1
|
Park S, Bisht H, Park S, Jeong J, Hong Y, Chu D, Koh M, Hong D. Melanin-Inspired Maleimide Coatings on Various Substrates for Rapid Thiol Functionalization. Macromol Biosci 2025:e2400616. [PMID: 39973616 DOI: 10.1002/mabi.202400616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025]
Abstract
In this study, a substrate-independent maleimide film is developed that can be formed under mild aqueous conditions (pH 7.4), and which allows rapid and efficient external thiol immobilization onto the coated surfaces. For the coating block, tyrosine-conjugated maleimide (Tyr-Mal) containing a phenolic amine moiety is prepared as a substrate-independent dormant coating precursor, wherein the maleimide component permits a rapid Michael addition reaction with the thiol moiety of interest. By mimicking natural melanogenesis, Tyr-Mal acts as a substrate for tyrosinase under physiological conditions (pH 7.4) to form a melanin-inspired maleimide (Mel-Mal) film on various substrates, including living cell surfaces. The resulting film undergoes a rapid surface reaction (< 30 min) with external thiol groups under mild aqueous conditions. Considering that a typical polydopamine film requires a long reaction time (≈3 h) under alkaline conditions (pH 8.5) to achieve thiol functionalization with low efficiency, the current surface platform demonstrates significant improvements in terms of its reaction kinetics and usability. Moreover, considering that thiol functionalization and surface coating are performed under mild aqueous conditions, it is expected that the developed Mel-Mal film will be a useful tool in the fields of cell surface engineering, microarrays, and high-throughput screening.
Collapse
Affiliation(s)
- Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Seongchul Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daeun Chu
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
2
|
Neubert TJ, Hielscher MM, Walter K, Schröter CM, Stage M, Rosencrantz RR, Panis F, Rompel A, Balasubramanian K, Waldvogel SR, Börner HG. Electrosynthesis of Mussel-inspired Adhesive Polymers as a Novel Class of Transient Enzyme Stabilizers. Angew Chem Int Ed Engl 2025; 64:e202419684. [PMID: 39743873 DOI: 10.1002/anie.202419684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92 % conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes. The electrochemical activation yields quinone-solutions, which are free of undesired reactive compounds and eliminates the challenging step of isolating the reactive quinones. The DiDOPA quinones were employed in polyaddition reactions with multi-thiols, forming oligomers that functioned as transient enzyme stabilizers (TES). These TCC-TES-additives improved the thermal stability and the activity of tyrosinase in heat stress assays.
Collapse
Affiliation(s)
- Tilmann J Neubert
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Unter den Linden 6, 10117, Berlin, Germany
| | - Maximilian M Hielscher
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Keven Walter
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| | - Carolin M Schröter
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| | - Marion Stage
- Fraunhofer Institute for Applied Polymer Research IAP, Life Science & Bioprocesses, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Ruben R Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Life Science & Bioprocesses, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
- Brandenburg University of Technology BTU, Institute for Materials Chemistry, Chair of Biofunctional Polymermaterials, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Felix Panis
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Kannan Balasubramanian
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Unter den Linden 6, 10117, Berlin, Germany
| | - Siegfried R Waldvogel
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| |
Collapse
|
3
|
Casagualda C, López-Moral A, Alfonso-Triguero P, Lorenzo J, Alibés R, Busqué F, Ruiz-Molina D. Mussel-Inspired Multifunctional Polyethylene Glycol Nanoparticle Interfaces. Biomimetics (Basel) 2024; 9:531. [PMID: 39329553 PMCID: PMC11429798 DOI: 10.3390/biomimetics9090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles (NPs) are receiving increasing interest in biomedical applications. However, due to their large surface area, in physiological environments, they tend to interact with plasma proteins, inducing their agglomeration and ultimately resulting in a substantial efficiency decrease in diagnostic and therapeutic applications. To overcome such problems, NPs are typically coated with a layer of hydrophilic and biocompatible polymers, such as PEG chains. However, few examples exist in which this property could be systematically fine-tuned and combined with added properties, such as emission. Herein, we report a novel mussel-inspired catechol-based strategy to obtain biocompatible and multifunctional coatings, using a previously developed polymerization methodology based on the formation of disulfide bridges under mild oxidative conditions. Two families of NPs were selected as the proof of concept: mesoporous silica NPs (MSNPs), due to their stability and known applications, and magnetite NPs (Fe3O4 NPs), due to their small size (<10 nm) and magnetic properties. The PEG coating confers biocompatibility on the NPs and can be further functionalized with bioactive molecules, such as glucose units, through the end carboxylic acid moieties. Once we demonstrated the feasibility of our approach to obtaining PEG-based coatings on different families of NPs, we also obtained multifunctional coatings by incorporating fluorescein functionalities. The resulting coatings not only confer biocompatibility and excellent cell internalization, but also allow for the imaging and tracking of NPs within cells.
Collapse
Affiliation(s)
- Carolina Casagualda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alba López-Moral
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Zhang M, Dop RA, Zhang H. Polydopamine-Coated Polymer Nanofibers for In Situ Protein Loading and Controlled Release. ACS OMEGA 2024; 9:14465-14474. [PMID: 38559971 PMCID: PMC10976389 DOI: 10.1021/acsomega.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Nanofibrous polymeric materials, combined with protein therapeutics, play a significant role in biomedical and pharmaceutical applications. However, the upload of proteins into nanofibers with a high yield and controlled release has been a challenging issue. Here, we report the in situ loading of a model protein (bovine serum albumin) into hydrophilic poly(vinyl alcohol) nanofibers via ice-templating, with a 100% protein drug loading efficiency. These protein-loaded nanofibers were further coated by polydopamine in order to improve the nanofiber stability and achieve a controlled protein release. The mass ratio between poly(vinyl alcohol) and bovine serum albumin influenced the percentage of proteins in composite nanofibers and fiber morphology. More particles and less nanofibers were formed with an increasing percentage of bovine serum albumin. By varying the coating conditions, it was possible to produce a uniform polydopamine coating with tunable thickness, which acted as an additional barrier to reduce burst release and achieve a more sustained release profile.
Collapse
Affiliation(s)
- Meina Zhang
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Romy A. Dop
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Department
of Clinical Infection, Microbiology and Immunology, Institute of Infection,
Veterinary and Ecological Sciences, University
of Liverpool, Liverpool L69 7ZD, U.K.
| | - Haifei Zhang
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
5
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
6
|
Antimicrobial characterization of a titanium coating derived from mussel-glue and Bothrops asper snake venom for the prevention of implant-associated infections caused by Staphylococcus. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Krüger JM, Choi CY, Lossada F, Wang P, Löschke O, Auhl D, Börner HG. Broadening the Chemical Space of Mussel-Inspired Polymerization: The Roll-out of a TCC-Polymer Platform with Thiol–Catechol Connectivities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jana M. Krüger
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Ching-Yi Choi
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Francisco Lossada
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Peng Wang
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Oliver Löschke
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Dietmar Auhl
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| |
Collapse
|
8
|
Qiang WP, He XD, Zhang K, Cheng YF, Lu ZS, Li CM, Kang ET, Xia QY, Xu LQ. Mussel Adhesive Mimetic Silk Sericin Prepared by Enzymatic Oxidation for the Construction of Antibacterial Coatings. ACS Biomater Sci Eng 2021; 7:3379-3388. [PMID: 34161086 DOI: 10.1021/acsbiomaterials.1c00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the rapid development and advancement in orthodontic and orthopedic technologies, the demand for biomedical-grade titanium (Ti) alloys is growing. The Ti-based implants are susceptible to bacterial infections, leading to poor healing and osteointegration, resulting in implant failure or repeated surgical intervention. Silk sericin (SS) is hydrophilic, biocompatible, and biodegradable and could induce a low immunological response in vivo. As a result, it would be intriguing to investigate the use of hydrophilic SS in surface modification. In this work, the tyrosine moiety in SS was oxidized by tyrosinase (or polyphenol oxidase) to the 3,4-dihydroxyphenylalanine (DOPA) form, generating the catechol moiety-containing SS (SSC). Inspired by the adhesion of mussel foot proteins, the SSC coatings could be directly deposited onto multiple surfaces in SS and tyrosinase mixed stock solutions to create active surfaces with catechol groups. Further, the SSC-coated Ti surfaces were hybridized with silver nanoparticles (Ag NPs) via in situ silver ion (Ag+) reduction. The antibacterial properties of the Ag NPs/SS-coated Ti surfaces are demonstrated, and they can prevent bacterial cell adhesion as well as early-stage biofilm formation. In addition, the developed Ag NPs/SSC-coated Ti surfaces exhibited a negligible level of cytotoxicity in L929 mouse fibroblast cells.
Collapse
Affiliation(s)
- Wei Peng Qiang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xiao Dong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - Yan Fang Cheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi Song Lu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - Chang Ming Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - En Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117576 Singapore
| | - Qing You Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, P. R. China
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Krüger JM, Börner HG. Accessing the Next Generation of Synthetic Mussel-Glue Polymers via Mussel-Inspired Polymerization. Angew Chem Int Ed Engl 2021; 60:6408-6413. [PMID: 33507605 PMCID: PMC7985868 DOI: 10.1002/anie.202015833] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Indexed: 11/25/2022]
Abstract
The formation of cysteinyldopa as biogenic connectivity in proteins is used to inspire a chemical pathway toward mussel-adhesive mimics. The mussel-inspired polymerization (MIPoly) exploits the chemically diverse family of bisphenol monomers that is oxidizable with 2-iodoxybenzoic acid to give bisquinones. Those react at room temperature with dithiols in Michael-type polyadditions, which leads to polymers with thiol-catechol connectivities (TCC). A set of TCC polymers proved adhesive behavior even on challenging poly(propylene) substrates, where they compete with commercial epoxy resins in dry adhesive strength. MIPoly promises facile scale up and exhibits high modularity to tailor adhesives, as proven on a small library where one candidate showed wet adhesion on aluminum substrates in both water and sea water models.
Collapse
Affiliation(s)
- Jana M. Krüger
- Laboratory for Organic Synthesis of Functional Systems InstitutionDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems InstitutionDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
10
|
Krüger JM, Börner HG. Die nächste Generation synthetischer Muschelkleberpolymere durch muschelinspirierte Polymerisation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jana M. Krüger
- Laboratory for Organic Synthesis of Functional Systems Institution Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems Institution Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
11
|
Arias S, Amini S, Krüger JM, Bangert LD, Börner HG. Implementing Zn 2+ ion and pH-value control into artificial mussel glue proteins by abstracting a His-rich domain from preCollagen. SOFT MATTER 2021; 17:2028-2033. [PMID: 33596288 DOI: 10.1039/d0sm02118k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A His-rich domain of preCollagen-D found in byssal threads is derivatized with Cys and Dopa flanks to allow for mussel-inspired polymerization. Artificial mussel glue proteins are accessed that combine cysteinyldopa for adhesion with sequences for pH or Zn2+ induced β-sheet formation. The artificial constructs show strong adsorption to Al2O3, the resulting coatings tolerate hypersaline conditions and cohesion is improved by activating the β-sheet formation, that enhances E-modulus up to 60%.
Collapse
Affiliation(s)
- Sandra Arias
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam 14424, Germany
| | - Jana M Krüger
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Lukas D Bangert
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| |
Collapse
|
12
|
Juds C, Schmidt J, Weller MG, Lange T, Beck U, Conrad T, Börner HG. Combining Phage Display and Next-Generation Sequencing for Materials Sciences: A Case Study on Probing Polypropylene Surfaces. J Am Chem Soc 2020; 142:10624-10628. [DOI: 10.1021/jacs.0c03482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Carmen Juds
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany
| | - Johannes Schmidt
- Functional Materials, Department of Chemistry, Technische Universität Berlin, D-10623 Berlin Germany
| | - Michael G. Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany
| | - Thorid Lange
- Surface Modification and Measurement Technology Division, Federal Institute for Materials Research and Testing (BAM), D-12205 Berlin, Germany
| | - Uwe Beck
- Surface Modification and Measurement Technology Division, Federal Institute for Materials Research and Testing (BAM), D-12205 Berlin, Germany
| | - Tim Conrad
- Medical Bioinformatics Division, Department of Mathematics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| |
Collapse
|
13
|
Maron E, Kochovski Z, Zuckermann RN, Börner HG. Peptide-Assisted Design of Peptoid Sequences: One Small Step in Structure and Distinct Leaps in Functions. ACS Macro Lett 2020; 9:233-237. [PMID: 35638686 DOI: 10.1021/acsmacrolett.9b00977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using peptide sequences for the design of functional peptoids is demonstrated for a peptide-based formulation additive that was specifically tailored to solubilize the photosensitizer meta-tetra(hydroxyphenyl)-chlorin. A set of peptoid-block-poly(ethylene glycol) solubilizers with systematic sequence variations are synthesized to reveal contributions of side-chain sequence and backbone functionalities on drug hosting and release properties. The drug payload sensitively depends on the side-chain patterns, and the best performing peptoid sequence reaches 3-times higher capacity than the corresponding peptide. The peptoid backbone not only acts as a neutral scaffold but also impacts the drug release kinetics compared to the analogues peptide, by reducing the capability to assist drug transfer to blood plasma protein models.
Collapse
Affiliation(s)
- Eva Maron
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Zdravko Kochovski
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ronald N. Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
14
|
Guo Q, Chen J, Wang J, Zeng H, Yu J. Recent progress in synthesis and application of mussel-inspired adhesives. NANOSCALE 2020; 12:1307-1324. [PMID: 31907498 DOI: 10.1039/c9nr09780e] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid and robust adhesion of marine mussels to diverse solid surfaces in wet environments is mediated by the secreted mussel adhesive proteins which are abundant in a catecholic amino acid, l-3,4-dihydroxyphenylalanine (Dopa). Over the last two decades, enormous efforts have been devoted to the development of synthetic mussel-inspired adhesives with water-resistant adhesion and cohesion properties by modifying polymer systems with Dopa and its analogues. In the present review, an overview of the unique features of various mussel foot proteins is provided in combination with an up-to-date understanding of catechol chemistry, which contributes to the strong interfacial binding via balancing a variety of covalent and noncovalent interactions including oxidative cross-linking, electrostatic interaction, metal-catechol coordination, hydrogen bonding, hydrophobic interactions and π-π/cation-π interactions. The recent developments of novel Dopa-containing adhesives with on-demand mechanical properties and other functionalities are then summarized under four broad categories: viscous coacervated adhesives, soft adhesive hydrogels, smart adhesives, and stiff adhesive polyesters, where their emerging applications in engineering, biological and biomedical fields are discussed. Limitations of the developed adhesives are identified and future research perspectives in this field are proposed.
Collapse
Affiliation(s)
- Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | |
Collapse
|
15
|
Kohn JM, Riedel J, Horsch J, Stephanowitz H, Börner HG. Mussel‐Inspired Polymerization of Peptides: The Chemical Activation Route as Key to Broaden the Sequential Space of Artificial Mussel‐Glue Proteins. Macromol Rapid Commun 2019; 41:e1900431. [DOI: 10.1002/marc.201900431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/07/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Jana M. Kohn
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Jerome Riedel
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Justus Horsch
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Heike Stephanowitz
- Leibniz Institute for Molecular Pharmacology Robert‐Rössle‐Straße 10 13125 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| |
Collapse
|
16
|
Song Q, Yang J, Hall SCL, Gurnani P, Perrier S. Pyridyl Disulfide Reaction Chemistry: An Efficient Strategy toward Redox-Responsive Cyclic Peptide-Polymer Conjugates. ACS Macro Lett 2019; 8:1347-1352. [PMID: 35651166 DOI: 10.1021/acsmacrolett.9b00538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclic peptide-polymer conjugates are capable of self-assembling into supramolecular polymeric nanotubes driven by the strong multiple hydrogen bonding interactions between the cyclic peptides. In this study, we have engineered responsive nanotubes by introducing a cleavable bond that responds to a reductant utilizing pyridyl disulfide reaction chemistry. Reactions between a cysteine containing cyclic peptide (CP-SH) and pyridyl disulfide containing polymers were initially studied, leading to the quantitative formation of cyclic peptide-polymer conjugates. An asymmetric cyclic peptide-polymer conjugate (PEG-CP-S-S-pPEGA) was then synthesized via orthogonal pyridyl disulfide reaction chemistry and NHS coupling chemistry. The disulfide linker formed by the pyridyl disulfide reaction chemistry was then selectively reduced to thiols in the presence of a reductant, enabling the transition of the conjugates from nonassembling unimers to self-assembled supramolecular polymeric nanotubes. It is anticipated that the pyridyl disulfide reaction chemistry will not only enrich the methodology toward the synthesis of cyclic peptide-polymer conjugates, but also lead to the construction of a new family of redox-responsive cyclic peptide-polymer conjugates and supramolecular polymeric nanotubes with tailored structures and functionalities.
Collapse
Affiliation(s)
- Qiao Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jie Yang
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Stephen C. L. Hall
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Pratik Gurnani
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Horsch J, Wilke P, Stephanowitz H, Krause E, Börner HG. Fish and Clips: A Convenient Strategy to Identify Tyrosinase Substrates with Rapid Activation Behavior for Materials Science Applications. ACS Macro Lett 2019; 8:724-729. [PMID: 35619530 DOI: 10.1021/acsmacrolett.9b00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides with suitable substrate properties for a specific tyrosinase are selected by combinatorial means from a one-bead-one-compound (OBOC) peptide library. The identified sequences exhibit tyrosine residues that are rapidly oxidized to 3,4-dihydroxyphenylalanine (Dopa), making the peptides interesting for enzyme-activated adhesives. The selection process of peptides involves tyrosinase oxidation of tyrosine-bearing sequences on a solid support, yielding dopaquinone residues (fish from the sequence pool), to which thiol-functional fluorescent probes attach by Michael-reaction (clip to mark). Labeled supports are isolated and sequence readout is feasible by MALDI-TOF-MS/MS to reveal peptides, while activation kinetics as well as enzyme-activated coating behavior are verifying the proper selection.
Collapse
Affiliation(s)
- Justus Horsch
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Patrick Wilke
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Heike Stephanowitz
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
18
|
Horsch J, Wilke P, Pretzler M, Seuss M, Melnyk I, Remmler D, Fery A, Rompel A, Börner HG. Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues. Angew Chem Int Ed Engl 2018; 57:15728-15732. [PMID: 30246912 PMCID: PMC6282983 DOI: 10.1002/anie.201809587] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 11/08/2022]
Abstract
A novel strategy to generate adhesive protein analogues by enzyme-induced polymerization of peptides is reported. Peptide polymerization relies on tyrosinase oxidation of tyrosine residues to Dopaquinones, which rapidly form cysteinyldopa-moieties with free thiols from cysteine residues, thereby linking unimers and generating adhesive polymers. The resulting artificial protein analogues show strong adsorption to different surfaces, even resisting hypersaline conditions. Remarkable adhesion energies of up to 10.9 mJ m-2 are found in single adhesion events and average values are superior to those reported for mussel foot proteins that constitute the gluing interfaces.
Collapse
Affiliation(s)
- Justus Horsch
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung Dresden e.V.Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V.Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Dario Remmler
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V.Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
- Technische Universität DresdenChair of Physical Chemistry of Polymeric MaterialsHohe Straße 601069DresdenGermany
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional SystemsDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
19
|
Horsch J, Wilke P, Pretzler M, Seuss M, Melnyk I, Remmler D, Fery A, Rompel A, Börner HG. Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Justus Horsch
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Matthias Pretzler
- Universität Wien; Fakultät für Chemie; Institut für Biophysikalische Chemie; Althanstraße 14 1090 Wien Austria
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung Dresden e.V.; Institute of Physical Chemistry and Polymer Physics; Hohe Straße 6 01069 Dresden Germany
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V.; Institute of Physical Chemistry and Polymer Physics; Hohe Straße 6 01069 Dresden Germany
| | - Dario Remmler
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V.; Institute of Physical Chemistry and Polymer Physics; Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden; Chair of Physical Chemistry of Polymeric Materials; Hohe Straße 6 01069 Dresden Germany
| | - Annette Rompel
- Universität Wien; Fakultät für Chemie; Institut für Biophysikalische Chemie; Althanstraße 14 1090 Wien Austria
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
20
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
21
|
Celasun S, Du Prez FE, Börner HG. PEGylated Precision Segments Based on Sequence-Defined Thiolactone Oligomers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/16/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sensu Celasun
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Filip E. Du Prez
- Polymer Chemistry Research Group; Centre of Macromolecular Chemistry (CMaC); Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
22
|
ten Brummelhuis N, Wilke P, Börner HG. Identification of Functional Peptide Sequences to Lead the Design of Precision Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
23
|
Kord Forooshani P, Lee BP. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2017; 55:9-33. [PMID: 27917020 PMCID: PMC5132118 DOI: 10.1002/pola.28368] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022]
Abstract
Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 9-33.
Collapse
Affiliation(s)
- Pegah Kord Forooshani
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMichigan49931
| | - Bruce P. Lee
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMichigan49931
| |
Collapse
|
24
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
25
|
Liu B, Liu X, Shi S, Huang R, Su R, Qi W, He Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater 2016; 40:100-118. [PMID: 26921775 DOI: 10.1016/j.actbio.2016.02.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. STATEMENT OF SIGNIFICANCE Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors.
Collapse
|
26
|
Meißler M, Taden A, Börner HG. Enzyme-Triggered Antifouling Coatings: Switching Bioconjugate Adsorption via Proteolytically Cleavable Interfering Domains. ACS Macro Lett 2016; 5:583-587. [PMID: 35632375 DOI: 10.1021/acsmacrolett.6b00072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protease activable antifouling coatings based on peptide-poly(ethylene glycol) conjugates are shown. The material-specific adsorption of a bioconjugate is temporarily suppressed by extending a titanium binding sequence with a proteolytically cleavable epitope and a suitable interfering domain. The adsorption of the PEG-peptide conjugates onto titanium substrates can be regained by cleaving the interfering domain with Tobacco Etch Virus protease. This activates peptide-mediated PEGylation of titanium surfaces and results in coatings that are stable against dilution and suppress nonreversible adsorption of blood protein models. Effects of branched and linear peptidic binding domains on coating stability and antifouling properties are elucidated.
Collapse
Affiliation(s)
- Maria Meißler
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Andreas Taden
- Henkel AG & Co.KG aA, Adhesive Research, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Hans G. Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
27
|
Lu D, Zhang Y, Li T, Li Y, Wang H, Shen Z, Wei Q, Lei Z. The synthesis and tissue adhesiveness of temperature-sensitive hyperbranched poly(amino acid)s with functional side groups. Polym Chem 2016. [DOI: 10.1039/c5py01844g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The adhesive strength of poly(amino acid)s can be improved by clicking a cross-link, forming a disulfide bond and so on. In addition, the adhesion strength becomes better on grafting with different monomers at 37 °C.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yongyong Zhang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Ting'e Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yunfei Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hongsen Wang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Zhiqiang Shen
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qiangbing Wei
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Ziqiang Lei
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- School of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
28
|
Chandrasekaran N, Dimartino S, Janmale T, Gieseg SP, Fee CJ. Adsorption of chemically synthesized mussel adhesive peptide sequences containing DOPA on stainless steel. J Pept Sci 2015; 21:630-5. [DOI: 10.1002/psc.2776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/21/2015] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Neha Chandrasekaran
- Department of Chemical and Process Engineering; University of Canterbury; Christchurch New Zealand
| | - Simone Dimartino
- Department of Chemical and Process Engineering; University of Canterbury; Christchurch New Zealand
- Biomolecular Interaction Centre; University of Canterbury; Christchurch New Zealand
| | - Tejraj Janmale
- Free Radical Biochemistry, School of Biological Sciences; University of Canterbury; Christchurch New Zealand
| | - Steven P. Gieseg
- Free Radical Biochemistry, School of Biological Sciences; University of Canterbury; Christchurch New Zealand
- Department of Radiology; University of Otago Christchurch; New Zealand
| | - Conan J. Fee
- Department of Chemical and Process Engineering; University of Canterbury; Christchurch New Zealand
- Biomolecular Interaction Centre; University of Canterbury; Christchurch New Zealand
| |
Collapse
|
29
|
Wu HX, Tan L, Tang ZW, Yang MY, Xiao JY, Liu CJ, Zhuo RX. Highly efficient antibacterial surface grafted with a triclosan-decorated poly(N-hydroxyethylacrylamide) brush. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7008-15. [PMID: 25756367 DOI: 10.1021/acsami.5b01210] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This work presented a highly efficient antibacterial Ti-surface which was grafted with poly(N-hydroxyethylacrylamide) (PHEAA) brush and further decorated with triclosan (TCS). The modified surfaces were characterized using contact angle measurements, X-ray photoelectron spectroscopy, and attenuated total reflectance Fourier transform infrared. The antibacterial performance of the modified surfaces was evaluated using the Streptococcus mutans and Actinomyces naeslundii attachment test. The Ti surface with PHEAA brush (Ti-PHEAA) was able to resist the adhesion of the bacteria, while the TCS-decorated Ti surface (Ti-TCS) showed the capability of killing the bacteria adhered on the surface. As we coupled the TCS to the PHEAA brush, the surface showed highly efficient antibacterial performance due to the combination of the resistance to the bacteria adhesion and its activity of killing bacteria.
Collapse
Affiliation(s)
- Hai-Xia Wu
- †Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
- ‡College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, P. R. China
| | - Lei Tan
- †Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhao-Wen Tang
- †Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Mei-Yan Yang
- †Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jian-Yun Xiao
- †Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Chuan-Jun Liu
- †Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Ren-Xi Zhuo
- †Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
30
|
Wei W, Yu J, Gebbie M, Tan Y, Martinez Rodriguez NR, Israelachvili JN, Waite JH. Bridging adhesion of mussel-inspired peptides: role of charge, chain length, and surface type. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1105-12. [PMID: 25540823 PMCID: PMC4310636 DOI: 10.1021/la504316q] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/22/2014] [Indexed: 05/21/2023]
Abstract
The 3,4-dihydroxyphenylalanine (Dopa)-containing proteins of marine mussels provide attractive design paradigms for engineering synthetic polymers that can serve as high performance wet adhesives and coatings. Although the role of Dopa in promoting adhesion between mussels and various substrates has been carefully studied, the context by which Dopa mediates a bridging or nonbridging macromolecular adhesion to surfaces is not understood. The distinction is an important one both for a mechanistic appreciation of bioadhesion and for an intelligent translation of bioadhesive concepts to engineered systems. On the basis of mussel foot protein-5 (Mfp-5; length 75 res), we designed three short, simplified peptides (15-17 res) and one relatively long peptide (30 res) into which Dopa was enzymatically incorporated. Peptide adhesion was tested using a surface forces apparatus. Our results show that the short peptides are capable of weak bridging adhesion between two mica surfaces, but this adhesion contrasts with that of full length Mfp-5, in that (1) while still dependent on Dopa, electrostatic contributions are much more prominent, and (2) whereas Dopa surface density remains similar in both, peptide adhesion is an order of magnitude weaker (adhesion energy E(ad) ∼ -0.5 mJ/m(2)) than full length Mfp-5 adhesion. Between two mica surfaces, the magnitude of bridging adhesion was approximately doubled (E(ad) ∼ -1 mJ/m(2)) upon doubling the peptide length. Notably, the short peptides mediate much stronger adhesion (E(ad) ∼ -3.0 mJ/m(2)) between mica and gold surfaces, indicating that a long chain length is less important when different interactions are involved on each of the two surfaces.
Collapse
Affiliation(s)
- Wei Wei
- Materials Research Lab, Department of Chemical Engineering, Materials Department, Biomolecular Science
and Engineering Program, and Department of Molecular, Cell & Development
Biology, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - Jing Yu
- Materials Research Lab, Department of Chemical Engineering, Materials Department, Biomolecular Science
and Engineering Program, and Department of Molecular, Cell & Development
Biology, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - Matthew
A. Gebbie
- Materials Research Lab, Department of Chemical Engineering, Materials Department, Biomolecular Science
and Engineering Program, and Department of Molecular, Cell & Development
Biology, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - Yerpeng Tan
- Materials Research Lab, Department of Chemical Engineering, Materials Department, Biomolecular Science
and Engineering Program, and Department of Molecular, Cell & Development
Biology, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - Nadine R. Martinez Rodriguez
- Materials Research Lab, Department of Chemical Engineering, Materials Department, Biomolecular Science
and Engineering Program, and Department of Molecular, Cell & Development
Biology, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - Jacob N. Israelachvili
- Materials Research Lab, Department of Chemical Engineering, Materials Department, Biomolecular Science
and Engineering Program, and Department of Molecular, Cell & Development
Biology, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - J. Herbert Waite
- Materials Research Lab, Department of Chemical Engineering, Materials Department, Biomolecular Science
and Engineering Program, and Department of Molecular, Cell & Development
Biology, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
31
|
Wilke P, Börner HG. Revealing the impact of poly(ethylene oxide) blocks on enzyme activable coatings from peptide–polymer conjugates. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Wieczorek S, Vigne S, Masini T, Ponader D, Hartmann L, Hirsch AKH, Börner HG. Combinatorial Screening for Specific Drug Solubilizers with Switchable Release Profiles. Macromol Biosci 2014; 15:82-9. [DOI: 10.1002/mabi.201400443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sara Vigne
- École Polytechnique Fédérale de Lausanne (EPFL); Institute of Materials (IMX), EPFL - STI - IMX - LMOM, MXG 037; Station 12 CH-1015 Lausanne Switzerland
| | - Tiziana Masini
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 NL-9747 AG Groningen The Netherlands
| | - Daniela Ponader
- Max Planck Institute of Colloids and Interfaces; MPI KGF Golm D-14424 Potsdam Germany
| | - Laura Hartmann
- Max Planck Institute of Colloids and Interfaces; MPI KGF Golm D-14424 Potsdam Germany
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 NL-9747 AG Groningen The Netherlands
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
33
|
Wilke P, Helfricht N, Mark A, Papastavrou G, Faivre D, Börner HG. A Direct Biocombinatorial Strategy toward Next Generation, Mussel-Glue Inspired Saltwater Adhesives. J Am Chem Soc 2014; 136:12667-74. [DOI: 10.1021/ja505413e] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Patrick Wilke
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
| | - Nicolas Helfricht
- Physical
Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Andreas Mark
- Physical
Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Georg Papastavrou
- Physical
Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Damien Faivre
- Department
of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam, Germany
| | - Hans G. Börner
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
| |
Collapse
|
34
|
Zope H, Quer CB, Bomans PHH, Sommerdijk NAJM, Kros A, Jiskoot W. Peptide amphiphile nanoparticles enhance the immune response against a CpG-adjuvanted influenza antigen. Adv Healthc Mater 2014; 3:343-8. [PMID: 23983195 DOI: 10.1002/adhm.201300247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/15/2013] [Indexed: 12/16/2022]
Abstract
Cationic peptide amphiphile nanoparticles are employed for co-delivery of immune modulator CpG and antigen. This results in better targeting to the antigen presenting cells and eliciting strong Th1 response, which is effective against the intracellular pathogens.
Collapse
Affiliation(s)
- Harshal Zope
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Christophe Barnier Quer
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Paul H. H. Bomans
- Laboratory of Materials and Interface Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nico A. J. M. Sommerdijk
- Laboratory of Materials and Interface Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alexander Kros
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
35
|
Maji K, Sarkar R, Bera S, Haldar D. A small molecule peptidomimetic of spider silk and webs. Chem Commun (Camb) 2014; 50:12749-52. [DOI: 10.1039/c4cc04475d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A peptidomimetic compound self-assembles to form spider silk-like soft fibers at 20 °C upon contact with air and the fibers can be used to mimic a spider web.
Collapse
Affiliation(s)
- Krishnendu Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur, India
| | - Rajib Sarkar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur, India
| | - Santu Bera
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur, India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur, India
| |
Collapse
|
36
|
Petrone L. Molecular surface chemistry in marine bioadhesion. Adv Colloid Interface Sci 2013; 195-196:1-18. [PMID: 23623000 DOI: 10.1016/j.cis.2013.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 01/12/2023]
Abstract
This review covers the in situ molecular physicochemical characterisation of bioadhesives at solid/liquid interfaces, with the aim of elucidating the adhesion strategies that lie at the root of marine biofouling. It focuses on three major foulers: mussels, algae and barnacles. The dispersal of these organisms, their colonisation of surfaces, and ultimately their survival rely critically on the ability of the organisms' larvae or spores to locate a favourable settlement site and undergo metamorphosis, thus initiating their sessile existence. Differences in the composition of adhesive secretions and the strategies employed for their temporary or permanent implementation exists between the larval and adult life stages. To date, only a few adhesive secretions from marine fouling organisms have been adequately described in terms of their chemical composition, and a survey revealed the presence of certain recurrent functional groups, specifically catechol, carboxylate, monoester-sulphate and -phosphate. This review will describe the binding modes of such functionalities to wet mineral/metal oxides surfaces. Such functionalities will be ranked based on their ability to bind to hydrophilic surfaces replacing surface-bound water (Langmuir adsorption constant) as well as other adsorbates (competitive adsorption). A plausible explanation for the propensity of the reviewed adhesive functionalities to bind to hydrous metal oxide surfaces will be given on the basis of the Hard and Soft Acids and Bases principle, Hofmeister effects and entropic considerations. From the in situ analysis of marine organism bioadhesives and adsorption studies of functionalities relevant to the bioadhesion process, insights can be gleaned for a knowledge-based innovation of antifouling strategies and the synthesis of strong, durable adhesive materials, which are suitable for implementation in wet environments.
Collapse
|
37
|
Schneider M, Fetsch C, Amin I, Jordan R, Luxenhofer R. Polypeptoid brushes by surface-initiated polymerization of N-substituted glycine N-carboxyanhydrides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6983-8. [PMID: 23663172 PMCID: PMC3932499 DOI: 10.1021/la4009174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polypeptoid brushes were synthesized by surface-initiated polymerization of N-substituted glycine N-carboxyanhydrides on self-assembled amine monolayers. Using the presented grafting-from approach, polypeptoid brush thicknesses of approximately 40 nm could be obtained as compared to previously reported brush thicknesses of 4 nm. Moreover, hydrophilic, hydrophobic and amphiphilic polymer brushes were realized which are expected to have valuable applications as nonfouling surfaces and as model or references systems for surface grafted polypeptides.
Collapse
Affiliation(s)
- Maximilian Schneider
- Professur für Makromolekulare Chemie, Department Chemie, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Corinna Fetsch
- Professur für Makromolekulare Chemie, Department Chemie, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
- Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Ihsan Amin
- Professur für Makromolekulare Chemie, Department Chemie, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Rainer Jordan
- Professur für Makromolekulare Chemie, Department Chemie, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Robert Luxenhofer
- Professur für Makromolekulare Chemie, Department Chemie, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
- Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
38
|
Luxenhofer R, Fetsch C, Grossmann A. Polypeptoids: A perfect match for molecular definition and macromolecular engineering? ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26687] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Robert Luxenhofer
- Functional Polymer Materials; Chair of Chemical Technology of Materials Synthesis; Department of Chemistry and Pharmacy, Julius-Maximilian, University of Würzburg; 97070 Würzburg Germany
| | - Corinna Fetsch
- Functional Polymer Materials; Chair of Chemical Technology of Materials Synthesis; Department of Chemistry and Pharmacy, Julius-Maximilian, University of Würzburg; 97070 Würzburg Germany
| | - Arlett Grossmann
- Professur für Makromolekulare Chemie; Department Chemie; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
39
|
Lu Q, Danner E, Waite JH, Israelachvili JN, Zeng H, Hwang DS. Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface 2013; 10:20120759. [PMID: 23173195 PMCID: PMC3565691 DOI: 10.1098/rsif.2012.0759] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/01/2012] [Indexed: 11/12/2022] Open
Abstract
Mussel foot proteins (mfps) have been investigated as a source of inspiration for the design of underwater coatings and adhesives. Recent analysis of various mfps by a surface forces apparatus (SFA) revealed that mfp-1 functions as a coating, whereas mfp-3 and mfp-5 resemble adhesive primers on mica surfaces. To further refine and elaborate the surface properties of mfps, the force-distance profiles of the interactions between thin mfp (i.e. mfp-1, mfp-3 or mfp-5) films and four different surface chemistries, namely mica, silicon dioxide, polymethylmethacrylate and polystyrene, were measured by an SFA. The results indicate that the adhesion was exquisitely dependent on the mfp tested, the substrate surface chemistry and the contact time. Such studies are essential for understanding the adhesive versatility of mfps and related/similar adhesion proteins, and for translating this versatility into a new generation of coatings and (including in vivo) adhesive materials.
Collapse
Affiliation(s)
- Qingye Lu
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 2V4
| | - Eric Danner
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - J. Herbert Waite
- Materials Research Laboratory, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jacob N. Israelachvili
- Department of Chemical Engineering, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hongbo Zeng
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 2V4
| | - Dong Soo Hwang
- POSTECH Ocean Science and Technology Institute, School of Environmental Science and Engineering, Pohang University of Science and Technology, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk 790784, Korea
| |
Collapse
|
40
|
Wieczorek S, Krause E, Hackbarth S, Röder B, Hirsch AKH, Börner HG. Exploiting Specific Interactions toward Next-Generation Polymeric Drug Transporters. J Am Chem Soc 2013; 135:1711-4. [DOI: 10.1021/ja311895z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sebastian Wieczorek
- Laboratory for Organic Synthesis of
Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse
10, D-13125 Berlin, Germany
| | - Steffen Hackbarth
- Department of Physics, Humboldt-Universität zu Berlin, Newton Strasse
15, D-12489 Berlin, Germany
| | - Beate Röder
- Department of Physics, Humboldt-Universität zu Berlin, Newton Strasse
15, D-12489 Berlin, Germany
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG
Groningen, The Netherlands
| | - Hans G. Börner
- Laboratory for Organic Synthesis of
Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| |
Collapse
|