueous media and cancer cells. This required the development of activatable NIR fluorescence sensors of caspase-3 designed to overcome the nonspecific degradation and release of the surface coatings in aqueous media. Method We harnessed the fluorescence-quenching properties and multivalency of spherical AuNPs to develop AuNP-templated activatable NIR fluorescent probes to detect activated caspase-3, an intracellular reporter of early cell death. Freshly AuNPs were coated with a multifunctional NIR fluorescent dye-labeled peptide (LS422) consisting of an RGD peptide sequence that targets αvβ3-integrin protein (αvβ3) on the surface of cancer cells to mediate the uptake and internalization of the sensors in tumor cells; a DEVD peptide sequence for reporting the induction of cell death through caspase-3 mediated NIR fluorescence enhancement; and a multidentate hexacysteine sequence for enhancing self-assembly and stabilizing the multifunctional construct on AuNPs. The integrin binding affinity of LS422 and caspase-3 kinetics were determined by a radioligand competitive binding and fluorogenic peptide assays, respectively. Detection of intracellular caspase-3, cell viability, and the internalization of LS422 in cancer cells were determined by confocal NIR fluorescence spectroscopy and microscopy. Results Narrow size AuNPs (13 nm) were prepared and characterized by transmission electron microscopy and dynamic light scattering. When assembled on the AuNPs, the binding constant of LS422 for αvβ3 improved 11-fold from 13.2 nM to 1.2 nM. Whereas the catalytic turnover of caspase-3 by LS422-AuNPs was similar to the reference fluorogenic peptide, the binding affinity for the enzyme increased by a factor of 2. Unlike the αvβ3 positive, but caspase-3 negative breast cancer MCF-7 cells, treatment of the αvβ3 and caspase-3 positive lung cancer A549 cells with Paclitaxel showed significant fluorescence enhancement within 30 minutes, which correlated with caspase-3 specific activation of LS422-AuNPs fluorescence. Incorporation of a 3.5 mW NIR laser source into our spectrofluorometer increased the detection sensitivity by an order of magnitude (limit of detection ~0.1 nM of cypate) and significantly decreased the signal noise relative to a xenon lamp. This gain in sensitivity enabled the detection of substrate hydrolysis at a broad range of inhibitor concentrations without photobleaching the cypate dye. Conclusion The multifunctional AuNPs demonstrate the use of a non-resonant quenching strategy to design activatable NIR fluorescence molecular probes. The nanoconstruct offers a selective reporting method for detecting activated caspase-3, imaging of cell viability, identifying dying cells, and visualizing the functional status of intracellular enzymes. Performing these tasks with NIR fluorescent probes creates an opportunity to translate the in vitro and cellular analysis of enzymes into in vivo interrogation of their functional status using deep tissue penetrating NIR fluorescence analytical methods.
Collapse
Affiliation(s)
- J Fan
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - P P Cheney
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - S Bloch
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - B Xu
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - K Liang
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - C A Odonkor
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - W B Edwards
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - S Basak
- Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States
| | - R Mintz
- Departments of Radiology, Washington University School of Medicine, St Louis, United States.,Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, United States.,Department of Biomedical Engineering, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - P Biswas
- Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States
| | - S Achilefu
- Departments of Radiology, Washington University School of Medicine, St Louis, United States.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, United States.,Department of Biomedical Engineering, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| |
Collapse
|
2
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
3
|
Zhang M, Ma Y, Wang Z, Han Z, Gao W, Zhou Q, Gu Y. A CD44-Targeting Programmable Drug Delivery System for Enhancing and Sensitizing Chemotherapy to Drug-Resistant Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5851-5861. [PMID: 30648841 DOI: 10.1021/acsami.8b19798] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Programmable drug delivery systems hold great promise to enhance cancer treatment. Herein, a programmable drug delivery system using a chondroitin sulfate (CS)-based composite nanoparticle was developed for enhancing and sensitizing chemotherapy to drug-resistant cancer. The nanoparticle was composed of a cross-linked CS hydrogel shell and hydrophobic cores containing both free drugs and CS-linked prodrugs. Interestingly, the nanoparticle could mediate tumor-specific CD44 targeting. After specific cellular uptake, the payloads were suddenly released because of the decomposition of the CS shell, and the free drug molecules with synergistic effects induced tumor-specific cytotoxicity rapidly. Subsequently, the inner cores of the nanoparticles sustainedly release their cargos in drug-resistant tumor cells to keep the effective drug concentration against the drug efflux mediated by P-glycoprotein. CS dissociated from the outer shell and sensitized cancer cells to the antitumor drugs through downregulation of Bcl-XL, an antiapoptosis protein. Such a programmable drug delivery system with specific tumor-targeting and sensitized therapy is promising for rational drug delivery and provides more versatility for controlled release in biomedical applications.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering , Qingdao University , Qingdao 266071 , China
| | - Yi Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Zhihao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Weidong Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Qiumei Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
4
|
Ray A, Das S, Chattopadhyay N. Aggregation of Nile Red in Water: Prevention through Encapsulation in β-Cyclodextrin. ACS OMEGA 2019; 4:15-24. [PMID: 31459307 PMCID: PMC6649296 DOI: 10.1021/acsomega.8b02503] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 05/28/2023]
Abstract
The present work, based on various spectroscopic investigations, vividly demonstrates the self-association of Nile red (NR) in aqueous medium. The rapid decrease in the absorbance as well as emission of NR in water bears the signature of the aggregation process. Appearance of a new blue-shifted absorption band in addition to the original one and a drastic decrease in the emission intensity imply that the aggregation is of H-type. Poor solubility of NR in water, hydrophobic interaction, and the planar structure of the dye are ascribed to favor the formation of the aggregate in the aqueous medium. Absorption-based kinetic studies reveal the aggregation process to be second order, thereby establishing the aggregate to be a dimer. Similar kinetic profiles of the absorbance of NR in the presence and absence of light confirm that the aggregation process is not photoassisted. The presence of an isosbestic point in the absorbance spectra and an isoemissive point in the time-resolved area normalized emission spectra bears the evidence of equilibrium between the dimeric and the monomeric species of NR in the ground state as well as in the photoexcited state. Encapsulation of the monomer of NR within the hydrophobic cavity of β-cyclodextrin is demonstrated to prevent the aggregation process.
Collapse
|
5
|
Zhang M, Ma Y, Wang Z, Han Z, Gao W, Gu Y. Optimizing molecular weight of octyl chitosan as drug carrier for improving tumor therapeutic efficacy. Oncotarget 2017; 8:64237-64249. [PMID: 28969066 PMCID: PMC5609998 DOI: 10.18632/oncotarget.19452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023] Open
Abstract
Macromolecular drug carriers have attracted much attention taking advantage of passive tumor targeting property and excellent biocompatibility. For many biomedical applications, however, the effectiveness of the carriers is insufficient, which complicate further development into clinical use. Here, we systematically investigated the effects of molecular weight (from 1KDa to 300KDa) of macromolecular drug carrier, octyl chitosan, on tumor accumulation and penetration, as well as drug loading and releasing profiles. It was found that the molecular weight of chitosan influenced the cellular uptake and pharmacokinetic behavior of the nanocarriers, which ultimately determined their drug delivery efficiency. Interestingly, increased molecular weight of chitosan decreased its cellular uptake but increased its resident time in blood, which provided ample time for tumor accumulation. Moreover, the molecular weight altered the drug loading capability and release profile. Our results demonstrated that 10KDa octyl chitosan was an ideal candidate for anticancer drug delivery, which could deliver anticancer agent to tumor tissues and release drugs in tumor cells more effectively than those of other molecular weights, and finally result in better therapeutic effect.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Weidong Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Xu B, Shokeen M, Sudlow GP, Harpstrite SE, Liang K, Cheney PP, Edwards WB, Sharma V, Laforest R, Akers WJ, Achilefu S. Utilizing the Multiradionuclide Resolving Power of SPECT and Dual Radiolabeled Single Molecules to Assess Treatment Response of Tumors. Mol Imaging Biol 2016; 17:671-9. [PMID: 25790774 DOI: 10.1007/s11307-015-0842-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Single photon emission computed tomography (SPECT) radionuclide pairs having distinct decay rates and different energy maxima enable simultaneous detection of dual gamma signals and real-time assessment of dynamic functional and molecular processes in vivo. Here, we report image acquisition and quantification protocols for a single molecule labeled with two different radionuclides for functional SPECT imaging. PROCEDURES LS370 and LS734 were prepared using modular solid phase peptide synthesis. Each agent has a caspase-3 cleavable reporting motif, flanked by a tyrosine residue and a chelator at the opposite end of molecule. Cell uptake and efflux were assessed in human MDA-MB-231 breast cancer cells. Biodistribution studies were conducted in tumor naive and orthotopic 4T1 metastatic breast cancer tumor mice. NanoSPECT dual-imaging validation and attenuation correction parameters were developed using phantom vials containing varying radionuclide concentrations. Proof-of-principle SPECT imaging was performed in MMTV-PyMT transgenic mice. RESULTS LS370 and LS734 were singly or dually radiolabeled with (125)I and (111)In or (99m)Tc. Cell assays demonstrated 11-fold higher percent uptake (P < 0.001) of [(125)I]LS734 (3.6 ± 0.5) compared to [(125)I]LS370 (0.3 ± 0.3) at 2 h. Following chemotherapy, cellular retention of [(125)I]LS734 was 3-fold higher (P < 0.05) than untreated cells. Pharmacokinetics at 1 h postinjection demonstrated longer blood retention (%ID/g) for [(125)I]LS734 (3.2 ± 0.9) compared to [(125)I]LS370 (1.6 ± 0.1). In mice bearing bilateral orthotopic 4T1 tumors, the uptake (%ID/g) was 2.4 ± 0.3 for [(125)I]LS734 and 1.2 ± 0.03 for [(125)I]LS370. The iodinated tyrosine peptide residue label was stable under in vitro conditions for up to 24 h; rapid systemic deiodination (high thyroid uptake) was observed in vivo. Phantom studies using standards demonstrated deconvolution of radionuclide signals based on different gamma ray energies. In MMTV-PyMT mice imaged with dual-labeled [(111)In]-[(125)I]LS734, the gamma signals were separable and quantifiable. CONCLUSIONS Image processing protocols were developed for quantitative signal separation resulting from a caspase-3 responsive dual-radiolabeled SPECT probe. Crosstalk unmixing was obtained for multiradionuclide NanoSPECT imaging. In vitro and in vivo data demonstrated structure-activity relationships for developing functional agents for ratiometric SPECT imaging.
Collapse
Affiliation(s)
- Baogang Xu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.
| | - Monica Shokeen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Gail P Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Scott E Harpstrite
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Kexian Liang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Philip P Cheney
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - W Barry Edwards
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Walter J Akers
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Fluorescence Lifetime Imaging of Cancer In Vivo. Methods Mol Biol 2016. [PMID: 27283417 DOI: 10.1007/978-1-4939-3721-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Optical imaging of fluorescent reporters in animal models of cancer has become a common tool in oncologic research. Fluorescent reporters including fluorescent proteins, organic dyes, and inorganic photonic materials are used in fluorescence spectroscopy, microscopy, and whole body preclinical imaging. Fluorescence lifetime imaging provides additional, quantitative information beyond that of conventional fluorescence intensity signals, enabling signal multiplexing, background separation, and biological sensing unique to fluorescent materials.
Collapse
|
8
|
Reporter nanoparticle that monitors its anticancer efficacy in real time. Proc Natl Acad Sci U S A 2016; 113:E2104-13. [PMID: 27036008 DOI: 10.1073/pnas.1603455113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo.
Collapse
|
9
|
Fields GB, Stawikowski MJ. Imaging Matrix Metalloproteinase Activity Implicated in Breast Cancer Progression. Methods Mol Biol 2016; 1406:303-29. [PMID: 26820965 DOI: 10.1007/978-1-4939-3444-7_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteolysis has been cited as an important contributor to cancer initiation and progression. One can take advantage of tumor-associated proteases to selectively deliver imaging agents. Protease-activated imaging systems have been developed using substrates designed for hydrolysis by members of the matrix metalloproteinase (MMP) family. We presently describe approaches by which one can optically image matrix metalloproteinase activity implicated in breast cancer progression, with consideration of selective versus broad protease probes.
Collapse
Affiliation(s)
- Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, 33458, USA. .,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, 33458, USA. .,Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, 34987, USA.
| | - Maciej J Stawikowski
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, 33458, USA
| |
Collapse
|
10
|
v. Berlepsch H, Böttcher C. H-Aggregates of an Indocyanine Cy5 Dye: Transition from Strong to Weak Molecular Coupling. J Phys Chem B 2015; 119:11900-9. [DOI: 10.1021/acs.jpcb.5b05576] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hans v. Berlepsch
- Forschungszentrum
für
Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, D-14195 Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum
für
Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, D-14195 Berlin, Germany
| |
Collapse
|
11
|
Abstract
Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely relies on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well-established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems and outlines areas of potential high impact in the future.
Collapse
Affiliation(s)
- Pinaki Sarder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Dolonchampa Maji
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| |
Collapse
|
12
|
Abstract
In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the “hallmarks of cancer” that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies.
Collapse
|
13
|
Abstract
Optical imaging assays, especially fluorescence molecular assays, are minimally invasive if not completely noninvasive, and thus an ideal technique to be applied to live specimens. These fluorescence imaging assays are a powerful tool in biomedical sciences as they allow the study of a wide range of molecular and physiological events occurring in biological systems. Furthermore, optical imaging assays bridge the gap between the in vitro cell-based analysis of subcellular processes and in vivo study of disease mechanisms in small animal models. In particular, the application of Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM), well-known techniques widely used in microscopy, to the optical imaging assay toolbox, will have a significant impact in the molecular study of protein-protein interactions during cancer progression. This review article describes the application of FLIM-FRET to the field of optical imaging and addresses their various applications, both current and potential, to anti-cancer drug delivery and cancer research.
Collapse
Affiliation(s)
- Shilpi Rajoria
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| |
Collapse
|
14
|
Yue X, Wang Z, Zhu L, Wang Y, Qian C, Ma Y, Kiesewetter DO, Niu G, Chen X. Novel 19F activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS. Mol Pharm 2014; 11:4208-17. [PMID: 25271556 PMCID: PMC4224523 DOI: 10.1021/mp500443x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Matrix metalloproteases (MMPs) have
been found to be highly expressed
in a variety of malignant tumor tissues. Noninvasive visualization
of MMP activity may play an important role in the diagnosis of MMP
associated diseases. Here we report the design and synthesis of a
set of fluorine-19 dendron-based magnetic resonance imaging (MRI)
probes for real-time imaging of MMP-2 activity. The probes have the
following features: (a) symmetrical fluorine atoms; (b) the number
of fluorine atoms can be increased through facile chemical modification;
(c) readily accessible peptide sequence as the MMP-2 substrate; (d)
activatable 19F signal (off/on mode) via paramagnetic metal
ion incorporation. Following optimization for water solubility, one
of the probes was selected to evaluate MMP-2 activity by 19F magnetic resonance spectroscopy (MRS). Our results showed that
the fluorine signal increased by 8.5-fold in the presence of MMP-2.
The specific cleavage site was verified by mass spectrometry. The
selected probe was further applied to detect secreted MMP-2 activity
of living SCC7 squamous cell carcinoma cells. The fluorine signal
was increased by 4.8-fold by MRS analysis after 24 h incubation with
SCC7 cells. This type of fluorine probe can be applied to evaluate
other enzyme activities by simply tuning the substrate structures.
This symmetrical fluorine dendron-based probe design extends the scope
of the existing 19F MRI agents and provides a simple but
robust method for real-time 19F MRI application.
Collapse
Affiliation(s)
- Xuyi Yue
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang X, Bresee J, Fields GB, Edwards WB. Near-infrared triple-helical peptide with quenched fluorophores for optical imaging of MMP-2 and MMP-9 proteolytic activity in vivo. Bioorg Med Chem Lett 2014; 24:3786-3790. [PMID: 25047578 DOI: 10.1016/j.bmcl.2014.06.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022]
Abstract
The gelatinase members of the MMP family have consistently been associated with tumor invasiveness, which make them an attractive target for molecular imaging. We report new activatable proteolytic optical imaging agents that consist of triple-helical peptide (THP) conjugates, with high specificity to the gelatinases, bearing quenched cypate dyes. With quenching efficiencies up to 51%, the amplified fluorescence signal upon cypate3-THP hydrolysis by the gelatinases (kcat/KM values of 6.4×10(3) M(-1) s(-1) to 9.1×10(3) M(-1) s(-1) for MMP-2 and MMP-9, respectively) in mice bearing human fibrosarcoma xenografted tumors was monitored with fluorescence molecular tomography. There was significant fluorescence enhancement within the tumor and this enhancement was reduced by treatment with pan-MMP inhibitor, Ilomastat. These data, combined with the gelatinase substrate specificity observed in vitro, indicated the observed fluorescence at the site of the tumor was due to gelatinase mediated hydrolysis of cypate3-THP.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Jamee Bresee
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Gregg B Fields
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, 34987, USA
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
16
|
Abstract
Recent developments and improvements of multimodal imaging methods for use in animal research have substantially strengthened the options of in vivo visualization of cancer-related processes over time. Moreover, technological developments in probe synthesis and labelling have resulted in imaging probes with the potential for basic research, as well as for translational and clinical applications. In addition, more sophisticated cancer models are available to address cancer-related research questions. This Review gives an overview of developments in these three fields, with a focus on imaging approaches in animal cancer models and how these can help the translation of new therapies into the clinic.
Collapse
Affiliation(s)
- Marion de Jong
- Departments of Nuclear Medicine and Radiology, Erasmus MC Rotterdam, Room Na-610, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen Essers
- Departments of Genetics (Cancer Genomics Centre), Radiation Oncology and Vascular Surgery, Erasmus MC Rotterdam, P.O Box 2040, 3000CA Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
17
|
Biochemical Characterization of a Caspase-3 Far-red Fluorescent Probe for Non-invasive Optical Imaging of Neuronal Apoptosis. J Mol Neurosci 2014; 54:451-62. [DOI: 10.1007/s12031-014-0325-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
|
18
|
Chen H, Chen Y, Yang H, Xu W, Zhang M, Ma Y, Achilefu S, Gu Y. A dual-targeting nanocarrier based on modified chitosan micelles for tumor imaging and therapy. Polym Chem 2014. [DOI: 10.1039/c4py00495g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Palantavida S, Tang R, Sudlow GP, Akers WJ, Achilefu S, Sokolov I. Ultrabright NIR fluorescent mesoporous silica nanoparticles. J Mater Chem B 2014; 2:3107-3114. [PMID: 32261686 DOI: 10.1039/c4tb00287c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) water-dispersible fluorescent tags are of big importance for biomedical imaging. Bright, stable, biocompatible NIR fluorescent nanoparticles have great translation potential to improve diagnosis of early stages of different diseases. Here we report on the synthesis of exceptionally bright ("ultrabright") fluorescent meso(nano)porous silica nanoparticles of 28 ± 3 nm in diameter. The NIR fluorescent dye LS277 is encapsulated inside these silica nanoparticles. The wavelengths of the maximum excitation/fluorescence of the particles are 804/815 nm. The absorptivity coefficient of the particles is 2.1 × 108 M-1 cm-1 at 805 nm and the quantum yield of the dye increased by a factor of 5 after encapsulating to 1.5%. The fluorescent brightness of these particles is more than 2000× higher than the fluorescence of one molecule of LS277 in water. When exited in NIR spectral region (>700 nm), these particles are up to 4× brighter than QD800 commercial quantum dots emitting at 800 nm. We demonstrate that the synthesized NIR mesoporous silica nanoparticles easily internalize 4T1luc breast tumor cells, and remain bright for more than 9 weeks whereas the dye is completely bleached by that time.
Collapse
Affiliation(s)
- S Palantavida
- Departments of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Förster resonance energy transfer (FRET) is a phenomenon used for bioimaging ranging from single molecules to in vivo scale. A large variety of organic dyes and fluorescent proteins are available for FRET probes. In this review, we introduce the representative pairs of FRET probes developed thus far. The efficiency of FRET is depending on the spectral overlap of donor emission and acceptor absorption, the orientation of donor and acceptor and their distance. For FRET-based indicators composed of fluorescent proteins, their orientation and dimeric property of donor and acceptor largely affect the FRET efficiency, indicating the effect for the performance of indicators. In addition, three major applications of FRET, including genetically encoded indicators, single-molecule FRET, and enhancement of chemiluminescent proteins, have been introduced and their functions have also been discussed.
Collapse
|
21
|
Ptaszek M. Rational design of fluorophores for in vivo applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 113:59-108. [PMID: 23244789 DOI: 10.1016/b978-0-12-386932-6.00003-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several classes of small organic molecules exhibit properties that make them suitable for fluorescence in vivo imaging. The most promising candidates are cyanines, squaraines, boron dipyrromethenes, porphyrin derivatives, hydroporphyrins, and phthalocyanines. The recent designing and synthetic efforts have been dedicated to improving their optical properties (shift the absorption and emission maxima toward longer wavelengths and increase the brightness) as well as increasing their stability and water solubility. The most notable advances include development of encapsulated cyanine dyes with increased stability and water solubility, squaraine rotaxanes with increased stability, long-wavelength-absorbing boron dipyrromethenes, long-wavelength-absorbing porphyrin and hydroporphyrin derivatives, and water-soluble phthalocyanines. Recent advances in luminescence and bioluminescence have made self-illuminating fluorophores available for in vivo applications. Development of new types of hydroporphyrin energy-transfer dyads gives the promise for further advances in in vivo multicolor imaging.
Collapse
Affiliation(s)
- Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Berlepsch HV, Ludwig K, Böttcher C. Pinacyanol chloride forms mesoscopic H- and J-aggregates in aqueous solution – a spectroscopic and cryo-transmission electron microscopy study. Phys Chem Chem Phys 2014; 16:10659-68. [DOI: 10.1039/c4cp00967c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pinacyanol chloride self-assembles in aqueous solution into tubular H-aggregates and fibrillar J-aggregates.
Collapse
Affiliation(s)
- Hans v Berlepsch
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
23
|
Shen B, Jeon J, Palner M, Ye D, Shuhendler A, Chin FT, Rao J. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-triggered nanoaggregation probe. Angew Chem Int Ed Engl 2013; 52:10511-4. [PMID: 23881906 PMCID: PMC4077287 DOI: 10.1002/anie.201303422] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/07/2022]
Abstract
Drug Design: An (18)F-labeled caspase-3-sensitive nanoaggregation positron emission tomography tracer was prepared and evaluated for imaging the caspase-3 activity in doxorubicin-treated tumor xenografts. Enhanced retention of the (18)F activity in apoptotic tumors is achieved through intramolecular macrocyclization and in situ aggregation upon caspase-3 activation (see picture).
Collapse
Affiliation(s)
| | | | - Mikael Palner
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Deju Ye
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Adam Shuhendler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Frederick T. Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| |
Collapse
|
24
|
Shen B, Jeon J, Palner M, Ye D, Shuhendler A, Chin FT, Rao J. Positron Emission Tomography Imaging of Drug-Induced Tumor Apoptosis with a Caspase-Triggered Nanoaggregation Probe. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
v Berlepsch H, Böttcher C. Supramolecular structure of TTBC J-aggregates in solution and on surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4948-58. [PMID: 23527663 DOI: 10.1021/la400417d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aggregation behavior of cationic 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidacarbocyanine with chloride (TTBC-Cl) or iodide counterions (TTBC-I) in aqueous solution is investigated by absorption, linear dichroism, and fluorescence spectroscopies, as well as cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM). TTBC-Cl is found to form J-aggregates with a classical Davydov-split absorption band (type I spectrum) even under different preparation conditions. These aggregates remain stable for months. Unlike the chloride salt, the iodide salt TTBC-I forms two different types of J-aggregates depending on the pH of the aqueous solution. The TTBC-I aggregates prepared in pure water (pH = 6) are characterized by a single redshifted absorption band (type III spectrum), whereas those prepared in alkaline solution at pH = 13 show a typical Davydov-split (type I) absorption band. Despite differences in counterions, preparation method, stability, and spectroscopic behavior, cryo-TEM reveals an identical tubular architecture for all these J-aggregates. Among the new structure models discussed here is a cylindrical brickwork layer of dye molecules for single-banded J-aggregates (type III). For Davydov-split aggregates (type I), a molecular herringbone-like pattern is proposed instead. Moreover, absorption spectra have revealed an additional single redshifted absorption band (type II spectrum) that is assigned to a surface aggregate and is induced by a specific interaction of the dye cation with the negatively charged cuvette wall. AFM measurements of analogous preparations on negatively charged mica surfaces have supported this interpretation and revealed the formation of monolayered sheet structures.
Collapse
Affiliation(s)
- Hans v Berlepsch
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
26
|
Gustafson TP, Dergunov SA, Akers WJ, Cao Q, Magalotti S, Achilefu S, Pinkhassik E, Berezin MY. BLOOD TRIGGERED RAPID RELEASE POROUS NANOCAPSULES. RSC Adv 2013; 3:5547-5555. [PMID: 23606942 PMCID: PMC3627417 DOI: 10.1039/c3ra22693j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid-release drug delivery systems present a new paradigm in emergency care treatments. Such systems combine a long shelf life with the ability to provide a significant dose of the drug to the bloodstream in the shortest period of time. Until now, development of delivery formulations has concentrated on slow release systems to ensure a steady concentration of the drug. To address the need for quick release system, we created hollow polyacrylate nanocapsules with nanometer-thin porous walls. Burst release occurs upon interaction with blood components that leads to escape of the cargo. The likely mechanism of release involves a conformational change of the polymer shell caused by binding albumin. To demonstrate this concept, a near-infrared fluorescent dye indocyanine green (ICG) was incorporated inside the nanocapsules. ICG-loaded nanocapsules demonstrated remarkable shelf life in aqueous buffers with no release of ICG for twelve months. Rapid release of the dye was demonstrated first in vitro using albumin solution and serum. SEM and light scattering analysis demonstrated the retention of the nanocapsule architecture after the release of the dye upon contact with albumin. In vivo studies using fluorescence lifetime imaging confirmed quick discharge of ICG from the nanocapsules following intravenous injection.
Collapse
Affiliation(s)
- Tiffany P Gustafson
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23:1989-2006. [PMID: 22989049 DOI: 10.1021/bc3003309] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, Notre Dame Integrated Imaging Facility, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
28
|
Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, Ofek P, Polyak D, Scomparin A, Satchi-Fainaro R. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 2012; 161:446-60. [PMID: 22286005 DOI: 10.1016/j.jconrel.2011.12.021] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022]
Abstract
Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each stage of the process will be described, with examples illustrating the different solutions to the challenges of drug delivery systems in vivo.
Collapse
Affiliation(s)
- Ela Markovsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gustafson TP, Yan Y, Newton P, Hunter DA, Achilefu S, Akers WJ, Mackinnon SE, Johnson PJ, Berezin MY. A NIR Dye for Development of Peripheral Nerve Targeted Probes. MEDCHEMCOMM 2012; 3:685-690. [PMID: 24575295 PMCID: PMC3932509 DOI: 10.1039/c2md00297c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current imaging modalities lack the ability to quickly assess and classify nerve injury for predicting favourable versus unfavourable healing outcomes, which could minimize episodes of chronic pain and loss of function by allowing for early intervention. Thus, the development of a technique to noninvasively assess peripheral nerve damage is of critical importance. While the development of nerve specific near infrared (NIR) molecular probes capable of such diagnostics constitutes our long term goal, initial studies to identify a NIR dye for constructing such a probe are required. We have evaluated the properties of a novel highly hydrophilic and functionalizable polymethine dye, and its more hydrophobic analogue indocyanine green, within the sciatic nerve of rats following intra-nerve injection. The reporting ability of both dyes at critical depths for nerve imaging, the importance of hydrophilicity on dye transport through nervous tissue, and their toxicity - or lack thereof - to the neural environment have been evaluated. The results suggest that the novel NIR dye is an appropriate fluorescent reporter for use in designing nerve-specific optical molecular probes for non-invasive diagnosis and classification of nerve injury.
Collapse
Affiliation(s)
- Tiffany P. Gustafson
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ying Yan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Piyaraj Newton
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daniel A. Hunter
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Achilefu
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Walter J. Akers
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Susan E. Mackinnon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Philip J. Johnson
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Mikhail Y. Berezin
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
30
|
Zhang X, Bloch S, Akers W, Achilefu S. Near-infrared molecular probes for in vivo imaging. CURRENT PROTOCOLS IN CYTOMETRY 2012; Chapter 12:Unit12.27. [PMID: 22470154 PMCID: PMC3334312 DOI: 10.1002/0471142956.cy1227s60] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo imaging because of the low absorption of biological molecules in this region. This unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sharon Bloch
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Walter Akers
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Linder KE, Metcalfe E, Nanjappan P, Arunachalam T, Ramos K, Skedzielewski TM, Marinelli ER, Tweedle MF, Nunn AD, Swenson RE. Synthesis, in vitro evaluation, and in vivo metabolism of fluor/quencher compounds containing IRDye 800CW and Black Hole Quencher-3 (BHQ-3). Bioconjug Chem 2011; 22:1287-97. [PMID: 21639144 DOI: 10.1021/bc100457s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protease-cleavable peptides containing a suitable fluor/quencher (Fl/Q) pair are optically dark until cleaved by their target protease, generating fluorescence. This approach has been used with many Fl/Q pairs, but little has been reported with IRDye 800CW, a popular near-infrared (NIR) fluor. We explored the use of the azo-bond-containing Black Hole Quencher 3 (BHQ-3) as a quencher for IRDye 800CW and found that IRDye 800CW/BHQ-3 is a suitable Fl/Q pair, despite the lack of proper spectral overlap for fluorescence resonance energy transfer (FRET) applications. Cleavage of IRDye 800CW-PLGLK(BHQ-3)AR-NH(2) (8) and its D-arginine (Darg) analogue (9) by matrix metalloproteinases (MMPs) in vitro yielded the expected cleavage fragments. In vivo, extensive metabolism was found. Significant decomposition of a "non-cleavable" control IRDye 800CW-(1,13-diamino-4,7,10-trioxatridecane)-BHQ-3 (10) was evident in plasma of normal mice by 3 min post injection. The major metabolite showed a m/z and UV/vis spectrum consistent with azo bond cleavage in the BHQ-3 moiety. Preparation of an authentic standard of this metabolite (11) confirmed the assignment. Although the IRDye 800CW/BHQ-3 constructs showed efficient contact quenching prior to enzymatic cleavage, BHQ-3 should be used with caution in vivo, due to instability of its azo bond.
Collapse
Affiliation(s)
- Karen E Linder
- Ernst Felder Laboratories, Bracco Research USA, 305 College Road East, Princeton, New Jersey 08540, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Berlepsch HV, Ludwig K, Kirstein S, Böttcher C. Mixtures of achiral amphiphilic cyanine dyes form helical tubular J-aggregates. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
In vitro and ex vivo evaluation of smart infra-red fluorescent caspase-3 probes for molecular imaging of cardiovascular apoptosis. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:413290. [PMID: 21629849 PMCID: PMC3099191 DOI: 10.1155/2011/413290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
Abstract
Purpose. The aim of this paper is to develop new optical bioprobes for the imaging of apoptosis.
Procedure. We developed quenched near-infrared probes which become fluorescent upon cleavage by caspase-3, the key regulatory enzyme of apoptosis. Results. Probes were shown to be selectively cleaved by recombinant caspase-3. Apoptosis of cultured endothelial cells was associated with an increased fluorescent signal for the cleaved probes, which colocalized with caspase-3 and was reduced by the addition of a caspase-3 inhibitor. Flow cytometry demonstrated a similar profile between the cleaved probes and annexin V. Ex vivo experiments showed that sections of hearts obtained from mice treated with the proapoptotic drug doxorubicin displayed an increase in the fluorescent signal for the cleaved probes, which was reduced by a caspase-3 inhibitor. Conclusion. We demonstrated the capacity of these novel probes to detect apoptosis by optical imaging in vitro and ex vivo.
Collapse
|
34
|
Zhu R, Lü R, Yu A. Aggregation Behaviors of Tricarbocyanine Dye in Water and in AOT Reverse Micelles. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract 2011; 20:397-415. [PMID: 21757928 PMCID: PMC7388590 DOI: 10.1159/000327655] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023] Open
Abstract
Accurate and rapid detection of diseases is of great importance for assessing the molecular basis of pathogenesis, preventing the onset of complications, and implementing a tailored therapeutic regimen. The ability of optical imaging to transcend wide spatial imaging scales ranging from cells to organ systems has rejuvenated interest in using this technology for medical imaging. Moreover, optical imaging has at its disposal diverse contrast mechanisms for distinguishing normal from pathologic processes and tissues. To accommodate these signaling strategies, an array of imaging techniques has been developed. Importantly, light absorption, and emission methods, as well as hybrid optical imaging approaches are amenable to both small animal and human studies. Typically, complex methods are needed to extract quantitative data from deep tissues. This review focuses on the development of optical imaging platforms, image processing techniques, and molecular probes, as well as their applications in cancer diagnosis, staging, and monitoring therapeutic response.
Collapse
Affiliation(s)
- Metasebya Solomon
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Yang Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
36
|
Lee S, Xie J, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev 2010; 110:3087-111. [PMID: 20225899 DOI: 10.1021/cr900361p] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 31 Center Drive, Suite 1C14, Bethesda, Maryland 20892-2281, USA
| | | | | |
Collapse
|
37
|
Das S, Bwambok D, El-Zahab B, Monk J, de Rooy SL, Challa S, Li M, Hung FR, Baker GA, Warner IM. Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanoGUMBOS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12867-76. [PMID: 20583774 PMCID: PMC2917973 DOI: 10.1021/la101463r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Template-free controlled aggregation and spectral properties in fluorescent organic nanoparticles (FONs) is highly desirable for various applications. Herein, we report a nontemplated method for controlling the aggregation in near-infrared (NIR) cyanine-based nanoparticles derived from a group of uniform materials based on organic salts (GUMBOS). Cationic heptamethine cyanine dye 1,1',3,3,3',3'-hexamethylindotricarbocyanine (HMT) was coupled with five different anions, viz., [NTf(2)(-)], [BETI(-)], [TFPB(-)], [AOT(-)], and [TFP4B(-)], by an ion-exchange method to obtain the respective GUMBOS. The nanoGUMBOS obtained via a reprecipitation method were primarily amorphous and spherical (30-100 nm) as suggested by selected area electron diffraction (SAED) and transmission electron microscopy (TEM). The formation of tunable self-assemblies within the nanoGUMBOS was characterized using absorption and fluorescence spectroscopy in conjunction with molecular dynamics simulations. Counterion-controlled spectral properties observed in the nanoGUMBOS were attributed to variations in J/H ratios with different anions. Association with the [AOT(-)] anion afforded predominant J aggregation enabling the highest fluorescence intensity, whereas [TFP4B(-)] disabled the fluorescence due to predominant H aggregation in the nanoparticles. Analyses of the stacking angle of the cations based on molecular dynamic simulation results in [HMT][NTf(2)], [HMT][BETI], and [HMT][AOT] dispersed in water and a visual analysis of the representative simulation snapshots also imply that the type of aggregation was controlled through the counterion associated with the dye cation.
Collapse
Affiliation(s)
- Susmita Das
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803
| | - David Bwambok
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803
| | - Bilal El-Zahab
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803
| | - Joshua Monk
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana-70803
| | - Sergio L de Rooy
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803
| | - Santhosh Challa
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803
| | - Min Li
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803
| | - Francisco R. Hung
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana-70803
| | - Gary A. Baker
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Isiah M Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana-70803
- To whom correspondence should be made:
| |
Collapse
|
38
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|
39
|
Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging applications. Curr Opin Chem Biol 2010; 14:64-70. [PMID: 19926332 PMCID: PMC2819555 DOI: 10.1016/j.cbpa.2009.10.022] [Citation(s) in RCA: 533] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 11/25/2022]
Abstract
Fluorescent dyes based on small organic molecules that function in the near infrared (NIR) region are of great current interest in chemical biology. They allow for imaging with minimal autofluorescence from biological samples, reduced light scattering, and high tissue penetration. Herein, examples of ongoing NIR fluorophore design strategies as well as their properties and anticipated applications relevant to the bioimaging are presented.
Collapse
Affiliation(s)
- Jorge O Escobedo
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | | | | | | |
Collapse
|
40
|
Lee S, Xie J, Chen X. Activatable molecular probes for cancer imaging. Curr Top Med Chem 2010; 10:1135-44. [PMID: 20388112 PMCID: PMC3629980 DOI: 10.2174/156802610791384270] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 11/22/2022]
Abstract
The development of highly sensitive and specific molecular probes for cancer imaging still remains a daunting challenge. Recently, interdisciplinary research at the interface of imaging sciences and bionanoconjugation chemistry has generated novel activatable imaging probes that can provide high-resolution imaging with ultra-low background signals. Activatable imaging probes are designed to amplify output imaging signals in response to specific biomolecular recognition or environmental changes in real time. This review introduces and highlights the unique design strategies and applications of various activatable imaging probes in cancer imaging.
Collapse
Affiliation(s)
- Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr, Suite 1C14, Bethesda, MD 20892-2281
| | - Jin Xie
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr, Suite 1C14, Bethesda, MD 20892-2281
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Dr, Suite 1C14, Bethesda, MD 20892-2281
| |
Collapse
|
41
|
Lee H, Akers WJ, Cheney PP, Edwards WB, Liang K, Culver JP, Achilefu S. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:040507. [PMID: 19725712 PMCID: PMC2916017 DOI: 10.1117/1.3207156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with (64)Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters k(cat) and K(M) of 0.55+/-0.01 s(-1) and 1.12+/-0.06 microM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled (64)Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.
Collapse
Affiliation(s)
- Hyeran Lee
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Walter J. Akers
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Philip P. Cheney
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - W. Barry Edwards
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kexian Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph P. Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
- Address correspondence to: Samuel Achilefu, Ph.D., Department of Radiology, 4525 Scott Ave. Saint Louis, MO 63110, Telephone: 314-362-8599, Fax: 314-747-5191,
| |
Collapse
|