1
|
Zotov V, Vijjamarri S, Mousavi SD, Du G. Poly(silyl ether)s as Degradable and Sustainable Materials: Synthesis and Applications. Molecules 2024; 29:1498. [PMID: 38611778 PMCID: PMC11013004 DOI: 10.3390/molecules29071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Polymer research is currently focused on sustainable and degradable polymers which are cheap, easy to synthesize, and environmentally friendly. Silicon-based polymers are thermally stable and can be utilized in various applications, such as columns and coatings. Poly(silyl ether)s (PSEs) are an interesting class of silicon-based polymers that are easily hydrolyzed in either acidic or basic conditions due to the presence of the silyl ether Si-O-C bond. Synthetically, these polymers can be formed in several different ways, and the most effective and environmentally friendly synthesis is dehydrogenative cross coupling, where the byproduct is H2 gas. These polymers have a lot of promise in the polymeric materials field due to their sustainability, thermal stability, hydrolytic degradability, and ease of synthesis, with nontoxic byproducts. In this review, we will summarize the synthetic approaches for the PSEs in the recent literature, followed by the properties and applications of these materials. A conclusion and perspective will be provided at the end.
Collapse
Affiliation(s)
| | | | | | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA; (V.Z.); (S.V.)
| |
Collapse
|
2
|
Kleybolte MM, Winnacker M. From Forest to Future: Synthesis of Sustainable High Molecular Weight Polyamides Using and Investigating the AROP of β-Pinene Lactam. Macromol Rapid Commun 2024; 45:e2300524. [PMID: 37903330 DOI: 10.1002/marc.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of β-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.
Collapse
Affiliation(s)
- Magdalena M Kleybolte
- Wacker-Chair of Macromolecular Chemistry, Technical University Munich, Lichtenbergstraße 4, Garching bei München, 85748, Deutschland
- Catalysis Research Center (CRC), Technical University Munich, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Deutschland
| | - Malte Winnacker
- Wacker-Chair of Macromolecular Chemistry, Technical University Munich, Lichtenbergstraße 4, Garching bei München, 85748, Deutschland
- Catalysis Research Center (CRC), Technical University Munich, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Deutschland
| |
Collapse
|
3
|
Sun H, Ibrahim T, Ritacco A, Durkee K. Biomass-Derived Degradable Polymers via Alternating Ring-Opening Metathesis Polymerization of Exo-Oxanorbornenes and Cyclic Enol Ethers. ACS Macro Lett 2023; 12:1642-1647. [PMID: 37983535 DOI: 10.1021/acsmacrolett.3c00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Degradable polymers made via ring-opening metathesis polymerization (ROMP) hold tremendous promise as eco-friendly materials. However, most of the ROMP monomers are derived from petroleum resources, which are typically considered less sustainable compared to biomass. Herein, we present a synthetic strategy to degradable polymers by harnessing alternating ROMP of biomass-based cyclic olefin monomers including exo-oxanorbornenes and cyclic enol ethers. A library of well-defined poly(enol ether)s with modular structures, tunable glass transition temperatures, and controlled molecular weights was achieved, demonstrating the versatility of this approach. Most importantly, the resulting copolymers exhibit high degrees of alternation, rendering their backbones fully degradable under acidic conditions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Angelo Ritacco
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Katie Durkee
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
4
|
Sun C, Ma X, Ni L, Ding M, Xia J, Zheng Y, Yu C, Wang B, Pan P. Hexagonal Phase Formation and Crystalline Structural Transition in Long-Spaced Aliphatic Polyesters with Side Groups. ACS Macro Lett 2023; 12:1324-1330. [PMID: 37713680 DOI: 10.1021/acsmacrolett.3c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Side substitution is an effective method for the chemical modification and functionalization of linear polyesters. The presence of side groups can have a profound effect on the crystalline structure and phase transition of semicrystalline polyesters. Herein, we synthesized the long-spaced polyesters with -OH and -CH3 side groups and various methylene segment lengths and studied the effects of the side groups on the crystal polymorph and phase transition of substituted polyesters. The substituted polyesters grow in the thermally stable phase (form I) at a higher temperature. However, the polyesters crystallize in a metastable hexagonal phase (form II) with trans chain conformation at a lower temperature. The metastable form II transforms into the more stable form I during long-time annealing or upon heating; this phase transition is accompanied by chain tilting and crystal lamellar thickening. This study has elucidated the critical role of side groups in the polymorphic crystallization and phase transition of linear polyesters.
Collapse
Affiliation(s)
- Chenxuan Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xuekuan Ma
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lingling Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengru Ding
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianfei Xia
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Bao Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
5
|
Jones GR, Wang HS, Parkatzidis K, Whitfield R, Truong NP, Anastasaki A. Reversed Controlled Polymerization (RCP): Depolymerization from Well-Defined Polymers to Monomers. J Am Chem Soc 2023; 145:9898-9915. [PMID: 37127289 PMCID: PMC10176471 DOI: 10.1021/jacs.3c00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Controlled polymerization methods are well-established synthetic protocols for the design and preparation of polymeric materials with a high degree of precision over molar mass and architecture. Exciting recent work has shown that the high end-group fidelity and/or functionality inherent in these techniques can enable new routes to depolymerization under relatively mild conditions. Converting polymers back to pure monomers by depolymerization is a potential solution to the environmental and ecological concerns associated with the ultimate fate of polymers. This perspective focuses on the emerging field of depolymerization from polymers synthesized by controlled polymerizations including radical, ionic, and metathesis polymerizations. We provide a critical review of current literature categorized according to polymerization technique and explore numerous concepts and ideas which could be implemented to further enhance depolymerization including lower temperature systems, catalytic depolymerization, increasing polymer scope, and controlled depolymerization.
Collapse
Affiliation(s)
- Glen R Jones
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Hyun Suk Wang
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Biswas S, Das A. A Versatile Step-Growth Polymerization Route to Functional Polyesters from an Activated Diester Monomer. Chemistry 2023; 29:e202203849. [PMID: 36511092 DOI: 10.1002/chem.202203849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
This work describes a versatile and efficient condensation polymerization route to aliphatic polyesters by organo-catalyzed (4-dimethylaminopyridine) transesterification reactions between an activated pentafluorophenyl-diester of adipic acid and structurally different diols. By introducing "monofunctional impurity" or "stoichiometric imbalance," this methodology can afford well-defined end-functionalized polyesters with predictable molecular weights and narrow dispersity under mild conditions without any necessity for the removal of the byproducts to accelerate the polymerization reaction, which remains a major challenge in conventional polyester synthesis with non-activated diesters. Wide substrate scope with structurally different monomers and the synthesis of block copolymers by chain extension following either ring-opening polymerization or controlled radical polymerization have been successfully demonstrated. Some of the polyesters synthesized by this newly introduced approach show high thermal stability, crystallinity, and enzymatic degradation in aqueous environments.
Collapse
Affiliation(s)
- Subhendu Biswas
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
7
|
Lin H, Chen Y, Gao XR, Xu L, Lei J, Zhong GJ, Li ZM. Transparent, Heat-Resistant, Ductile, and Self-Reinforced Polylactide through Simultaneous Formation of Nanocrystals and an Oriented Amorphous Phase. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xin-Rui Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Sutherland DJ, Rather AM, Sabino RM, Vallabhuneni S, Wang W, Popat KC, Kota AK. Hemp-Based Sustainable Slippery Surfaces: Icephobic and Antithrombotic Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:2397-2403. [PMID: 38162324 PMCID: PMC10756499 DOI: 10.1021/acssuschemeng.2c06233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
With the passage of the 2018 Farm Bill that removed hemp from the Controlled Substances Act altogether, production of hemp is experiencing a renaissance. Building on this revival and re-emergence of hemp, we designed and fabricated hemp-based sustainable and robust slippery surfaces by coating hemp paper with beeswax and subsequently infusing it with hemp oil. A wide variety of aqueous liquids and beverages easily slide on our hemp-based sustainable slippery surfaces, without leaving a trace. We also fabricated hemp-based sustainable slippery surfaces using different textured metals. Our hemp-based sustainable slippery metal surfaces display good icephobic and antithrombotic properties. With these attributes, we envision that our hemp-based sustainable slippery surfaces will pave the path to more safe, non-toxic, and biodegradable or recyclable slippery surfaces for applications in food packaging, anti-icing or de-icing coatings, and antithrombotic medical devices.
Collapse
Affiliation(s)
- Daniel J Sutherland
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Adil M Rather
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, United States
| | - Roberta M Sabino
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80524, United States; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge 02139, United States
| | - Sravanthi Vallabhuneni
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville 37996, United States
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524, United States; School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Arun K Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524, United States; Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, United States
| |
Collapse
|
9
|
Plummer CM, Li L, Chen Y. Ring-Opening Polymerization for the Goal of Chemically Recyclable Polymers. Macromolecules 2023; 56:731-750. [PMID: 36818576 PMCID: PMC9933900 DOI: 10.1021/acs.macromol.2c01694] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/14/2022] [Indexed: 02/08/2023]
Abstract
A crucial modern dilemma relates to the ecological crisis created by excess plastic waste production. An emerging technology for reducing plastic waste is the production of "chemically recyclable" polymers. These polymers can be efficiently synthesized through ring-opening polymerization (ROP/ROMP) and later recycled to pristine monomer by ring-closing depolymerization, in an efficient circular-type system. This Perspective aims to explore the chemistry involved in the preparation of these monomer/polymer systems, while also providing an overview of the challenges involved, including future directions.
Collapse
Affiliation(s)
- Christopher M. Plummer
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM), Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland,
| | - Le Li
- Key
Laboratory for Polymeric Composite and Functional Materials of Ministry
of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China,School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yongming Chen
- Key
Laboratory for Polymeric Composite and Functional Materials of Ministry
of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China,School
of Materials Science and Engineering, Sun
Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
10
|
Jiang Y, Zhu H, Chen J, Liao S. Organocatalytic [2 + 2] Photopolymerization under Visible Light: Accessing Sustainable Polymers from Cinnamic Acids. Macromol Rapid Commun 2023; 44:e2200702. [PMID: 36404649 DOI: 10.1002/marc.202200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/30/2022] [Indexed: 11/22/2022]
Abstract
Herein, the successful development of a metal-free, solution [2 + 2] photopolymerization of natural cinnamic acid-derived bisolefinic monomers is reported, which is enabled by a strategy based on direct triplet state access via energy transfer catalysis. 2,2'-Methoxythioxanthone has been identified as an effective organic photocatalyst for the [2 + 2] photopolymerization in solution, which can be excited by visible light and activate the biscinnamate monomers via triplet energy transfer. This method features its metal-free conditions, visible light utilization, solution polymerization, and abundant biomass-based feedstock, as well as processable polymer products, which is different from the rigid, insoluble products obtained from solid-state photopolymerization. This solution polymerization method also shows a good compatibility to monomer structures; cinnamic acid-derived bisolefinic monomers with different linkers, including diamine, natural diol, and bisphenol, can all readily undergo [2 + 2] photopolymerization, and be transformed into colorless, sustainable polymers.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hui Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianxu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory for Molecular Science, Beijing, 100190, China
| |
Collapse
|
11
|
Weinland DH, van der Maas K, Wang Y, Bottega Pergher B, van Putten RJ, Wang B, Gruter GJM. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis. Nat Commun 2022; 13:7370. [PMID: 36450717 PMCID: PMC9712608 DOI: 10.1038/s41467-022-34840-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Shifting away from fossil- to biobased feedstocks is an important step towards a more sustainable materials sector. Isosorbide is a rigid, glucose-derived secondary diol, which has been shown to impart favourable material properties, but its low reactivity has hampered its use in polyester synthesis. Here we report a simple, yet innovative, synthesis strategy to overcome the inherently low reactivity of secondary diols in polyester synthesis. It enables the synthesis of fully biobased polyesters from secondary diols, such as poly(isosorbide succinate), with very high molecular weights (Mn up to 42.8 kg/mol). The addition of an aryl alcohol to diol and diacid monomers was found to lead to the in-situ formation of reactive aryl esters during esterification, which facilitated chain growth during polycondensation to obtain high molecular weight polyesters. This synthesis method is broadly applicable for aliphatic polyesters based on isosorbide and isomannide and could be an important step towards the more general commercial adaption of fully biobased, rigid polyesters.
Collapse
Affiliation(s)
- Daniel H. Weinland
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Kevin van der Maas
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Yue Wang
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Bruno Bottega Pergher
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Robert-Jan van Putten
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Bing Wang
- grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Gert-Jan M. Gruter
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Liu H, You F, Hu X, Huo Y, Shi X. Rare-Earth Metal Complexes Bearing Unsymmetrical Diarylamido Ligands for Ring-Opening Polymerization of rac-Lactide. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Liu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Fen You
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Xiang Hu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Yanchen Huo
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Xiaochao Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
13
|
He C, Dong J, Xu C, Pan X. N-Coordinated Organoboron in Polymer Synthesis and Material Science. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Rodríguez-deLeón E, Bah M, Báez JE, Hernández-Sierra MT, Moreno KJ, Nuñez-Vilchis A, Bonilla-Cruz J, Shea KJ. Sustainable xanthophylls-containing poly(ε-caprolactone)s: synthesis, characterization, and use in green lubricants. RSC Adv 2022; 12:30851-30859. [PMID: 36349044 PMCID: PMC9609694 DOI: 10.1039/d2ra04502h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Three xanthophylls [(3R,3'R,6'R)-lutein (1), (3R,3'S)-zeaxanthin (2), and (3R,3'S)-astaxanthin (3)] were used for the first time as initiators in the ring-opening polymerization (ROP) of ε-caprolactone (CL) catalyzed by tin(ii) 2-ethylhexanoate [Sn(Oct)2] for the synthesis of novel sustainable xanthophyll-containing poly(ε-caprolactone)s (xanthophylls-PCL). The obtained polyesters were characterized by 1H and 13C NMR, FT-IR, DSC, SEC, and MALDI-TOF MS, and their use as additives in green lubricants was evaluated using a sliding friction test under boundary conditions. Xanthophylls-PCL were obtained with good conversions and with molecular weights determined by SEC to be between 2500 and 10 500 Da. The thermal properties of xanthophyll-polyesters showed a crystalline domain, detected by DSC. Lastly, the green lubricant activity of these polymers was evaluated and the results showed that xanthophylls-PCL could be employed as additives for biodegradable lubricant applications since they have better tribological behavior than current additives, which demonstrates their potential as future commercial materials with interesting eco-friendly properties for diverse applications.
Collapse
Affiliation(s)
- Eloy Rodríguez-deLeón
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - Moustapha Bah
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José E Báez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato (UG), Campus Guanajuato Noria Alta S/N Guanajuato 36050 Mexico
| | - María T Hernández-Sierra
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Karla J Moreno
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Alejandro Nuñez-Vilchis
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Monterrey) Av. Alianza Norte 202, PIIT, Autopista Monterrey-Aeropuerto Km 10 Apodaca 66628 N.L. Mexico
| | - Kenneth J Shea
- Deparment of Chemistry, University of California, Irvine, (UCI) Irvine 92697-2025 California USA
| |
Collapse
|
15
|
Wu YC, Fan HZ, Zhang W, Wang MY, Cai Z, Zhu JB. Biobased Bifunctional Monomers toward Functionalizable Polycarbonates and Poly(cyclic olefin)s with Tunable Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan-Chen Wu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Wei Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Meng-Yuan Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| |
Collapse
|
16
|
Preparation of Biocomposites with Natural Reinforcements: The Effect of Native Starch and Sugarcane Bagasse Fibers. Molecules 2022; 27:molecules27196423. [PMID: 36234960 PMCID: PMC9571990 DOI: 10.3390/molecules27196423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Biocomposites were prepared from poly(lactic acid) and two natural reinforcements, a native starch and sugarcane bagasse fibers. The strength of interfacial adhesion was estimated by model calculations, and local deformation processes were followed by acoustic emission testing. The results showed that the two additives influence properties differently. The strength of interfacial adhesion and thus the extent of reinforcement are similar because of similarities in chemical structure, the large number of OH groups in both reinforcements. Relatively strong interfacial adhesion develops between the components, which renders coupling inefficient. Dissimilar particle characteristics influence local deformation processes considerably. The smaller particle size of starch results in larger debonding stress and thus larger composite strength. The fracture of the bagasse fibers leads to larger energy consumption and to increased impact resistance. Although the environmental benefit of the prepared biocomposites is similar, the overall performance of the bagasse fiber reinforced PLA composites is better than that offered by the PLA/starch composites.
Collapse
|
17
|
Kato K, Sudprasert P, Saito H, Shimomura T, Ogino K, Kanehashi S. Novel UV-curable Bio-based Polymers Derived from Non-edible Phenolic Biomass. CHEM LETT 2022. [DOI: 10.1246/cl.220199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kan Kato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganeishi, Tokyo 184-8588, Japan
| | - Pirada Sudprasert
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganeishi, Tokyo 184-8588, Japan
| | - Hiromu Saito
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganeishi, Tokyo 184-8588, Japan
| | - Takeshi Shimomura
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganeishi, Tokyo 184-8588, Japan
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganeishi, Tokyo 184-8588, Japan
| | - Shinji Kanehashi
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganeishi, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Integrated Process for Producing Glycolic Acid from Carbon Dioxide Capture Coupling Green Hydrogen. Processes (Basel) 2022. [DOI: 10.3390/pr10081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel process path is proposed to produce glycolic acid (GA) from CO2 as the feedstock, including CO2 capture, power-to-hydrogen, CO2 hydrogenation to methanol, methanol oxidation to formaldehyde, and formaldehyde carbonylation units. The bottlenecks are discussed from the perspectives of carbon utilization, CO2 emissions, total site energy integration, and techno-economic analysis. The carbon utilization ratio of the process is 82.5%, and the CO2 capture unit has the largest percentage of discharge in carbon utilization. Among the indirect emissions of each unit, the CO2 hydrogenation to methanol has the largest proportion of indirect carbon emissions, followed by the formaldehyde carbonylation to glycolic acid and the CO2 capture. After total site energy integration, the utility consumption is 1102.89 MW for cold utility, 409.67 MW for heat utility, and 45.98 MW for power. The CO2 hydrogenation to methanol makes the largest contribution to utility consumption due to the multi-stage compression of raw hydrogen and the distillation of crude methanol. The unit production cost is 834.75 $/t-GA; CO2 hydrogenation to methanol accounts for the largest proportion, at 70.8% of the total production cost. The total production cost of the unit depends on the price of hydrogen due to the currently high renewable energy cost. This study focuses on the capture and conversion of CO2 emitted from coal-fired power plants, which provides a path to a feasible low-carbon and clean use of CO2 resources.
Collapse
|
19
|
Bio-based poly(butylene furandicarboxylate-co-butylene 2,5-thiophenedicarboxylate): synthesis, thermal properties, crystallization properties and mechanical properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Fadlallah S, Carboué Q, Mouterde LMM, Kayishaer A, Werghi Y, Peru AAM, Lopez M, Allais F. Synthesis and Enzymatic Degradation of Sustainable Levoglucosenone-Derived Copolyesters with Renewable Citronellol Side Chains. Polymers (Basel) 2022; 14:polym14102082. [PMID: 35631964 PMCID: PMC9146931 DOI: 10.3390/polym14102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a renewable five-membered lactone containing citronellol (HBO-citro) was synthesized from levoglucosenone (LGO). A one-pot two-step pathway was then developed to produce a mixture of 5- and 6-membered Lactol-citro molecules (5ML and 6ML, respectively) from HBO-citro. Proton nuclear magnetic resonance (1H NMR) of a mixture of 5ML and 6ML at varying temperatures showed that the chemical shifts of the hydroxyls, as well as the 5ML:6ML ratio, are temperature-dependent. Indeed, a high temperature, such as 65 °C, led to an up-field shielding of the hydroxyl protons as well as a drop in the 5ML:6ML ratio. The monomers 5ML and 6ML were then engaged in polycondensation reactions involving diacyl chlorides. Renewable copolyesters with low glass transition temperatures (as low as −67 °C) and cross-linked citronellol chains were prepared. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG). A higher degradation rate was found for the polymers prepared using Lactol-citro molecules, compared to those obtained by the polycondensation reactions of diacyl chlorides with Triol-citro—a monomer recently obtained by the selective reduction of HBO-citro.
Collapse
|
21
|
Kleybolte MM, Zainer L, Liu JY, Stockmann PN, Winnacker M. (+)‐Limonene‐Lactam: Synthesis of a Sustainable Monomer for Ring‐Opening Polymerization to Novel, Biobased Polyamides. Macromol Rapid Commun 2022; 43:e2200185. [DOI: 10.1002/marc.202200185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Magdalena M. Kleybolte
- WACKER‐Chair of Macromolecular Chemistry Technical University of Munich Lichtenbergstraße 4 and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| | - Laura Zainer
- Fraunhofer IGB Schulgasse 11a 94315 Straubing Germany
| | - Jin Y. Liu
- WACKER‐Institute for Silicon Chemistry Lichtenbergstraße 4 85748 Garching bei München Germany
| | | | - Malte Winnacker
- WACKER‐Chair of Macromolecular Chemistry Technical University of Munich Lichtenbergstraße 4 and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| |
Collapse
|
22
|
Funahashi Y, Yoshinaka Y, Takada K, Kaneko T. Self-Standing Nanomembranes of Super-Tough Plastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5128-5134. [PMID: 34918512 DOI: 10.1021/acs.langmuir.1c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomembranes are effective coating materials for protecting substrates from external stimuli; however, they are generally not self-standing owing to their low mechanical toughness. Self-standing nanomembranes would be an innovative development in the field of nanotechnology including miniaturized devices. In this study, self-standing nanomembranes were developed by spin-casting supertough polyamides over dimethylformamide solution. The polyamides were synthesized by the polycondensation of two derivatives of 4,4'-diamino-α-truxillic acid (4ATA) with slightly bent diphenylcyclobutane in the core. Mechanical evaluation of the 4ATA polyamides having an appropriate composition of aliphatic diacids revealed a high strain-energy density of 231 MJ m-3 at its maximum, which is significantly tougher than spider silk. The nanocoats with a thickness of several hundred nanometers showing interference fringes were able to be peeled off the glass substrate without breaking, owing to its ultrahigh toughness. The self-standing nanomembrane would be applied to flexible devices in the future.
Collapse
Affiliation(s)
- Yasuyoshi Funahashi
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
| | - Yohei Yoshinaka
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
- The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Kenji Takada
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
| |
Collapse
|
23
|
Marxsen SF, Song D, Zhang X, Flores I, Fernández J, Sarasua JR, Müller AJ, Alamo RG. Crystallization Rate Minima of Poly(ethylene brassylate) at Temperatures Transitioning between Quantized Crystal Thicknesses. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie F. Marxsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| | - Daokun Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| | - Xiaoshi Zhang
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| | - Irma Flores
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Jorge Fernández
- POLIMERBIO SL, Paseo Miramón 170, Planta 3, Lab. B05, 20014 Donostia-San Sebastián, Spain
| | - José Ramón Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida 32310, United States
| |
Collapse
|
24
|
Aryloxy ‘biometal’ complexes as efficient catalysts for the synthesis of poly(butylene adipate terephthalate). MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
The Use of Branching Agents in the Synthesis of PBAT. Polymers (Basel) 2022; 14:polym14091720. [PMID: 35566889 PMCID: PMC9100140 DOI: 10.3390/polym14091720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Biodegradable polyesters represent an advanced alternative to polyolefin plastics in various applications. Polybutylene adipate terephthalate (PBAT) can compete with polyolefins in terms of their mechanical characteristics and melt processing conditions. The properties of PBAT depend on the molecular weight, dispersity, and architecture of the copolymer. Long-chain branching (LCB) of the PBAT backbone is an efficient method for the improvement of the copolymer characteristics. In the present work, we studied branching agents (BAs) 1–7 of different structures in the two-stage polycondensation of 1,4-butanediol, dimethyl terephthalate, and adipic acid and investigated the composition and melt rheology of the copolymers. According to the results of the research, 1,1,1-tris(hydroxymethyl)ethane 2 and 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid 5 outperformed glycerol 1 as BAs in terms of shear thinning behavior and viscoelasticity.
Collapse
|
26
|
Adibi A, Valdesueiro D, Mok J, Behabtu N, Lenges C, Simon L, Mekonnen TH. Sustainable barrier paper coating based on alpha-1,3 glucan and natural rubber latex. Carbohydr Polym 2022; 282:119121. [DOI: 10.1016/j.carbpol.2022.119121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/28/2023]
|
27
|
Huang J, Olsén P, Svensson Grape E, Inge AK, Odelius K. Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jin Huang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Peter Olsén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
28
|
Kayishaer A, Fadlallah S, Mouterde LMM, Peru AAM, Werghi Y, Brunois F, Carboué Q, Lopez M, Allais F. Unprecedented Biodegradable Cellulose-Derived Polyesters with Pendant Citronellol Moieties: From Monomer Synthesis to Enzymatic Degradation. Molecules 2021; 26:7672. [PMID: 34946753 PMCID: PMC8707784 DOI: 10.3390/molecules26247672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,β-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as -42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme.
Collapse
Affiliation(s)
| | - Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (A.K.); (A.A.M.P.); (Y.W.); (F.B.); (Q.C.); (M.L.)
| | - Louis M. M. Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (A.K.); (A.A.M.P.); (Y.W.); (F.B.); (Q.C.); (M.L.)
| | | | | | | | | | | | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (A.K.); (A.A.M.P.); (Y.W.); (F.B.); (Q.C.); (M.L.)
| |
Collapse
|
29
|
McCutcheon CJ, Zhao B, Ellison CJ, Bates FS. Crazing and Toughness in Diblock Copolymer-Modified Semicrystalline Poly( l-lactide). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Charles J. McCutcheon
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Boran Zhao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Moreno A, Morsali M, Sipponen MH. Catalyst-Free Synthesis of Lignin Vitrimers with Tunable Mechanical Properties: Circular Polymers and Recoverable Adhesives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57952-57961. [PMID: 34813290 PMCID: PMC8662642 DOI: 10.1021/acsami.1c17412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 06/04/2023]
Abstract
Biobased circular materials are alternatives to fossil-based engineering plastics, but simple and material-efficient synthetic routes are needed for industrial scalability. Here, a series of lignin-based vitrimers built on dynamic acetal covalent networks with a gel content exceeding 95% were successfully prepared in a one-pot, thermally activated, and catalyst-free "click" addition of softwood kraft lignin (SKL) to poly(ethylene glycol) divinyl ether (PDV). The variation of the content of lignin from 28 to 50 wt % was used to demonstrate that the mechanical properties of the vitrimers can be widely tuned in a facile way. The lowest lignin content (28 wt %) showed a tensile strength of 3.3 MPa with 35% elongation at break, while the corresponding values were 50.9 MPa and 1.0% for the vitrimer containing 50 wt % of lignin. These lignin-based vitrimers also exhibited excellent performance as recoverable adhesives for different substrates such as aluminum and wood, with a lap shear test strength of 6.0 and 2.6 MPa, respectively. In addition, recyclability of the vitrimer adhesives showed preservation of the adhesion performance exceeding 90%, indicating a promising potential for their use in sustainable circular materials.
Collapse
Affiliation(s)
| | | | - Mika H. Sipponen
- Department of Materials and Environmental
Chemistry, Stockholm University, Svante Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Payne J, Jones MD. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. CHEMSUSCHEM 2021; 14:4041-4070. [PMID: 33826253 PMCID: PMC8518041 DOI: 10.1002/cssc.202100400] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Whilst plastics have played an instrumental role in human development, growing environmental concerns have led to increasing public scrutiny and demands for outright bans. This has stimulated considerable research into renewable alternatives, and more recently, the development of alternative waste management strategies. Herein, the aim was to highlight recent developments in the catalytic chemical recycling of two commercial polyesters, namely poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET). The concept of chemical recycling is first introduced, and associated opportunities/challenges are discussed within the context of the governing depolymerisation thermodynamics. Chemical recycling methods for PLA and PET are then discussed, with a particular focus on upcycling and the use of metal-based catalysts. Finally, the attention shifts to the emergence of new materials with the potential to modernise the plastics economy. Emerging opportunities and challenges are discussed within the context of industrial feasibility.
Collapse
Affiliation(s)
- Jack Payne
- Centre for Sustainable and Circular TechnologiesUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Matthew D. Jones
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| |
Collapse
|
32
|
Yang J, Dong J, Wang Y, Zhang X, Liu B, Shi H, He L. Phase Transition and Crystallization of Bio-based Comb-like Polymers Based on Renewable Castor Oil-Derived Epoxides and CO 2. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Yang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jincheng Dong
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yangpeng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiao Zhang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Haifeng Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lirong He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
33
|
Ghasemi MH, Neekzad N, Ajdari FB, Kowsari E, Ramakrishna S. Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43074-43101. [PMID: 34146328 DOI: 10.1007/s11356-021-14925-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Since plastic waste pollution is a severe environmental concern in modern life, the demand for recycling poly(ethylene terephthalate) (PET) has increased due to its versatile applications. Taking advantage of plastic recycling methods creates the chances of minimizing overall crude oil-based materials consumption, and as a result, greenhouse gasses, specifically CO2, will be decreased. Although many review articles have been published on plastic recycling methods from different aspects, a few review articles exist to investigate the organic reaction mechanism in plastic recycling. This review aims to describe other processes for recycling bottle waste of PET, considering the reaction mechanism. Understanding the reaction mechanism offers practical solutions toward protecting the environment against disadvantageous outgrowths rising from PET wastes. PET recycling aims to transform into a monomer/oligomer to produce new materials from plastic wastes. It is an application in various fields, including the food and beverage industry, packaging, and textile applications, to protect the environment from contamination and introduce a green demand for the near future. In this review, the chemical glycolysis process as an outstanding recycling technique for PET is also discussed, emphasizing the catalysts' performance, reaction conditions and methods, degradation agents, the kinetics of reactions, and reprocessing products. In general, a correct understanding of the PET recycling reaction mechanism leads to making the right decisions in waste management.
Collapse
Affiliation(s)
- Mohammad Hadi Ghasemi
- Applied Chemistry Research Group, ACECR-Tehran Organization, PO Box 13145-186, Tehran, Iran
| | - Nariman Neekzad
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran
| | | | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
34
|
Gu L, Macosko CW. Evaluating
PE
/
PLA
interfacial tension using ternary immiscible polymer blends. J Appl Polym Sci 2021. [DOI: 10.1002/app.50623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangliang Gu
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
- Wanhua Chemical Group Yantai China
| | - Christopher W. Macosko
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
35
|
Fuoco T. Degradation in Order: Simple and Versatile One‐Pot Combination of Two Macromolecular Concepts to Encode Diverse and Spatially Regulated Degradability Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Teknikringen, 56–58 100-44 Stockholm Sweden
| |
Collapse
|
36
|
Fuoco T. Degradation in Order: Simple and Versatile One-Pot Combination of Two Macromolecular Concepts to Encode Diverse and Spatially Regulated Degradability Functions. Angew Chem Int Ed Engl 2021; 60:15482-15489. [PMID: 33951273 PMCID: PMC8361945 DOI: 10.1002/anie.202103143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/20/2023]
Abstract
The clever one-pot combination of two macromolecular concepts, ring-opening polymerization (ROP) and step-growth polymerization (SGP), is demonstrated to be a simple, yet powerful tool to design a library of sequence-controlled polymers with diverse and spatially regulated degradability functions. ROP and SGP occur sequentially at room temperature when the organocatalytic conditions are switched from basic to acidic, and each allows the encoding of specific degradable bonds. ROP controls the sequence length and position of the degradability functions, while SGP between the complementary vinyl ether and hydroxyl chain-ends enables the formation of acetal bonds and high-molar-mass copolymers. The result is the rational combination of cleavable bonds prone to either bulk or surface erosion within the same macromolecule. The strategy is versatile and offers higher chemical diversity and level of control over the primary structure than current aliphatic polyesters or polycarbonates, while being simple, effective, and atom-economical and having potential for scalability.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyTeknikringen, 56–58100-44StockholmSweden
| |
Collapse
|
37
|
Amitrano A, Mahajan JS, Korley LTJ, Epps TH. Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed via molecular docking simulations. RSC Adv 2021; 11:22149-22158. [PMID: 35480830 PMCID: PMC9034231 DOI: 10.1039/d1ra02170b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023] Open
Abstract
Lignin-derivable bisphenols are potential alternatives to bisphenol A (BPA), a suspected endocrine disruptor; however, a greater understanding of structure-activity relationships (SARs) associated with such lignin-derivable building blocks is necessary to move replacement efforts forward. This study focuses on the prediction of bisphenol estrogenic activity (EA) to inform the design of potentially safer BPA alternatives. To achieve this goal, the binding affinities to estrogen receptor alpha (ERα) of lignin-derivable bisphenols were calculated via molecular docking simulations and correlated to median effective concentration (EC50) values using an empirical correlation curve created from known EC50 values and binding affinities of commercial (bis)phenols. Based on the correlation curve, lignin-derivable bisphenols with binding affinities weaker than ∼-6.0 kcal mol-1 were expected to exhibit no EA, and further analysis suggested that having two methoxy groups on an aromatic ring of the bio-derivable bisphenol was largely responsible for the reduction in binding to ERα. Such dimethoxy aromatics are readily sourced from the depolymerization of hardwood biomass. Additionally, bulkier substituents on the bridging carbon of lignin-bisphenols, like diethyl or dimethoxy, were shown to weaken binding to ERα. And, as the bio-derivable aromatics maintain major structural similarities to BPA, the resultant polymeric materials should possess comparable/equivalent thermal (e.g., glass transition temperatures, thermal decomposition temperatures) and mechanical (e.g., tensile strength, modulus) properties to those of polymers derived from BPA. Hence, the SARs established in this work can facilitate the development of sustainable polymers that maintain the performance of existing BPA-based materials while simultaneously reducing estrogenic potential.
Collapse
Affiliation(s)
- Alice Amitrano
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| | - Jignesh S Mahajan
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
| | - LaShanda T J Korley
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark Delaware 19716 USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
38
|
Montanari C, Ogawa Y, Olsén P, Berglund LA. High Performance, Fully Bio-Based, and Optically Transparent Wood Biocomposites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100559. [PMID: 34194952 PMCID: PMC8224414 DOI: 10.1002/advs.202100559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 05/05/2023]
Abstract
The sustainable development of engineering biocomposites has been limited due to a lack of bio-based monomers combining favorable processing with high performance. Here, the authors report a novel and fully bio-based transparent wood biocomposite based on green synthesis of a new limonene acrylate monomer from renewable resources. The monomer is impregnated and readily polymerized in a delignified, succinylated wood substrate to form optically transparent biocomposites. The chemical structure of the limonene acrylate enables diffusion into the cell wall, and the polymer phase is both refractive index-matched and covalently linked to the wood substrate. This results in nanostructured biocomposites combining an excellent optical transmittance of 90% at 1.2 mm thickness and a remarkably low haze of 30%, with a high mechanical performance (strength 174 MPa, Young's modulus 17 GPa). Bio-based transparent wood holds great potential towards the development of sustainable wood nanotechnologies for structural applications, where transparency and mechanical performance are combined.
Collapse
Affiliation(s)
- Céline Montanari
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Yu Ogawa
- Université Grenoble AlpesCNRSCERMAVGrenoble38000France
| | - Peter Olsén
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Lars A. Berglund
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| |
Collapse
|
39
|
Marxsen SF, Häußler M, Mecking S, Alamo RG. Crystallization of Long-Spaced Precision Polyacetals III: Polymorphism and Crystallization Kinetics of Even Polyacetals Spaced by 6 to 26 Methylenes. Polymers (Basel) 2021; 13:1560. [PMID: 34067999 PMCID: PMC8152236 DOI: 10.3390/polym13101560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper we extend the study of polymorphism and crystallization kinetics of aliphatic polyacetals to include shorter (PA-6) and longer (PA-26) methylene lengths in a series of even long-spaced systems. On a deep quenching to 0 °C, the longest even polyacetals, PA-18 and PA-26, develop mesomorphic-like disordered structures which, on heating, transform progressively to hexagonal, Form I, and Form II crystallites. Shorter polyacetals, such as PA-6 and PA-12 cannot bypass the formation of Form I. In these systems a mixture of this form and disordered structures develops even under fast deep quenching. A prediction from melting points that Form II will not develop in polyacetals with eight or fewer methylene groups between consecutive acetals was further corroborated with data for PA-6. The temperature coefficient of the overall crystallization rate of the two highest temperature polymorphs, Form I and Form II, was analyzed from the differential scanning calorimetry (DSC) peak crystallization times. The crystallization rate of Form II shows a deep inversion at temperatures approaching the polymorphic transition region from above. The new data on PA-26 confirm that at the minimum rate the heat of fusion is so low that crystallization becomes basically extinguished. The rate inversion and dramatic drop in the heat of fusion irrespective of crystallization time are associated with a competition in nucleation between Forms I and II. The latter is due to large differences in nucleation barriers between these two phases. As PA-6 does not develop Form II, the rate data of this polyacetal display a continuous temperature gradient. The data of the extended polyacetal series demonstrate the important role of methylene sequence length on polymorphism and crystallization kinetics.
Collapse
Affiliation(s)
- Stephanie F. Marxsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St, Tallahassee, FL 32310, USA;
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; (M.H.); (S.M.)
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; (M.H.); (S.M.)
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St, Tallahassee, FL 32310, USA;
| |
Collapse
|
40
|
Kleybolte MM, Winnacker M. β-Pinene-Derived Polyesteramides and Their Blends: Advances in Their Upscaling, Processing, and Characterization. Macromol Rapid Commun 2021; 42:e2100065. [PMID: 33960575 DOI: 10.1002/marc.202100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Indexed: 11/06/2022]
Abstract
Terpene-based polyesteramides (PEAs) are sustainable and have a variety of favorable properties, making them suitable for a wide range of applications and for contribution to a much more sustainable polymer industry. This work focuses on the synthesis of the lactam from β-pinene and its copolymerization with ε-caprolactone. An important step in synthesizing β-pinene lactam is the oxidation of β-pinene to nopinone. To make the established oxidative cleavage more sustainable and efficient, the required amounts of Al2 O3 and KMnO4 are significantly reduced by using H2 SO4 as a catalyst. For the Beckmann rearrangement various catalysts and co-reagents are screened. Among these, the reaction with tosyl chloride is found the most favorable. Subsequently, the chain lengths of the β-pinene-based PEAs are remarkably increased from 6000 g mol-1 to more than 25 100 g mol-1 by fine-tuning reaction time, temperature, and decreasing catalyst and initiator concentrations. Also, different catalysts for polymerization are tested. The resulting material shows melting temperatures of ≈55 °C and decomposition temperatures of 354 °C or higher. Processing via melt pressing or casting turned out to be quite difficult due to the polymer's brittleness. Furthermore, regarding biomedical applications, blends of PEA with polyethylene glycol were successfully prepared, yielding a more hydrophilic material.
Collapse
Affiliation(s)
- Magdalena Maria Kleybolte
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching bei München, 85747, Germany.,Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Germany
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching bei München, 85747, Germany.,Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Germany
| |
Collapse
|
41
|
Gallos A, Crowet JM, Michely L, Raghuwanshi VS, Mention MM, Langlois V, Dauchez M, Garnier G, Allais F. Blending Ferulic Acid Derivatives and Polylactic Acid into Biobased and Transparent Elastomeric Materials with Shape Memory Properties. Biomacromolecules 2021; 22:1568-1578. [PMID: 33689317 DOI: 10.1021/acs.biomac.1c00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thanks to its remarkable properties such as sustainability, compostability, biocompatibility, and transparency, poly-l-lactic acid (PLA) would be a suitable replacement for oil-based polymers should it not suffer from low flexibility and poor toughness, restricting its use to rigid plastic by excluding elastomeric applications. Indeed, there are few fully biobased and biodegradable transparent elastomers-PLA-based or not-currently available. In the last decades, many strategies have been investigated to soften PLA and enhance its toughness and elongation at break by using plasticizers, oligomers, or polymers. This work shows how a ferulic acid-derived biobased additive (BDF) blends with a common rigid and brittle commercial grade of polylactic acid to provide a transparent non-covalently cross-linked elastomeric material with shape memory behavior exhibiting an elongation at break of 434% (vs 6% for pristine PLA). Through a structure-activity relationship analysis conducted with BDF analogues and a modeling study, we propose a mechanism based on π-π stacking to account for the elastomeric properties. Blending ferulic acid derivatives with polylactic acid generates a new family of fully sustainable transparent elastomeric materials with functional properties such as shape memory.
Collapse
Affiliation(s)
- Antoine Gallos
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51100, France
| | - Jean-Marc Crowet
- CNRS UMR 7369 MEDyC, Chaire MAgICS, Université de Reims Champagne-Ardenne, Reims Cedex 2 51687, France
| | - Laurent Michely
- Systèmes Polymères Complexes, Université Paris Est Créteil (UPEC), 2-8 rue Henri Dunant, Thiais 94320, France
| | - Vikram S Raghuwanshi
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton 3800, Australia
| | - Matthieu M Mention
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51100, France
| | - Valérie Langlois
- Systèmes Polymères Complexes, Université Paris Est Créteil (UPEC), 2-8 rue Henri Dunant, Thiais 94320, France
| | - Manuel Dauchez
- CNRS UMR 7369 MEDyC, Chaire MAgICS, Université de Reims Champagne-Ardenne, Reims Cedex 2 51687, France
| | - Gil Garnier
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51100, France.,BioPRIA, Department of Chemical Engineering, Monash University, Clayton 3800, Australia
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51100, France.,BioPRIA, Department of Chemical Engineering, Monash University, Clayton 3800, Australia
| |
Collapse
|
42
|
Verdugo P, Lligadas G, Ronda JC, Galià M, Cádiz V. Bio-based ABA triblock copolymers with central degradable moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Phosphasalalen Rare-Earth Complexes for the Polymerization of rac-Lactide and rac-β-Butyrolactone. Inorg Chem 2021; 60:705-717. [PMID: 33405906 DOI: 10.1021/acs.inorgchem.0c02741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of new phosphasalalen pro-ligands, analogues of salalen but with an iminophosphorane replacing the imine functionality, and their corresponding rare-earth alkoxide and siloxide complexes were synthesized. The multinuclear NMR spectra and X-ray diffraction analyses revealed that, for the tert-butoxide and ethoxide complexes, the resulting phosphasalalen rare-earth product was composed of a mononuclear alkoxide and a binuclear complex containing bridged alkoxo and hydroxo groups, while an analogous binuclear complex was isolated as the sole product for the siloxide complex. All the complexes could catalyze the heteroselective ring-opening polymerization (ROP) of rac-lactide (Pr up to 0.77) with high catalytic activities and a controlled polydispersity. Remarkably, the yttrium and lutetium phosphasalalen complexes could also efficiently catalyze the ROP of rac-β-butyrolactone to produce syndiotactic polymers (Pr up to 0.73) while their salalen analogues were inert, revealing the special effects of the iminophosphorane moiety. Detailed end-group analyses and kinetic investigations suggested that the alkoxo-hydroxo-bridged complexes maintained their binuclear structures in the polymerization.
Collapse
|
44
|
Andrade-Gagnon B, Bélanger-Bouliga M, Trang Nguyen P, Nguyen THD, Bourgault S, Nazemi A. Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E161. [PMID: 33435172 PMCID: PMC7826923 DOI: 10.3390/nano11010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Polymeric nanomaterials that degrade in acidic environments have gained considerable attention in nanomedicine for intracellular drug delivery and cancer therapy. Among various acid-degradable linkages, spirocyclic acetals have rarely been used to fabricate such vehicles. In addition to acid sensitivity, they benefit from conformational rigidity that is otherwise not attainable by their non-spirocyclic analogs. Herein, amphiphilic spirocyclic polyacetals are synthesized by Cu-catalyzed alkyne-azide "click" polymerization. Unlike conventional block copolymers, which often form core-shell structures, these polymers self-assemble to form core amphiphilic assemblies capable of encapsulating Nile red as a hydrophobic model drug. In vitro experiments show that while release from these materials can occur at neutral pH with preservation of their integrity, acidic pH accelerates efficient cargo release and leads to the complete degradation of assemblies. Moreover, cellular assays reveal that these materials are fully cytocompatible, interact with the plasma membrane, and can be internalized by cells, rendering them as potential candidates for cancer therapy and/or drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada; (B.A.-G.); (M.B.-B.); (P.T.N.); (T.H.D.N.); (S.B.)
| |
Collapse
|
45
|
Roymuhury SK, Mandal M, Chakraborty D, Ramkumar V. Homoleptic titanium and zirconium complexes exhibiting unusual Oiminol–metal coordination: application in stereoselective ring-opening polymerization of lactide. Polym Chem 2021. [DOI: 10.1039/d1py00237f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis and characterization of novel homoleptic Ti and Zr complexes with tridentate ONO-type Schiff base ligands and their catalytic activities towards the ring-opening polymerization (ROP) of lactide are reported.
Collapse
Affiliation(s)
- Sagnik K. Roymuhury
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | - Mrinmay Mandal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | - Debashis Chakraborty
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | | |
Collapse
|
46
|
He C, Hu Y, Wang Y, Liu Z, Liao Y, Xiong H, Zhao Q. Design of water-soluble whole rice glutelin: The rendezvous of two rice subspecies, Japonica and Indica. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Shen M, Vijjamarri S, Cao H, Solis K, Robertson ML. Degradability, thermal stability, and high thermal properties in spiro polycycloacetals partially derived from lignin. Polym Chem 2021. [DOI: 10.1039/d1py01017d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spiro polycycloacetals were synthesized from vanillin and syringaldehyde, along with high-performance co-monomers, exhibiting high glass transition temperatures and thermal stabilities, and rapid rates of hydrolysis in acidic solutions.
Collapse
Affiliation(s)
- Minjie Shen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Srikanth Vijjamarri
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Hongda Cao
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Karla Solis
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Megan L. Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
48
|
Meurer J, Hniopek J, Dahlke J, Schmitt M, Popp J, Zechel S, Hager MD. Novel Biobased Self-Healing Ionomers Derived from Itaconic Acid Derivates. Macromol Rapid Commun 2020; 42:e2000636. [PMID: 33368758 DOI: 10.1002/marc.202000636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 11/11/2022]
Abstract
This article presents novel biobased ionomers featuring self-healing abilities. These smart materials are synthesized from itaconic acid derivates. Large quantities of itaconic acid can be produced from diverse biomass like corn, rice, and others. This study presents a comprehensive investigation of their thermal and mechanical properties via differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and FT-Raman and FT-IR measurements as well as dynamic mechanic analysis. Within all these measurements, different kinds of structure-property relationships could be derived from these measurements. For example, the proportion of ionic groups enormously influences the self-healing efficiency. The investigation of the self-healing abilities reveals healing efficiencies up to 99% in 2 h at 90 °C for the itaconic acid based ionomer with the lowest ionic content.
Collapse
Affiliation(s)
- Josefine Meurer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholzweg 4, Jena, 07743, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, Jena, 07745, Germany.,Leibniz Institute of Photonic Technology, e. V. Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Jan Dahlke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholzweg 4, Jena, 07743, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, Jena, 07745, Germany
| | - Jürgen Popp
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany.,Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholzweg 4, Jena, 07743, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, Jena, 07745, Germany.,Leibniz Institute of Photonic Technology, e. V. Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
49
|
Reyhanoglu Y, Kalayci B, Gokturk E. One‐Step Solvent‐Free Synthesis of Polyglycolic Acid from Sustainable C1 Feedstocks. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuf Reyhanoglu
- Hatay Mustafa Kemal University Department of Chemistry Hatay Antakya 31060 Turkey
| | - Berkant Kalayci
- Hatay Mustafa Kemal University Department of Chemistry Hatay Antakya 31060 Turkey
| | - Ersen Gokturk
- Hatay Mustafa Kemal University Department of Chemistry Hatay Antakya 31060 Turkey
| |
Collapse
|
50
|
Lende AB, Bhattacharjee S, Tan CS. Production of Environmentally Friendly Polyester by Hydrogenation of Poly(butylene terephthalate) over Rh–Pt Catalysts Supported on Carbon Black and Recovery by a Compressed CO2 Antisolvent Technique. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avinash B. Lende
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Saurav Bhattacharjee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Chung-Sung Tan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|