1
|
Luo Z, Yi X, Jiang Y, Luo N, Liu B, Zhong Y, Tan Q, Jiang Q, Liu X, Chen S, Lu Y, Pan A. Efficient Energy Transfer Enabled by Dark States in van der Waals Heterostructures. ACS NANO 2024. [PMID: 39470132 DOI: 10.1021/acsnano.4c09403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Dark exciton states show great potential in condensed matter physics and optoelectronics because of their long lifetime and rich distribution in band structures. Therefore, they can theoretically serve as efficient energy reservoirs, providing a platform for future applications. However, their optical-transition-forbidden nature severely limits their experimental exploration and hinders their current application. Here, we demonstrate a universal dark state nonlinear energy transfer (ET) mechanism in monolayer WS2/CsPbBr3 van der Waals heterostructures under two-photon excitation, which successfully utilizes the enormous energy reserved in the dark exciton state of CsPbBr3 to significantly improve the photoelectric performance of monolayer WS2. We first propose the scenario of resonant ET between the dark state of CsPbBr3 and WS2, and then reveal that this is a typical Förster resonant ET and belongs to the 2D-2D category. Interestingly, the dark state ET in CsPbBr3 is identified as a long-range donor-bridge-acceptor hopping mode, with a potential distance exceeding 200 nm. Finally, we successfully achieve nearly an order of magnitude enhancement in the near-infrared detection performance of monolayer WS2. Our results enrich the theory of dark exciton states and ET, and they provide a way of using dark exciton states for future practical applications.
Collapse
Affiliation(s)
- Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Xiao Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ying Jiang
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Nannan Luo
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Bingjie Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yangguang Zhong
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qin Tan
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Qi Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuerui Lu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- School of Physics and Electronics, Hunan Normal University, Changsha 410082, P R China
| |
Collapse
|
2
|
Szalkowski M, Kiliszek M, Harputlu E, Izzo M, Gokhan Unlu C, Mackowski S, Ocakoglu K, Kargul J, Kowalska D. Bimodal functionality of highly conductive nanostructured silver film towards improved performance of photosystem I-based graphene photocathode. Bioelectrochemistry 2024; 161:108825. [PMID: 39342775 DOI: 10.1016/j.bioelechem.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
We present the novel design of photosystem I (PSI)-based biosolar cell, whereby conductive transparent electrode materials, such as ITO or FTO, are replaced with glass covered with silver island film. This nanostructured metallic layer combines high electric conductance with enhancing the absorption efficiency of the PSI biocatalyst via the plasmonic effect. We demonstrate strong enhancement of the photocurrent generated in the biohybrid electrode composed of oriented layers of PSI reaction centers due to plasmonic interactions of the PSI fluorophores and redox centres with the conductive silver island film.
Collapse
Affiliation(s)
- Marcin Szalkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Małgorzata Kiliszek
- Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Ersan Harputlu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
| | - Miriam Izzo
- Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - C Gokhan Unlu
- Department of Biomedical Engineering, Pamukkale University, TR20070 Denizli, Turkey
| | - Sebastian Mackowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey.
| | - Joanna Kargul
- Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Dorota Kowalska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland.
| |
Collapse
|
3
|
Lou X, Li Y, Lei H, Zhang Y, Zhou H, Shi E, Zhu H. Robust and Efficient Out-of-Plane Exciton Transport in Two-Dimensional Perovskites via Ultrafast Förster Energy Transfer. ACS NANO 2024. [PMID: 39041395 DOI: 10.1021/acsnano.4c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Two-dimensional (2D) perovskites, comprising inorganic semiconductor layers separated by organic spacers, hold promise for light harvesting and optoelectronic applications. Exciton transport in these materials is pivotal for device performance, often necessitating deliberate alignment of the inorganic layers with respect to the contacting layers to facilitate exciton transport. While much attention has focused on in-plane exciton transport, little has been paid to out-of-plane interlayer transport, which presumably is sluggish and unfavorable. Herein, by time-resolved photoluminescence, we unveil surprisingly efficient out-of-plane exciton transport in 2D perovskites, with diffusion coefficients (up to ∼0.1 cm2 s-1) and lengths (∼100 nm) merely a few times smaller or comparable to their in-plane counterparts. We unambiguously confirm that the out-of-plane exciton diffusion coefficient corresponds to a subpicosecond interlayer exciton transfer, governed by the Förster resonance energy transfer (FRET) mechanism. Intriguingly, in contrast to temperature-sensitive intralayer band-like transport, the interlayer exciton transport exhibits negligible temperature dependence, implying a lowest-lying bright exciton state in 2D perovskites, irrespective of spacer molecules. The robust and ultrafast interlayer exciton transport alleviates the constraints on crystal orientation that are crucial for the design of 2D perovskite-based light harvesting and optoelectronic devices.
Collapse
Affiliation(s)
- Xue Lou
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haixin Lei
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yao Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Hongzhi Zhou
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haiming Zhu
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
4
|
Gronkiewicz K, Richter L, Knechtel F, Pyrcz P, Leidinger P, Günther S, Ploetz E, Tinnefeld P, Kamińska I. Expanding the range of graphene energy transfer with multilayer graphene. NANOSCALE 2024; 16:13464-13470. [PMID: 38922309 DOI: 10.1039/d4nr01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The interaction between single emitters and graphene in the context of energy transfer has attracted significant attention due to its potential applications in fields such as biophysics and super-resolution microscopy. In this study, we investigate the influence of the number of graphene layers on graphene energy transfer (GET) by placing single dye molecules at defined distances from monolayer, bilayer, and trilayer graphene substrates. We employ DNA origami nanostructures as chemical adapters to position the dye molecules precisely. Fluorescence lifetime measurements and analysis reveal an additive effect of graphene layers on the energy transfer rate extending the working range of GET up to distances of approximately 50-60 nm. Moreover, we show that switching a DNA pointer strand between two positions on a DNA origami nanostructure at a height of >28 nm above graphene is substantially better visualized with multilayer graphene substrates suggesting enhanced capabilities for applications such as biosensing and super-resolution microscopy for larger systems and distances. This study provides insights into the influence of graphene layers on energy transfer dynamics and offers new possibilities for exploiting graphene's unique properties in various nanotechnological applications.
Collapse
Affiliation(s)
- Karolina Gronkiewicz
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Lars Richter
- Department of Chemistry and Center for NanoScience, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Fabian Knechtel
- Department of Chemistry and Center for NanoScience, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Patryk Pyrcz
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Paul Leidinger
- Department of Chemistry, Technical University of Munich (TUM), Catalysis Research Center, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Sebastian Günther
- Department of Chemistry, Technical University of Munich (TUM), Catalysis Research Center, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Izabela Kamińska
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
- Department of Chemistry and Center for NanoScience, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
5
|
Wang Z, Kalathingal V, Trushin M, Liu J, Wang J, Guo Y, Özyilmaz B, Nijhuis CA, Eda G. Upconversion electroluminescence in 2D semiconductors integrated with plasmonic tunnel junctions. NATURE NANOTECHNOLOGY 2024; 19:993-999. [PMID: 38641642 DOI: 10.1038/s41565-024-01650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Plasmonic tunnel junctions are a unique electroluminescent system in which light emission occurs via an interplay between tunnelling electrons and plasmonic fields instead of electron-hole recombination as in conventional light-emitting diodes. It was previously shown that placing luminescent molecules in the tunneling pathway of nanoscopic tunnel junctions results in peculiar upconversion electroluminescence where the energy of emitted photons exceeds that of excitation electrons. Here we report the observation of upconversion electroluminescence in macroscopic van der Waals plasmonic tunnel junctions comprising gold and few-layer graphene electrodes separated by a ~2-nm-thick hexagonal boron nitride tunnel barrier and a monolayer semiconductor. We find that the semiconductor ground exciton emission is triggered at excitation electron energies lower than the semiconductor optical gap. Interestingly, this upconversion is reached in devices operating at a low conductance (<10-6 S) and low power density regime (<102 W cm-2), defying explanation through existing proposed mechanisms. By examining the scaling relationship between plasmonic and excitonic emission intensities, we elucidate the role of inelastic electron tunnelling dipoles that induce optically forbidden transitions in the few-layer graphene electrode and ultrafast hot carrier transfer across the van der Waals interface.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Vijith Kalathingal
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, Kannur University, Swami Anandatheertha Campus-Payyanur, Kannur, India
| | - Maxim Trushin
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Material Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiawei Liu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Junyong Wang
- CAS Key Laboratory of Nano-Bio Interface and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yongxin Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Barbaros Özyilmaz
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Material Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Christian A Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| | - Goki Eda
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Chen Y, Wang X, Luo S, Dai C, Wu Y, Zhao J, Liu W, Kong D, Yang Y, Geng L, Liu Y, Wei D. Electrically Oriented Antibodies on Transistor for Monitoring Several Copies of Methylated DNA. Anal Chem 2024; 96:8300-8307. [PMID: 38747393 DOI: 10.1021/acs.analchem.3c04670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy μL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.
Collapse
Affiliation(s)
- Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Tebbe D, Schütte M, Watanabe K, Taniguchi T, Stampfer C, Beschoten B, Waldecker L. Distance Dependence of the Energy Transfer Mechanism in WS_{2}-Graphene Heterostructures. PHYSICAL REVIEW LETTERS 2024; 132:196902. [PMID: 38804923 DOI: 10.1103/physrevlett.132.196902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
We report on the mechanism of energy transfer in Van der Waals heterostructures of the two-dimensional semiconductor WS_{2} and graphene with varying interlayer distances, achieved through spacer layers of hexagonal boron nitride (h-BN). We record photoluminescence and reflection spectra at interlayer distances between 0.5 and 5.8 nm (0-16 h-BN layers). We find that the energy transfer is dominated by states outside the light cone, indicative of a Förster transfer process, with an additional contribution from a Dexter process at 0.5 nm interlayer distance. We find that the measured dependence of the luminescence intensity on interlayer distances above 1 nm can be quantitatively described using recently reported values of the Förster transfer rates of thermalized charge carriers. At smaller interlayer distances, the experimentally observed transfer rates exceed the predictions and, furthermore, depend on excess energy as well as on excitation density. Since the transfer probability of the Förster mechanism depends on the momentum of electron-hole pairs, we conclude that, at these distances, the transfer is driven by nonrelaxed charge carrier distributions.
Collapse
Affiliation(s)
- David Tebbe
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Schütte
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - K Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Christoph Stampfer
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernd Beschoten
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Lutz Waldecker
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
8
|
Wiwatowski K, Sulowska K, Mackowski S. Single-Molecule Fluorescence Probes Interactions between Photoactive Protein-Silver Nanowire Conjugate and Monolayer Graphene. Int J Mol Sci 2024; 25:4873. [PMID: 38732092 PMCID: PMC11084953 DOI: 10.3390/ijms25094873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this work, we apply single-molecule fluorescence microscopy and spectroscopy to probe plasmon-enhanced fluorescence and Förster resonance energy transfer in a nanoscale assemblies. The structure where the interplay between these two processes was present consists of photoactive proteins conjugated with silver nanowires and deposited on a monolayer graphene. By comparing the results of continuous-wave and time-resolved fluorescence microscopy acquired for this structure with those obtained for the reference samples, where proteins were coupled with either a graphene monolayer or silver nanowires, we find clear indications of the interplay between plasmonic enhancement and the energy transfer to graphene. Namely, fluorescence intensities calculated for the structure, where proteins were coupled to graphene only, are less than for the structure playing the central role in this study, containing both silver nanowires and graphene. Conversely, decay times extracted for the latter are shorter compared to a protein-silver nanowire conjugate, pointing towards emergence of the energy transfer. Overall, the results show that monitoring the optical properties of single emitters in a precisely designed hybrid nanostructure provides an elegant way to probe even complex combination of interactions at the nanoscale.
Collapse
Affiliation(s)
- Kamil Wiwatowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; (K.W.); (K.S.)
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; (K.W.); (K.S.)
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sebastian Mackowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; (K.W.); (K.S.)
| |
Collapse
|
9
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
10
|
Wang S, Bai Y, Liu M, Zong X, Wang W, Mu Q, Han T, Li F, Wang S, Shan L, Long M. A high-performance long-wave infrared photodetector based on a WSe 2/PdSe 2 broken-gap heterodiode. NANOSCALE 2023; 15:17006-17013. [PMID: 37831435 DOI: 10.1039/d3nr03248e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Layered narrow bandgap quasi-two-dimensional (2D) transition metal dichalcogenides (TMDs) demonstrated excellent performance in long-wave infrared (LWIR) detection. However, the low light on/off ratio and specific detectivity (D*) due to the high dark current of the device fabricated using a single narrow bandgap material hindered its wide application. Herein, we report a type-III broken-gap band-alignment WSe2/PdSe2 van der Waals (vdW) heterostructure. The heterodiode device has a prominently low dark current and exhibits a high photoresponsivity (R) of 55.3 A W-1 and a high light on/off ratio >105 in the visible range. Notably, the WSe2/PdSe2 heterodiode shows an excellent uncooled LWIR response, with an R of ∼0.3 A W-1, a low noise equivalence power (NEP) of 4.5 × 10-11 W Hz-1/2, and a high D* of 1.8 × 108 cm Hz1/2 W-1. This work provides a new approach for designing high-performance room-temperature operational LWIR photodetectors.
Collapse
Affiliation(s)
- Suofu Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Yajie Bai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Mingli Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Xiaolan Zong
- Institute for Quantum Control and Quantum Information, School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Wenhui Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qingge Mu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Tao Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Shaoliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| |
Collapse
|
11
|
Hamraoui K, Torres-Vera VA, Zabala Gutierrez I, Casillas-Rubio A, Alqudwa Fattouh M, Benayas A, Marin R, Natile MM, Manso Silvan M, Rubio-Zuazo J, Jaque D, Melle S, Calderón OG, Rubio-Retama J. Exploring the Origin of the Thermal Sensitivity of Near-Infrared-II Emitting Rare Earth Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390496 DOI: 10.1021/acsami.3c04125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Rare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging. Furthermore, the strong temperature dependence of the PL properties of some of these RENPs makes remote thermal imaging possible. This is the case of neodymium and ytterbium co-doped NPs that have been used as thermal reporters for in vivo diagnosis of, for instance, inflammatory processes. However, the lack of knowledge about how the chemical composition and architecture of these NPs influence their thermal sensitivity impedes further optimization. To shed light on this, we have systematically studied their emission intensity, PL decay time curves, absolute PL quantum yield, and thermal sensitivity as a function of the core chemical composition and size, active-shell, and outer-inert-shell thicknesses. The results revealed the crucial contribution of each of these factors in optimizing the NP thermal sensitivity. An optimal active shell thickness of around 2 nm and an outer inert shell of 3.5 nm maximize the PL lifetime and the thermal response of the NPs due to the competition between the temperature-dependent back energy transfer, the surface quenching effects, and the confinement of active ions in a thin layer. These findings pave the way for a rational design of RENPs with optimal thermal sensitivity.
Collapse
Affiliation(s)
- Khouloud Hamraoui
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Vivian Andrea Torres-Vera
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Irene Zabala Gutierrez
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | | | - Mohammed Alqudwa Fattouh
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Antonio Benayas
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Riccardo Marin
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Maria Natile
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Padua, Italy
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), 35131 Padova, Padua, Italy
| | - Miguel Manso Silvan
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Rubio-Zuazo
- Spanish CRG BM25-SpLine Beamline at the ESRF, 38043 Grenoble, France
- Instituto de Ciencias de los Materiales de Madrid-Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sonia Melle
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Oscar G Calderón
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| |
Collapse
|
12
|
Yang C, Guo Y, Zhou S, Liu Z, Liu Z, Zhang D, Guo X. A Tunable Single-Molecule Light-Emitting Diode with Single-Photon Precision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209750. [PMID: 36718825 DOI: 10.1002/adma.202209750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/01/2023] [Indexed: 06/18/2023]
Abstract
A robust single-molecule light-emitting diode (SM-LED) with high color purity, linear polarization, and efficiency tunability is prepared by covalently integrating one fluorescent molecule into nanogapped graphene electrodes. Furthermore, single-molecule Förster resonance energy transfer from the electroluminescent center to different accepters is achieved through rational molecular engineering, enabling construction of a multicolor SM-LED. All these characterizations are accomplished in the photoelectrical integration system with high temporal/spatial/energy resolution, demonstrating the capability of the single-photon emission of SM-LEDs. The success in developing high-performance SM-LEDs inspires the development of the next generation of commercial display devices and promises a single-photon emitter for use in quantum computation and quantum communication.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| |
Collapse
|
13
|
Liu Y, Jiang L, Tian Y, Xu Z, Wang W, Qiu M, Wang H, Li X, Zhu G, Wang Y. Covalent Organic Framework/g-C 3N 4 van der Waals Heterojunction toward H 2 Production. Inorg Chem 2023; 62:3271-3277. [PMID: 36755483 DOI: 10.1021/acs.inorgchem.2c04366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Photocatalytic water splitting into H2 is the most economic and environmentally friendly strategy for H2 production, and rationally constructing a heterojunction retains enormous influence on a photocatalytic system. Herein, 2D/2D covalent organic framework/graphitic carbon nitride (COF/CN) van der Waals heterojunctions were readily prepared via an ultrasonic method for high-efficiency visible-light photocatalytic H2 production. The photocatalytic H2 production performance of optimized COF/CN composites can reach up to 449.64 μmol·h-1, which is approximately 5 times that of pure CN (89.08 μmol·h-1). The characterization and experimental studies reveal that the synergistic effect between COF and CN contributes to promoting the interfacial migration and spatial separation of photoinduced e--h+ pairs, further boosting the photocatalytic hydrogen production activity. This work may open a new window to design and fabricate effective heterojunction photocatalysts for photocatalytic energy conversion.
Collapse
Affiliation(s)
- Yanan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuyang Tian
- Faculty of Chemistry, Northeast Normal University, No. 5268, Renmin Street, Nanguan District, Changchun, Jilin 130024, People's Republic of China
| | - Zhifeng Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Wenting Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ming Qiu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Hongmei Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, No. 5268, Renmin Street, Nanguan District, Changchun, Jilin 130024, People's Republic of China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| |
Collapse
|
14
|
Chen Y, Kong D, Qiu L, Wu Y, Dai C, Luo S, Huang Z, Lin Q, Chen H, Xie S, Geng L, Zhao J, Tan W, Liu Y, Wei D. Artificial Nucleotide Aptamer-Based Field-Effect Transistor for Ultrasensitive Detection of Hepatoma Exosomes. Anal Chem 2023; 95:1446-1453. [PMID: 36577081 DOI: 10.1021/acs.analchem.2c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.
Collapse
Affiliation(s)
- Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhipeng Huang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Jun Zhao
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A single particle observation of quantum dots (QDs) was performed on lipid bilayers formed on graphene oxide (GO). The long-range fluorescence quenching of GO has been applied to biosensing for various biomolecules. We demonstrated the single particle observation of a QD on supported lipid bilayers in this study, aiming to detect the quenching efficiency of lipid and protein molecules in a lipid bilayer by fluorescence single particle tacking (SPT). A single lipid bilayer or double lipid bilayers were formed on GO flakes deposited on a thermally oxidized silicon substrate by the vesicle fusion method. The QDs were conjugated on the lipid bilayers, and single particle images of the QDs were obtained under the quenching effect of GO. The quenching efficiency of a single QD was evaluated from the fluorescence intensities on the regions with and without GO. The quenching efficiency reflecting the layer numbers of the lipid bilayers was obtained.
Collapse
|
16
|
Spectral Dependence of the Energy Transfer from Photosynthetic Complexes to Monolayer Graphene. Int J Mol Sci 2022; 23:ijms23073493. [PMID: 35408853 PMCID: PMC8998970 DOI: 10.3390/ijms23073493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescence excitation spectroscopy at cryogenic temperatures carried out on hybrid assemblies composed of photosynthetic complexes deposited on a monolayer graphene revealed that the efficiency of energy transfer to graphene strongly depended on the excitation wavelength. The efficiency of this energy transfer was greatly enhanced in the blue-green spectral region. We observed clear resonance-like behavior for both a simple light-harvesting antenna containing only two chlorophyll molecules (PCP) and a large photochemically active reaction center associated with the light-harvesting antenna (PSI-LHCI), which pointed towards the general character of this effect.
Collapse
|
17
|
Highly luminescent and electrically conductive hybrid material. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Schofield RC, Burdekin P, Fasoulakis A, Devanz L, Bogusz DP, Hoggarth RA, Major KD, Clark AS. Narrow and Stable Single Photon Emission from Dibenzoterrylene in para-Terphenyl Nanocrystals. Chemphyschem 2022; 23:e202100809. [PMID: 34905640 PMCID: PMC9302619 DOI: 10.1002/cphc.202100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Single organic molecules are promising photon sources for quantum technologies. In this work we show photon emission from dibenzoterrylene, a widely used organic emitter, in a new host matrix, para-terphenyl. We present a reprecipitation growth method that produces para-terphenyl nanocrystals which are ideal for integration into nanophotonic devices due to their small size. We characterise the optical properties of dibenzoterrylene in nanocrystals at room and cryogenic temperatures, showing bright, narrow emission from a single molecule. Spectral data on the vibrational energies is presented and a further 25 additional molecules are characterised. This emitter-host combination has potential for quantum technology purposes with wavelengths suitable for interfacing with quantum memories.
Collapse
Affiliation(s)
- Ross C. Schofield
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Paul Burdekin
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Anastasios Fasoulakis
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
- Quantum Engineering Technology LabsH. H. Wills Physics Laboratory and Department of Electrical and Electronic EngineeringUniversity of BristolBS8 1FDBristolUnited Kingdom
| | - Louise Devanz
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Dominika P. Bogusz
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Rowan A. Hoggarth
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Kyle D. Major
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Alex S. Clark
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
- Quantum Engineering Technology LabsH. H. Wills Physics Laboratory and Department of Electrical and Electronic EngineeringUniversity of BristolBS8 1FDBristolUnited Kingdom
| |
Collapse
|
19
|
Toninelli C, Gerhardt I, Clark AS, Reserbat-Plantey A, Götzinger S, Ristanović Z, Colautti M, Lombardi P, Major KD, Deperasińska I, Pernice WH, Koppens FHL, Kozankiewicz B, Gourdon A, Sandoghdar V, Orrit M. Single organic molecules for photonic quantum technologies. NATURE MATERIALS 2021; 20:1615-1628. [PMID: 33972762 DOI: 10.1038/s41563-021-00987-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/17/2021] [Indexed: 05/24/2023]
Abstract
Isolating single molecules in the solid state has allowed fundamental experiments in basic and applied sciences. When cooled down to liquid helium temperature, certain molecules show transition lines that are tens of megahertz wide, limited by only the excited-state lifetime. The extreme flexibility in the synthesis of organic materials provides, at low costs, a wide palette of emission wavelengths and supporting matrices for such single chromophores. In the past few decades, their controlled coupling to photonic structures has led to an optimized interaction efficiency with light. Molecules can hence be operated as single-photon sources and as nonlinear elements with competitive performance in terms of coherence, scalability and compatibility with diverse integrated platforms. Moreover, they can be used as transducers for the optical read-out of fields and material properties, with the promise of single-quanta resolution in the sensing of charges and motion. We show that quantum emitters based on single molecules hold promise to play a key role in the development of quantum science and technologies.
Collapse
Affiliation(s)
- C Toninelli
- CNR-INO, Sesto Fiorentino, Italy.
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy.
| | - I Gerhardt
- Institute for Quantum Science and Technology (IQST) and 3rd Institute of Physics, Stuttgart, Germany
| | - A S Clark
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, UK
| | - A Reserbat-Plantey
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - S Götzinger
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Z Ristanović
- Huygens-Kamerlingh Onnes Laboratory, LION, Leiden, The Netherlands
| | - M Colautti
- CNR-INO, Sesto Fiorentino, Italy
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
| | - P Lombardi
- CNR-INO, Sesto Fiorentino, Italy
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
| | - K D Major
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, UK
| | - I Deperasińska
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - W H Pernice
- Physikalisches Institut, Westfälische Wilhelms, Universität Münster, Münster, Germany
| | - F H L Koppens
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - B Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - V Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - M Orrit
- Huygens-Kamerlingh Onnes Laboratory, LION, Leiden, The Netherlands
| |
Collapse
|
20
|
Abstract
Super-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging. On the other, the development of super-resolved FRET imaging methods has allowed the visualization of molecular interaction patterns with higher spatial resolution, less averaging and higher dynamic range. Here, we review these advances and discuss future perspectives, including the possible integration of FRET with next generation super-resolution techniques capable of reaching true molecular-scale spatial resolution.
Collapse
Affiliation(s)
- Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
| | - Cecilia Zaza
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
21
|
Yang C, Zhang L, Lu C, Zhou S, Li X, Li Y, Yang Y, Li Y, Liu Z, Yang J, Houk KN, Mo F, Guo X. Unveiling the full reaction path of the Suzuki-Miyaura cross-coupling in a single-molecule junction. NATURE NANOTECHNOLOGY 2021; 16:1214-1223. [PMID: 34475558 DOI: 10.1038/s41565-021-00959-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/13/2021] [Indexed: 05/28/2023]
Abstract
Conventional analytic techniques that measure ensemble averages and static disorder provide essential knowledge of the reaction mechanisms of organic and organometallic reactions. However, single-molecule junctions enable the in situ, label-free and non-destructive sensing of molecular reaction processes at the single-event level with an excellent temporal resolution. Here we deciphered the mechanism of Pd-catalysed Suzuki-Miyaura coupling by means of a high-resolution single-molecule platform. Through molecular engineering, we covalently integrated a single molecule Pd catalyst into nanogapped graphene point electrodes. We detected sequential electrical signals that originated from oxidative addition/ligand exchange, pretransmetallation, transmetallation and reductive elimination in a periodic pattern. Our analysis shows that the transmetallation is the rate-determining step of the catalytic cycle and clarifies the controversial transmetallation mechanism. Furthermore, we determined the kinetic and thermodynamic constants of each elementary step and the overall catalytic timescale of this Suzuki-Miyaura coupling. Our work establishes the single-molecule platform as a detection technology for catalytic organochemistry that can monitor transition-metal-catalysed reactions in real time.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Chenxi Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, P. R. China
| | - Yanwei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Environment Research Institute, Shandong University, Qingdao, P. R. China
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, P. R. China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P. R. China.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
22
|
Kong D, Wang X, Gu C, Guo M, Wang Y, Ai Z, Zhang S, Chen Y, Liu W, Wu Y, Dai C, Guo Q, Qu D, Zhu Z, Xie Y, Liu Y, Wei D. Direct SARS-CoV-2 Nucleic Acid Detection by Y-Shaped DNA Dual-Probe Transistor Assay. J Am Chem Soc 2021; 143:17004-17014. [PMID: 34623792 PMCID: PMC8524959 DOI: 10.1021/jacs.1c06325] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 12/18/2022]
Abstract
Rapid screening of infected individuals from a large population is an effective means in epidemiology, especially to contain outbreaks such as COVID-19. The gold standard assays for COVID-19 diagnostics are mainly based on the reverse transcription polymerase chain reaction, which mismatches the requirements for wide-population screening due to time-consuming nucleic acid extraction and amplification procedures. Here, we report a direct nucleic acid assay by using a graphene field-effect transistor (g-FET) with Y-shaped DNA dual probes (Y-dual probes). The assay relies on Y-dual probes modified on g-FET simultaneously targeting ORF1ab and N genes of SARS-CoV-2 nucleic acid, enabling high a recognition ratio and a limit of detection (0.03 copy μL-1) 1-2 orders of magnitude lower than existing nucleic acid assays. The assay realizes the fastest nucleic acid testing (∼1 min) and achieves direct 5-in-1 pooled testing for the first time. Owing to its rapid, ultrasensitive, easily operated features as well as capability in pooled testing, it holds great promise as a comprehensive tool for population-wide screening of COVID-19 and other epidemics.
Collapse
Affiliation(s)
- Derong Kong
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Xuejun Wang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Chenjian Gu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Shanghai Medical College, Fudan
University, Shanghai 200433, China
| | - Mingquan Guo
- Department
of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yao Wang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Shanghai Medical College, Fudan
University, Shanghai 200433, China
| | - Zhaolin Ai
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Shen Zhang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Yiheng Chen
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Wentao Liu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Yungen Wu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Changhao Dai
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Qianying Guo
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Di Qu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Shanghai Medical College, Fudan
University, Shanghai 200433, China
| | - Zhaoqin Zhu
- Department
of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Youhua Xie
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Shanghai Medical College, Fudan
University, Shanghai 200433, China
| | - Yunqi Liu
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| |
Collapse
|
23
|
Humayun MH, Hernandez-Martinez PL, Gheshlaghi N, Erdem O, Altintas Y, Shabani F, Demir HV. Near-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103524. [PMID: 34510722 DOI: 10.1002/smll.202103524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Silicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2 O3 ) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d-1 with 25% efficiency at a donor-acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.
Collapse
Affiliation(s)
- Muhammad Hamza Humayun
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Pedro Ludwig Hernandez-Martinez
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Negar Gheshlaghi
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
24
|
Stewart JC, Fan Y, Danial JSH, Goetz A, Prasad AS, Burton OJ, Alexander-Webber JA, Lee SF, Skoff SM, Babenko V, Hofmann S. Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride. ACS NANO 2021; 15:13591-13603. [PMID: 34347438 DOI: 10.1021/acsnano.1c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x-y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.
Collapse
Affiliation(s)
- James Callum Stewart
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Ye Fan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - John S H Danial
- The Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander Goetz
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria
| | - Adarsh S Prasad
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria
| | - Oliver J Burton
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Jack A Alexander-Webber
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Steven F Lee
- The Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah M Skoff
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria
| | - Vitaliy Babenko
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Stephan Hofmann
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
25
|
Sun F, Zhang J, Yang Q, Wu W. Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Due to the increasing number of food-borne diseases, more attention is being paid to food safety. Food-borne pathogens are the main cause of food-borne diseases, which seriously endanger human health, so it is necessary to detect and control them. Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings, such as being time-consuming, laborious or requiring expensive instrumentation. Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties. New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity. In this review, we summarize the different characteristics of quantum dots synthesized by carbon, heavy metals and composite materials firstly. Then, attention is paid to the principles, advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens. Finally, the great potential of quantum dots in pathogen detection is summarized.
Collapse
|
26
|
Kamińska I, Bohlen J, Yaadav R, Schüler P, Raab M, Schröder T, Zähringer J, Zielonka K, Krause S, Tinnefeld P. Graphene Energy Transfer for Single-Molecule Biophysics, Biosensing, and Super-Resolution Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101099. [PMID: 33938054 PMCID: PMC11468539 DOI: 10.1002/adma.202101099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Graphene is considered a game-changing material, especially for its mechanical and electrical properties. This work exploits that graphene is almost transparent but quenches fluorescence in a range up to ≈40 nm. Graphene as a broadband and unbleachable energy-transfer acceptor without labeling, is used to precisely determine the height of molecules with respect to graphene, to visualize the dynamics of DNA nanostructures, and to determine the orientation of Förster-type resonance energy transfer (FRET) pairs. Using DNA origami nanopositioners, biosensing, single-molecule tracking, and DNA PAINT super-resolution with <3 nm z-resolution are demonstrated. The range of examples shows the potential of graphene-on-glass coverslips as a versatile platform for single-molecule biophysics, biosensing, and super-resolution microscopy.
Collapse
Affiliation(s)
- Izabela Kamińska
- Institute of Physical Chemistry of the Polish Academy of SciencesKasprzaka 44/52Warsaw01‐224Poland
| | - Johann Bohlen
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| | - Renukka Yaadav
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| | - Patrick Schüler
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| | - Mario Raab
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| | - Jonas Zähringer
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| | - Karolina Zielonka
- Institute of Physical Chemistry of the Polish Academy of SciencesKasprzaka 44/52Warsaw01‐224Poland
| | - Stefan Krause
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐1381377MünchenGermany
| |
Collapse
|
27
|
Mu Q, Su Y, Wei Z, Sun H, Lian Y, Dong Y, Qi P, Deng Z, Peng Y. Dissecting the interfaces of MOF-coated CdS on synergized charge transfer for enhanced photocatalytic CO2 reduction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Panuganti S, Besteiro LV, Vasileiadou ES, Hoffman JM, Govorov AO, Gray SK, Kanatzidis MG, Schaller RD. Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. J Am Chem Soc 2021; 143:4244-4252. [DOI: 10.1021/jacs.0c12441] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shobhana Panuganti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Montreal, Quebec H5A 1K6, Canada
| | - Eugenia S. Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander O. Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | | | - Mercouri G. Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D. Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Gong H, Hao X, Li H, Jin Z. A novel materials manganese cadmium sulfide/cobalt nitride for efficiently photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 585:217-228. [DOI: 10.1016/j.jcis.2020.11.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
|
30
|
Silver nanowires as plasmonic compensators of luminescence quenching in single up-converting nanocrystals deposited on graphene. Sci Rep 2021; 11:3557. [PMID: 33574365 PMCID: PMC7878765 DOI: 10.1038/s41598-021-82699-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/04/2022] Open
Abstract
Single nanocrystal spectroscopy is employed to demonstrate metal-enhanced optical response of Er3+/Yb3+ doped up-conversion nanocrystals deposited on graphene upon coupling with silver nanowires. Direct interaction between nanocrystals and graphene results in quenching of up-conversion emission and shortening of luminescence decay times, due to the energy transfer to graphene. The amount of the energy absorbed by graphene can be enhanced by coupling Er3+/Yb3+ doped up-conversion nanocrystals with silver nanowires. Microscopy studies with high spatial resolution together with time-resolved analysis of nanocrystal luminescence show increase of the emission rates with fourfold enhancement of the intensity for nanocrystals placed in the vicinity of silver nanowires. This strong enhancement emerges despite simultaneous interaction with graphene. The hybrid nanostructure provides thus a way to combine optical activity of up-conversion nanocrystals and enhancement provided by metallic nanowires with excellent electrical and mechanical properties of graphene.
Collapse
|
31
|
Bradac C, Xu ZQ, Aharonovich I. Quantum Energy and Charge Transfer at Two-Dimensional Interfaces. NANO LETTERS 2021; 21:1193-1204. [PMID: 33492957 DOI: 10.1021/acs.nanolett.0c04152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Energy and charge transfer processes in interacting donor-acceptor systems are the bedrock of many fundamental studies and technological applications ranging from biosensing to energy storage and quantum optoelectronics. Central to the understanding and utilization of these transfer processes is having full control over the donor-acceptor distance. With their atomic thickness and ease of integrability, two-dimensional materials are naturally emerging as an ideal platform for the task. Here, we review how van der Waals semiconductors are shaping the field. We present a selection of some of the most significant demonstrations involving transfer processes in layered materials that deepen our understanding of transfer dynamics and are leading to intriguing practical realizations. Alongside current achievements, we discuss outstanding challenges and future opportunities.
Collapse
Affiliation(s)
- Carlo Bradac
- Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 0G2, Canada
| | - Zai-Quan Xu
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
32
|
Mu H, Wang T, Zhang D, Liu W, Yu T, Liao Q. Mechanical modulation of spontaneous emission of nearby nanostructured black phosphorus. OPTICS EXPRESS 2021; 29:1037-1047. [PMID: 33726326 DOI: 10.1364/oe.414380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
In this study, we investigate the spontaneous emission of a quantum emitter nearby black phosphorus (BP) sheet. The spontaneous emission can be modulated mechanically by rotating the BP sheet when the quantum emitter is placed parallel to the sheet. The spontaneous emission is dependent on the electron doping and rotation angle of BP with respect to the x-axis. The Purcell factor decreases with the increase in rotation angle under smaller electron doping. The Purcell factor increases with the increase in rotation angle under larger electron doping. The spontaneous emission of quantum emitter nearby two types of BP ribbon arrays tailored along armchair (type I) and zigzag (type II) directions is studied in detail. The spontaneous emission of quantum emitter parallel to type I is enhanced compared with that parallel to BP sheet. The spontaneous emission decreases remarkably for the quantum emitter parallel to type II compared with that parallel to BP sheet. The spontaneous emission can be flexibly modulated by rotating BP ribbon arrays mechanically in two types. The results obtained in this study provide a new method to actively modulate the spontaneous emission.
Collapse
|
33
|
Exciton-Photon Interactions in Semiconductor Nanocrystals: Radiative Transitions, Non-Radiative Processes and Environment Effects. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this review, we discuss several fundamental processes taking place in semiconductor nanocrystals (quantum dots (QDs)) when their electron subsystem interacts with electromagnetic (EM) radiation. The physical phenomena of light emission and EM energy transfer from a QD exciton to other electronic systems such as neighbouring nanocrystals and polarisable 3D (semi-infinite dielectric or metal) and 2D (graphene) materials are considered. In particular, emission decay and FRET rates near a plane interface between two dielectrics or a dielectric and a metal are discussed and their dependence upon relevant parameters is demonstrated. The cases of direct (II–VI) and indirect (silicon) band gap semiconductors are compared. We cover the relevant non-radiative mechanisms such as the Auger process, electron capture on dangling bonds and interaction with phonons. Some further effects, such as multiple exciton generation, are also discussed. The emphasis is on explaining the underlying physics and illustrating it with calculated and experimental results in a comprehensive, tutorial manner.
Collapse
|
34
|
Yang C, Liu Z, Li Y, Zhou S, Lu C, Guo Y, Ramirez M, Zhang Q, Li Y, Liu Z, Houk KN, Zhang D, Guo X. Electric field-catalyzed single-molecule Diels-Alder reaction dynamics. SCIENCE ADVANCES 2021; 7:7/4/eabf0689. [PMID: 33523936 PMCID: PMC7817103 DOI: 10.1126/sciadv.abf0689] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 05/11/2023]
Abstract
Precise time trajectories and detailed reaction pathways of the Diels-Alder reaction were directly observed using accurate single-molecule detection on an in situ label-free single-molecule electrical detection platform. This study demonstrates the well-accepted concerted mechanism and clarifies the role of charge transfer complexes with endo or exo configurations on the reaction path. An unprecedented stepwise pathway was verified at high temperatures in a high-voltage electric field. Experiments and theoretical results revealed an electric field-catalyzed mechanism that shows the presence of a zwitterionic intermediate with one bond formation and variation of concerted and stepwise reactions by the strength of the electric field, thus establishing a previously unidentified approach for mechanistic control by electric field catalysis.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanwei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chenxi Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Melissa Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
35
|
Song B, Jiang Z, Liu Z, Wang Y, Liu F, Cronin SB, Yang H, Meng D, Chen B, Hu P, Schwartzberg AM, Cabrini S, Haas S, Wu W. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision. ACS NANO 2020; 14:14769-14778. [PMID: 33095557 DOI: 10.1021/acsnano.0c01973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmon-enhanced fluorescence is demonstrated in the vicinity of metal surfaces due to strong local field enhancement. Meanwhile, fluorescence quenching is observed as the spacing between fluorophore molecules and the adjacent metal is reduced below a threshold of a few nanometers. Here, we introduce a technology, placing the fluorophore molecules in plasmonic hotspots between pairs of collapsible nanofingers with tunable gap sizes at sub-nanometer precision. Optimal gap sizes with maximum plasmon enhanced fluorescence are experimentally identified for different dielectric spacer materials. The ultrastrong local field enhancement enables simultaneous detection and characterization of sharp Raman fingerprints in the fluorescence spectra. This platform thus enables in situ monitoring of competing excitation enhancement and emission quenching processes. We systematically investigate the mechanisms behind fluorescence quenching. A quantum mechanical model is developed which explains the experimental data and will guide the future design of plasmon enhanced spectroscopy applications.
Collapse
Affiliation(s)
- Boxiang Song
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Zhihao Jiang
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Zerui Liu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yunxiang Wang
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Fanxin Liu
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, Zhejiang, China 310023
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hao Yang
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Deming Meng
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Buyun Chen
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Pan Hu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Adam M Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefano Cabrini
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephan Haas
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Wei Wu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
36
|
Ortiz-Riaño EJ, Avila-Huerta MD, Mancera-Zapata DL, Morales-Narváez E. Microwell plates coated with graphene oxide enable advantageous real-time immunosensing platform. Biosens Bioelectron 2020; 165:112319. [DOI: 10.1016/j.bios.2020.112319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023]
|
37
|
Zhang Q, Linardy E, Wang X, Eda G. Excitonic Energy Transfer in Heterostructures of Quasi-2D Perovskite and Monolayer WS 2. ACS NANO 2020; 14:11482-11489. [PMID: 32790345 DOI: 10.1021/acsnano.0c03893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quasi-two-dimensional (2D) organic-inorganic hybrid perovskite is a re-emerging material with strongly excitonic absorption and emission properties that are attractive for photonics and optoelectronics. Here we report the experimental observation of excitonic energy transfer (ET) in van der Waals heterostructures consisting of quasi-2D hybrid perovskite (C6H5C2H4NH3)2PbI4 (PEPI) and monolayer WS2. Photoluminescence excitation spectroscopy reveals a distinct ground exciton resonance feature of perovskite, evidencing ET from perovskite to WS2. We find unexpectedly high photoluminescence enhancement factors of up to ∼8, which cannot be explained by single-interface ET. Our analysis reveals that interlayer ET across the bulk of the layered perovskite also contributes to the large enhancement factor. Further, from the weak temperature dependence of the lower-limit ET rate, which we found to be ∼3 ns-1, we conclude that the Förster-type mechanism is responsible.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | - Eric Linardy
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
| | - Xinyun Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
38
|
Fang L, Danos L, Markvart T, Chen R. Observation of energy transfer at optical frequency to an ultrathin silicon waveguide. OPTICS LETTERS 2020; 45:4618-4621. [PMID: 32797024 DOI: 10.1364/ol.396906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Energy transfer from a submonolayer of rhodamine 6G molecules to a 130 nm thick crystalline silicon (Si) waveguide is investigated. The dependence of the fluorescence lifetime of rhodamine on its distance to the Si waveguide is characterized and modeled successfully by a classical dipole model. The energy transfer process could be regarded as photon tunneling into the Si waveguide via the evanescent waves. The experimentally observed tunneling rate is well described by an analytical expression obtained via a complex variable analysis in the complex wavenumber plane.
Collapse
|
39
|
Cano D, Ferrier A, Soundarapandian K, Reserbat-Plantey A, Scarafagio M, Tallaire A, Seyeux A, Marcus P, Riedmatten HD, Goldner P, Koppens FHL, Tielrooij KJ. Fast electrical modulation of strong near-field interactions between erbium emitters and graphene. Nat Commun 2020; 11:4094. [PMID: 32796825 PMCID: PMC7427803 DOI: 10.1038/s41467-020-17899-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Combining the quantum optical properties of single-photon emitters with the strong near-field interactions available in nanophotonic and plasmonic systems is a powerful way of creating quantum manipulation and metrological functionalities. The ability to actively and dynamically modulate emitter-environment interactions is of particular interest in this regard. While thermal, mechanical and optical modulation have been demonstrated, electrical modulation has remained an outstanding challenge. Here we realize fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene, by in-situ tuning the Fermi energy of graphene. We demonstrate strong interactions with a >1000-fold increased decay rate for ~25% of the emitters, and electrically modulate these interactions with frequencies up to 300 kHz - orders of magnitude faster than the emitter's radiative decay (~100 Hz). This constitutes an enabling platform for integrated quantum technologies, opening routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform.
Collapse
Affiliation(s)
- Daniel Cano
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Alban Ferrier
- Institut de Recherche de Chimie Paris (IRCP), Université PSL, Chimie ParisTech, CNRS, 75005, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Universités, UFR 933, 75005, Paris, France
| | - Karuppasamy Soundarapandian
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Antoine Reserbat-Plantey
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Marion Scarafagio
- Institut de Recherche de Chimie Paris (IRCP), Université PSL, Chimie ParisTech, CNRS, 75005, Paris, France
| | - Alexandre Tallaire
- Institut de Recherche de Chimie Paris (IRCP), Université PSL, Chimie ParisTech, CNRS, 75005, Paris, France
| | - Antoine Seyeux
- Institut de Recherche de Chimie Paris (IRCP), Université PSL, Chimie ParisTech, CNRS, 75005, Paris, France
| | - Philippe Marcus
- Institut de Recherche de Chimie Paris (IRCP), Université PSL, Chimie ParisTech, CNRS, 75005, Paris, France
| | - Hugues de Riedmatten
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain.,ICREA - Institució Catalana de Reçerca i Estudis Avancats, 08010, Barcelona, Spain
| | - Philippe Goldner
- Institut de Recherche de Chimie Paris (IRCP), Université PSL, Chimie ParisTech, CNRS, 75005, Paris, France
| | - Frank H L Koppens
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain. .,ICREA - Institució Catalana de Reçerca i Estudis Avancats, 08010, Barcelona, Spain.
| | - Klaas-Jan Tielrooij
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, 08193, Bellaterra (Barcelona), Spain.
| |
Collapse
|
40
|
Karanikolas V. Entanglement of quantum emitters interacting through an ultra-thin noble metal nanodisk. OPTICS EXPRESS 2020; 28:24171-24184. [PMID: 32752401 DOI: 10.1364/oe.396268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Ultra-thin metallic nanodisks, supporting localized plasmon (LP) modes, are used as a platform to facilitate high entanglement between distant quantum emitters (QEs). High Purcell factors, with values above 103, are probed for a QE placed near to an ultra-thin metallic nanodisk, composed of the noble metals Au, Ag, Al, and Cu. The disk supports two sets of localized plasmon modes, which can be excited by QEs with different transition dipole moment orientations. The two QEs are placed on opposite sides of the nanodisk, and their concurrence is used as a measure of the entanglement. We observe that the pair of QEs remains entangled for a duration that surpasses the relaxation time of the individual QE interacting with the metallic disk. Simultaneously, the QEs reach the entangled steady state faster than in the case where the QEs are in free space. Our results reveal a high concurrence value for a QES separation distance of 60 nm, and a transition energy of 0.8 eV (λ = 1550 nm). The robustness exhibited by this system under study paves the way for future quantum applications.
Collapse
|
41
|
Shellard PM, Srisubin T, Hartmann M, Butcher J, Fei F, Cox H, McNamara TP, McArdle T, Shepherd AM, Jacobs RMJ, Waigh TA, Flitsch SL, Blanford CF. A versatile route to edge-specific modifications to pristine graphene by electrophilic aromatic substitution. JOURNAL OF MATERIALS SCIENCE 2020; 55:10284-10302. [PMID: 32536720 PMCID: PMC7266800 DOI: 10.1007/s10853-020-04662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Electrophilic aromatic substitution produces edge-specific modifications to CVD graphene and graphene nanoplatelets that are suitable for specific attachment of biomolecules.
Collapse
Affiliation(s)
- Philippa M. Shellard
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Thunyaporn Srisubin
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Mirja Hartmann
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Joseph Butcher
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Fan Fei
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Henry Cox
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Photon Science Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester, M13 9PL UK
| | - Thomas P. McNamara
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Trevor McArdle
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Ashley M. Shepherd
- Chemical Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Robert M. J. Jacobs
- Chemical Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Thomas A. Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Photon Science Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester, M13 9PL UK
| | - Sabine L. Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| |
Collapse
|
42
|
Mendez-Gonzalez D, Calderón OG, Melle S, González-Izquierdo J, Bañares L, López-Díaz D, Velázquez MM, López-Cabarcos E, Rubio-Retama J, Laurenti M. Contribution of resonance energy transfer to the luminescence quenching of upconversion nanoparticles with graphene oxide. J Colloid Interface Sci 2020; 575:119-129. [PMID: 32361044 DOI: 10.1016/j.jcis.2020.04.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
Upconversion nanoparticles (UCNP) are increasingly used due to their advantages over conventional fluorophores, and their use as resonance energy transfer (RET) donors has permitted their application as biosensors when they are combined with appropriate RET acceptors such as graphene oxide (GO). However, there is a lack of knowledge about the design and influence that GO composition produces over the quenching of these nanoparticles that in turn will define their performance as sensors. In this work, we have analysed the total quenching efficiency, as well as the actual values corresponding to the RET process between UCNPs and GO sheets with three different chemical compositions. Our findings indicate that excitation and emission absorption by GO sheets are the major contributor to the observed luminescence quenching in these systems. This challenges the general assumption that UCNPs luminescence deactivation by GO is caused by RET. Furthermore, RET efficiency has been theoretically calculated by means of a semiclassical model considering the different nonradiative energy transfer rates from each Er3+ ion to the GO thin film. These theoretical results highlight the relevance of the relative positions of the Er3+ ions inside the UCNP with respect to the GO sheet in order to explain the RET-induced efficiency measurements.
Collapse
Affiliation(s)
- Diego Mendez-Gonzalez
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Oscar G Calderón
- Departament of Optics, Universidad Complutense de Madrid, 28037 Madrid, Spain.
| | - Sonia Melle
- Departament of Optics, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Jesús González-Izquierdo
- Department of Physical Chemistry I and Center for Ultrafast Lasers, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Bañares
- Department of Physical Chemistry I and Center for Ultrafast Lasers, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David López-Díaz
- Department of Physical Chemistry, Universidad de Salamanca, 37008 Salamanca, Spain; Department of Analytical, Physical Chemistry and Chemical engineering, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - M Mercedes Velázquez
- Department of Physical Chemistry, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Enrique López-Cabarcos
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Marco Laurenti
- Department of Chemistry in Pharmaceutical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Inés de la Cruz, Cantoblanco 28049, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| |
Collapse
|
43
|
Zultak J, Magorrian SJ, Koperski M, Garner A, Hamer MJ, Tóvári E, Novoselov KS, Zhukov AA, Zou Y, Wilson NR, Haigh SJ, Kretinin AV, Fal'ko VI, Gorbachev R. Ultra-thin van der Waals crystals as semiconductor quantum wells. Nat Commun 2020; 11:125. [PMID: 31913279 PMCID: PMC6949292 DOI: 10.1038/s41467-019-13893-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022] Open
Abstract
Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here we apply this concept to van der Waals heterostructures using the thickness of exfoliated crystals to control the quantum well dimensions in few-layer semiconductor InSe. This approach realizes precise control over the energy of the subbands and their uniformity guarantees extremely high quality electronic transport in these systems. Using tunnelling and light emitting devices, we reveal the full subband structure by studying resonance features in the tunnelling current, photoabsorption and light emission spectra. In the future, these systems could enable development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer van der Waals materials.
Collapse
Affiliation(s)
- Johanna Zultak
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Samuel J Magorrian
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Maciej Koperski
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alistair Garner
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Matthew J Hamer
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Endre Tóvári
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Kostya S Novoselov
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alexander A Zhukov
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yichao Zou
- National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Sarah J Haigh
- National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrey V Kretinin
- National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Vladimir I Fal'ko
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Henry Royce Institute for Advanced Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Roman Gorbachev
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Henry Royce Institute for Advanced Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
44
|
Black A, Urbanos FJ, Roberts J, Acebrón M, Bernardo-Gavito R, Juárez BH, Robinson BJ, Young RJ, Vázquez de Parga AL, Granados D. Photodetecting Heterostructures from Graphene and Encapsulated Colloidal Quantum Dot Films. ACS OMEGA 2019; 4:15824-15828. [PMID: 31592149 PMCID: PMC6776979 DOI: 10.1021/acsomega.9b01449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/26/2019] [Indexed: 05/16/2023]
Abstract
Heterostructure devices consisting of graphene and colloidal quantum dots (QDs) have been remarkably successful as photodetectors and have opened the door to technological applications based on the combination of these low-dimensional materials. This work explores the photodetection properties of a heterostructure consisting of a graphene field effect transistor covered by a film of silica-encapsulated colloidal QDs. Defects at the surface of the silica shell trap optically excited charge carriers, which simultaneously enables photodetection via two mechanisms: photogating, resulting in a net p-doping of the device, and Coulombic scattering of charge carriers in the graphene, producing an overall decrease in the current magnitude.
Collapse
Affiliation(s)
- Andrés Black
- IMDEA
Nanoscience, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Departamento de
Química-Física Aplicada, and Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | | | - Jonathan Roberts
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | | | | | - Beatriz H. Juárez
- IMDEA
Nanoscience, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Departamento de
Química-Física Aplicada, and Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | | | - Robert J. Young
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Amadeo L. Vázquez de Parga
- IMDEA
Nanoscience, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Departamento de
Química-Física Aplicada, and Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
45
|
Qin M, Xu Y, Gao H, Han G, Cao R, Guo P, Feng W, Chen L. Tetraphenylethylene@Graphene Oxide with Switchable Fluorescence Triggered by Mixed Solvents for the Application of Repeated Information Encryption and Decryption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35255-35263. [PMID: 31474104 DOI: 10.1021/acsami.9b12421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) materials present unique solid-state fluorescence. However, there remains a challenge in the switching of fluorescence quenching/emitting of AIE materials, limiting the application in information encryption. Herein, we report a composite of tetraphenylethylene@graphene oxide (TPE@GO) with switchable microstructure and fluorescence. We choose GO as a fluorescence quencher to control the fluorescence of TPE by controlling the aggregation structure. First, TPE coating with an average thickness of about 31 nm was deposited at the GO layer surface, which is the critical thickness at which the fluorescence can be largely quenched because of the fluorescence resonance energy transfer. After spraying a mixed solvent (good and poor solvents of TPE) on TPE@GO, a blue fluorescence of TPE was emitted during the drying process. During the treatment of mixed solvents, the planar TPE coating was dissolved in THF first and then the TPE molecules aggregated into nanoparticles (an average diameter of 65 nm) in H2O during the volatilization of THF. We found that the fluorescence switching of the composite is closely related to the microstructural change of TPE between planar and granular structures, which can make the upper TPE molecules in and out of the effective quenching region of GO. This composite, along with the treatment method, was used as an invisible ink in repeated information encryption and decryption. Our work not only provides a simple strategy to switch the fluorescence of solid-state fluorescent materials but also demonstrates the potential for obtaining diverse material structures through compound solvent treatment.
Collapse
Affiliation(s)
- Mengmeng Qin
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory for Photoelectric Display Materials and Devices , Tianjin 300384 , China
- Key Laboratory of Photoelectric Display Materials and Devices , Ministry of Education , Tianjin 300384 , P. R. China
| | - Yuxiao Xu
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - H Gao
- School of Chemistry and Chemical Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Guoying Han
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Rong Cao
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Peili Guo
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Wei Feng
- School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , P. R. China
| | - Li Chen
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory for Photoelectric Display Materials and Devices , Tianjin 300384 , China
- Key Laboratory of Photoelectric Display Materials and Devices , Ministry of Education , Tianjin 300384 , P. R. China
| |
Collapse
|
46
|
Figueiras E, Silvestre OF, Ihalainen TO, Nieder JB. Phasor-assisted nanoscopy reveals differences in the spatial organization of major nuclear lamina proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118530. [PMID: 31415840 DOI: 10.1016/j.bbamcr.2019.118530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 11/15/2022]
Abstract
Phasor-assisted Metal Induced Energy Transfer-Fluorescence Lifetime Imaging Microscopy (MIET-FLIM) nanoscopy is introduced as a powerful tool for functional cell biology research. Thin metal substrates can be used to obtain axial super-resolution via nanoscale distance-dependent MIET from fluorescent dyes towards a nearby metal layer, thereby creating fluorescence lifetime contrast between dyes located at different nanoscale distance from the metal. Such data can be used to achieve axially super-resolved microscopy images, a process known as MIET-FLIM nanoscopy. Suitability of the phasor approach in MIET-FLIM nanoscopy is first demonstrated using nanopatterned substrates, and furthermore applied to characterize the distance distribution of the epithelial basal membrane of a biological cell from the gold substrate. The phasor plot of an entire cell can be used to characterize the full Förster resonance energy transfer (FRET) trajectory as a large distance heterogeneity within the sensing range of about 100 nm from the metal surface is present due to the extended shape of cell with curvatures. In contrast, the different proteins of nuclear lamina show strong confinement close to the nuclear envelope in nanoscale. We find the lamin B layer resides in average at shorter distances from the gold surface compared to the lamin A/C layer located in more extended ranges. This and the observed heterogeneity of the protein layer thicknesses suggests that A- and B-type lamins form distinct networks in the nuclear lamina. Our results provide detailed insights for the study of the different roles of lamin proteins in chromatin tethering and nuclear mechanics.
Collapse
Affiliation(s)
- Edite Figueiras
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Oscar F Silvestre
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, 33014 Tampere, Finland
| | - Jana B Nieder
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| |
Collapse
|
47
|
Kaminska I, Bohlen J, Rocchetti S, Selbach F, Acuna GP, Tinnefeld P. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners. NANO LETTERS 2019; 19:4257-4262. [PMID: 31251640 DOI: 10.1021/acs.nanolett.9b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the thorough investigation of graphene since 2004, altering its surface chemistry and reproducible functionalization remain challenging. This hinders fabrication of more complex hybrid materials with controlled architectures, and as a consequence the development of sensitive and reliable sensors and biological assays. In this contribution, we introduce DNA origami structures as nanopositioners for placing single dye molecules at controlled distances from graphene. The measurements of fluorescence intensity and lifetime of single emitters carried out for distances ranging from 3 to 58 nm confirmed the d-4 dependence of the excitation energy transfer to graphene. Moreover, we determined the characteristic distance for 50% efficiency of the energy transfer from single dyes to graphene to be 17.7 nm. Using pyrene molecules as a glue to immobilize DNA origami nanostructures of various shape on graphene opens new possibilities to develop graphene-based biophysics and biosensing.
Collapse
Affiliation(s)
- I Kaminska
- Institute of Physical Chemistry of the Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - J Bohlen
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - S Rocchetti
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - F Selbach
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - G P Acuna
- Department of Physics , Université de Fribourg , Ch. du Musée 3 , CH-1700 Fribourg , Switzerland
| | - P Tinnefeld
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| |
Collapse
|
48
|
Zhang S, Wang X, Chen Y, Wu G, Tang Y, Zhu L, Wang H, Jiang W, Sun L, Lin T, Shen H, Hu W, Ge J, Wang J, Meng X, Chu J. Ultrasensitive Hybrid MoS 2-ZnCdSe Quantum Dot Photodetectors with High Gain. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23667-23672. [PMID: 31144499 DOI: 10.1021/acsami.9b03971] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recently, two-dimensional (2D) materials, especially transition-metal dichalcogenides (TMDCs), have attracted extensive interest owing to their potential applications in optoelectronics. Here, we demonstrate a hybrid 2D-zero-dimensional (0D) photodetector, which consists of a single-layer or few-layer molybdenum disulfide (MoS2) thin film and a thin layer of core/shell zinc cadmium selenide/zinc sulfide (ZnCdSe/ZnS) colloidal quantum dots (QDs). It is worth mentioning that the photoresponsivity of the hybrid 2D-0D photodetector is 3 orders of magnitude larger than the TMDC photodetector (from 10 to 104 A W-1). The detectivity of the hybrid structure detector is up to 1012 Jones, and the gain is up to 105. Due to an effective energy transfer from the photoexcited QD sensitizing layer to MoS2 films, light absorption is enhanced and more excitons are generated. Thus, this hybrid 2D-0D photodetector takes advantage of high charge mobility in the MoS2 layer and efficient photon absorption/exciton generation in the QDs, which suggests their promising applications in the development of TMDC-based optoelectronic devices.
Collapse
Affiliation(s)
- Shukui Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Xudong Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Yan Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Guangjian Wu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Yicheng Tang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Liqing Zhu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Haoliang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Wei Jiang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Tie Lin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Hong Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Jun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Jianlu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Xiangjian Meng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| | - Junhao Chu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics , Chinese Academy of Sciences , 500 Yu Tian Road , Shanghai 200083 , China
| |
Collapse
|
49
|
Schädler KG, Ciancico C, Pazzagli S, Lombardi P, Bachtold A, Toninelli C, Reserbat-Plantey A, Koppens FHL. Electrical Control of Lifetime-Limited Quantum Emitters Using 2D Materials. NANO LETTERS 2019; 19:3789-3795. [PMID: 31074994 DOI: 10.1021/acs.nanolett.9b00916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solid-state quantum emitters are a mainstay of quantum nanophotonics as integrated single-photon sources (SPS) and optical nanoprobes. Integrating such emitters with active nanophotonic elements is desirable in order to attain efficient control of their optical properties, but it typically degrades the photostability of the emitter itself. Here, we demonstrate a tunable hybrid device that integrates state of the art lifetime-limited single emitters (line width ∼40 MHz) and 2D materials at subwavelength separation without degradation of the emission properties. Our device's nanoscale dimensions enable ultrabroadband tuning (tuning range >400 GHz) and fast modulation (frequency ∼100 MHz) of the emission energy, which renders it an integrated, ultracompact tunable SPS. Conversely, this offers a novel approach to optical sensing of 2D material properties using a single emitter as a nanoprobe.
Collapse
Affiliation(s)
- Kevin G Schädler
- ICFO - Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Spain
| | - Carlotta Ciancico
- ICFO - Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Spain
| | - Sofia Pazzagli
- LENS and CNR-INO , Via Nello Carrara 1 , 50019 Sesto Fiorentino , Italy
- Dipartimento di Fisica ed Astronomia , Università di Firenze , Via Sansone 1 , 50019 Sesto Fiorentino , Italy
| | - Pietro Lombardi
- LENS and CNR-INO , Via Nello Carrara 1 , 50019 Sesto Fiorentino , Italy
| | - Adrian Bachtold
- ICFO - Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Spain
| | - Costanza Toninelli
- LENS and CNR-INO , Via Nello Carrara 1 , 50019 Sesto Fiorentino , Italy
- QSTAR , Largo Fermi 2 , 50125 Firenze , Italy
| | - Antoine Reserbat-Plantey
- ICFO - Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Spain
| | - Frank H L Koppens
- ICFO - Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Spain
- ICREA - Institució Catalana de Recerça i Estudis Avancats , 08010 Barcelona , Spain
| |
Collapse
|
50
|
Hassan AHA, Bergua JF, Morales-Narváez E, Mekoçi A. Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E. coli O157:H7 in minced beef and river water. Food Chem 2019; 297:124965. [PMID: 31253343 DOI: 10.1016/j.foodchem.2019.124965] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 01/21/2023]
Abstract
Considering the health risks of E. coli O157:H7 presence in food and water, an affordable and highly sensitive detection method is crucial. Herein, we report the first use of a single antibody-based fluorescent lateral flow immunoassay (FLFIA) depending on non-radiative energy transfer between graphene oxide and quantum dots for determination of E. coli O157:H7 in beef and river water. FLFIA showed a high sensitivity rate thousand-fold better than the conventional lateral flow (LF). In inoculated minced beef and river water samples, the limits of detection were 178 and 133 CFU g-1 or mL-1, respectively. Besides, it presented a high selectivity in the presence of other possible interfering bacteria. The single antibody approach reduced the assay cost to 60% less than the conventional LF. Alongside, the results could be read by portable LF readers or smartphones. These advantages offer FLFIA as a promising technology for pathogen detection in food and water.
Collapse
Affiliation(s)
- Abdelrahim Hussein Abdelazeem Hassan
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - José Francisco Bergua
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica A. C, Loma del Bosque 115, Lomas del Campestre León, Guanajuato 37150, Mexico
| | - Arben Mekoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|