1
|
Chiodini S, Venturi G, Kerfoot J, Zhang J, Alexeev EM, Taniguchi T, Watanabe K, Ferrari AC, Ambrosio A. Electromechanical Response of Saddle Points in Twisted hBN Moiré Superlattices. ACS NANO 2025; 19:16297-16306. [PMID: 40268288 PMCID: PMC12060643 DOI: 10.1021/acsnano.4c12315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
In twisted layered materials (t-LMs), an interlayer rotation can break inversion symmetry and create an interfacial array of staggered out-of-plane polarization due to AB/BA stacking registries. This symmetry breaking can also trigger the formation of edge in-plane polarizations localized along the perimeter of AB/BA regions (i.e., saddle point domains). However, a comprehensive experimental investigation of these features is still lacking. Here, we use piezo force microscopy to probe the electromechanical behavior of twisted hexagonal boron nitride (t-hBN). For parallel stacking alignment of t-hBN, we reveal very narrow (width ∼ 10 nm) saddle point in-plane polarizations, which we also measure in the antiparallel configuration. These localized polarizations can still be found on a multiply stacked t-hBN structure, determining the formation of a double moiré. Our findings imply that polarizations in t-hBN do not only point in the out-of-plane direction but also show an in-plane component, giving rise to a much more complex 3D polarization field.
Collapse
Affiliation(s)
- Stefano Chiodini
- Center
for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
| | - Giacomo Venturi
- Center
for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
| | - James Kerfoot
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, CB3 0FA Cambridge, United Kingdom
| | - Jincan Zhang
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, CB3 0FA Cambridge, United Kingdom
| | - Evgeny M. Alexeev
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, CB3 0FA Cambridge, United Kingdom
| | - Takashi Taniguchi
- Center
for Materials Nanoarchitectonics, National Institute for Materials
Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National Institute for Materials
Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, CB3 0FA Cambridge, United Kingdom
| | - Antonio Ambrosio
- Center
for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
| |
Collapse
|
2
|
Kourmoulakis G, Psilodimitrakopoulos S, Maragkakis GM, Mouchliadis L, Michail A, Christodoulides JA, Tripathi M, Dalton AB, Parthenios J, Papagelis K, Stratakis E, Kioseoglou G. Strain distribution in WS 2 monolayers detected through polarization-resolved second harmonic generation. Sci Rep 2024; 14:15159. [PMID: 38956262 PMCID: PMC11219737 DOI: 10.1038/s41598-024-66065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Two-dimensional (2D) graphene and graphene-related materials (GRMs) show great promise for future electronic devices. GRMs exhibit distinct properties under the influence of the substrate that serves as support through uneven compression/ elongation of GRMs surface atoms. Strain in GRM monolayers is the most common feature that alters the interatomic distances and band structure, providing a new degree of freedom that allows regulation of their electronic properties and introducing the field of straintronics. Having an all-optical and minimally invasive detection tool that rapidly probes strain in large areas of GRM monolayers, would be of great importance in the research and development of novel 2D devices. Here, we use Polarization-resolved Second Harmonic Generation (P-SHG) optical imaging to identify strain distribution, induced in a single layer of WS2 placed on a pre-patterned Si/SiO2 substrate with cylindrical wells. By fitting the P-SHG data pixel-by-pixel, we produce spatially resolved images of the crystal armchair direction. In regions where the WS2 monolayer conforms to the pattern topography, a distinct cross-shaped pattern is evident in the armchair image owing to strain. The presence of strain in these regions is independently confirmed using a combination of atomic force microscopy and Raman mapping.
Collapse
Affiliation(s)
- George Kourmoulakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110, Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 70013, Heraklion, Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110, Heraklion, Crete, Greece.
| | - George Miltos Maragkakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110, Heraklion, Crete, Greece
- Department of Physics, University of Crete, 70013, Heraklion, Crete, Greece
| | - Leonidas Mouchliadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110, Heraklion, Crete, Greece
| | - Antonios Michail
- Department of Physics, University of Patras, 26504, Patras, Greece
- FORTH/ICE-HT, Stadiou Str Platani, 26504, Patras, Greece
| | | | - Manoj Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Alan B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | | | - Konstantinos Papagelis
- FORTH/ICE-HT, Stadiou Str Platani, 26504, Patras, Greece
- Department of Solid-State Physics, School of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110, Heraklion, Crete, Greece.
- Department of Physics, University of Crete, 70013, Heraklion, Crete, Greece.
| | - George Kioseoglou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110, Heraklion, Crete, Greece.
- Department of Materials Science and Technology, University of Crete, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
3
|
Hattori Y, Taniguchi T, Watanabe K, Kitamura M. Identification of exfoliated monolayer hexagonal boron nitride films with a digital color camera under white light illumination. NANOTECHNOLOGY 2024; 35:375704. [PMID: 38885618 DOI: 10.1088/1361-6528/ad58e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Optical microscopy with white light illumination has been employed when obtaining exfoliated monolayer hexagonal boron nitride (1L hBN) films from a large number of randomly placed films on a substrate. However, real-time observation of 1L hBN using a color camera under white light illumination remains challenging since hBN is transparent in the visible wavelength range. The poor optical constant of 1L hBN films in microphotographs is significantly improved using a Si substrate coated with a SiNxthin-film (SiNx/Si). When observing hBN thin films on SiNx/Si using a color digital camera in an optical microscope under white light illumination, the clarity of the captured color images depends on the thickness of the SiNxfilm (d). For real-time direct observation, thedwas optimized based on quantitative chromatic studies tailored to Bayer filters of a color image sensor. Through image simulation, it was determined that the color difference between 1L hBN and the bare substrate is maximized atd= 59 or 70 nm, which was experimentally verified. The SiNx/Si with optimizeddvalues visualized 1L hBN films without requiring significant contrast enhancement via image processing under white light illumination in real-time. Furthermore, the captured color photographs facilitate the reliable determination of the number of layers in few-layer hBN films using the contrast of the green channel of the images.
Collapse
Affiliation(s)
- Yoshiaki Hattori
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Masatoshi Kitamura
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Sarker D, Nakti PP, Zubair A. Graphene metamaterials-based plasmon-induced terahertz modulator for high-performance multiband filtering and slow light applications. OPTICS EXPRESS 2024; 32:9442-9455. [PMID: 38571179 DOI: 10.1364/oe.516142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/18/2024] [Indexed: 04/05/2024]
Abstract
We proposed multilayered graphene (Gr)-based surface plasmon resonance-induced high-performance terahertz (THz) modulators with tunable resonance frequencies. Previously reported Gr metamaterials-based THz plasmonic modulators had small group delay, low extinction ratio (ER), and difficult-to-tune resonant frequency without changing structural parameters in the THz range. A comprehensive investigation employing the finite-difference time-domain (FDTD) simulation technique revealed high group delay, broad tunability independent of structural parameters, and large ER for our proposed quadband and pentaband plasmonic modulators. We obtained tunable group delays with a maximum of 1.02 ps and 1.41 ps for our proposed quadband and pentaband plasmonic modulators, respectively, which are substantially greater compared to previously reported Gr-based metamaterial structures. The maximum ER of 22.3 dB was obtained, which was substantially high compared to previous reports. Our proposed modulators were sensitive to the polarization angle of incident light; therefore, the transmittance at resonant frequencies was increased while the polarization angle varied from 0° to 180°. These high-performance plasmonic modulators have emerging potential for the design of optical buffers, slow light devices, multistop band filters, integrated photonic circuits, and various optoelectronic systems.
Collapse
|
5
|
Xu C, Barden N, Alexeev EM, Wang X, Long R, Cadore AR, Paradisanos I, Ott AK, Soavi G, Tongay S, Cerullo G, Ferrari AC, Prezhdo OV, Loh ZH. Ultrafast Charge Transfer and Recombination Dynamics in Monolayer-Multilayer WSe 2 Junctions Revealed by Time-Resolved Photoemission Electron Microscopy. ACS NANO 2024; 18:1931-1947. [PMID: 38197410 DOI: 10.1021/acsnano.3c06473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The ultrafast carrier dynamics of junctions between two chemically identical, but electronically distinct, transition metal dichalcogenides (TMDs) remains largely unknown. Here, we employ time-resolved photoemission electron microscopy (TR-PEEM) to probe the ultrafast carrier dynamics of a monolayer-to-multilayer (1L-ML) WSe2 junction. The TR-PEEM signals recorded for the individual components of the junction reveal the sub-ps carrier cooling dynamics of 1L- and 7L-WSe2, as well as few-ps exciton-exciton annihilation occurring on 1L-WSe2. We observe ultrafast interfacial hole (h) transfer from 1L- to 7L-WSe2 on an ∼0.2 ps time scale. The resultant excess h density in 7L-WSe2 decays by carrier recombination across the junction interface on an ∼100 ps time scale. Reminiscent of the behavior at a depletion region, the TR-PEEM image reveals the h density accumulation on the 7L-WSe2 interface, with a decay length ∼0.60 ± 0.17 μm. These charge transfer and recombination dynamics are in agreement with ab initio quantum dynamics. The computed orbital densities reveal that charge transfer occurs from the basal plane, which extends over both 1L and ML regions, to the upper plane localized on the ML region. This mode of charge transfer is distinctive to chemically homogeneous junctions of layered materials and constitutes an additional carrier deactivation pathway that should be considered in studies of 1L-TMDs found alongside their ML, a common occurrence in exfoliated samples.
Collapse
Affiliation(s)
- Ce Xu
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Natalie Barden
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Evgeny M Alexeev
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Xiaoli Wang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Alisson R Cadore
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | | | - Anna K Ott
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Giancarlo Soavi
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
- Institute of Solid State Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
6
|
Kim YT, Lee C, Lim S, Lee CY. Interference micro/nanolenses of salts for local modulation of Raman scattering. RSC Adv 2023; 13:32487-32491. [PMID: 37928860 PMCID: PMC10624006 DOI: 10.1039/d3ra05722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Micro/nanolenses play a crucial role in optics and spectroscopy, but the effect of interference patterns within each lens has been largely unexplored. Herein, we investigate modulation of Raman scattering by the interference within a single micro/nanolens of a hygroscopic salt. Lenses having two different diameter (d) ranges, d > 2 μm and d ∼1 μm, are placed on a silicon substrate, followed by collection of a Raman intensity map of the silicon peak. Lenses with d > 2 μm show dark and bright circular fringes in the Raman map, resembling the Newton's rings formed by optical interference. In the smaller lenses (d ∼1 μm), the map yields only a single peak at the center, representing either an intensity maximum or minimum. In both diameter ranges, whether the Raman intensity is enhanced or suppressed is determined by interference conditions, such as wavelength of the excitation laser or thickness of the SiO2 layer. The interference in salt micro/nanolenses finds applications in local modulation of Raman scattering of a nanoscale object, as demonstrated in individual single-walled carbon nanotubes decorated with the salt lenses.
Collapse
Affiliation(s)
- Yun-Tae Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Cheongha Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Seongyeop Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
7
|
Xu C, Zhou G, Alexeev EM, Cadore AR, Paradisanos I, Ott AK, Soavi G, Tongay S, Cerullo G, Ferrari AC, Prezhdo OV, Loh ZH. Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS 2 Is Accelerated by Wrinkling. ACS NANO 2023; 17:16682-16694. [PMID: 37581747 DOI: 10.1021/acsnano.3c02917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Strain engineering is an attractive approach for tuning the local optoelectronic properties of transition metal dichalcogenides (TMDs). While strain has been shown to affect the nanosecond carrier recombination dynamics of TMDs, its influence on the sub-picosecond electronic relaxation dynamics is still unexplored. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and nonadiabatic ab initio molecular dynamics (NAMD) to investigate the ultrafast dynamics of wrinkled multilayer (ML) MoS2 comprising 17 layers. Following 2.41 eV photoexcitation, electronic relaxation at the Γ valley occurs with a time constant of 97 ± 2 fs for wrinkled ML-MoS2 and 120 ± 2 fs for flat ML-MoS2. NAMD shows that wrinkling permits larger amplitude motions of MoS2 layers, relaxes electron-phonon coupling selection rules, perturbs chemical bonding, and increases the electronic density of states. As a result, the nonadiabatic coupling grows and electronic relaxation becomes faster compared to flat ML-MoS2. Our study suggests that the sub-picosecond electronic relaxation dynamics of TMDs is amenable to strain engineering and that applications which require long-lived hot carriers, such as hot-electron-driven light harvesting and photocatalysis, should employ wrinkle-free TMDs.
Collapse
Affiliation(s)
- Ce Xu
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Evgeny M Alexeev
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Alisson R Cadore
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Ioannis Paradisanos
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Anna K Ott
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Giancarlo Soavi
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- IFN-CNR, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
8
|
Dmitriev V, de Oliveira RMS, Paiva RR, Rodrigues NRNM. Multifunctional THz Graphene Antenna with 360 ∘ Continuous ϕ-Steering and θ-Control of Beam. SENSORS (BASEL, SWITZERLAND) 2023; 23:6900. [PMID: 37571680 PMCID: PMC10422558 DOI: 10.3390/s23156900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
A novel graphene antenna composed of a graphene dipole and four auxiliary graphene sheets oriented at 90∘ to each other is proposed and analyzed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas has been completed. Through electric field control of the chemical potentials of the graphene elements, the antenna can provide a quasi-omnidirectional diagram, a one- or two-directional beam regime, dynamic control of the beam width and, due to the vertical orientation of the dipole with respect to the base substrate, a 360∘ beam steering in the azimuth plane. An additional graphene layer on the base permits control of the radiation pattern in the θ-direction. Radiation patterns in different working states of the antenna are considered using symmetry arguments. We discuss the antenna parameters such as input reflection coefficient, total efficiency, front-to-back ratio, and gain. An equivalent circuit of the antenna is suggested. The proposed antenna operates at frequencies between 1.75 THz and 2.03 THz. Depending on the active regime defined by the chemical potentials set on the antenna graphene elements, the maximum gain varies from 0.86 to 1.63.
Collapse
Affiliation(s)
- Victor Dmitriev
- Graduate Program in Electrical Engineering (PPGEE), Institute of Technology (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01, Belém 66075-110, PA, Brazil; (R.R.P.); (N.R.N.M.R.)
| | - Rodrigo M. S. de Oliveira
- Graduate Program in Electrical Engineering (PPGEE), Institute of Technology (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01, Belém 66075-110, PA, Brazil; (R.R.P.); (N.R.N.M.R.)
| | | | | |
Collapse
|
9
|
Asaithambi A, Kazemi Tofighi N, Ghini M, Curreli N, Schuck PJ, Kriegel I. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun (Camb) 2023; 59:7717-7730. [PMID: 37199319 PMCID: PMC10281493 DOI: 10.1039/d3cc01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.
Collapse
Affiliation(s)
- Aswin Asaithambi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Nastaran Kazemi Tofighi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Michele Ghini
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
- Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicola Curreli
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ilka Kriegel
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
10
|
Ramsden H, Sarkar S, Wang Y, Zhu Y, Kerfoot J, Alexeev EM, Taniguchi T, Watanabe K, Tongay S, Ferrari AC, Chhowalla M. Nanoscale Cathodoluminescence and Conductive Mode Scanning Electron Microscopy of van der Waals Heterostructures. ACS NANO 2023. [PMID: 37319105 DOI: 10.1021/acsnano.3c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
van der Waals heterostructures (vdW-HSs) integrate dissimilar materials to form complex devices. These rely on the manipulation of charges at multiple interfaces. However, at present, submicrometer variations in strain, doping, or electrical breakages may exist undetected within a device, adversely affecting macroscale performance. Here, we use conductive mode and cathodoluminescence scanning electron microscopy (CM-SEM and SEM-CL) to investigate these phenomena. As a model system, we use a monolayer WSe2 (1L-WSe2) encapsulated in hexagonal boron nitride (hBN). CM-SEM allows for quantification of the flow of electrons during the SEM measurements. During electron irradiation at 5 keV, up to 70% of beam electrons are deposited into the vdW-HS and can subsequently migrate to the 1L-WSe2. This accumulation of charge leads to dynamic doping of 1L-WSe2, reducing its CL efficiency by up to 30% over 30 s. By providing a path for excess electrons to leave the sample, near full restoration of the initial CL signal can be achieved. These results indicate that the trapping of charges in vdW-HSs during electron irradiation must be considered, in order to obtain and maintain optimal performance of vdW-HS devices during processes such as e-beam lithography or SEM. Thus, CM-SEM and SEM-CL form a toolkit through which nanoscale characterization of vdW-HS devices can be performed, allowing electrical and optical properties to be correlated.
Collapse
Affiliation(s)
- Hugh Ramsden
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Soumya Sarkar
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Yan Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Yiru Zhu
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - James Kerfoot
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Evgeny M Alexeev
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| |
Collapse
|
11
|
Huang BR, Hung SC, Ho YS, Chen YS, Yang WD. The Efficiency Study of Graphene Synthesis on Copper Substrate via Chemical Vapor Deposition Method with Methanol Precursor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061136. [PMID: 36986030 PMCID: PMC10059143 DOI: 10.3390/nano13061136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/01/2023]
Abstract
Few-layer graphene was successfully synthesized on copper foil via chemical vapor deposition with methanol as a carbon source. This was confirmed by optical microscopy observation, Raman spectra measurement, I2D/IG ratio calculation, and 2D-FWHM value comparisons. Monolayer graphene was also found in similar standard procedures, but it required higher growth temperature and longer time periods. The cost-efficient growth conditions for few-layer graphene are thoroughly discussed via TEM observation and AFM measurement. In addition, it has been confirmed that the growth period can be shortened by increasing growth temperature. With the H2 gas flow rate fixed at 15 sccm, few-layer graphene was synthesized at the lower growth temperature of 700 °C in 30 min, and at 900 °C growth temperature in only 5 min. Successful growth was also achieved without adding hydrogen gas flow; this is probably because H2 can be induced from the decomposition of methanol. Through further defects study of few-layer graphene via TEM observation and AFM measurement, we tried to find possible ways for efficiency and quality management in graphene synthesis in industrial applications. Lastly, we investigated graphene formation after pre-treatment with different gas compositions, and found that gas selection is a crucial factor for a successful synthesis.
Collapse
Affiliation(s)
- Bohr-Ran Huang
- Graduate Institute of Electro-Optical Engineering, Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Shang-Chao Hung
- Fuzhou Polytechnic, Fuzhou University City, Fuzhou 350108, China
- Intelligent Technology Research Centre, Fuzhou 350108, China
| | - Yung-Shou Ho
- Department of Applied Chemistry and Materials Science, Fooyin University, Kaohsiung 831, Taiwan
| | - Yi-Siou Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
Wu F, Xiao S. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton. OPTICS EXPRESS 2023; 31:5722-5735. [PMID: 36823845 DOI: 10.1364/oe.481668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, researchers utilized Tamm plasmon polaritons (TPPs) in conventional heterostructures composed of a metal layer, a dielectric spacer layer and an all-dielectric one-dimensional (1-D) photonic crystal (PhC) to achieve high-efficiency absorption of graphene. According to the Bragg scattering theory, photonic bandgaps (PBGs) in all-dielectric 1-D PhC strongly shift toward shorter wavelengths (i.e., blueshift) as the incident angle increases. Therefore, TPPs in conventional heterostructures also show strongly blueshift property. Such strongly blueshift property of TPPs greatly limits the operating angle range of the high-efficiency absorption of graphene. Herein, we realize an angle-insensitive TPP in a heterostructure composed of a metal layer, a dielectric spacer layer and a 1-D PhC containing hyperbolic metamaterial layers. Empowered by the angle-insensitive property of the TPP, we achieve wide-angle high-efficiency absorption of graphene. The operating angle range (A > 80%) reaches 41.8 degrees, which is much larger than those in the reported works based on TPPs and defect modes. Our work provides a viable route to designing cloaking devices and photodetectors.
Collapse
|
13
|
Nguyen V, Li W, Ager J, Xu K, Taylor H. Optical reflectance imaging reveals interlayer coupling in mechanically stacked MoS 2 and WS 2 bilayers. OPTICS EXPRESS 2023; 31:3291-3303. [PMID: 36785325 DOI: 10.1364/oe.473397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Optical reflectance imaging is a popular technique for characterizing 2D materials, thanks to its simplicity and speed of data acquisition. The use of this method for studying interlayer phenomena in stacked 2D layers has, however, remained limited. Here we demonstrate that optical imaging can reveal the nature of interlayer coupling in stacked MoS2 and WS2 bilayers through their observed reflectance contrast versus the substrate. Successful determination of interlayer coupling requires co-optimization of the illumination wavelength and the thickness of an underlying SiO2 film. Our observations are supported by multilayer optical calculations together with an analysis of the effect of any interlayer gap. This approach promises quick characterization of constructed 2D material systems.
Collapse
|
14
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Lee H, Lee K, Ryu S, Yi Y, Jeon J, Kim S, Kang H. Nondestructive thickness determination of polymers based on optical contrast of graphene. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. MICROMACHINES 2022; 13:mi13081257. [PMID: 36014179 PMCID: PMC9412642 DOI: 10.3390/mi13081257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022]
Abstract
As the scaling technology in the silicon-based semiconductor industry is approaching physical limits, it is necessary to search for proper materials to be utilized as alternatives for nanoscale devices and technologies. On the other hand, carbon-related nanomaterials have attracted so much attention from a vast variety of research and industry groups due to the outstanding electrical, optical, mechanical and thermal characteristics. Such materials have been used in a variety of devices in microelectronics. In particular, graphene and carbon nanotubes are extraordinarily favorable substances in the literature. Hence, investigation of carbon-related nanomaterials and nanostructures in different ranges of applications in science, technology and engineering is mandatory. This paper reviews the basics, advantages, drawbacks and investigates the recent progress and advances of such materials in micro and nanoelectronics, optoelectronics and biotechnology.
Collapse
|
17
|
dos Santos Almeida A, Bahamon DA, Peres NMR, de Matos CJS. A Critical Analysis on the Sensitivity Enhancement of Surface Plasmon Resonance Sensors with Graphene. NANOMATERIALS 2022; 12:nano12152562. [PMID: 35893531 PMCID: PMC9330808 DOI: 10.3390/nano12152562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
Abstract
The use of graphene in surface plasmon resonance sensors, covering a metallic (plasmonic) film, has a number of demonstrated advantages, such as protecting the film against corrosion/oxidation and facilitating the introduction of functional groups for selective sensing. Recently, a number of works have claimed that few-layer graphene can also increase the sensitivity of the sensor. However, graphene was treated as an isotropic thin film, with an out-of-plane refractive index that is identical to the in-plane index. Here, we critically examine the role of single and few layers of graphene in the sensitivity enhancement of surface plasmon resonance sensors. Graphene is introduced over the metallic film via three different descriptions: as an atomic-thick two-dimensional sheet, as a thin effective isotropic material (same conductivity in the three coordinate directions), and as an non-isotropic layer (different conductivity in the perpendicular direction to the two-dimensional plane). We find that only the isotropic layer model, which is known to be incorrect for the optical modeling of graphene, provides sizable sensitivity increases, while the other, more accurate, models lead to a negligible contribution to the sensitivity.
Collapse
Affiliation(s)
- Aline dos Santos Almeida
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (A.d.S.A.); (D.A.B.)
- MackGraphe-Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian Institute, São Paulo 01302-907, Brazil
| | - Dario A. Bahamon
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (A.d.S.A.); (D.A.B.)
- MackGraphe-Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian Institute, São Paulo 01302-907, Brazil
| | - Nuno M. R. Peres
- Physics Department, Minho University, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Christiano J. S. de Matos
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (A.d.S.A.); (D.A.B.)
- MackGraphe-Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian Institute, São Paulo 01302-907, Brazil
- Correspondence:
| |
Collapse
|
18
|
Liang X, Qin C, Qiao Z, Kang W, Yin H, Dong S, Li X, Wang S, Su X, Zhang G, Chen R, Hu J, Xiao L, Jia S. Optical interference effect in the hybrid quantum dots/two-dimensional materials: photoluminescence enhancement and modulation. OPTICS EXPRESS 2022; 30:26557-26569. [PMID: 36236844 DOI: 10.1364/oe.460054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 06/16/2023]
Abstract
The optical interference effect originating from the multiple reflections between the two-dimensional (2D) materials and the substrates has been used to dramatically enhance their Raman signal. However, this effect in the hybrid structures of colloidal quantum dots (QD) coupled to 2D materials is always overlooked. Here we theoretically prove that the photoluminescence (PL) intensities of the QD films in the QD-2D hybrid structures can be strongly enhanced and modulated by the optical interference effect between QD and 2D interfaces, breaking the inherent standpoint that PL intensities of the QD films are always prominently quenched in these hybrid structures. The theoretical predictions have been well confirmed by experimental measurements of PL properties of CdSe/ZnS and CdSeTe/ZnS QD on different 2D materials (such as WSe2, MoS2, and h-BN). PL intensities of these QD films have been periodically modulated from almost disappearing to strong enhancement (with the enhancement of about 6 times). The optical interference effect uncovered in this work enables a powerful method to manipulate the PL property of the QD films in the different QD-2D hybrid structures. These results can boost the optical performance of the QD-based electronic and optoelectronic devices in the hybrid QD-2D structures.
Collapse
|
19
|
Hwang RB. Extremely low effective impedance in stratified graphene-dielectric metamaterials. Sci Rep 2022; 12:11635. [PMID: 35804011 PMCID: PMC9270408 DOI: 10.1038/s41598-022-15841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
The periodic reflections in frequency were observed in a stack of graphene layers and generally reported as a series of mini photonic bandgaps owing to the multiple interference by the graphene layers. In this research, the Floquet-Bloch theory was employed to obtain the effective refractive index and Bloch impedance for understanding the wave propagation characteristic therein. Interestingly, the periodic reflections were found to occur in the frequency band having drastic variation in complex Bloch impedance and effective refractive index as well, wherein a Floquet-Bloch mode having pure real effective refractive index and extremely low Bloch impedance exists.
Collapse
Affiliation(s)
- Ruey-Bing Hwang
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan.
| |
Collapse
|
20
|
Chiodini S, Kerfoot J, Venturi G, Mignuzzi S, Alexeev EM, Teixeira Rosa B, Tongay S, Taniguchi T, Watanabe K, Ferrari AC, Ambrosio A. Moiré Modulation of Van Der Waals Potential in Twisted Hexagonal Boron Nitride. ACS NANO 2022; 16:7589-7604. [PMID: 35486712 PMCID: PMC9134503 DOI: 10.1021/acsnano.1c11107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
When a twist angle is applied between two layered materials (LMs), the registry of the layers and the associated change in their functional properties are spatially modulated, and a moiré superlattice arises. Several works explored the optical, electric, and electromechanical moiré-dependent properties of such twisted LMs but, to the best of our knowledge, no direct visualization and quantification of van der Waals (vdW) interlayer interactions has been presented, so far. Here, we use tapping mode atomic force microscopy phase-imaging to probe the spatial modulation of the vdW potential in twisted hexagonal boron nitride. We find a moiré superlattice in the phase channel only when noncontact (long-range) forces are probed, revealing the modulation of the vdW potential at the sample surface, following AB and BA stacking domains. The creation of scalable electrostatic domains, modulating the vdW potential at the interface with the environment by means of layer twisting, could be used for local adhesion engineering and surface functionalization by affecting the deposition of molecules or nanoparticles.
Collapse
Affiliation(s)
- Stefano Chiodini
- Center
for Nano Science and Technology, Fondazione
Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
| | - James Kerfoot
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Giacomo Venturi
- Center
for Nano Science and Technology, Fondazione
Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
- Physics
Department, Politecnico Milano, P.zza Leonardo Da Vinci 32, Milan 20133, Italy
| | - Sandro Mignuzzi
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Evgeny M. Alexeev
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Bárbara Teixeira Rosa
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Sefaattin Tongay
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Antonio Ambrosio
- Center
for Nano Science and Technology, Fondazione
Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
| |
Collapse
|
21
|
Pogna EA, Tomadin A, Balci O, Soavi G, Paradisanos I, Guizzardi M, Pedrinazzi P, Mignuzzi S, Tielrooij KJ, Polini M, Ferrari AC, Cerullo G. Electrically Tunable Nonequilibrium Optical Response of Graphene. ACS NANO 2022; 16:3613-3624. [PMID: 35188753 PMCID: PMC9098177 DOI: 10.1021/acsnano.1c04937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The ability to tune the optical response of a material via electrostatic gating is crucial for optoelectronic applications, such as electro-optic modulators, saturable absorbers, optical limiters, photodetectors, and transparent electrodes. The band structure of single layer graphene (SLG), with zero-gap, linearly dispersive conduction and valence bands, enables an easy control of the Fermi energy, EF, and of the threshold for interband optical absorption. Here, we report the tunability of the SLG nonequilibrium optical response in the near-infrared (1000-1700 nm/0.729-1.240 eV), exploring a range of EF from -650 to 250 meV by ionic liquid gating. As EF increases from the Dirac point to the threshold for Pauli blocking of interband absorption, we observe a slow-down of the photobleaching relaxation dynamics, which we attribute to the quenching of optical phonon emission from photoexcited charge carriers. For EF exceeding the Pauli blocking threshold, photobleaching eventually turns into photoinduced absorption, because the hot electrons' excitation increases the SLG absorption. The ability to control both recovery time and sign of the nonequilibrium optical response by electrostatic gating makes SLG ideal for tunable saturable absorbers with controlled dynamics.
Collapse
Affiliation(s)
- Eva A.
A. Pogna
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127 Pisa, Italy
- Dipartimento
di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Tomadin
- Dipartimento
di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Osman Balci
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Giancarlo Soavi
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Jena 07743, Germany
| | - Ioannis Paradisanos
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Michele Guizzardi
- Dipartimento
di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Paolo Pedrinazzi
- L-NESS,
Department of Physics, Politecnico di Milano, Via Anzani 42, Como 22100, Italy
| | - Sandro Mignuzzi
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Klaas-Jan Tielrooij
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), BIST & CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Marco Polini
- Dipartimento
di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
- Istituto
Italiano di Tecnologia, Graphene Laboratories, Via Morego 30, 16163 Genova, Italy
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
22
|
Callera Aguila MA, Esmenda JC, Wang JY, Lee TH, Yang CY, Lin KH, Chang-Liao KS, Kafanov S, Pashkin YA, Chen CD. Fabry-Perot interferometric calibration of van der Waals material-based nanomechanical resonators. NANOSCALE ADVANCES 2022; 4:502-509. [PMID: 36132699 PMCID: PMC9416946 DOI: 10.1039/d1na00794g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 06/16/2023]
Abstract
One of the challenges in integrating nanomechanical resonators made from van der Waals materials in optoelectromechanical technologies is characterizing their dynamic properties from vibrational displacement. Multiple calibration schemes using optical interferometry have tackled this challenge. However, these techniques are limited only to optically thin resonators with an optimal vacuum gap height and substrate for interferometric detection. Here, we address this limitation by implementing a modeling-based approach via multilayer thin-film interference for in situ, non-invasive determination of the resonator thickness, gap height, and motional amplitude. This method is demonstrated on niobium diselenide drumheads that are electromotively driven in their linear regime of motion. The laser scanning confocal configuration enables a resolution of hundreds of picometers in motional amplitude for circular and elliptical devices. The measured thickness and spacer height, determined to be in the order of tens and hundreds of nanometers, respectively, are in excellent agreement with profilometric measurements. Moreover, the transduction factor estimated from our method agrees with the result of other studies that resolved Brownian motion. This characterization method, which applies to both flexural and acoustic wave nanomechanical resonators, is robust because of its scalability to thickness and gap height, and any form of reflecting substrate.
Collapse
Affiliation(s)
- Myrron Albert Callera Aguila
- National Tsing Hua University Hsinchu 30013 Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University Taiwan
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Joshoua Condicion Esmenda
- National Tsing Hua University Hsinchu 30013 Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University Taiwan
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Jyh-Yang Wang
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Teik-Hui Lee
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Chi-Yuan Yang
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Kung-Hsuan Lin
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | | | - Sergey Kafanov
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Yuri A Pashkin
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Chii-Dong Chen
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| |
Collapse
|
23
|
Hattori Y, Taniguchi T, Watanabe K, Kitamura M. Visualization of a hexagonal born nitride monolayer on an ultra-thin gold film via reflected light microscopy. NANOTECHNOLOGY 2021; 33:065702. [PMID: 34700305 DOI: 10.1088/1361-6528/ac3357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Hexagonal boron nitride (h-BN) is an important insulating layered material for two-dimensional heterostructure devices. Among many applications, few-layer h-BN films have been employed as superior tunneling barrier films. However, it is difficult to construct a heterostructure with ultra-thin h-BN owing to the poor visibility of flakes on substrates, especially on a metallic surface substrate. Since reflectance from a metallic surface is generally high, a h-BN film on a metallic surface does not largely influence reflection spectra. In the present study, a thin Au layer with a thickness of ∼10 nm deposited on a Si substrate with a thermally grown SiO2was used for visualizing h-BN flakes. The thin Au layer possesses conductivity and transparency. Thus, the Au/SiO2/Si structure serves as an electrode and contributes to the visualization of an ultra-thin film according to optical interference. As a demonstration, the wavelength-dependent contrast of exfoliated few-layer h-BN flakes on the substrate was investigated under a quasi-monochromatic light using an optical microscope. A monolayer h-BN film was recognized in the image taken by a standard digital camera using a narrow band-pass filter of 490 nm, providing maximum contrast. Since the contrast increases linearly with the number of layers, the appropriate number of layers is identified from the contrast. Furthermore, the insulating property of a h-BN flake is examined using a conductive atomic force microscope to confirm whether the thin Au layer serves as an electrode. The tunneling current through the h-BN flake is consistent with the number of layers estimated from the contrast.
Collapse
Affiliation(s)
- Yoshiaki Hattori
- Department of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Masatoshi Kitamura
- Department of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
24
|
Kumar A, Manjuladevi V, Gupta RK. Refractive index of graphene AA and AB stacked bilayers under the influence of relative planar twisting. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:015302. [PMID: 34614485 DOI: 10.1088/1361-648x/ac2d5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The optical properties of graphene in monolayer and bilayer structure is essential for the development of optical devices viz surface plasmon resonance (SPR) based bio-sensors. The band structure of the twisted bilayer graphene (BLG) is remarkably different than the normal AA or AB stacking. This provides an opportunity to control the optical and electrical properties of BLG by applying an in-plane twist to one of the layer relative to other in a BLG system. Here, we calculated the refractive index (RI) of AA and AB stacking of BLG system using density functional theory. Though the spectrum for AA stacking shows some similarity with that of monolayer graphene, the spectrum for AB stacking was found to be remarkably different. The spectrum of AB stacked layer is red-shifted and the absorption peaks in low energy regime increases nearly by three-folds. A large dependency of the twist angle on RI of twisted BLG were found. Based on the calculation, a schematic of phase diagram showing material behavior of such twisted BLG systems as a function of twist angle and photon energy was constructed. The twisted AA stacked BLG shows largely dielectric behavior whereas the twisted AB stacked BLG shows predominately semimetallic and semiconducting behavior. This study presents a RI landscape of twisted BLG dependent on important parameters viz photon energy and inplane relative twist angle. Our studies will be very useful for the design and development of optical devices employing BLG systems particularly SPR based bio-sensors which essentially measures change in RI due to adsorption of analytes.
Collapse
Affiliation(s)
- Amrit Kumar
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS Pilani), 333031, India
| | - V Manjuladevi
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS Pilani), 333031, India
| | - R K Gupta
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS Pilani), 333031, India
| |
Collapse
|
25
|
Boldrini B, Ostertag E, Rebner K, Oelkrug D. Exploring the hidden depth by confocal Raman experiments with variable objective aperture and magnification. Anal Bioanal Chem 2021; 413:7093-7106. [PMID: 34599394 PMCID: PMC8589783 DOI: 10.1007/s00216-021-03678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 10/31/2022]
Abstract
The article analyzes experimentally and theoretically the influence of microscope parameters on the pinhole-assisted Raman depth profiles in uniform and composite refractive media. The main objective is the reliable mapping of deep sample regions. The easiest to interpret results are found with low magnification, low aperture, and small pinholes. Here, the intensities and shapes of the Raman signals are independent of the location of the emitter relative to the sample surface. Theoretically, the results can be well described with a simple analytical equation containing the axial depth resolution of the microscope and the position of the emitter. The lower determinable object size is limited to 2-4 μm. If sub-micrometer resolution is desired, high magnification, mostly combined with high aperture, becomes necessary. The signal intensities and shapes depend now in refractive media on the position relative to the sample surface. This aspect is investigated on a number of uniform and stacked polymer layers, 2-160 μm thick, with the best available transparency. The experimental depth profiles are numerically fitted with excellent accuracy by inserting a Gaussian excitation beam of variable waist and fill fraction through the focusing lens area, and by treating the Raman emission with geometric optics as spontaneous isotropic process through the lens and the variable pinhole, respectively. The intersectional area of these two solid angles yields the leading factor in understanding confocal (pinhole-assisted) Raman depth profiles. Spearfishing is a well-known example of the effects of refraction at the boundary between two index-mismatched media. The object Greal is seen, due to refraction, as Gvir from the angle β (without knowing the depth position). The real position is obtained under the angle α. In a microscope (see inset), index mismatch deforms the image point of Greal into an image line. The pinhole substantially reduces deformations and allows the determination of the position of the point emitter G. (Cartoon designed by Sofia Anker).
Collapse
Affiliation(s)
- Barbara Boldrini
- Process Analysis and Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany.
| | - Edwin Ostertag
- Process Analysis and Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Karsten Rebner
- Process Analysis and Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Dieter Oelkrug
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
26
|
Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers (Basel) 2021; 13:polym13172869. [PMID: 34502909 PMCID: PMC8434110 DOI: 10.3390/polym13172869] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Graphene-based nanocomposites possess excellent mechanical, electrical, thermal, optical, and chemical properties. These materials have potential applications in high-performance transistors, biomedical systems, sensors, and solar cells. This paper presents a critical review of the recent developments in graphene-based nanocomposite research, exploring synthesis methods, characterizations, mechanical properties, and thermal properties. Emphasis is placed on characterization techniques and mechanical properties with detailed examples from recent literature. The importance of characterization techniques including Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) for the characterization of graphene flakes and their composites were thoroughly discussed. Finally, the effect of graphene even at very low loadings on the mechanical properties of the composite matrix was extensively reviewed.
Collapse
|
27
|
Pizzi G, Milana S, Ferrari AC, Marzari N, Gibertini M. Shear and Breathing Modes of Layered Materials. ACS NANO 2021; 15:12509-12534. [PMID: 34370440 PMCID: PMC8397437 DOI: 10.1021/acsnano.0c10672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 05/19/2023]
Abstract
Layered materials (LMs), such as graphite, hexagonal boron nitride, and transition-metal dichalcogenides, are at the center of an ever-increasing research effort, due to their scientific and technological relevance. Raman and infrared spectroscopies are accurate, non-destructive approaches to determine a wide range of properties, including the number of layers, N, and the strength of the interlayer interactions. We present a general approach to predict the complete spectroscopic fan diagrams, i.e., the relations between frequencies and N for the optically active shear and layer-breathing modes of any multilayer comprising N ≥ 2 identical layers. In order to achieve this, we combine a description of the normal modes in terms of a one-dimensional mechanical model, with symmetry arguments that describe the evolution of the point group as a function of N. Group theory is then used to identify which modes are Raman- and/or infrared-active, and to provide diagrams of the optically active modes for any stack composed of identical layers. We implement the method and algorithms in an open-source tool to assist researchers in the prediction and interpretation of such diagrams. Our work will underpin future efforts on Raman and infrared characterization of known, and yet not investigated, LMs.
Collapse
Affiliation(s)
- Giovanni Pizzi
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- E-mail:
| | - Silvia Milana
- Cambridge
Graphene Centre, University of Cambridge, Cambridge CB3 OFA, U.K.
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, Cambridge CB3 OFA, U.K.
- E-mail:
| | - Nicola Marzari
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Gibertini
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Dipartimento
di Scienze Fisiche, Informatiche e Matematiche, University of Modena and Reggio Emilia, IT-41125 Modena, Italy
- Department
of Quantum Matter Physics, University of
Geneva, CH-1211 Genéve, Switzerland
- E-mail:
| |
Collapse
|
28
|
Ni Z, Haglund AV, Wang H, Xu B, Bernhard C, Mandrus DG, Qian X, Mele EJ, Kane CL, Wu L. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe 3 with strain-controlled Ising order. NATURE NANOTECHNOLOGY 2021; 16:782-787. [PMID: 33875873 DOI: 10.1038/s41565-021-00885-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Antiferromagnets are interesting materials for spintronics because of their faster dynamics and robustness against perturbations from magnetic fields. Control of the antiferromagnetic order constitutes an important step towards applications, but has been limited to bulk materials so far. Here, using spatially resolved second-harmonic generation, we show direct evidence of long-range antiferromagnetic order and Ising-type Néel vector switching in monolayer MnPSe3 with large XY anisotropy. In additional to thermally induced switching, uniaxial strain can rotate the Néel vector, aligning it to a general in-plane direction irrespective of the crystal axes. A change of the universality class of the phase transition in the XY model under uniaxial strain causes this emergence of strain-controlled Ising order in the XY magnet MnPSe3. Our discovery is a further ingredient for compact antiferromagnetic spintronic devices in the two-dimensional limit.
Collapse
Affiliation(s)
- Zhuoliang Ni
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - A V Haglund
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA
| | - H Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - B Xu
- Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Fribourg, Switzerland
| | - C Bernhard
- Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Fribourg, Switzerland
| | - D G Mandrus
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - X Qian
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - E J Mele
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - C L Kane
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Liang Wu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Optoelectronic mixing with high-frequency graphene transistors. Nat Commun 2021; 12:2728. [PMID: 33980859 PMCID: PMC8115296 DOI: 10.1038/s41467-021-22943-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/29/2021] [Indexed: 02/03/2023] Open
Abstract
Graphene is ideally suited for optoelectronics. It offers absorption at telecom wavelengths, high-frequency operation and CMOS-compatibility. We show how high speed optoelectronic mixing can be achieved with high frequency (~20 GHz bandwidth) graphene field effect transistors (GFETs). These devices mix an electrical signal injected into the GFET gate and a modulated optical signal onto a single layer graphene (SLG) channel. The photodetection mechanism and the resulting photocurrent sign depend on the SLG Fermi level (EF). At low EF (<130 meV), a positive photocurrent is generated, while at large EF (>130 meV), a negative photobolometric current appears. This allows our devices to operate up to at least 67 GHz. Our results pave the way for GFETs optoelectronic mixers for mm-wave applications, such as telecommunications and radio/light detection and ranging (RADAR/LIDARs.).
Collapse
|
30
|
He J, Paradisanos I, Liu T, Cadore AR, Liu J, Churaev M, Wang RN, Raja AS, Javerzac-Galy C, Roelli P, Fazio DD, Rosa BLT, Tongay S, Soavi G, Ferrari AC, Kippenberg TJ. Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. NANO LETTERS 2021; 21:2709-2718. [PMID: 33754742 DOI: 10.1021/acs.nanolett.0c04149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer transition-metal dichalcogenides with direct bandgaps are emerging candidates for optoelectronic devices, such as photodetectors, light-emitting diodes, and electro-optic modulators. Here we report a low-loss integrated platform incorporating molybdenum ditelluride monolayers with silicon nitride photonic microresonators. We achieve microresonator quality factors >3 × 106 in the telecommunication O- to E-bands. This paves the way for low-loss, hybrid photonic integrated circuits with layered semiconductors, not requiring heterogeneous wafer bonding.
Collapse
Affiliation(s)
- Jijun He
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Tianyi Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alisson R Cadore
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Junqiu Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mikhail Churaev
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rui Ning Wang
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arslan S Raja
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clément Javerzac-Galy
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philippe Roelli
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Domenico De Fazio
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Barbara L T Rosa
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Giancarlo Soavi
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
- Institute for Solid State Physics, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Rakhi R, Suresh CH. Optoelectronic Properties of Polycyclic Benzenoid Hydrocarbons of Various Sizes and Shapes for Donor‐π‐Acceptor Systems: A DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202004320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramachandran Rakhi
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
32
|
Paradisanos I, Wang G, Alexeev EM, Cadore AR, Marie X, Ferrari AC, Glazov MM, Urbaszek B. Efficient phonon cascades in WSe 2 monolayers. Nat Commun 2021; 12:538. [PMID: 33483475 PMCID: PMC7822848 DOI: 10.1038/s41467-020-20244-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Energy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer transition metal dichalcogenides in optoelectronics. The primary stages of carrier relaxation affect a plethora of subsequent physical mechanisms. Here we measure light scattering and emission in tungsten diselenide monolayers close to the laser excitation energy (down to ~0.6 meV). We reveal a series of periodic maxima in the hot photoluminescence intensity, stemming from energy states higher than the A-exciton state. We find a period ~15 meV for 7 peaks below (Stokes) and 5 peaks above (anti-Stokes) the laser excitation energy, with a strong temperature dependence. These are assigned to phonon cascades, whereby carriers undergo phonon-induced transitions between real states above the free-carrier gap with a probability of radiative recombination at each step. We infer that intermediate states in the conduction band at the Λ-valley of the Brillouin zone participate in the cascade process of tungsten diselenide monolayers. This provides a fundamental understanding of the first stages of carrier-phonon interaction, useful for optoelectronic applications of layered semiconductors.
Collapse
Affiliation(s)
- Ioannis Paradisanos
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, Toulouse, 31077, France.
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Gang Wang
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Evgeny M Alexeev
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Alisson R Cadore
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, Toulouse, 31077, France
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK.
| | | | - Bernhard Urbaszek
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, Toulouse, 31077, France.
| |
Collapse
|
33
|
Mbayachi VB, Ndayiragije E, Sammani T, Taj S, Mbuta ER, khan AU. Graphene synthesis, characterization and its applications: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
34
|
Molas MR, Tyurnina AV, Zólyomi V, Ott AK, Terry DJ, Hamer MJ, Yelgel C, Babiński A, Nasibulin AG, Ferrari AC, Fal'ko VI, Gorbachev R. Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. Faraday Discuss 2020; 227:163-170. [PMID: 33325929 DOI: 10.1039/d0fd00007h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
III-VI post-transition metal chalcogenides (InSe and GaSe) are a new class of layered semiconductors, which feature a strong variation of size and type of their band gaps as a function of number of layers (N). Here, we investigate exfoliated layers of InSe and GaSe ranging from bulk crystals down to monolayer, encapsulated in hexagonal boron nitride, using Raman spectroscopy. We present the N-dependence of both intralayer vibrations within each atomic layer, as well as of the interlayer shear and layer breathing modes. A linear chain model can be used to describe the evolution of the peak positions as a function of N, consistent with first principles calculations.
Collapse
Affiliation(s)
- Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Z, Tan Q, Liang Y, Zhou X, Zhou W, Huang X. Active Manipulation of The Spin and Orbital Angular Momentums in a Terahertz Graphene-Based Hybrid Plasmonic Waveguide. NANOMATERIALS 2020; 10:nano10122436. [PMID: 33291508 PMCID: PMC7762202 DOI: 10.3390/nano10122436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
Angular momentums (AMs) of photons are crucial physical properties exploited in many fields such as optical communication, optical imaging, and quantum information processing. However, the active manipulation (generation, switching, and conversion) of AMs of light on a photonic chip remains a challenge. Here, we propose and numerically demonstrate a reconfigurable graphene-based hybrid plasmonic waveguide (GHPW) with multiple functions for on-chip AMs manipulation. Its physical mechanism lies in creating a switchable phase delay of ±π/2 between the two orthogonal and decomposed linear-polarized waveguide modes and the spin-orbit coupling in the GHPW. For the linear-polarized input light with a fixed polarization angle of 45°, we can simultaneously switch the chirality (with −ħ/+ħ) of the transverse component and the spirality (topological charge ℓ = −1/+1) of the longitudinal component of the output terahertz (THz) light. With a switchable phase delay of ±π in the GHPW, we also developed the function of simultaneous conversion of the charity and spirality for the circular-polarized input light. In addition, a selective linear polarization filtering with a high extinction ratio can be realized. With the above multiple functions, our proposed GHPWs are a promising platform in AMs generation, switching, conversion, and polarization filtering, which will greatly expand its applications in the THz photonic integrated circuits.
Collapse
Affiliation(s)
- Ziang Wang
- Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China; (Z.W.); (Y.L.); (X.Z.)
| | - Qilong Tan
- School of Physics and Telecommunications Engineering, South China Normal University, Guangzhou 510006, China;
| | - Yong Liang
- Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China; (Z.W.); (Y.L.); (X.Z.)
| | - Xia Zhou
- Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China; (Z.W.); (Y.L.); (X.Z.)
| | - Wen Zhou
- Department of Materials, University of Oxford, Oxford OX1 3PH, UK
- Correspondence: (W.Z.); (X.H.)
| | - Xuguang Huang
- Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China; (Z.W.); (Y.L.); (X.Z.)
- Correspondence: (W.Z.); (X.H.)
| |
Collapse
|
36
|
Peng Y, Xu J, Dong H, Dai X, Jiang J, Qian S, Jiang L. Graphene-based low-threshold and tunable optical bistability in one-dimensional photonic crystal Fano resonance heterostructure at optical communication band. OPTICS EXPRESS 2020; 28:34948-34959. [PMID: 33182952 DOI: 10.1364/oe.408632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In this paper, the one-dimensional photonic crystal Fano resonance heterostructure is used to achieve low-threshold and tunable graphene-based optical bistability of the transmitted and reflected light beam at optical communication band. The low-threshold of optical bistability (OB) originates from the local field enhancement owing to the Fano resonance excited by topological edge states mode and Fabry-Perot cavity mode. The study found that it is feasible to continuously adjust the hysteresis behavior and optical bistable thresholds by altering the Fermi energy of the left and right graphene respectively. Furthermore, the OB can also be controlled by changing the number of graphene layers or the angle of incident beam, which makes this structure a feasible object of experimental research at optical communication band in the future.
Collapse
|
37
|
Abstract
The advanced electrochemical properties, such as high energy density, fast charge–discharge rates, excellent cyclic stability, and specific capacitance, make supercapacitor a fascinating electronic device. During recent decades, a significant amount of research has been dedicated to enhancing the electrochemical performance of the supercapacitors through the development of novel electrode materials. In addition to highlighting the charge storage mechanism of the three main categories of supercapacitors, including the electric double-layer capacitors (EDLCs), pseudocapacitors, and the hybrid supercapacitors, this review describes the insights of the recent electrode materials (including, carbon-based materials, metal oxide/hydroxide-based materials, and conducting polymer-based materials, 2D materials). The nanocomposites offer larger SSA, shorter ion/electron diffusion paths, thus improving the specific capacitance of supercapacitors (SCs). Besides, the incorporation of the redox-active small molecules and bio-derived functional groups displayed a significant effect on the electrochemical properties of electrode materials. These advanced properties provide a vast range of potential for the electrode materials to be utilized in different applications such as in wearable/portable/electronic devices such as all-solid-state supercapacitors, transparent/flexible supercapacitors, and asymmetric hybrid supercapacitors.
Collapse
|
38
|
DFT study on tailoring the structural, electronic and optical properties of bilayer graphene through metalloids intercalation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Rashidian Vaziri MR. High-contrast optical microscopy of graphene sheets. Microsc Res Tech 2020; 83:1132-1140. [PMID: 32643230 DOI: 10.1002/jemt.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/20/2020] [Accepted: 04/18/2020] [Indexed: 11/08/2022]
Abstract
In the way of making graphene an industry-friendly material, it must be mass-produced with high-quality and reduced cost over large areas. Assisted by machine-learning techniques, rapid, nondestructive and accurate determination of large graphene sheets on SiO2 /Si substrates has been made possible in recent years by the optical microscopy method. Optimization of the substrate to achieve the maximum contrast can further extend the application of the optical microscopy method for quality control of the mass-produced graphene. Graphene/n2 /n3 three-layer structures, where n2 and n3 are refractive indices, are routinely used for identifying the number of graphene layers by optical reflection microscopy. In this paper, two analytical equations are derived that can be easily used for high-contrast optical imaging of graphene sheets without any need to resort to the cumbersome numerical methods. One of the equations is derived for choosing the best material with refractive index n2 that when coated on a substrate with refractive index n3 , maximizes the optical contrast. The other equation is derived for finding the best thickness of the SiO2 layer in graphene/SiO2 /Si structures, which are in common use for fabrication of graphene-based devices. The results are implemented in a MATLAB GUI, see Supporting Information, to assist the users in using the equations.
Collapse
|
40
|
Wang Y, Qian P, Liu Y, Zhang FM, Cai HL, Wu XS, Zhang GP. Modulating the electronic and optical properties for SrTiO 3/LaAlO 3 bilayers treated as the 2D materials by biaxial strains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:215701. [PMID: 31995526 DOI: 10.1088/1361-648x/ab70c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emerging two-dimensional (2D) materials such as graphene have opened the door to industrial applications. Here, we consider the oxide perovskite monolayer of SrTiO3 (STO), LaAlO3 (LAO) and their heterostructures as the 2D transitional metal system. Results show that a band-gap transition from indirect to direct occurs when the separated monolayer STO (indirect band gap of 3.210 eV), and LAO (indirect band gap of 4.024 eV), form the heterostructures (direct band gap of 2.976 eV). The obtained bandgap for the stable bilayers may effectively be modulated by biaxial strains from -12% to 8%. With 12% compressive biaxial strain, the band gap reduces to be 0.23 eV. The optical properties for the stable bilayers are also tuned by the biaxial strain. When the strain increases from compressive strain to tensile strain, the strongest peak of the imaginary part of dielectric function red shifts to lower energy. In comparing with the monolayer STO and LAO, the elastic property enhances obviously for the stable heterostructure, suggesting the heterostructure can be more stable freestanding or may be applied in device fabrications.
Collapse
Affiliation(s)
- Yan Wang
- Collaborative Innovation Center of Advanced Microstructures, Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Ma Q, Dai J, Luo A, Hong W. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface. NANOMATERIALS 2020; 10:nano10020232. [PMID: 32013078 PMCID: PMC7075167 DOI: 10.3390/nano10020232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 11/21/2022]
Abstract
In this paper, we numerically and theoretically study the tunable plasmonically induced transparency (PIT) effect based on the graphene metasurface structure consisting of a graphene cut wire (CW) resonator and double split-ring resonators (SRRs) in the middle infrared region (MIR). Both the theoretical calculations according to the coupled harmonic oscillator model and simulation results indicate that the realization of the PIT effect significantly depends on the coupling distance and the coupling strength between the CW resonator and SRRs. In addition, the geometrical parameters of the CW resonator and the number of the graphene layers can alter the optical response of the graphene structure. Particularly, compared with the metal-based metamaterial, the PIT effect realized in the proposed metasurface can be flexibly modulated without adding other actively controlled materials and reconstructing the structure by taking advantage of the tunable complex surface conductivity of the graphene. These results could find significant applications in ultrafast variable optical attenuators, sensors and slow light devices.
Collapse
Affiliation(s)
| | | | | | - Weiyi Hong
- Correspondence: ; Tel.: +86-185-203-89309
| |
Collapse
|
42
|
Szirmai P, Márkus BG, Chacón-Torres JC, Eckerlein P, Edelthalhammer K, Englert JM, Mundloch U, Hirsch A, Hauke F, Náfrádi B, Forró L, Kramberger C, Pichler T, Simon F. Characterizing the maximum number of layers in chemically exfoliated graphene. Sci Rep 2019; 9:19480. [PMID: 31862907 PMCID: PMC6925211 DOI: 10.1038/s41598-019-55784-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
An efficient route to synthesize macroscopic amounts of graphene is highly desired and bulk characterization of such samples, in terms of the number of layers, is equally important. We present a Raman spectroscopy-based method to determine the typical upper limit of the number of graphene layers in chemically exfoliated graphene. We utilize a controlled vapour-phase potassium intercalation technique and identify a lightly doped stage, where the Raman modes of undoped and doped few-layer graphene flakes coexist. The spectra can be unambiguously distinguished from alkali doped graphite, and modeling with the typical upper limit of the layers yields an upper limit of flake thickness of five layers with a significant single-layer graphene content. Complementary statistical AFM measurements on individual few-layer graphene flakes find a consistent distribution of the layer numbers.
Collapse
Affiliation(s)
- Péter Szirmai
- Faculty of Physics, University of Vienna, Strudlhofgasse 4., Vienna, A-1090, Austria. .,Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), PO Box 91, H-1521, Budapest, Hungary. .,Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Bence G Márkus
- Faculty of Physics, University of Vienna, Strudlhofgasse 4., Vienna, A-1090, Austria.,Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), PO Box 91, H-1521, Budapest, Hungary
| | - Julio C Chacón-Torres
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119, Urcuquí, Ecuador.,Institut für Experimental Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Philipp Eckerlein
- Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Konstantin Edelthalhammer
- Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Jan M Englert
- Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Udo Mundloch
- Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Frank Hauke
- Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Bálint Náfrádi
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - László Forró
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4., Vienna, A-1090, Austria
| | - Thomas Pichler
- Faculty of Physics, University of Vienna, Strudlhofgasse 4., Vienna, A-1090, Austria
| | - Ferenc Simon
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), PO Box 91, H-1521, Budapest, Hungary
| |
Collapse
|
43
|
Abstract
AbstractConventional inorganic semiconductor quantum dots (QDs) have numerous applications ranging from energy harvesting to optoelectronic and bio-sensing devices primarily due to their unique size and shape tunable band-gap and also surface functionalization capability and consequently, have received significant interest in the last few decades. However, the high market cost of these QDs, on the order of thousands of USD/g and toxicity limit their practical utility in many industrial applications. In this context, graphene quantum dot (GQD), a nanocarbon material and a new entrant in the quantum-confined semiconductors could be a promising alternative to the conventional toxic QDs due to its potential tunability in optical and electronic properties and film processing capability for realizing many of the applications. Variation in optical as well as electronic properties as a function of size, shape, doping and functionalization would be discussed with relevant theoretical backgrounds along with available experimental results and limitations. The review deals with various methods available so far towards the synthesis of GQDs along with special emphasis on characterization techniques starting from spectroscopic, optical and microscopic techniques along with their the working principles, and advantages and limitations. Finally, we will comment on the environmental impact and toxicity limitations of these GQDs and their hybrid nanomaterials to facilitate their future prospects.Graphical Abstract:Structure of doped, functionalized and hybrid GQDs
Collapse
Affiliation(s)
- Sumana Kundu
- ECPS, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Vijayamohanan K. Pillai
- ECPS, CSIR-Central Electrochemical Research Institute, Karaikudi, India
- Indian Institute of Science Education and Research (IISER), Chemistry, Transit campus:Sree Rama Eng. CollegeTirupati, India
| |
Collapse
|
44
|
Bao Z, Wang J, Hu ZD, Balmakou A, Khakhomov S, Tang Y, Zhang C. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials. OPTICS EXPRESS 2019; 27:31435-31445. [PMID: 31684378 DOI: 10.1364/oe.27.031435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we propose a tunable, multi-band, selective absorber composed of multiple layers. Each layer consisted of SiO2/graphene/SiC, and a layer of silver was used as the ground plane of the entire structure. Simulation results show that we can passively and actively coordinate the resonant frequency of the perfect absorption peak by changing the geometric parameters of the array and the Fermi level of the graphene. The absorber is not sensitive to the angle of incidence and the direction of polarization. We propose a theoretical basis for the formation of multiple absorption peaks. The theoretical calculations are in good agreement with the simulation results. In addition, we simulated the three- and four-layer structures. The results show that in the terahertz (THz) band, composite structures of three and four layers can obtain three and four perfect absorption peaks, respectively. Our results provide new insights into the THz band of harmonizable multi-band absorbers that can be applied to THz imaging to coordinate sensors and other optoelectronic devices.
Collapse
|
45
|
Khan F, Kim JH. Emission-wavelength-dependent photoluminescence decay lifetime of N-functionalized graphene quantum dot downconverters: Impact on conversion efficiency of Cu(In, Ga)Se 2 solar cells. Sci Rep 2019; 9:10803. [PMID: 31346195 PMCID: PMC6658560 DOI: 10.1038/s41598-019-47068-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
Graphene quantum dots (GQDs) have several advantages over inorganic quantum dots owing to their beneficial properties. Recently, GQDs have been used as downconverters in photovoltaic devices. However, the application of GQDs in most emergent thin-film-based Cu(In, Ga)Se2 (CIGS) photovoltaic cells is limited because of either low photoluminescence (PL) quantum yield (QY) or a small Stokes shift (Δλ). Therefore, GQDs with an ultrahigh QY and large Δλ are essential to realizing the two emergent fields, i.e., the application of GQDs in CIGS photovoltaic solar cells. In this regard, we synthesized nitrogen-functionalized GQDs (NGQDs) with an ultrahigh QY (77–99%) and a large Δλ (95–155 nm) via tailoring of the nitrogen and oxygen moieties. The NGQDs were applied in CIGS solar cells to evaluate their downconversion efficiency. Our study shows that the emission wavelength (λem)-dependent photoluminescence decay lifetime (τem) determines the down-conversion efficiency of the nitrogen-functionalized graphene quantum dots. With the increase in τem at λem > 500 nm, the conversion efficiencies of the NGQDs coated-CIGS solar cells increased by 12.22%. Thus, the increase in τem at λem > 500 nm significantly increased the maximum current output and thus enhanced the solar-cell performance.
Collapse
Affiliation(s)
- Firoz Khan
- Center of Research Excellence in Renewable Energy (CoRERE), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Jae Hyun Kim
- Smart Textile Convergence Research Group, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea.
| |
Collapse
|
46
|
Jaouen K, Cornut R, Ausserré D, Campidelli S, Derycke V. Ideal optical contrast for 2D material observation using bi-layer antireflection absorbing substrates. NANOSCALE 2019; 11:6129-6135. [PMID: 30869677 DOI: 10.1039/c8nr09983a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The capability to observe 2D materials with optical microscopy techniques is of central importance in the development of the field and is a driving force for the assembly and study of 2D material van der Waals heterostructures. Such an observation of ultrathin materials usually benefits from antireflection conditions associated with the choice of a particular substrate geometry. The most common configuration uses a transparent oxide layer with a thickness minimizing light reflection at the air/substrate interface when light travels from air to the substrate. Backside Absorbing Layer Microscopy (BALM) is a newly proposed configuration in which light travels from glass to air (or another medium such as water or a solvent) and the antireflection layer is a light-absorbing material (typically a metal). We recently showed that this technique produces images of 2D materials with unprecedented contrast and can be ideally coupled to chemical and electrochemical experiments. Here, we show that contrast can be optimal using double-layer antireflection coatings. By following in situ and with sub-nm precision the controlled deposition of molecules, we notably establish precisely the ideal observation conditions for graphene oxide monolayers which represent one of the most challenging 2D material cases in terms of transparency and thickness. We also provide guidelines for the selection of antireflection coatings applicable to a large variety of nanomaterials. This work strengthens the potential of BALM as a generic, powerful and versatile technique for the study of molecular-scale materials and phenomena.
Collapse
Affiliation(s)
- Kevin Jaouen
- LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
47
|
Keisham B, Seksenyan A, Denyer S, Kheirkhah P, Arnone GD, Avalos P, Bhimani AD, Svendsen C, Berry V, Mehta AI. Quantum Capacitance Based Amplified Graphene Phononics for Studying Neurodegenerative Diseases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:169-175. [PMID: 30468382 DOI: 10.1021/acsami.8b15893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease (MND) characterized by a rapid loss of upper and lower motor neurons resulting in patient death from respiratory failure within 3-5 years of initial symptom onset. Although at least 30 genes of major effect have been reported, the pathobiology of ALS is not well understood. Compounding this is the lack of a reliable laboratory test which can accurately diagnose this rapidly deteriorating disease. Herein, we report on the phonon vibration energies of graphene as a sensitive measure of the composite dipole moment of the interfaced cerebrospinal fluid (CSF) that includes a signature-composition specific to the patients with ALS disease. The second-order overtone of in-plane phonon vibration energy (2D peak) of graphene shifts by 3.2 ± 0.5 cm-1 for all ALS patients studied in this work. Further, the amount of n-doping-induced shift in the phonon energy of graphene, interfaced with CSF, is specific to the investigated neurodegenerative disease (ALS, multiple sclerosis, and MND). By removing a severe roadblock in disease detection, this technology can be applied to study diagnostic biomarkers for researchers developing therapeutics and clinicians initiating treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bijentimala Keisham
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago 60607 , Illinois , United States
| | - Akop Seksenyan
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
- Chicago Medical School , Rosalind Franklin University of Medicine and Science , North Chicago 60064 , Illinois , United States
| | - Steven Denyer
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Pouyan Kheirkhah
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Gregory D Arnone
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Pablo Avalos
- Regenerative Medicine Institute , Cedars-Sinai Medical Center , Los Angeles 90048 , California , United States
| | - Abhiraj D Bhimani
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| | - Clive Svendsen
- Regenerative Medicine Institute , Cedars-Sinai Medical Center , Los Angeles 90048 , California , United States
| | - Vikas Berry
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago 60607 , Illinois , United States
| | - Ankit I Mehta
- Department of Neurosurgery , University of Illinois at Chicago , Chicago 60612 , Illinois , United States
| |
Collapse
|
48
|
Tunable Metamaterial with Gold and Graphene Split-Ring Resonators and Plasmonically Induced Transparency. NANOMATERIALS 2018; 9:nano9010007. [PMID: 30577616 PMCID: PMC6359085 DOI: 10.3390/nano9010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022]
Abstract
In this paper, we propose a metamaterial structure for realizing the electromagnetically induced transparency effect in the MIR region, which consists of a gold split-ring and a graphene split-ring. The simulated results indicate that a single tunable transparency window can be realized in the structure due to the hybridization between the two rings. The transparency window can be tuned individually by the coupling distance and/or the Fermi level of the graphene split-ring via electrostatic gating. These results could find significant applications in nanoscale light control and functional devices operating such as sensors and modulators.
Collapse
|
49
|
Purdie DG, Pugno NM, Taniguchi T, Watanabe K, Ferrari AC, Lombardo A. Cleaning interfaces in layered materials heterostructures. Nat Commun 2018; 9:5387. [PMID: 30568160 PMCID: PMC6300598 DOI: 10.1038/s41467-018-07558-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Heterostructures formed by stacking layered materials require atomically clean interfaces. However, contaminants are usually trapped between the layers, aggregating into randomly located blisters, incompatible with scalable fabrication processes. Here we report a process to remove blisters from fully formed heterostructures. Our method is over an order of magnitude faster than those previously reported and allows multiple interfaces to be cleaned simultaneously. We fabricate blister-free regions of graphene encapsulated in hexagonal boron nitride with an area ~ 5000 μm2, achieving mobilities up to 180,000 cm2 V-1 s-1 at room temperature, and 1.8 × 106 cm2 V-1 s-1 at 9 K. We also assemble heterostructures using graphene intentionally exposed to polymers and solvents. After cleaning, these samples reach similar mobilities. This demonstrates that exposure of graphene to process-related contaminants is compatible with the realization of high mobility samples, paving the way to the development of wafer-scale processes for the integration of layered materials in (opto)electronic devices.
Collapse
Affiliation(s)
- D G Purdie
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - N M Pugno
- Laboratory of Bio-inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano, 77, I-38123, Trento, Italy.,School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Ket-lab, E. Amaldi Foundation, Via del Politecnico, 00133, Rome, Italy
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - A C Ferrari
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - A Lombardo
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| |
Collapse
|
50
|
Zhang X, Marschewski E, Penner P, Weimann T, Hinze P, Beyer A, Gölzhäuser A. Large-Area All-Carbon Nanocapacitors from Graphene and Carbon Nanomembranes. ACS NANO 2018; 12:10301-10309. [PMID: 30156406 DOI: 10.1021/acsnano.8b05490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the fabrication of large-area all-carbon capacitors (ACCs) composed of multilayer stacks of carbon nanomembranes as dielectrics sandwiched between two carbon-based conducting electrodes. Carbon nanomembranes (CNMs) are prepared from aromatic self-assembled monolayers of phenylthiol homologues via electron irradiation. Two types of carbon-based electrode materials, (1) trilayer graphene made by chemical vapor deposition and mechanical stacking and (2) pyrolyzed graphitic carbon made by pyrolysis of cross-linked aromatic molecules, have been employed for this study. The capacitor area is defined by the width of electrode ribbons, and the separation between two electrodes is tuned by the number of CNM layers. Working ACCs with an area of up to 1200 μm2 were successfully fabricated by a combination of bottom-up molecular self-assembly and top-down lithographic approaches. Then ACCs were characterized by Raman spectroscopy, helium ion microscopy, and impedance spectroscopy. A dielectric constant of 3.5 and an average capacitance density of 0.3 μF/cm2 were derived from the obtained capacitances. A dielectric strength of 3.2 MV/cm was determined for CNMs embedded in graphene electrodes with the interfacial capacitance being taken into account. These results show the potential of carbon nanomembranes to be used as dielectric components in next-generation environment-friendly carbon-based energy storage devices.
Collapse
Affiliation(s)
- Xianghui Zhang
- Physics of Supramolecular Systems and Surfaces , Bielefeld University , 33615 Bielefeld , Germany
| | - Emanuel Marschewski
- Physics of Supramolecular Systems and Surfaces , Bielefeld University , 33615 Bielefeld , Germany
| | - Paul Penner
- Physics of Supramolecular Systems and Surfaces , Bielefeld University , 33615 Bielefeld , Germany
| | - Thomas Weimann
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Peter Hinze
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces , Bielefeld University , 33615 Bielefeld , Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces , Bielefeld University , 33615 Bielefeld , Germany
| |
Collapse
|