1
|
De I, Kishore A, Das S, Mondal S, Yadav S, Sharma P, Pahuja M, Singh S, Nazir A, Ghosh S, Ghosh K, Singh M. Advanced Neuronal Modulation with Semiconducting Graphitic Carbon Nitride: Insights from In Vitro, In Vivo, and In Silico Studies. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39903816 DOI: 10.1021/acsami.4c19242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Impaired neuronal functions and cell death within ailments such as neurodegenerative Parkinson's disease pose significant challenges due to their complex pathophysiology and limited treatment options. In this landscape, innovative materials with unique physicochemical properties that ameliorate the debilitated neuronal functions are critically required. Neuronal functions rely on the conduction of nerve impulses, a process that can be effectively targeted using advanced materials that exhibit conducive properties essential for modulating neural activity. For their semiconductor characteristics, combined with well-suited biocompatibility, graphitic carbon nitride (g-C3N4) nanosheets provide promising avenues for such neurotherapeutic applications. Our multidisciplinary study investigates the potential of g-C3N4 nanosheets in promoting neuronal differentiation and network formation across in vitro and in vivo systems. SH-SY5Y cells exposed to g-C3N4 demonstrated enhanced neuronal differentiation and neuritic outgrowth over a chronic 21-days period, accompanied by an increased intracellular Ca2+ influx, pivotal for dopamine biosynthesis, as evidenced by the upregulated expression of vesicular monoamine transporter 2 (VMAT2), aromatic l-amino acid decarboxylase (AADC), and tyrosine hydroxylase (TH) genes. Utilizing transgenic Caenorhabditis elegans model expressing human α-synuclein, we observed the neuroprotective potential of g-C3N4, as evidenced by reduced protein aggregation and improved dopaminergic functions. In the pursuit of exploring the mechanism of g-C3N4-induced neuronal stimulation, the semiconducting nature of g-C3N4 came forth, which was further validated using theoretical (in silico) models. These models demonstrated an increase in the chemical potential of the material upon the application of electrical biases. Studying Ca2+ channel inhibition, we also observed that phenotypic and molecular effects were the outcomes of the stimulation caused due to the presence of g-C3N4 nanosheets. Our findings, supported by experimental and in silico studies, suggest that g-C3N4 nanosheets can effectively modulate neuronal behavior through their semiconducting properties, offering promising avenues for therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
- Chandigarh Group of Colleges (CGCs), Sector 112, Landran, Kharar Banur Highway, Sahibzada Ajit Singh Nagar, Punjab 140307, India
| | - Subhabrata Das
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Sownyak Mondal
- Tata Institute of Fundamental Research (TIFR), 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad, Telangana 500046, India
| | - Sakshi Yadav
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Mansi Pahuja
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Srishti Singh
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Aamir Nazir
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research (TIFR), 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad, Telangana 500046, India
| | - Kaushik Ghosh
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| |
Collapse
|
2
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Liu TI, Wang JS, Nguyen AP, Raabe M, Quiroz Reyes CJ, Lin CH, Lin CW. Cytometry in the Short-Wave Infrared. ACS NANO 2024; 18:18534-18547. [PMID: 38973534 PMCID: PMC11256901 DOI: 10.1021/acsnano.4c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Cytometry plays a crucial role in characterizing cell properties, but its restricted optical window (400-850 nm) limits the number of stained fluorophores that can be detected simultaneously and hampers the study and utilization of short-wave infrared (SWIR; 900-1700 nm) fluorophores in cells. Here we introduce two SWIR-based methods to address these limitations: SWIR flow cytometry and SWIR image cytometry. We develop a quantification protocol for deducing cellular fluorophore mass. Both systems achieve a limit of detection of ∼0.1 fg cell-1 within a 30 min experimental time frame, using individualized, high-purity (6,5) single-wall carbon nanotubes as a model fluorophore and macrophage-like RAW264.7 as a model cell line. This high-sensitivity feature reveals that low-dose (6,5) serves as an antioxidant, and cell morphology and oxidative stress dose-dependently correlate with (6,5) uptake. Our SWIR cytometry holds immediate applicability for existing SWIR fluorophores and offers a solution to the issue of spectral overlapping in conventional cytometry.
Collapse
Affiliation(s)
- Te-I Liu
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
| | - Jhih-Shan Wang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei City 106319, Taiwan
- Department
of Physics, University of Stuttgart, Stuttgart 70174, Germany
| | - Ai-Phuong Nguyen
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Marco Raabe
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
| | - Carlos Jose Quiroz Reyes
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, New
Taipei City 235603, Taiwan
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Ching-Wei Lin
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
| |
Collapse
|
4
|
Levin N, Hendler-Neumark A, Kamber D, Bisker G. Enhanced cellular internalization of near-infrared fluorescent single-walled carbon nanotubes facilitated by a transfection reagent. J Colloid Interface Sci 2024; 664:650-666. [PMID: 38490040 DOI: 10.1016/j.jcis.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Functionalized single-walled carbon nanotubes (SWCNTs) hold immense potential for diverse biomedical applications due to their biocompatibility and optical properties, including near-infrared fluorescence. Specifically, SWCNTs have been utilized to target cells as a vehicle for drug delivery and gene therapy, and as sensors for various intracellular biomarkers. While the main internalization route of SWCNTs into cells is endocytosis, methods for enhancing the cellular uptake of SWCNTs are of great importance. In this research, we demonstrate the use of a transfecting reagent for promoting cell internalization of functionalized SWCNTs. We explore different types of SWCNT functionalization, namely single-stranded DNA (ssDNA) or polyethylene glycol (PEG)-lipids, and two different cell types, embryonic kidney cells and adenocarcinoma cells. We show that internalizing PEGylated functionalized SWCNTs is enhanced in the presence of the transfecting reagent, where the effect is more pronounced for negatively charged PEG-lipid. However, ssDNA-SWCNTs tend to form aggregates in the presence of the transfecting reagent, rendering it unsuitable for promoting internalization. For all cases, cellular uptake is visualized by near-infrared fluorescence microscopy, showing that the SWCNTs are typically localized within the lysosome. Generally, cellular internalization was higher in the adenocarcinoma cells, thereby paving new avenues for drug delivery and sensing in malignant cells.
Collapse
Affiliation(s)
- Naamah Levin
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
5
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|
6
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
7
|
Millozzi F, Papait A, Bouché M, Parolini O, Palacios D. Nano-Immunomodulation: A New Strategy for Skeletal Muscle Diseases and Aging? Int J Mol Sci 2023; 24:1175. [PMID: 36674691 PMCID: PMC9862642 DOI: 10.3390/ijms24021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
The skeletal muscle has a very remarkable ability to regenerate upon injury under physiological conditions; however, this regenerative capacity is strongly diminished in physio-pathological conditions, such as those present in diseased or aged muscles. Many muscular dystrophies (MDs) are characterized by aberrant inflammation due to the deregulation of both the lymphoid and myeloid cell populations and the production of pro-inflammatory cytokines. Pathological inflammation is also observed in old muscles due to a systemic change in the immune system, known as "inflammaging". Immunomodulation represents, therefore, a promising therapeutic opportunity for different skeletal muscle conditions. However, the use of immunomodulatory drugs in the clinics presents several caveats, including their low stability in vivo, the need for high doses to obtain therapeutically relevant effects, and the presence of strong side effects. Within this context, the emerging field of nanomedicine provides the powerful tools needed to control the immune response. Nano-scale materials are currently being explored as biocarriers to release immunomodulatory agents in the damaged tissues, allowing therapeutic doses with limited off-target effects. In addition, the intrinsic immunomodulatory properties of some nanomaterials offer further opportunities for intervention that still need to be systematically explored. Here we exhaustively review the state-of-the-art regarding the use of nano-sized materials to modulate the aberrant immune response that characterizes some physio-pathological muscle conditions, such as MDs or sarcopenia (the age-dependent loss of muscle mass). Based on our learnings from cancer and immune tolerance induction, we also discuss further opportunities, challenges, and limitations of the emerging field of nano-immunomodulation.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Andrea Papait
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| |
Collapse
|
8
|
Du Y, Chen Z, Hussain MI, Yan P, Zhang C, Fan Y, Kang L, Wang R, Zhang J, Ren X, Ge C. Evaluation of cytotoxicity and biodistribution of mesoporous carbon nanotubes (pristine/-OH/-COOH) to HepG2 cells in vitro and healthy mice in vivo. Nanotoxicology 2022; 16:895-912. [PMID: 36704847 DOI: 10.1080/17435390.2023.2170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mesoporous carbon nanotubes (mCNTs) hold great promise interests, owing to their superior nano-platform properties for biomedicine. To fully utilize this potential, the toxicity and biodistribution of pristine and surface-modified mCNTs (-OH/-COOH) should preferentially be addressed. The results of cell viability suggested that pristine mCNTs induced cell death in a concentration-dependent manner. As evidence of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD), pristine mCNTs induced noticeable redox imbalance. 99mTc tracing data suggested that the cellular uptake of pristine mCNTs posed a concentrate-dependent and energy-dependent manner via macropinocytotic and clathrin-dependent pathways, and the main accumulated organs were lung, liver and spleen. With OH modification, the ROS generation, MDA deposition and SOD consumption were evidently reduced compared with the pristine mCNTs at 24/48 h high-dose exposure. With COOH modification, the modified mCNTs only showed a significant difference in SOD consumption at 24/48 h exposure, but there was no significant difference in the measurement of ROS and MDA. The internalization mechanism and organ distribution of modified mCNTs were basically invariant. Together, our study provides evidence that mCNTs and the modified mCNTs all could induce oxidative damage and thereby impair cells. 99mTc-mCNTs can effectively trace the distribution of nanotubes in vivo.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhipei Chen
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - M Irfan Hussain
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaona Ren
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Changchun Ge
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
9
|
Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS OMEGA 2022; 7:22073-22088. [PMID: 35811879 PMCID: PMC9260923 DOI: 10.1021/acsomega.2c01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 10/04/2023]
Abstract
Advances in nanotechnology over the past decade have emerged as a substitute for conventional therapies and have facilitated the development of economically viable biosensors. Next-generation biosensors can play a significant role in curbing the spread of various viruses, including HCoV-2, and controlling morbidity and mortality. Pertaining to the impact of the current pandemic, there is a need for point-of-care biosensor-based testing as a detection method to accelerate the detection process. Integrating biosensors with nanostructures could be a substitute for ultrasensitive label-free biosensors to amplify sensing and miniaturization. Notably, next-generation biosensors could expedite the detection process. An elaborate description of various types of functionalized nanomaterials and their synthetic aspects is presented. The utility of the functionalized nanostructured materials for fabricating nanobiosensors to detect several types of viral infections is described in this review. This review also discusses the choice of appropriate nanomaterials, as well as challenges and opportunities in the field of nanobiosensors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
- Department
of Chemistry, Kirori Mal College, University
of Delhi, New Delhi, Delhi 110007, India
| | - Ritika Sharma
- Department
of Biochemistry, University of Delhi, New Delhi, Delhi 110021, India
| | - Bhawna
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, Delhi 110021, India
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, Delhi 110021, India
| | - Susheel Kalia
- Department
of Chemistry, Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Pankaj Thakur
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| |
Collapse
|
10
|
Khan S, Ul-Islam M, Ullah MW, Zhu Y, Narayanan KB, Han SS, Park JK. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int J Biol Macromol 2022; 209:9-30. [PMID: 35381280 DOI: 10.1016/j.ijbiomac.2022.03.191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/20/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Bacterial cellulose (BC), an extracellular polysaccharide, is a versatile biopolymer due to its intrinsic physicochemical properties, broad-spectrum applications, and remarkable achievements in different fields, especially in the biomedical field. Presently, the focus of BC-related research is on the development of scaffolds containing other materials for in-vitro and in-vivo biomedical applications. To this end, prime research objectives concern the biocompatibility of BC and the development of three-dimensional (3D) BC-based scaffolds. This review summarizes the techniques used to develop 3D BC scaffolds and discusses their potential merits and limitations. In addition, we discuss the various biomedical applications of BC-based scaffolds for which the 3D BC matrix confers desired structural and conformational features. Overall, this review provides comprehensive coverage of the idea, requirements, synthetic strategies, and current and prospective applications of 3D BC scaffolds, and thus, should be useful for researchers working with polysaccharides, biopolymers, or composite materials.
Collapse
Affiliation(s)
- Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Youlong Zhu
- Materials Science Institute, The PCFM and GDHPRC Laboratory, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
11
|
Xing S, Yan M, Yang Y, Wang Y, Hu X, Ma B, Kang X. Diacerein Loaded Poly (Styrene Sulfonate) and Carbon Nanotubes Injectable Hydrogel: An Effective Therapy for Spinal Cord Injury Regeneration. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02240-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
13
|
Vijayalakshmi V, Sadanandan B, Venkataramanaiah Raghu A. Single walled carbon nanotubes in high concentrations is cytotoxic to the human neuronal cell LN18. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
14
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
15
|
Ramezani F, Ghasemi-Kasman M, Nosratiyan N, Ghasemi S, Feizi F. Acute administration of sulfur-doped g-C3N4 induces cognitive deficits and exacerbates the levels of glial activation in mouse hippocampus. Brain Res Bull 2021; 176:54-66. [PMID: 34419511 DOI: 10.1016/j.brainresbull.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
During the last decades, graphitic carbon nitride (g-C3N4) has attracted increasing attention in several biomedical fields. In this study, the effects of sulfur-doped g-C3N4 (TCN) on cognitive function and histopathology of hippocampus were investigated in mice. The characteristics of synthetized sample were evaluated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX). Twenty-four male NMRI mice received vehicle, TCN at doses of 50, 150, or 500 mg/kg via gavage for one week. Morris water maze test was done to assess the cognitive function at day 14 post TCN administration. Nissl staining was used to determine the number of dark cells in the hippocampus. Immunostaining against NeuN, GFAP, and Iba1 was done to evaluate the neuronal density and levels of glial activation, respectively. Behavioral tests indicated that TCN reduces the spatial learning and memory in a dose-dependent manner. Histological evaluations showed an increased level of neuronal loss and glial activation in the hippocampus of TCN treated mice at doses of 150 and 500 mg/kg. Overall, our data indicate that TCN induces the cognitive impairment that is partly mediated via its exacerbating impacts on neuronal loss and glial activation.
Collapse
Affiliation(s)
- Farangis Ramezani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
16
|
Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021; 9:629635. [PMID: 33708759 PMCID: PMC7940769 DOI: 10.3389/fchem.2021.629635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy holds great promise in overcoming the limitations of conventional regimens for cancer therapeutics. There is growing interest among researchers and clinicians to develop novel immune-strategies for cancer diagnosis and treatment with better specificity and lesser adversity. Immunomodulation-based cancer therapies are rapidly emerging as an alternative approach that employs the host's own defense mechanisms to recognize and selectively eliminate cancerous cells. Recent advances in nanotechnology have pioneered a revolution in the field of cancer therapy. Several nanomaterials (NMs) have been utilized to surmount the challenges of conventional anti-cancer treatments like cytotoxic chemotherapy, radiation, and surgery. NMs offer a plethora of exceptional features such as a large surface area to volume ratio, effective loading, and controlled release of active drugs, tunable dimensions, and high stability. Moreover, they also possess the inherent property of interacting with living cells and altering the immune responses. However, the interaction between NMs and the immune system can give rise to unanticipated adverse reactions such as inflammation, necrosis, and hypersensitivity. Therefore, to ensure a successful and safe clinical application of immunomodulatory nanomaterials, it is imperative to acquire in-depth knowledge and a clear understanding of the complex nature of the interactions between NMs and the immune system. This review is aimed at providing an overview of the recent developments, achievements, and challenges in the application of immunomodulatory nanomaterials (iNMs) for cancer therapeutics with a focus on elucidating the mechanisms involved in the interplay between NMs and the host's immune system.
Collapse
Affiliation(s)
- Ajita Jindal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sounik Sarkar
- Flowcytometry Facility, Modern Biology Department, University of Calcutta, Kolkata, India
| | - Aftab Alam
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- Charles River Laboratories, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
17
|
Liu Z, Lv X, Song E, Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol 2020; 407:115241. [DOI: 10.1016/j.taap.2020.115241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
|
18
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
19
|
Glória J, Brito W, Gandarilla A, Larrude D, Carlos J, Araújo F, Almeida ME, Manzato L, Mariúba LAM. Solubilization, characterization, and protein coupling analysis to multiwalled carbon nanotubes. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320958035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since their discovery, carbon nanotubes were used for numerous applications in the most diverse knowledge areas. However, the lack of solubility of these molecules in aqueous media compromises their beneficial properties for certain applications. Several methods to solubilize carbon nanotubes are described, however, depending on the intended application, the impact that the solubilization has on the physical and chemical properties needs to be considered. In the present study, a simple methodology is described that utilizes polyvinylpyrrolidone combined with sonication and centrifugation to solubilize multiwalled carbon nanotubes. Proteins were coupled to the surface of the solubilized products and characterized using various spectroscopic and electron microscopic techniques, evaluating the characteristics and integrity of the nanoparticle after the process. It was successfully demonstrated that nanotubes can be solubilized through a simple technique, without compromising their chemical characteristics, which makes them suitable materials for use in biomedical applications, due to their biocompatibility and lack of toxicity, among others.
Collapse
Affiliation(s)
- Juliane Glória
- Postgraduate Program in Biotechnology, Federal University of Amazonas (PPGBIOTEC-UFAM), Manaus, Amazonas, Brazil
| | - Walter Brito
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Ariamna Gandarilla
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Duniesky Larrude
- MackGraphe, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Jacqueline Carlos
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Felipe Araújo
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation (ILMD-FIOCRUZ), Manaus, Amazonas, Brazil
| | - Maria Edilene Almeida
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation (ILMD-FIOCRUZ), Manaus, Amazonas, Brazil
- Postgraduate Program Stricto sensu in Cellular and Molecular Biology of the Oswaldo Cruz Institute (PGBCM/IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Lizandro Manzato
- Federal Institute of Amazonas (IFAM), Campus Manaus Distrito Industrial, Manaus, Amazonas, Brazil
| | - Luis André Morais Mariúba
- Postgraduate Program in Biotechnology, Federal University of Amazonas (PPGBIOTEC-UFAM), Manaus, Amazonas, Brazil
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation (ILMD-FIOCRUZ), Manaus, Amazonas, Brazil
- Postgraduate Program Stricto sensu in Cellular and Molecular Biology of the Oswaldo Cruz Institute (PGBCM/IOC/Fiocruz), Rio de Janeiro, Brazil
- Postgraduate Program in Basic and Applied Immunology, Federal University of Amazonas (PPGIBA-UFAM), Manaus, Amazonas, Brazil
| |
Collapse
|
20
|
Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0008/revneuro-2020-0008.xml. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell-matrix and cell-cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells' fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.
Collapse
Affiliation(s)
- Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, The University of Guilan, Rasht 4199613776, Islamic Republic of Iran
| | - Hossein Jafari
- Institute for Research in Fundamental Sciences (IPM), Artesh Highway, Tehran 1956836681, Islamic Reitutionpublic of Iran
| | - Shaghayegh Askarian-Amiri
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Amin Shiralizadeh Dezfuli
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Iran Universal Scientific and Education Network (USERN), Tabriz 5165665811, Islamic Republic of Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| |
Collapse
|
21
|
Abstract
The remarkable advances coming about through nanotechnology promise to revolutionize many aspects of modern life; however, these advances come with a responsibility for due diligence to ensure that they are not accompanied by adverse consequences for human health or the environment. Many novel nanomaterials (having at least one dimension <100 nm) could be highly mobile if released into the environment and are also very reactive, which has raised concerns for potential adverse impacts including, among others, the potential for neurotoxicity. Several lines of evidence led to concerns for neurotoxicity, but perhaps none more than observations that inhaled nanoparticles impinging on the mucosal surface of the nasal epithelium could be internalized into olfactory receptor neurons and transported by axoplasmic transport into the olfactory bulbs without crossing the blood-brain barrier. From the olfactory bulb, there is concern that nanomaterials may be transported deeper into the brain and affect other brain structures. Of course, people will not be exposed to only engineered nanomaterials, but rather such exposures will occur in a complex mixture of environmental materials, some of which are incidentally generated particles of a similar inhalable size range to engineered nanomaterials. To date, most experimental studies of potential neurotoxicity of nanomaterials have not considered the potential exposure sources and pathways that could lead to exposure, and most studies of nanomaterial exposure have not considered potential neurotoxicity. Here, we present a review of potential sources of exposures to nanoparticles, along with a review of the literature on potential neurotoxicity of nanomaterials. We employ the linked concepts of an aggregate exposure pathway (AEP) and an adverse outcome pathway (AOP) to organize and present the material. The AEP includes a sequence of key events progressing from material sources, release to environmental media, external exposure, internal exposure, and distribution to the target site. The AOP begins with toxicant at the target site causing a molecular initiating event and, like the AEP, progress sequentially to actions at the level of the cell, organ, individual, and population. Reports of nanomaterial actions are described at every key event along the AEP and AOP, except for changes in exposed populations that have not yet been observed. At this last stage, however, there is ample evidence of population level effects from exposure to ambient air particles that may act similarly to engineered nanomaterials. The data give an overall impression that current exposure levels may be considerably lower than those reported experimentally to be neurotoxic. This impression, however, is tempered by the absence of long-term exposure studies with realistic routes and levels of exposure to address concerns for chronic accumulation of materials or damage. Further, missing across the board are "key event relationships", which are quantitative expressions linking the key events of either the AEP or the AOP, making it impossible to quantitatively project the likelihood of adverse neurotoxic effects from exposure to nanomaterials or to estimate margins of exposure for such relationships.
Collapse
Affiliation(s)
- William K. Boyes
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA 27711
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
22
|
Qiu W, Liu X, Yang F, Li R, Xiong Y, Fu C, Li G, Liu S, Zheng C. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137062. [PMID: 32036144 DOI: 10.1016/j.scitotenv.2020.137062] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 05/24/2023]
Abstract
In China, antibiotics are commonly used for human and veterinary medicine, and they are present in various environmental media. Thus, the toxic effects of antibiotics on organisms have attracted the attention of society and scientists alike. In this study, zebrafish embryos were used to test the single and joint toxicity of four antibiotics, sulfamonomethoxine (SMM), cefotaxime sodium (CFT), tetracycline (TC), enrofloxacin (ENR), and their combinations, combining the results of experimental and omics techniques. Following exposure to antibiotics for 120 h, the body lengths of zebrafish larvae in all 100 μg/L antibiotic groups were significantly shortened, and the reactive oxygen species (ROS) content in the 100 μg/L Mix group was significantly increased. Transcriptome sequencing (RNA-seq) showed that the mRNA level of numerous genes was significantly changed in the five antibiotic treatment groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes revealed a significant enrichment of the steroid biosynthesis and other metabolism pathways. Hub gene analysis highlighted dhcr24, acat1, aldh1a2, aldh8a1, suclg2, hadh, and hsdl2 as the key genes, and hub gene expression changes because of the antibiotic treatment suggested that the metabolic system of the zebrafish larvae was severely disrupted by the interaction with other genes. In conclusion, single or joint exposure to different antibiotics at environmental concentrations affected the early development and metabolic system of zebrafish larvae, and our results provide fundamental evidence for future studies of antibiotic toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xinjie Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feng Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rongzhen Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ying Xiong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Caixia Fu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Guanrong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Abstract
As the nanotechnological applications have taken over in different fields, their applications for water and wastewater treatment is also surfacing as a fast-developing and very promising area. Recent advancements in nanotechnological science and engineering advise that many of the waterborne pathogens could be culminated or debilitated using nanobiosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanobioreactors, nanoparticle-enhanced filtration among other products, and processes resulting from the development of nanotechnology. A detailed insight has been provided for advanced techniques such as photochemical (photocatalytic and advanced oxidation processes) applications of metal oxide nanoparticles, nanomembrane technology, bioinspired nanomaterials, and nanotechnological innovations (nano-Ag, fullerenes, nanotubes, and molecularly imprinted polymers, etc.), which prove to be highly potential as well as promising and cost-effective. However, there are still some shortcomings and challenges that must be overcome which will be looked upon in this chapter.
Collapse
|
24
|
Weng Q, Hu X, Zheng J, Xia F, Wang N, Liao H, Liu Y, Kim D, Liu J, Li F, He Q, Yang B, Chen C, Hyeon T, Ling D. Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS NANO 2019; 13:6801-6812. [PMID: 31141658 DOI: 10.1021/acsnano.9b01511] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used for T1-weighted magnetic resonance imaging (MRI) in clinic diagnosis. However, a major drawback of GBCAs is that they can increase the toxicological risk of nephrogenic systemic fibrosis (NSF) in patients with advanced renal dysfunction. Hence, safer alternatives to GBCAs are currently in demand, especially for patients with renal diseases. Here we investigated the potential of polyethylene glycol (PEG)-stabilized iron oxide nanoclusters (IONCs) as biocompatible T1MRI contrast agents and systematically evaluated their NSF-related risk in rats with renal failure. We profiled the distribution, excretion, histopathological alterations, and fibrotic gene expressions after administration of IONCs and GBCAs. Our results showed that, compared with GBCAs, IONCs exhibited dramatically improved biosafety and a much lower risk of causing NSF, suggesting the feasibility of substituting GBCAs with IONCs in clinical MRI diagnosis of patients with renal diseases.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Center for Drug Safety Evaluation and Research , Zhejiang University , Hangzhou 310058 , China
| | | | - Jiahuan Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | | | | | | | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Dokyoon Kim
- Department of Bionano Engineering , Hanyang University , Ansan 15588 , Korea
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
| | - Jianan Liu
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | | | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
25
|
Ge D, Du Q, Ran B, Liu X, Wang X, Ma X, Cheng F, Sun B. The neurotoxicity induced by engineered nanomaterials. Int J Nanomedicine 2019; 14:4167-4186. [PMID: 31239675 PMCID: PMC6559249 DOI: 10.2147/ijn.s203352] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely used in various fields due to their novel physicochemical properties. However, the use of ENMs has led to an increased exposure in humans, and the safety of ENMs has attracted much attention. It is universally acknowledged that ENMs could enter the human body via different routes, eg, inhalation, skin contact, and intravenous injection. Studies have proven that ENMs can cross or bypass the blood-brain barrier and then access the central nervous system and cause neurotoxicity. Until now, diverse in vivo and in vitro models have been developed to evaluate the neurotoxicity of ENMs, and oxidative stress, inflammation, DNA damage, and cell death have been identified as being involved. However, due to various physicochemical properties of ENMs and diverse study models in existing studies, it remains challenging to establish the structure-activity relationship of nanomaterials in neurotoxicity. In this paper, we aimed to review current studies on ENM-induced neurotoxicity, with an emphasis on the molecular and cellular mechanisms involved. We hope to provide a rational material design strategy for ENMs when they are applied in biomedical or other engineering applications.
Collapse
Affiliation(s)
- Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingqing Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xingyu Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| |
Collapse
|
26
|
Katubi KM, Alzahrani FM, Ali D, Alarifi S. Dose- and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure. Hum Exp Toxicol 2019; 38:914-926. [PMID: 30995871 DOI: 10.1177/0960327119843578] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanotechnology has achieved more commercial attention over recent years, and its application has increased concerns about its discharge in the environment. In this study, we have chosen human hepatic carcinoma (HuH-7) cells because liver tissue has played an important role in human metabolism. Therefore, the objective of this study was to determine DNA damaging and apoptotic potential of cadmium telluride quantum dots (CdTe QDs; average particle size (APS) 10 nm, 1-25 µg/ml) on HuH-7 cells and the basic molecular mechanism of its cellular toxicity. Cytotoxicity of different concentrations of CdTe QDs on HuH-7 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and lactate dehydrogenase (LDH) tests. Moreover, reactive oxygen species (ROS) generation, mitochondrial membrane potential, DNA damage, and Hoechst 33342 fluorescent staining morphological analysis of necrotic/apoptotic cells were detected; cellular impairment in mitochondria and DNA was confirmed by JC-1 and comet assay, respectively. A dose- and time-dependent cytotoxicity effect of CdTe QDs exposure was observed HuH-7 cells; the significant (p < 0.05) cytotoxicity was found at 25 μg/ml of CdTe QDs exposure. The percentage of cytotoxicity of CdTe QDs (25 μg/ml) in HuH-7 cells reached 62% in 48 h. CdTe QDs elicited intracellular ROS generation and mitochondrial depolarization, and DNA integrity cells collectively advocated the apoptotic cell death at higher concentration. DNA damage was observed in cells due to CdTe QDs exposure, which was mediated by oxidative stress. This study exploring the effects of CdTe QDs in HuH-7 cells has provided valuable insights into the mechanism of toxicity induced by CdTe QDs.
Collapse
Affiliation(s)
- K M Katubi
- 1 Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - F M Alzahrani
- 1 Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - D Ali
- 2 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - S Alarifi
- 2 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Advances in materials for cellular applications (Review). Biointerphases 2019; 14:010801. [PMID: 30803241 DOI: 10.1116/1.5083803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The goal of this review is to highlight materials that show exciting promise for either entirely new cellular-level applications or new approaches to long-standing biological challenges. The authors start with two more established materials, graphene and carbon nanotubes, and then progress to conducting polymers, followed by an overview of the microresonators, nanowires, and spasers used as intracellular lasers. These materials provide new approaches to gene and drug delivery, cellular regeneration, mechanical sensing, imaging, and the modulation and recording of cellular activity. Of specific interest is the comparison of these materials with existing technologies, the method of cellular delivery, and the all-encompassing challenge of biocompatibility. Concluding remarks examine the extension of these materials from cellular-level experiments to in vivo applications, including the method of activation: light, electricity, and ultrasound. Overall, these materials and their associated applications illustrate the most recent advances in material-cell interactions.
Collapse
|
28
|
Wu G, Jiang C, Zhang T. FcγRIIB receptor-mediated apoptosis in macrophages through interplay of cadmium sulfide nanomaterials and protein corona. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:140-148. [PMID: 30107323 DOI: 10.1016/j.ecoenv.2018.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Humans are likely exposed to cadmium sulfide nanomaterials (CdS NMs) due to the increasing environmental release and in vivo application of these materials, which tend to accumulate and cause toxic effects in human lungs, particularly by interrupting the physiological functions of macrophage cells. Here, we showed that protein corona played an essential role in determining cellular uptake and cytotoxicity of CdS NMs in macrophages. Protein-coated CdS NMs enhanced the expression of FcγRIIB receptors on the cell surface, and the interaction between this receptors and proteins inhibited cellular uptake of CdS NMs while triggering cell apoptosis via the AKT/Caspase 3 signaling pathway. Cytotoxicity of CdS NMs was greatly alleviated by coating the nanomaterials with polyethylene glycol (PEG), because PEG decreased the adsorption of proteins that interact with the FcγRIIB receptors on cell surface. Overall, our research demonstrated that surface modification, particularly protein association, significantly affected cellular response to CdS NMs, and cellular uptake may not be an appropriate parameter for predicting the toxic effects of these nanomaterials in human lungs.
Collapse
Affiliation(s)
- Guizhu Wu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
29
|
Fernandes LF, Bruch GE, Massensini AR, Frézard F. Recent Advances in the Therapeutic and Diagnostic Use of Liposomes and Carbon Nanomaterials in Ischemic Stroke. Front Neurosci 2018; 12:453. [PMID: 30026685 PMCID: PMC6041432 DOI: 10.3389/fnins.2018.00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
The complexity of the central nervous system (CNS), its limited self-repairing capacity and the ineffective delivery of most CNS drugs to the brain contribute to the irreversible and progressive nature of many neurological diseases and also the severity of the outcome. Therefore, neurological disorders belong to the group of pathologies with the greatest need of new technologies for diagnostics and therapeutics. In this scenario, nanotechnology has emerged with innovative and promising biomaterials and tools. This review focuses on ischemic stroke, being one of the major causes of death and serious long-term disabilities worldwide, and the recent advances in the study of liposomes and carbon nanomaterials for therapeutic and diagnostic purposes. Ischemic stroke occurs when blood flow to the brain is insufficient to meet metabolic demand, leading to a cascade of physiopathological events in the CNS including local blood brain barrier (BBB) disruption. However, to date, the only treatment approved by the FDA for this pathology is based on the potentially toxic tissue plasminogen activator. The techniques currently available for diagnosis of stroke also lack sensitivity. Liposomes and carbon nanomaterials were selected for comparison in this review, because of their very distinct characteristics and ranges of applications. Liposomes represent a biomimetic system, with composition, structural organization and properties very similar to biological membranes. On the other hand, carbon nanomaterials, which are not naturally encountered in the human body, exhibit new modes of interaction with biological molecules and systems, resulting in unique pharmacological properties. In the last years, several neuroprotective agents have been evaluated under the encapsulated form in liposomes, in experimental models of stroke. Effective drug delivery to the brain and neuroprotection were achieved using stealth liposomes bearing targeting ligands onto their surface for brain endothelial cells and ischemic tissues receptors. Carbon nanomaterials including nanotubes, fullerenes and graphene, started to be investigated and potential applications for therapy, biosensing and imaging have been identified based on their antioxidant action, their intrinsic photoluminescence, their ability to cross the BBB, transitorily decrease the BBB paracellular tightness, carry oligonucleotides and cells and induce cell differentiation. The potential future developments in the field are finally discussed.
Collapse
Affiliation(s)
| | | | - André R. Massensini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
30
|
Puzan ML, Legesse B, Koppes RA, Fenniri H, Koppes AN. Bioactive Organic Rosette Nanotubes Support Sensory Neurite Outgrowth. ACS Biomater Sci Eng 2018; 4:1630-1640. [PMID: 33445319 DOI: 10.1021/acsbiomaterials.8b00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regardless of the intervention for peripheral nerve repair, slow rates of axonal regeneration often result in poor clinical outcomes. Thus, using new materials such as biologically inspired, biocompatible, organic rosette nanotubes (RNTs) could provide a tailorable scaffold to modulate neurite extension and attachment for improved nerve repair. RNTs are obtained through the spontaneous self-assembly of a synthetic DNA base analogue featuring the hydrogen bond triads of both guanine and cytosine, the G∧C base. Here, we investigated the potential of RNTs functionalized with lysine and Arg-Gly-Asp-Ser-Lys (RGDSK) peptide to support neural growth. We hypothesized that (a) due to their dimensions, the RNTs would support neuron attachment, and (b) their conjugation to the integrin-binding peptide RGDSK would further enhance neurite outgrowth compared to unfunctionalized RNT. Neurite extension was examined on a variety of RNT structures, including RNT with a lysine side chain (K1), a mixture of the K1 and a free RGDS peptide, RNT alone, an RGDSK-functionalized RNT, in addition to poly-d-lysine and laminin controls. Both whole dorsal root ganglion (DRG) and single dissociated DRG neurons were seeded onto RNT-coated substrates containing various ratios of peptides. Analysis of neuron morphometrics showed that RNT blends support DRG neuron attachment and neurite extension, with RGDS presentation increasing neurite outgrowth from whole DRG by up to 47% over a 7-day period compared to K1 alone (p < 0.013). In addition, while RNTs increased the sprouting of primary neurites extending from dissociated DRG neurons, the total neurite outgrowth per neuron remained the same. These results show that functionalized biomimetic RNTs provide a support for neurite growth and extension and have the ability to modulate neuronal morphology. These results also pave the way for the design of injectable RNT-based nanomaterials that support guided neural regeneration following traumatic injury.
Collapse
|
31
|
Ding HM, Ma YQ. Computational approaches to cell-nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. NANOSCALE HORIZONS 2018; 3:6-27. [PMID: 32254106 DOI: 10.1039/c7nh00138j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their unique properties, nanomaterials have been widely used in biomedicine since they have obvious inherent advantages over traditional ones. However, nanomaterials may also cause dysfunction in proteins, genes and cells, resulting in cytotoxic and genotoxic responses. Recently, more and more attention has been paid to these potential toxicities of nanomaterials, especially to the risks of nanomaterials to human health and safety. Therefore, when using nanomaterials for biomedical applications, it is of great importance to keep the balance between therapeutic efficiency and cytotoxicity (i.e., increase the therapeutic efficiency as well as decrease the potential toxicity). This requires a deeper understanding of the interactions between various types of nanomaterials and biological systems at the nano/bio interface. In this review, from the point of view of theoretical researchers, we will present the current status regarding the physical mechanism of cytotoxicity caused by nanomaterials, mainly based on recent simulation results. In addition, the strategies for minimizing the nanotoxicity naturally and artificially will also be discussed in detail. Furthermore, we should notice that toxicity is not always bad for clinical use since causing the death of specific cells is the main way of treating disease. Enhancing the targeting ability of nanomaterials to diseased cells and minimizing their side effects on normal cells will always be hugely challenging issues in nanomedicine. By combining the latest computational studies with some experimental verifications, we will provide special insights into recent advances regarding these problems, especially for the design of novel environment-responsive nanomaterials.
Collapse
Affiliation(s)
- Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | | |
Collapse
|
32
|
Fröhlich E. Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnology 2017; 15:84. [PMID: 29157261 PMCID: PMC5697164 DOI: 10.1186/s12951-017-0320-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/12/2017] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology is regarded as a key technology of the twenty-first century. Despite the many advantages of nanotechnology it is also known that engineered nanoparticles (NPs) may cause adverse health effects in humans. Reports on toxic effects of NPs relay mainly on conventional (phenotypic) testing but studies of changes in epigenome, transcriptome, proteome, and metabolome induced by NPs have also been performed. NPs most relevant for human exposure in consumer, health and food products are metal, metal oxide and carbon-based NPs. They were also studied quite frequently with omics technologies and an overview of the study results can serve to answer the question if screening for established targets of nanotoxicity (e.g. cell death, proliferation, oxidative stress, and inflammation) is sufficient or if omics techniques are needed to reveal new targets. Regulated pathways identified by omics techniques were confirmed by phenotypic assays performed in the same study and comparison of particle types and cells by the same group indicated a more cell/organ-specific than particle specific regulation pattern. Between different studies moderate overlap of the regulated pathways was observed and cell-specific regulation is less obvious. The lack of standardization in particle exposure, in omics technologies, difficulties to translate mechanistic data to phenotypes and comparison with human in vivo data currently limit the use of these technologies in the prediction of toxic effects by NPs.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010, Graz, Austria.
| |
Collapse
|
33
|
Carbon nanotubes-based drug delivery to cancer and brain. Curr Med Sci 2017; 37:635-641. [DOI: 10.1007/s11596-017-1783-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/19/2017] [Indexed: 01/15/2023]
|
34
|
Guo Q, You H, Yang X, Lin B, Zhu Z, Lu Z, Li X, Zhao Y, Mao L, Shen S, Cheng H, Zhang J, Deng L, Fan J, Xi Z, Li R, Li CM. Functional single-walled carbon nanotubes 'CAR' for targeting dopamine delivery into the brain of parkinsonian mice. NANOSCALE 2017; 9:10832-10845. [PMID: 28726961 DOI: 10.1039/c7nr02682j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Current treatments for Parkinson's disease (PD) are limited, partly due to the difficulties posed by the blood brain barrier (BBB) when delivering drugs to the brain. Herein, we explore the feasibility and efficacy of functional single-walled carbon nanotubes 'CAR' (SWCNT-PEGs-Lf) which carry and target-deliver dopamine (DA) to the brain in PD mice for treatment. SWCNTs can penetrate the cell-membrane remarkably, with the characteristics including high drug-loading and pH-dependent therapeutic unloading capacities. It has been reported that polyethylene glycol (PEG)-coated SWCNTs could increase the circulation time and thus prolong the concentration gradient of SWCNTs to the brain. Besides, an obvious lactoferrin-nanoparticle (Lf-NP) accumulation in the striatum, wherein the pharmacological target site of PD has been reported, a dual modification of PEG and Lf onto SWCNTs was applied and thus a specific 'CAR' to carry DA. The results from in vitro studies demonstrate that with 20 mol L-1 DA loaded onto SWCNT-polyethylene glycol (PEGs) in addition to 100 μmol L-1 6-hydroxydopamine (6-OHDA), the activity of PC12 cells increases significantly (p < 0.05), and that the lactate dehydrogenase (LDH) levels and reactive oxygen species (ROS) content also significantly decrease (p < 0.01). Furthermore, the levels of oxidative stress, tumor necrosis factor (TNF)-α and interleukin (IL)-1β are all reduced significantly in PD mice and the CAR-25 mg kg-1 DA group in comparison with that in 6-OHDA-lesioned mice with saline and 6-OHDA-lesioned mice, as well as the Tyrosine hydroxylase-immunoreactive (TH-ir) density increased (p < 0.01). The toxicity of CAR was in vitro and in vivo investigated, showing that the safe dose of SWCNT-PEG exposure to PC12 cells was 6.25 μg μl-1 or lower with a higher metabolic activity in comparison with that in the control group and the safe dose of CAR in the mice experiments was 3.25 mg kg-1 or less, given by intraperitoneal injection with a lower level of oxidative stress and inflammatory responses in comparison with that in the control group. This study suggests that 25 mg kg-1 DA loaded onto 3.25 mg kg-1 CAR can alleviate the oxidative stress and inflammatory responses in parkinsonian mice and increase the TH-ir density in the striatum.
Collapse
Affiliation(s)
- Qing Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pondman KM, Salvador-Morales C, Paudyal B, Sim RB, Kishore U. Interactions of the innate immune system with carbon nanotubes. NANOSCALE HORIZONS 2017; 2:174-186. [PMID: 32260639 DOI: 10.1039/c6nh00227g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The therapeutic application of nanomaterials requires that they are biocompatible and can reach the desired target. The innate immune system is likely to be the first defence machinery that would recognise the nanomaterials as 'non-self'. A number of studies have addressed the issue of how carbon nanotubes (CNTs) interact with phagocytic cells and their surface receptors that can impact on their intracellular processing and subsequent immune response. In addition, soluble innate immune factors also get involved in the recognition and clearance of CNTs. The interaction of CNTs with the complement system, the most potent and versatile innate immune mechanism, has shed interesting light on how complement activation on the surface of CNTs can modulate their phagocytosis and effector cytokine response. The charge or altered molecular pattern on the surface of CNTs due to functionalization and derivatization can also dictate the level of complement activation and subsequent inflammatory response. It is becoming evident that complement deposition may facilitate phagocytic uptake of CNTs through receptor routes that leads to dampening of pro-inflammatory response by complement-receptor bearing macrophages and B cells. Thus, recombinant complement regulators decorated on the CNT surface can constructively influence the therapeutic strategies involving CNTs and other nanoparticles.
Collapse
Affiliation(s)
- Kirsten M Pondman
- Department of Life Sciences, College of Health and Life Sciences, Heinz Wolff Building, Brunel University London, Uxbridge UB8 3PH, UK.
| | | | | | | | | |
Collapse
|
36
|
Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydr Polym 2017; 174:830-840. [PMID: 28821138 DOI: 10.1016/j.carbpol.2017.06.101] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/28/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022]
Abstract
In the past decades, extensive studies have demonstrated that carbon nanotubes (CNTs) could promote cell adhesion, proliferation and differentiation of neuronal cells. However, the potential cytotoxicity in biological systems severely restricted the utilization of CNTs as substrates for neural growth. In this study, biocompatible chitin/carbon nanotubes (Ch/CNT) composite hydrogels were developed via blending modified CNTs with chitin solution in 11wt% NaOH/4wt% urea aqueous system, and subsequently regenerating in ethanol. As the CNTs were dispersed homogeneously in chitin matrix and combined with chitin nanofibers to form a compact and neat Ch/CNT nanofibrous network through intermolecular interactions, such as electrostatic interactions, hydrogen bonding and amphiphilic interaction, etc. The tensile strength and elongation at break of the Ch/CNT composite hydrogels were obviously enhanced, and the swelling ratio decreased. In addition, the Ch/CNT hydrogels exhibited good hemocompatibility, biodegradation in vitro and biocompatibility without cytotoxicity and neurotoxicity nature to neuronal and Schwann cells (PC12 cells and RSC96 cells). Especially, the Ch/CNT3 composite hydrogels exhibited significant enhancement of the neuronal cell adhesion, proliferation and neurite outgrowth of neuronal cells with a great increase in both the percentage and the length of neurites. Therefore, we provide a simple and efficient approach to construct the novel Ch/CNT hydrogels as neuronal growth substrates for the potential application in nerve regeneration.
Collapse
|
37
|
Munk M, de Souza Salomão Zanette R, de Almeida Camargo LS, de Souza NLGD, de Almeida CG, Gern JC, de Sa Guimaraes A, Ladeira LO, de Oliveira LFC, de Mello Brandão H. Using carbon nanotubes to deliver genes to hard-to-transfect mammalian primary fibroblast cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2433-2454. [PMID: 28552644 DOI: 10.1016/j.nano.2017.03.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
One-dimensional (1D) carbon nanotubes (CNTs) and the two-dimensional (2D) graphene represent the most widely studied allotropes of carbon. Due to their unique structural, electrical, mechanical and optical properties, 1D and 2D carbon nanostructures are considered to be leading candidates for numerous applications in biomedical fields, including tissue engineering, drug delivery, bioimaging and biosensors. The biocompatibility and toxicity issues associated with these nanostructures have been a critical impediment for their use in biomedical applications. In this review, we present an overview of the various materials types, properties, functionalization strategies and characterization methods of 1D and 2D carbon nanomaterials and their derivatives in terms of their biomedical applications. In addition, we discuss various factors and mechanisms affecting their toxicity and biocompatibility.
Collapse
|
39
|
Eldridge BN, Xing F, Fahrenholtz CD, Singh RN. Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane. Toxicol In Vitro 2017; 41:223-231. [PMID: 28285150 DOI: 10.1016/j.tiv.2017.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
There is a growing interest in the use of multiwalled carbon nanotubes (MWCNTs) to treat diseases of the brain. Little is known about the effects of MWCNTs on human brain microvascular endothelial cells (HBMECs), which make up the blood vessels in the brain. In our studies, we evaluate the cytotoxicity of MWCNTs and acid oxidized MWNCTs, with or without a phospholipid-polyethylene glycol coating. We determined the cytotoxic effects of MWCNTs on both tissue-mimicking cultures of HBMECs grown on basement membrane and on monolayer cultures of HBMECs grown on plastic. We also evaluated the effects of MWCNT exposure on the capacity of HBMECs to form rings after plating on basement membrane, a commonly used assay to evaluate angiogenesis. We show that tissue-mimicking cultures of HBMECs are less sensitive to all types of MWCNTs than monolayer cultures of HBMECs. Furthermore, we found that MWCNTs have little impact on the capacity of HBMECs to form rings. Our results indicate that relative cytotoxicity of MWCNTs is significantly affected by the type of cell culture model used for testing, and supports further research into the use of tissue-mimicking endothelial cell culture models to help bridge the gap between in vitro and in vivo toxicology.
Collapse
Affiliation(s)
- Brittany N Eldridge
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Cale D Fahrenholtz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Ravi N Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; Comprehensive Cancer Center of Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
40
|
Gao Z, Varela JA, Groc L, Lounis B, Cognet L. Toward the suppression of cellular toxicity from single-walled carbon nanotubes. Biomater Sci 2017; 4:230-44. [PMID: 26678092 DOI: 10.1039/c5bm00134j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the multidisciplinary fields of nanobiology and nanomedicine, single-walled carbon nanotubes (SWCNTs) have shown great promise due to their unique morphological, physical and chemical properties. However, understanding and suppressing their cellular toxicity is a mandatory step before promoting their biomedical applications. In light of the flourishing recent literature, we provide here an extensive review on SWCNT cellular toxicity and an attempt to identify the key parameters to be considered in order to obtain SWCNT samples with minimal or no cellular toxicity.
Collapse
Affiliation(s)
- Zhenghong Gao
- Univ. Bordeaux, Laboratoire Photonique Numerique et Nanosciences, UMR 5298, F-33400 Talence, France and Institut d'Optique & CNRS, LP2N UMR 5298, F-33400 Talence, France.
| | - Juan A Varela
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France and CNRS, IINS UMR 5297, F-33000 Bordeaux, France
| | - Laurent Groc
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France and CNRS, IINS UMR 5297, F-33000 Bordeaux, France
| | - Brahim Lounis
- Univ. Bordeaux, Laboratoire Photonique Numerique et Nanosciences, UMR 5298, F-33400 Talence, France and Institut d'Optique & CNRS, LP2N UMR 5298, F-33400 Talence, France.
| | - Laurent Cognet
- Univ. Bordeaux, Laboratoire Photonique Numerique et Nanosciences, UMR 5298, F-33400 Talence, France and Institut d'Optique & CNRS, LP2N UMR 5298, F-33400 Talence, France.
| |
Collapse
|
41
|
Watanabe F, Nima ZA, Honda T, Mitsuhara M, Nishida M, Biris AS. X-ray photoelectron spectroscopy and transmission electron microscopy analysis of silver-coated gold nanorods designed for bionanotechnology applications. NANOTECHNOLOGY 2017; 28:025704. [PMID: 27922833 DOI: 10.1088/1361-6528/28/2/025704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multicomponent nano-agents were designed and built via a core-shell approach to enhance their surface enhanced Raman scattering (SERS) signals. These nano-agents had 36 nm × 12 nm gold nanorod cores coated by 4 nm thick silver shell films and a subsequent thin bifunctional thiolated polyethylene glycol (HS-PEG-COOH) layer. Ambient time-lapsed SERS signal measurements of these functionalized nanorods taken over a two-week period indicated no signal degradation, suggesting that large portions of the silver shells remained in pure metallic form. The morphology of the nanorods was characterized by transmission electron microscopy (TEM) and ultra-high resolution scanning TEM. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were utilized to assess the oxidation states of the silver shells covered by HS-PEG-COOH. The binding energies of Ag 3d XPS spectra yielded very small chemical shifts with oxidation; however, the AES peak shapes gave meaningful information about the extent of oxidation undergone by the nano-agent. While the silver shells without HS-PEG-COOH coatings oxidized significantly, the silver shells with HS-PEG-COOH remained predominantly metallic. In fact, six month-old samples still retained mostly metallic silver shells. These findings further demonstrate the stability and longevity of the nanostructures, indicating their significant potential as plasmonically active agents for highly sensitive detection in various biological systems, including cancer cells, tissues, or even organisms.
Collapse
Affiliation(s)
- Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA
| | | | | | | | | | | |
Collapse
|
42
|
Holt BD, Roginskaya V, Van Houten B, Islam MF, Dahl KN. Dispersed single wall carbon nanotubes do not impact mitochondria structure or function, but technical issues during analysis could yield incorrect results. J Mater Chem B 2017; 5:369-374. [DOI: 10.1039/c6tb02180h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria, which generate cellular energy, are not influenced by purified carbon nanotubes. Many traditional biological assays to determine mitochondria function give false results because of nanotube surface activity and optical interference.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Biomedical Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Vera Roginskaya
- Department of Pharmacology and Chemical Biology
- University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute
- Hillman Cancer Center
- Pittsburgh
- USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology
- University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute
- Hillman Cancer Center
- Pittsburgh
- USA
| | - Mohammad F. Islam
- Department of Materials Science and Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Kris Noel Dahl
- Department of Chemical Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
| |
Collapse
|
43
|
Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release 2016; 241:200-219. [DOI: 10.1016/j.jconrel.2016.09.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
|
44
|
Gao X, Zhang X, Wang Y, Fan C. Effects of morphology and surface hydroxyl on the toxicity of BiOCl in human HaCaT cells. CHEMOSPHERE 2016; 163:438-445. [PMID: 27565311 DOI: 10.1016/j.chemosphere.2016.08.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/11/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Recently, bismuth oxychloride nanomaterials (BiOCls) are showing great promise in pollutant removal. Residues from these environmental remediations are potential hazardous materials. Unfortunately, human health risks of BiOCls are still unexplored widely. In the present study, we focused on the influence of physicochemical properties on the cytotoxicity of BiOCls toward a human skin derived cell line (HaCaT). Results showed that morphology and surface hydroxyl both had a profound effect on the toxicity of BiOCls. Microsphere-shaped BiOCl caused less toxicity than nanosheet-shaped BiOCl because of weaker particle-membrane interactions, while the presence of surface hydroxyl on microsphere-shaped BiOCl significantly raised the toxicity owing to the increased interaction with cell membrane. Both microsphere-shaped BiOCl with surface hydroxyl and nanosheet-shaped BiOCl caused significant cell membrane damage (PI uptake and LDH release), however, based on the different mechanism. The former may be a predominant "chemical" mechanism involved an oxidative stress paradigm, as manifested by elevated ROS and depleted GSH, while the latter is mainly due to a direct "physical" damage to cell membrane. Both "physical" and "chemical" response led to cell death. Furthermore, a set of experiments including MMP collapse, cell cycle arrest, and apoptosis/necrosis were conducted to propose a scenario for toxicological aspects of BiOCls. Data presented here would help to enable the rational design of BiOCls for either reducing their unintended consequences or increasing their application potentials.
Collapse
Affiliation(s)
- Xiaoya Gao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaochao Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yawen Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Caimei Fan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
45
|
Yokel RA. Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2081-2093. [DOI: 10.1016/j.nano.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
46
|
Majeed W, Bourdo S, Petibone DM, Saini V, Vang KB, Nima ZA, Alghazali KM, Darrigues E, Ghosh A, Watanabe F, Casciano D, Ali SF, Biris AS. The role of surface chemistry in the cytotoxicity profile of graphene. J Appl Toxicol 2016; 37:462-470. [PMID: 27593524 DOI: 10.1002/jat.3379] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022]
Abstract
Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Waqar Majeed
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA.,Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Shawn Bourdo
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Viney Saini
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Kieng Bao Vang
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Zeid A Nima
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Karrer M Alghazali
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Emilie Darrigues
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Anindya Ghosh
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA.,Department of Chemistry, University of Arkansas at Little Rock, AR, 72204, USA
| | - Fumiya Watanabe
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Daniel Casciano
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Alexandru S Biris
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| |
Collapse
|
47
|
Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. ENVIRONMENT INTERNATIONAL 2016; 94:8-23. [PMID: 27203780 DOI: 10.1016/j.envint.2016.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
With the wide research and application of nanomaterials in various fields, the safety of nanomaterials attracts much attention. An increasing number of reports in the literature have shown the adverse effects of nanomaterials, representing the quick development of nanotoxicology. However, many studies in nanotoxicology have not reflected the real nanomaterial safety, and the knowledge gaps between nanotoxicological research and nanomaterial safety remain large. Considering the remarkable influence of biological or environmental matrices (e.g., biological corona) on nanotoxicity, the situation of performing nanotoxicological experiments should be relevant to the environment and humans. Given the possibility of long-term and low-concentration exposure of nanomaterials, the reversibility of and adaptation to nanotoxicity, and the transgenerational effects should not be ignored. Different from common pollutants, the specific analysis methodology for nanotoxicology need development and exploration furthermore. High-throughput assay integrating with omics was highlighted in the present review to globally investigate nanotoxicity. In addition, the biological responses beyond individual levels, special mechanisms and control of nanotoxicity deserve more attention. The progress of nanotoxicology has been reviewed by previous articles. This review focuses on the blind spots in nanotoxicological research and provides insight into what we should do in future work to support the healthy development of nanotechnology and the evaluation of real nanomaterial safety.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
48
|
Kazemi-Beydokhti A, Zeinali Heris S, Jaafari MR. Investigation of different methods for cisplatin loading using single-walled carbon nanotube. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Kotagiri N, Sakon J, Han H, Zharov VP, Kim JW. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization. NANOSCALE 2016; 8:12658-67. [PMID: 26935543 PMCID: PMC4919181 DOI: 10.1039/c5nr08686h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cancer nanomedicines are opening new paradigms in cancer management and recent research points to how they can vastly improve imaging and therapy through multimodality and multifunctionality. However, challenges to achieving optimal efficacy are manifold starting from processing materials and evaluating their intended effectiveness on biological tissue, to developing new strategies aimed at improving transport of these materials through the biological milieu to the target tissue. Here, we report a fluorescent derivative of a beta-lactam antibiotic, ampicillin (termed iAmp) and its multifunctional physicobiochemical characteristics and potential as a biocompatible shielding agent and an effective dispersant. Carbon nanotubes (CNTs) were chosen to demonstrate the efficacy of iAmp. CNTs are known for their versatility and have been used extensively for cancer theranostics as photothermal and photoacoustic agents, but have limited solubility in water and biocompatibility. Traditional dispersants are associated with imaging artifacts and are not fully biocompatible. The chemical structure of iAmp is consistent with a deamination product of ampicillin. Although the four-membered lactam ring is intact, it does not retain the antibiotic properties. The iAmp is an effective dispersant and simultaneously serves as a fluorescent label for single-walled CNTs (SWNTs) with minimal photobleaching. The iAmp also enables bioconjugation of SWNTs to bio-ligands such as antibodies through functional carboxyl groups. Viability tests show that iAmp-coated SWNTs have minimal toxicity. Bio-stability tests under physiological conditions reveal that iAmp coating not only remains stable in a biologically relevant environment with high protein and salt concentrations, but also renders SWNTs transparent against nonspecific protein adsorption, also known as protein corona. Mammalian tissue culture studies with macrophages and opsonins validate that iAmp coating affords immunological resistance to SWNTs. Furthermore, iAmp coating offers protection to SWNTs against their nonspecific adsorption across disparate cell types, which has precluded a targeted strategy, and enables selective molecular targeting. The iAmp can therefore be used as an efficient dispersant, a photostable fluorescent agent, and a biocompatible disguising agent, alleviating CNTs' drawbacks and rendering them suitable for nanotheranostic and drug delivery applications.
Collapse
Affiliation(s)
- Nalinikanth Kotagiri
- Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA.
| | | | | | | | | |
Collapse
|
50
|
Baldrighi M, Trusel M, Tonini R, Giordani S. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Front Neurosci 2016; 10:250. [PMID: 27375413 PMCID: PMC4899452 DOI: 10.3389/fnins.2016.00250] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues.
Collapse
Affiliation(s)
- Michele Baldrighi
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| | - Massimo Trusel
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Raffaella Tonini
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Silvia Giordani
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|