1
|
Yong H. Reentrant Condensation of Polyelectrolytes Induced by Diluted Multivalent Salts: The Role of Electrostatic Gluonic Effects. Biomacromolecules 2024; 25:7361-7376. [PMID: 39432752 PMCID: PMC11558675 DOI: 10.1021/acs.biomac.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
We explore the reentrant condensation of polyelectrolytes triggered by multivalent salts, whose phase-transition mechanism remains under debate. We propose a theory to study the reentrant condensation, which separates the electrostatic effect into two parts: a short-range electrostatic gluonic effect because of sharing of multivalent ions by ionic monomers and a long-range electrostatic correlation effect from all ions. The theory suggests that the electrostatic gluonic effect governs reentrant condensation, requiring a minimum coupling energy to initiate the phase transition. This explains why diluted salts with selective multivalency trigger a polyelectrolyte phase transition. The theory also uncovers that strong adsorption of multivalent ions onto ionic monomers causes low-salt concentrations to induce both collapse and reentry transitions. Additionally, we highlight how the incompatibility of uncharged polyelectrolyte moieties with water affects the polyelectrolyte phase behaviors. The obtained results will contribute to the understanding of biological phase separations if multivalent ions bound to biopolyelectrolytes play an essential role.
Collapse
Affiliation(s)
- Huaisong Yong
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, AE 7500 Enschede, the Netherlands
- Institute
Theory of Polymers, Leibniz-Institut für
Polymerforschung Dresden e.V., D-01069 Dresden, Germany
- School
of New Energy and Materials, Southwest Petroleum
University, Chengdu 610500, China
| |
Collapse
|
2
|
van Lange SGM, te Brake DW, Portale G, Palanisamy A, Sprakel J, van der Gucht J. Moderated ionic bonding for water-free recyclable polyelectrolyte complex materials. SCIENCE ADVANCES 2024; 10:eadi3606. [PMID: 38198554 PMCID: PMC10780884 DOI: 10.1126/sciadv.adi3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
While nature extensively uses electrostatic bonding between oppositely charged polymers to assemble and stabilize materials, harnessing these interactions in synthetic systems has been challenging. Synthetic materials cross-linked with a high density of ionic bonds, such as polyelectrolyte complexes, only function properly when their charge interactions are attenuated in the presence of ample amounts of water; dehydrating these materials creates such strong Coulombic bonding that they become brittle, non-thermoplastic, and virtually impossible to process. We present a strategy to intrinsically moderate the electrostatic bond strengths in apolar polymeric solids by the covalent grafting of attenuator spacers to the charge carrying moieties. This produces a class of polyelectrolyte materials that have a charge density of 100%, are processable and malleable without requiring water, are highly solvent- and water-resistant, and are fully recyclable. These materials, which we coin "compleximers," marry the properties of thermoplastics and thermosets using tailored ionic bonding alone.
Collapse
Affiliation(s)
- Sophie G. M. van Lange
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Diane W. te Brake
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Anbazhagan Palanisamy
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| |
Collapse
|
3
|
Lamberty ZD, Tran NT, van Engers CD, Karnal P, Knorr DB, Frechette J. Cooperative Tridentate Hydrogen-Bonding Interactions Enable Strong Underwater Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450657 PMCID: PMC10375471 DOI: 10.1021/acsami.3c06545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Multidentate hydrogen-bonding interactions are a promising strategy to improve underwater adhesion. Molecular and macroscale experiments have revealed an increase in underwater adhesion by incorporating multidentate H-bonding groups, but quantitatively relating the macroscale adhesive strength to cooperative hydrogen-bonding interactions remains challenging. Here, we investigate whether tridentate alcohol moieties incorporated in a model epoxy act cooperatively to enhance adhesion. We first demonstrate that incorporation of tridentate alcohol moieties leads to comparable adhesive strength with mica and aluminum in air and in water. We then show that the presence of tridentate groups leads to energy release rates that increase with an increase in crack velocity in air and in water, while materials lacking these groups do not display rate-dependent adhesion. We model the rate-dependent adhesion to estimate the activation energy of the interfacial bonds. Based on our data, we estimate the lifetime of these bonds to be between 2 ms and 6 s, corresponding to an equilibrium activation energy between 23kBT and 31kBT. These values are consistent with tridentate hydrogen bonding, suggesting that the three alcohol groups in the Tris moiety bond cooperatively form a robust adhesive interaction underwater.
Collapse
Affiliation(s)
- Zachary D Lamberty
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| | - Ngon T Tran
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Christian D van Engers
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Preetika Karnal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton Street, Building 205, Bethlehem, Pennsylvania 18015, United States
| | - Daniel B Knorr
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| |
Collapse
|
4
|
Hutskalov I, Linden A, Čorić I. Directional Ionic Bonds. J Am Chem Soc 2023; 145:8291-8298. [PMID: 37027000 PMCID: PMC10119990 DOI: 10.1021/jacs.3c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Covalent and ionic bonds represent two fundamental forms of bonding between atoms. In contrast to bonds with significant covalent character, ionic bonds are of limited use for the spatial structuring of matter because of the lack of directionality of the electric field around simple ions. We describe a predictable directional orientation of ionic bonds that contain concave nonpolar shields around the charged sites. Such directional ionic bonds offer an alternative to hydrogen bonds and other directional noncovalent interactions for the structuring of organic molecules and materials.
Collapse
Affiliation(s)
- Illia Hutskalov
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
5
|
Gungormus E, Alsoy Altinkaya S. Facile fabrication of Anti-biofouling polyaniline ultrafiltration membrane by green citric acid doping process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Bos I, Timmerman M, Sprakel J. FRET-Based Determination of the Exchange Dynamics of Complex Coacervate Core Micelles. Macromolecules 2021; 54:398-411. [PMID: 33456072 PMCID: PMC7808214 DOI: 10.1021/acs.macromol.0c02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Complex coacervate core micelles (C3Ms) are nanoscopic structures formed by charge interactions between oppositely charged macroions and used to encapsulate a wide variety of charged (bio)molecules. In most cases, C3Ms are in a dynamic equilibrium with their surroundings. Understanding the dynamics of molecular exchange reactions is essential as this determines the rate at which their cargo is exposed to the environment. Here, we study the molecular exchange in C3Ms by making use of Förster resonance energy transfer (FRET) and derive an analytical model to relate the experimentally observed increase in FRET efficiency to the underlying macromolecular exchange rates. We show that equilibrated C3Ms have a broad distribution of exchange rates. The overall exchange rate can be strongly increased by increasing the salt concentration. In contrast, changing the unlabeled homopolymer length does not affect the exchange of the labeled homopolymers and an increase in the micelle concentration only affects the FRET increase rate at low micelle concentrations. Together, these results suggest that the exchange of these equilibrated C3Ms occurs mainly by expulsion and insertion, where the rate-limiting step is the breaking of ionic bonds to expel the chains from the core. These are important insights to further improve the encapsulation efficiency of C3Ms.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marga Timmerman
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Bos I, Terenzi C, Sprakel J. Chemical Feedback in Templated Reaction-Assembly Networks. Macromolecules 2020; 53:10675-10685. [PMID: 33328693 PMCID: PMC7726899 DOI: 10.1021/acs.macromol.0c01915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Chemical feedback between building block synthesis and their subsequent supramolecular self-assembly into nanostructures has profound effects on assembly pathways. Nature harnesses feedback in reaction-assembly networks in a variety of scenarios including virion formation and protein folding. Also in nanomaterial synthesis, reaction-assembly networks have emerged as a promising control strategy to regulate assembly processes. Yet, how chemical feedback affects the fundamental pathways of structure formation remains unclear. Here, we unravel the pathways of a templated reaction-assembly network that couples a covalent polymerization to an electrostatic coassembly process. We show how the supramolecular staging of building blocks at a macromolecular template can accelerate the polymerization reaction and prevent the formation of kinetically trapped structures inherent to the process in the absence of feedback. Finally, we establish a predictive kinetic reaction model that quantitatively describes the pathways underlying these reaction-assembly networks. Our results shed light on the fundamental mechanisms by which chemical feedback can steer self-assembly reactions and can be used to rationally design new nanostructures.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry
and Soft Matter, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Camilla Terenzi
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry
and Soft Matter, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
8
|
Leermakers FAM. Self-Consistent Field Modeling of Pulling a Test-Chain away from or Pushing It into a Polymer Adsorption Layer. Polymers (Basel) 2020; 12:polym12081684. [PMID: 32731590 PMCID: PMC7464233 DOI: 10.3390/polym12081684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/19/2023] Open
Abstract
We consider single chain force measurements to unravel characteristics of polymers at interfaces and to determine parameters that control adsorption or probe layer characteristics that are difficult to access otherwise. The idea is to have at the tip of an atomic force microscope (AFM), a probe chain and measure its behaviour near interfaces by pushing it to, or pulling it away from it. The self-consistent field modeling of this reveals that in the pulling mode—i.e., when the chain has an affinity for the surface—a typically inhomogeneous flower-like conformation forms with an adsorbed ’pancake’ and a stretched stem (tether) from the surface to the tip of the AFM. When about half the segments is in the tether it snaps loose in a first-order like fashion. The critical distance of the end-point from the surface and the critical force are experimentally accessible. Details of this transition depend on the surrounding of the test chain. Inversely, and this opens up many possibilities, the test chain reports about its surroundings. Our focus is on the classical case of homopolymers at interfaces. Pulling experiments may reveal the adsorption strength, the (average) chain length and/or the polymer concentration of the freely dispersed/adsorbed polymers. When the test-chain is non-adsorbing we envision that pushing this test-chain into the adsorption layer reports about various layer characteristics such as the layer thickness and (local) density. Moreover, when the test-chain has a length longer than the entanglement length, we can imagine that non-trivial dynamical properties of loops and tails may be scrutinised.
Collapse
Affiliation(s)
- Fransicus A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
9
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
10
|
Bos I, Sprakel J. Langevin Dynamics Simulations of the Exchange of Complex Coacervate Core Micelles: The Role of Nonelectrostatic Attraction and Polyelectrolyte Length. Macromolecules 2019; 52:8923-8931. [PMID: 31787780 PMCID: PMC6881903 DOI: 10.1021/acs.macromol.9b01442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Complex coacervate core micelles (C3Ms) are promising encapsulators for a wide variety of (bio)molecules. To protect and stabilize their cargo, it is essential to control their exchange dynamics. Yet, to date, little is known about the kinetic stability of C3Ms and the dynamic equilibrium of molecular building blocks with micellar species. Here we study the C3M exchange during the initial micellization by using Langevin dynamics simulations. In this way, we show that charge neutral heterocomplexes consisting of multiple building blocks are the primary mediator for exchange. In addition, we show that the kinetic stability of the C3Ms can be tuned not only by the electrostatic interaction but also by the nonelectrostatic attraction between the polyelectrolytes, the polyelectrolyte length ratio, and the overall polyelectrolyte length. These insights offer new rational design guides to aid the development of new C3M encapsulation strategies.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Cedano-Serrano FJ, Sidoli U, Synytska A, Tran Y, Hourdet D, Creton C. From Molecular Electrostatic Interactions and Hydrogel Architecture to Macroscopic Underwater Adherence. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco J. Cedano-Serrano
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France
| | - Ugo Sidoli
- Department of Polymer Interfaces, Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Alla Synytska
- Department of Polymer Interfaces, Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Yvette Tran
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France
| | - Dominique Hourdet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France
| | - Costantino Creton
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France
| |
Collapse
|
12
|
Xia J, Zhu Y, He Z, Wang F, Wu H. Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17068-17078. [PMID: 30998319 DOI: 10.1021/acsami.9b02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There have been growing academic interests in the study of strong organic molecule-graphene [or graphene oxide (GO)] systems, owing to their essential noncovalent nature and the consequent chemomechanical behavior within the interface. A more recent experimental measurement [ Chem 2018, 4, 896-910] reported that the melamine-GO interface exhibits a remarkable noncovalent binding strength up to ∼1 nN, even comparable with typical covalent bonds. But the poor understanding on the complex noncovalent nature in particular makes it challenging to unveil the mystery of this high-performance interface. Herein, we carry out first-principles calculations to investigate the atomistic origin of ultrastrong noncovalent interaction between the melamine molecule and the GO sheet, as well as the chemomechanical synergy in interfacial behavior. The anomalous O-H···N hydrogen bonding, formed between the triazine moiety of melamine and the -OH in GO, is found cooperatively enhanced by the pin-like NH2-π interaction, which is responsible for the strong interface. Following static pulling simulations validates the 1 nN level rupture strength and the contribution of each noncovalent interaction within the interface. Moreover, our results show that the -OH hydrogen bonding will mainly augment the interfacial adhesion strength, whereas the -NH2 group cooperating with the -OH hydrogen bonding and conjugating with the GO surface will greatly improve the interfacial shear performance. Our work deepens the understanding on the chemomechanical behaviors within the noncovalent interface, which is expected to provide new potential strategies in designing high-performance graphene-based artificial nacreous materials.
Collapse
Affiliation(s)
- Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - FengChao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| |
Collapse
|
13
|
Nakashima KK, Vibhute MA, Spruijt E. Biomolecular Chemistry in Liquid Phase Separated Compartments. Front Mol Biosci 2019; 6:21. [PMID: 31001538 PMCID: PMC6456709 DOI: 10.3389/fmolb.2019.00021] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Biochemical processes inside the cell take place in a complex environment that is highly crowded, heterogeneous, and replete with interfaces. The recently recognized importance of biomolecular condensates in cellular organization has added new elements of complexity to our understanding of chemistry in the cell. Many of these condensates are formed by liquid-liquid phase separation (LLPS) and behave like liquid droplets. Such droplet organelles can be reproduced and studied in vitro by using coacervates and have some remarkable features, including regulated assembly, differential partitioning of macromolecules, permeability to small molecules, and a uniquely crowded environment. Here, we review the main principles of biochemical organization in model membraneless compartments. We focus on some promising in vitro coacervate model systems that aptly mimic part of the compartmentalized cellular environment. We address the physicochemical characteristics of these liquid phase separated compartments, and their impact on biomolecular chemistry and assembly. These model systems enable a systematic investigation of the role of spatiotemporal organization of biomolecules in controlling biochemical processes in the cell, and they provide crucial insights for the development of functional artificial organelles and cells.
Collapse
Affiliation(s)
| | | | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
14
|
Kong W, Luan X, Du H, Xia L, Qu F. Enhanced electrocatalytic activity of water oxidation in an alkaline medium via Fe doping in CoS2 nanosheets. Chem Commun (Camb) 2019; 55:2469-2472. [DOI: 10.1039/c8cc10203a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe–CoS2/CC exhibits enhanced catalytic OER performance, needing an overpotential of 302 mV at 10 mA cm−2 in 1.0 M KOH.
Collapse
Affiliation(s)
- Weisu Kong
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Xiaoqian Luan
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Huitong Du
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Lian Xia
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| |
Collapse
|
15
|
Sletmoen M, Gerken TA, Stokke BT, Burchell J, Brewer CF. Tn and STn are members of a family of carbohydrate tumor antigens that possess carbohydrate-carbohydrate interactions. Glycobiology 2018; 28:437-442. [PMID: 29618060 PMCID: PMC6001880 DOI: 10.1093/glycob/cwy032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
The mucin-type O-glycome in cancer aberrantly expresses the truncated glycans Tn (GalNAcα1-Ser/Thr) and STn (Neu5Acα2,6GalNAcα1-Ser/Thr). However, the role of Tn and STn in cancer and other diseases is not well understood. Our recent discovery of the self-binding properties (carbohydrate-carbohydrate interactions, CCIs) of Tn (Tn-Tn) and STn (STn-STn) provides a model for their possible roles in cellular transformation. We also review evidence that Tn and STn are members of a larger family of glycan tumor antigens that possess CCIs, which may participate in oncogenesis.
Collapse
Affiliation(s)
- Marit Sletmoen
- Department of Biotechnology and Food Science, NTNU The Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas A Gerken
- Departments of Pediatrics and Biochemistry, W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bjørn T Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim, Norway
| | - Joy Burchell
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, UK
| | - C Fred Brewer
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Li B, Wang X, Li Y, Paananen A, Szilvay GR, Qin M, Wang W, Cao Y. Single-Molecule Force Spectroscopy Reveals Self-Assembly Enhanced Surface Binding of Hydrophobins. Chemistry 2018; 24:9224-9228. [PMID: 29687928 DOI: 10.1002/chem.201801730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 01/26/2023]
Abstract
Hydrophobins have raised lots of interest as powerful surface adhesives. However, it remains largely unexplored how their strong and versatile surface adhesion is linked to their unique amphiphilic structural features. Here, we develop an AFM-based single-molecule force spectroscopy assay to quantitatively measure the binding strength of hydrophobin to various types of surfaces both in isolation and in preformed protein films. We find that individual class II hydrophobins (HFBI) bind strongly to hydrophobic surfaces but weakly to hydrophilic ones. After self-assembly into protein films, they show much stronger binding strength to both surfaces due to the cooperativity of different interactions at nanoscale. Such self-assembly enhanced surface binding may serve as a general design principle for synthetic bioactive adhesives.
Collapse
Affiliation(s)
- Bing Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Arja Paananen
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, 02044 VTT, Espoo, Finland
| | - Géza R Szilvay
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, 02044 VTT, Espoo, Finland
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
17
|
|
18
|
Laaser JE, McGovern M, Jiang Y, Lohmann E, Reineke TM, Morse DC, Dorfman KD, Lodge TP. Equilibration of Micelle-Polyelectrolyte Complexes: Mechanistic Differences between Static and Annealed Charge Distributions. J Phys Chem B 2017; 121:4631-4641. [PMID: 28441017 DOI: 10.1021/acs.jpcb.7b01953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of charge density and charge annealing in polyelectrolyte complexation was investigated through systematic comparison of two micelle-polyelectrolyte systems. First, poly(dimethylaminoethyl methacrylate)-block-poly(styrene) (PDMAEMA-b-PS) micelles were complexed with poly(styrenesulfonate) (PSS) at pH values above and below the pKa of PDMAEMA to investigate the role of charge annealing in the complexation process. Second, complexes of poly(DMAEMA-stat-oligo(ethylene glycol) methyl ether methacrylate)-block-poly(styrene) (P(DMAEMA-stat-OEGMA)-b-PS) micelles with the same PSS at low pH were used to investigate how the complexation process differs when the charged sites are in fixed positions along the polymer chains. Characterization by turbidimetric titration, dynamic light scattering, and cryogenic transmission electron microscopy reveals that whether or not the charge distribution can rearrange during the complexation process significantly affects the structure and stability of the complexes. In complexes of PDMAEMA-b-PS micelles at elevated pH, in which the charge distributions can anneal, the charge sites redistribute along the corona chains upon complexation to favor more fully ion-paired configurations. This promotes rapid rearrangement to single-micelle species when the micelles are in excess but traps complexes formed with PSS in excess. In complexes with static charge distributions introduced by copolymerization of DMAEMA with neutral OEGMA monomers, on the other hand, the opposite is true: in this case, reducing the charge density promotes rearrangement to single-micelle complexes only when the polyanion is in excess. Molecular dynamics simulations show that disruption of the charge density in the corona brush reduces the barrier to rearrangement of individual ion pairs, suggesting that the inability of the brush to rearrange to form fully ion-paired complexes fundamentally alters the kinetics of complex formation and equilibration.
Collapse
Affiliation(s)
- Jennifer E Laaser
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Michael McGovern
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yaming Jiang
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Elise Lohmann
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - David C Morse
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kevin D Dorfman
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemistry and ‡Department of Chemical Engineering & Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 911] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|
20
|
Liu Y, Winter HH, Perry SL. Linear viscoelasticity of complex coacervates. Adv Colloid Interface Sci 2017; 239:46-60. [PMID: 27633928 DOI: 10.1016/j.cis.2016.08.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 01/15/2023]
Abstract
Rheology is a powerful method for material characterization that can provide detailed information about the self-assembly, structure, and intermolecular interactions present in a material. Here, we review the use of linear viscoelastic measurements for the rheological characterization of complex coacervate-based materials. Complex coacervation is an electrostatically and entropically-driven associative liquid-liquid phase separation phenomenon that can result in the formation of bulk liquid phases, or the self-assembly of hierarchical, microphase separated materials. We discuss the need to link thermodynamic studies of coacervation phase behavior with characterization of material dynamics, and provide parallel examples of how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics. We conclude by highlighting key areas of need in the field, and specifically call for the development of a mechanistic understanding of how molecular-level interactions in complex coacervate-based materials affect both self-assembly and material dynamics.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - H Henning Winter
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
21
|
Sherstova T, Stokke BT, Skallerud B, Maurstad G, Prot VE. Nanoindentation and finite element modelling of chitosan-alginate multilayer coated hydrogels. SOFT MATTER 2016; 12:7338-7349. [PMID: 27501012 DOI: 10.1039/c6sm00827e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Composite soft materials are used as compounds for determining the effects of mechanical cues on cell behavior and cell encapsulation and for controlling drug release. The appropriate composite soft materials are conventionally prepared by selective deposition of polymers at the surface of an ionic hydrogel. In the present study we address the impact of a mechanically stratified two-layer structure of these materials on their overall mechanical characterization by applying a combination of nanoindentation, confocal microscopy and finite element modelling. We prepare covalent cross-linked hydrogels based on acrylamide (AAM) and including an anionic group, and impregnate them using a multilayer deposition strategy of alternating exposure to cationic chitosan and anionic alginate. The thickness of the chitosan-alginate layer on the hydrogels was determined to be 0.4 ± 0.05 μm for 4 bilayers, and 0.7 ± 0.1 μm for the 8 bilayer deposition procedure employing a fluorescently labelled chitosan and confocal microscopy. The force-indentation data for the AAM gels were highly reproducible, whereas 77% and 50% of the force-indentation data were reproducible following the 4 and 8 bilayer deposition. The main trends in the reproducible force-distance data were found to yield an apparent increased Young's modulus after the deposition. Finite element modelling showed that adaption of a homogeneous Young's modulus for the specimens with deposited layers yields approximately three times too low stiffness compared to the estimate of the mechanical properties of the outer part in the two-layered mechanical model. The thickness of the multilayer region determined by confocal microscopy was used in the model. This study shows that the mechanical layered property needs to be included in the interpretation of the nanoindentation data when there is a significant mechanical contrast.
Collapse
Affiliation(s)
- Tatyana Sherstova
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
22
|
Single molecule investigation of the onset and minimum size of the calcium-mediated junction zone in alginate. Carbohydr Polym 2016; 148:52-60. [DOI: 10.1016/j.carbpol.2016.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 02/04/2023]
|
23
|
Kim YY, Carloni JD, Demarchi B, Sparks D, Reid DG, Kunitake ME, Tang CC, Duer MJ, Freeman CL, Pokroy B, Penkman K, Harding JH, Estroff LA, Baker SP, Meldrum FC. Tuning hardness in calcite by incorporation of amino acids. NATURE MATERIALS 2016; 15:903-910. [PMID: 27135858 DOI: 10.1038/nmat4631] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.
Collapse
Affiliation(s)
- Yi-Yeoun Kim
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Joseph D Carloni
- Department of Materials Science and Engineering, 214 Bard Hall, Cornell University, Ithaca, New York 14853, USA
| | - Beatrice Demarchi
- BioArCh, Departments of Chemistry and Archaeology, University of York, York YO10 5DD, UK
| | - David Sparks
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - David G Reid
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Miki E Kunitake
- Department of Materials Science and Engineering, 214 Bard Hall, Cornell University, Ithaca, New York 14853, USA
| | - Chiu C Tang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Melinda J Duer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Colin L Freeman
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Kirsty Penkman
- BioArCh, Departments of Chemistry and Archaeology, University of York, York YO10 5DD, UK
| | - John H Harding
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Lara A Estroff
- Department of Materials Science and Engineering, 214 Bard Hall, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, 420 Physical Sciences Building, Ithaca, New York 14853, USA
| | - Shefford P Baker
- Department of Materials Science and Engineering, 214 Bard Hall, Cornell University, Ithaca, New York 14853, USA
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| |
Collapse
|
24
|
Villacorte LO, Ekowati Y, Neu TR, Kleijn JM, Winters H, Amy G, Schippers JC, Kennedy MD. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. WATER RESEARCH 2015; 73:216-230. [PMID: 25682049 DOI: 10.1016/j.watres.2015.01.028] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.
Collapse
Affiliation(s)
- L O Villacorte
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, Netherlands; Wetsus Center of Excellence for Sustainable Water Technology, Agora 1, 8934 CJ Leeuwarden, Netherlands.
| | - Y Ekowati
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, Netherlands
| | - T R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research (UFZ), Brueckstrasse 3A, 39114 Magdeburg, Germany
| | - J M Kleijn
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703HB Wageningen, Netherlands
| | - H Winters
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Saudi Arabia; Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - G Amy
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, Netherlands; Water Desalination and Reuse Center, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Saudi Arabia; Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
| | - J C Schippers
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, Netherlands
| | - M D Kennedy
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
| |
Collapse
|
25
|
Feldstein MM, Dormidontova EE, Khokhlov AR. Pressure sensitive adhesives based on interpolymer complexes. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2014.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Hoffmann KQ, Perry SL, Leon L, Priftis D, Tirrell M, de Pablo JJ. A molecular view of the role of chirality in charge-driven polypeptide complexation. SOFT MATTER 2015; 11:1525-38. [PMID: 25589156 DOI: 10.1039/c4sm02336f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality along the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable β-sheets between molecules of opposite charge, and experiments indicate that β-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the β-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of β-rich domains and amorphous regions.
Collapse
Affiliation(s)
- K Q Hoffmann
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers (Basel) 2015. [DOI: 10.3390/polym7020161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
28
|
Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation. Carbohydr Polym 2014; 101:544-53. [DOI: 10.1016/j.carbpol.2013.09.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/20/2022]
|
29
|
Balzer BN, Gallei M, Sondergeld K, Schindler M, Müller-Buschbaum P, Rehahn M, Hugel T. Cohesion Mechanisms of Polystyrene-Based Thin Polymer Films. Macromolecules 2013. [DOI: 10.1021/ma401173y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bizan N. Balzer
- IMETUM
and Physik-Department, Technische Universität München, Boltzmannstr.
11, 85748 Garching, Germany
| | - Markus Gallei
- Ernst-Berl
Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Petersenstraße 22, 64287 Darmstadt, Germany
| | - Katrin Sondergeld
- Ernst-Berl
Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Petersenstraße 22, 64287 Darmstadt, Germany
| | - Markus Schindler
- Lehrstuhl
für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Matthias Rehahn
- Ernst-Berl
Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Petersenstraße 22, 64287 Darmstadt, Germany
| | - Thorsten Hugel
- IMETUM
and Physik-Department, Technische Universität München, Boltzmannstr.
11, 85748 Garching, Germany
| |
Collapse
|
30
|
Balzer BN, Micciulla S, Dodoo S, Zerball M, Gallei M, Rehahn M, V Klitzing R, Hugel T. Adhesion property profiles of supported thin polymer films. ACS APPLIED MATERIALS & INTERFACES 2013; 5:6300-6306. [PMID: 23738613 DOI: 10.1021/am4013424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polymer coatings are frequently utilized to control and modify substrate properties. The performance of the coatings is often determined by the first polymer layers between the substrate and the bulk polymer material, which are termed interphase. Standard methods have failed to completely characterize this interphase, because its properties change significantly over a few nanometers. Here we determine the spatially resolved adhesion properties of the interphase in polyelectrolyte multilayers (PEMs) by desorbing a single polymer covalently bound to an atomic force microscope cantilever tip from PEMs with varying thickness. We show that the adhesion properties of the first few layers (up to three double layers) is dominated by the surface potential of the substrate, while thicker PEMs are controlled by cohesion in between the PEM polymers. For cohesion, the local film conformation is the crucial parameter. This finding is generalized by utilizing oligoelectrolyte multilayer (OEM) as coatings and both hydrophilic and hydrophobic polymers as polymeric force sensors.
Collapse
Affiliation(s)
- Bizan N Balzer
- IMETUM and Physik-Department, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Spruijt E, Leermakers FAM, Fokkink R, Schweins R, van Well AA, Cohen Stuart MA, van der Gucht J. Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons, X-rays, and Light. Macromolecules 2013. [DOI: 10.1021/ma400132s] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evan Spruijt
- Laboratory of Physical Chemistry
and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB
Wageningen, The Netherlands
| | - Frans A. M. Leermakers
- Laboratory of Physical Chemistry
and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB
Wageningen, The Netherlands
| | - Remco Fokkink
- Laboratory of Physical Chemistry
and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB
Wageningen, The Netherlands
| | - Ralf Schweins
- DS/LSS Group, Institute Laue-Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble
Cedex 9, France, and
| | - Ad A. van Well
- Department
of Radiation Science
and Technology, Delft University of Technology, Mekelweg 15, 2629
JB Delft, The Netherlands
| | - Martien A. Cohen Stuart
- Laboratory of Physical Chemistry
and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB
Wageningen, The Netherlands
| | - Jasper van der Gucht
- Laboratory of Physical Chemistry
and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB
Wageningen, The Netherlands
| |
Collapse
|
32
|
Spruijt E, Cohen Stuart MA, van der Gucht J. Linear Viscoelasticity of Polyelectrolyte Complex Coacervates. Macromolecules 2013. [DOI: 10.1021/ma301730n] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evan Spruijt
- Laboratory of Physical
Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen,
The Netherlands
| | - Martien A. Cohen Stuart
- Laboratory of Physical
Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen,
The Netherlands
| | - Jasper van der Gucht
- Laboratory of Physical
Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen,
The Netherlands
| |
Collapse
|