1
|
Costantini PE, Saporetti R, Iencharelli M, Flammini S, Montrone M, Sanità G, De Felice V, Mattioli EJ, Zangoli M, Ulfo L, Nigro M, Rossi T, Di Giosia M, Esposito E, Di Maria F, Tino A, Tortiglione C, Danielli A, Calvaresi M. Phage-Templated Synthesis of Targeted Photoactive 1D-Thiophene Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405832. [PMID: 39498689 DOI: 10.1002/smll.202405832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Thiophene-based nanoparticles (TNPs) are promising therapeutic and imaging agents. Here, using an innovative phage-templated synthesis, a strategy able to bypass the current limitations of TNPs in nanomedicine applications is proposed. The phage capsid is decorated with oligothiophene derivatives, transforming the virus in a 1D-thiophene nanoparticle (1D-TNP). A precise control of the shape/size of the nanoparticles is obtained exploiting the well-defined morphology of a refactored filamentous M13 phage, engineered by phage display to selectively recognize the Epidermal Growth Factor Receptor (EGFR). The tropism of the phage is maintained also after the bioconjugation of the thiophene molecules on its capsid. Moreover, the 1D-TNP proved highly fluorescent and photoactive, generating reactive oxygen species through both type I and type II mechanisms. The phototheranostic properties of this platform are investigated on biosystems presenting increasing complexity levels, from in vitro cancer cells in 2D and 3D architectures, to the in vivo tissue-like model organism Hydra vulgaris. The phage-templated 1D-TNP showed photocytotoxicity at picomolar concentrations, and the ability to deeply penetrate 3D spheroids and Hydra tissues. Collectively the results indicate that phage-templated synthesis of organic nanoparticles represents a general strategy, exploitable in many diagnostic and therapeutic fields based on targeted imaging and light mediated cell ablation.
Collapse
Affiliation(s)
- Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Marika Iencharelli
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Soraia Flammini
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, Bologna, 40129, Italy
| | - Maria Montrone
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Gennaro Sanità
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Vittorio De Felice
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Edoardo Jun Mattioli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Mattia Zangoli
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, Bologna, 40129, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
| | - Tommaso Rossi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
| | - Matteo Di Giosia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Emanuela Esposito
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Francesca Di Maria
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, Bologna, 40129, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Matteo Calvaresi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| |
Collapse
|
2
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
4
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhang YW, Zheng N, Chou DHC. Serine-mediated hydrazone ligation displaying insulin-like peptides on M13 phage pIII. Org Biomol Chem 2023; 21:8902-8909. [PMID: 37905463 DOI: 10.1039/d3ob01487h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Phage display has emerged as a tool for the discovery of therapeutic antibodies and proteins. However, the effective display and engineering of structurally complex proteins, such as insulin, pose significant challenges due to the sequence of insulin, which is composed of two peptide chains linked by three disulfide bonds. In this study, we developed a new approach for the display of insulin-like peptides on M13 phage pIII, employing N-terminal serine-mediated hydrazone ligation. The insulin-displaying phage retains the biological binding affinity of human insulin. To address the viability loss after ligation, we introduced a trypsin-cleavable spacer on pIII, enabling insulin-displayed phage library selection. This method offers a general pathway for the display of structurally complex proteins on pIII, enhancing the practicality of selecting chemically modified phage libraries and opening avenues for the engineering of new insulin analogs for the treatment of diabetes by using phage display.
Collapse
Affiliation(s)
- Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
7
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
M13 Bacteriophage-Based Bio-nano Systems for Bioapplication. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
McClary WD, Catala A, Zhang W, Gamboni F, Dzieciatkowska M, Sidhu SS, D'Alessandro A, Catalano CE. A Designer Nanoparticle Platform for Controlled Intracellular Delivery of Bioactive Macromolecules: Inhibition of Ubiquitin-Specific Protease 7 in Breast Cancer Cells. ACS Chem Biol 2022; 17:1853-1865. [PMID: 35796308 DOI: 10.1021/acschembio.2c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological therapeutics represent an increasing and critical component of newly approved drugs; however, the inability to deliver biologics intracellularly in a controlled manner remains a major limitation. We have developed a semi-synthetic, tunable phage-like particle (PLP) platform derived from bacteriophage λ. The shell surface can be decorated with small-molecule, biological and synthetic moieties, alone or in combination and in defined ratios. Here, we demonstrate that the platform can be used to deliver biological macromolecules intracellularly and in a controlled manner. Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that has been widely recognized as an ideal target for the treatment of a variety of cancers. Recently, UbV.7.2, a novel biologic derived from the ubiquitin scaffold, was developed for inhibition of USP7, but issues remain in achieving efficient and controlled intracellular delivery of the biologic. We have shown that decoration of PLPs with trastuzumab (Trz), a HER2-targeted therapeutic used in the treatment of various cancers, results in specific targeting and uptake of Trz-PLPs into HER2-overexpressing breast cancer cells. By simultaneously decorating PLPs with Trz and UbV.7.2, we now show that these particles are also internalized by HER2-positive cells, thus providing a means for intracellular delivery of the biologic in a controlled fashion. Internalized particles retain USP7 inhibition activity of UbV.7.2 and alter the metabolic and proteomic landscapes of these cells. This study demonstrates that the λ "designer nanoparticles" represent a powerful system for the intracellular delivery of biologics in a defined dose.
Collapse
Affiliation(s)
- Wynton D McClary
- The Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Alexis Catala
- The Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G2W1, Canada.,Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Sachdev S Sidhu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G2W1, Canada.,Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States.,Department of Medicine - Division of Hematology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Carlos E Catalano
- The Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
10
|
Davenport BJ, Catala A, Weston SM, Johnson RM, Ardanuy J, Hammond HL, Dillen C, Frieman MB, Catalano CE, Morrison TE. Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. NPJ Vaccines 2022; 7:57. [PMID: 35618725 PMCID: PMC9135756 DOI: 10.1038/s41541-022-00481-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the United States within 1 year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a "designer nanoparticle" platform using phage-like particles (PLPs) derived from bacteriophage lambda for a multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor-binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs and RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose-response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.
Collapse
Affiliation(s)
- Bennett J Davenport
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexis Catala
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart M Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert M Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Holly L Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Ulfo L, Cantelli A, Petrosino A, Costantini PE, Nigro M, Starinieri F, Turrini E, Zadran SK, Zuccheri G, Saporetti R, Di Giosia M, Danielli A, Calvaresi M. Orthogonal nanoarchitectonics of M13 phage for receptor targeted anticancer photodynamic therapy. NANOSCALE 2022; 14:632-641. [PMID: 34792088 DOI: 10.1039/d1nr06053h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) represents a promising therapeutic modality for cancer. Here we used an orthogonal nanoarchitectonics approach (genetic/chemical) to engineer M13 bacteriophages as targeted vectors for efficient photodynamic killing of cancer cells. M13 was genetically refactored to display on the phage tip a peptide (SYPIPDT) able to bind the epidermal growth factor receptor (EGFR). The refactored M13EGFR phages demonstrated EGFR-targeted tropism and were internalized by A431 cancer cells, that overexpress EGFR. Using an orthogonal approach to the genetic display, M13EGFR phages were then chemically modified, conjugating hundreds of Rose Bengal (RB) photosensitizing molecules on the capsid surface, without affecting the selective recognition of the SYPIPDT peptides. Upon internalization, the M13EGFR-RB derivatives generated intracellularly reactive oxygen species, activated by an ultralow intensity white light irradiation. The killing activity of cancer cells is observed at picomolar concentrations of the M13EGFR phage.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum-Università di Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L. Bacteriophages as Solid Tumor Theragnostic Agents. Int J Mol Sci 2021; 23:402. [PMID: 35008840 PMCID: PMC8745063 DOI: 10.3390/ijms23010402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer, especially the solid tumor sub-set, poses considerable challenges to modern medicine owing to the unique physiological characteristics and substantial variations in each tumor's microenvironmental niche fingerprints. Though there are many treatment methods available to treat solid tumors, still a considerable loss of life happens, due to the limitation of treatment options and the outcomes of ineffective treatments. Cancer cells evolve with chemo- or radiation-treatment strategies and later show adaptive behavior, leading to failed treatment. These challenges demand tailored and individually apt personalized treatment methods. Bacteriophages (or phages) and phage-based theragnostic vectors are gaining attention in the field of modern cancer medicine, beyond their bactericidal ability. With the invention of the latest techniques to fine-tune phages, such as in the field of genetic engineering, synthetic assembly methods, phage display, and chemical modifications, noteworthy progress in phage vector research for safe cancer application has been realized, including use in pre-clinical studies. Herein, we discuss the distinct fingerprints of solid tumor physiology and the potential for bacteriophage vectors to exploit specific tumor features for improvised tumor theragnostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi 3290498, Japan; (S.V.); (A.H.A.); (K.K.); (S.W.)
| |
Collapse
|
14
|
Yan K, Triana V, Kalmady SV, Aku-Dominguez K, Memon S, Brown A, Greiner R, Derda R. Learning the structure-activity relationship (SAR) of the Wittig reaction from genetically-encoded substrates. Chem Sci 2021; 12:14301-14308. [PMID: 34760216 PMCID: PMC8565473 DOI: 10.1039/d1sc04146k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
The Wittig reaction can be used for late stage functionalization of proteins and peptides to ligate glycans, pharmacophores, and many other functionalities. In this manuscript, we modified 160 000 N-terminal glyoxaldehyde peptides displayed on phage with the Wittig reaction by using a biotin labeled ylide under conditions that functionalize only 1% of the library population. Deep-sequencing of the biotinylated and input populations estimated the rate of conversion for each sequence. This “deep conversion” (DC) from deep sequencing correlates with rate constants measured by HPLC. Peptide sequences with fast and slow reactivity highlighted the critical role of primary backbone amides (N–H) in accelerating the rate of the aqueous Wittig reaction. Experimental measurement of reaction rates and density functional theory (DFT) computation of the transition state geometries corroborated this relationship. We also collected deep-sequencing data to build structure–activity relationship (SAR) models that can predict the DC value of the Wittig reaction. By using these data, we trained two classifier models based on gradient boosted trees. These classifiers achieved area under the ROC (receiver operating characteristic) curve (ROC AUC) of 81.2 ± 0.4 and 73.7 ± 0.8 (90–92% accuracy) in determining whether a sequence belonged to the top 5% or the bottom 5% in terms of its reactivity. This model can suggest new peptides never observed experimentally with ‘HIGH’ or ‘LOW’ reactivity. Experimental measurement of reaction rates for 11 new sequences corroborated the predictions for 8 of them. We anticipate that phage-displayed peptides and related mRNA or DNA-displayed substrates can be employed in a similar fashion to study the substrate scope and mechanisms of many other chemical reactions. 160 000 peptides displayed on phage were subjected to the Wittig reaction with a biotinylated ylide. Deep-sequencing estimated the conversion rate for each sequence and unveiled the relationship between sequences and the rate of the Wittig reaction.![]()
Collapse
Affiliation(s)
- Kejia Yan
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Vivian Triana
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Sunil Vasu Kalmady
- Department of Computer Science, University of Alberta Alberta AB T6G 2E8 Canada
| | | | - Sharyar Memon
- Department of Electrical and Computer Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Russell Greiner
- Department of Computer Science, University of Alberta Alberta AB T6G 2E8 Canada.,Alberta Machine Intelligence Institute Alberta AB T5J 3B1 Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
15
|
Modification of a Tumor-Targeting Bacteriophage for Potential Diagnostic Applications. Molecules 2021; 26:molecules26216564. [PMID: 34770973 PMCID: PMC8588016 DOI: 10.3390/molecules26216564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tumor-targeting bacteriophages can be used as a versatile new platform for the delivery of diagnostic imaging agents and therapeutic cargo. This became possible due to the development of viral capsid modification method. Earlier in our laboratory and using phage display technology, phages to malignant breast cancer cells MDA-MB 231 were obtained. The goal of this study was the optimization of phage modification and the assessment of the effect of the latter on the efficiency of phage particle penetration into MDA-MB 231 cells. METHODS In this work, we used several methods, such as chemical phage modification using FAM-NHS ester, spectrophotometry, phage amplification, sequencing, phage titration, flow cytometry, and confocal microscopy. RESULTS We performed chemical phage modification using different concentrations of FAM-NHS dye (0.5 mM, 1 mM, 2 mM, 4 mM, 8 mM). It was shown that with an increase of the modification degree, the phage titer decreases. The maximum modification coefficient of the phage envelope with the FAM-NHS dye was observed with 4 mM modifying agent and had approximately 804,2 FAM molecules per phage. Through the immunofluorescence staining and flow cytometry methods, it was shown that the modified bacteriophage retains the ability to internalize into MDA-MB-231 cells. The estimation of the number of phages that could have penetrated into one tumor cell was conducted. CONCLUSIONS Optimizing the conditions for phage modification can be an effective strategy for producing tumor-targeting diagnostic and therapeutic agents, i.e., theranostic drugs.
Collapse
|
16
|
Catala A, Dzieciatkowska M, Wang G, Gutierrez-Hartmann A, Simberg D, Hansen KC, D'Alessandro A, Catalano CE. Targeted Intracellular Delivery of Trastuzumab Using Designer Phage Lambda Nanoparticles Alters Cellular Programs in Human Breast Cancer Cells. ACS NANO 2021; 15:11789-11805. [PMID: 34189924 DOI: 10.1021/acsnano.1c02864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
| Several diseases exhibit a high degree of heterogeneity and diverse reprogramming of cellular pathways. To address this complexity, additional strategies and technologies must be developed to define their scope and variability with the goal of improving current treatments. Nanomedicines derived from viruses are modular systems that can be easily adapted for combinatorial approaches, including imaging, biomarker targeting, and intracellular delivery of therapeutics. Here, we describe a "designer nanoparticle" system that can be rapidly engineered in a tunable and defined manner. Phage-like particles (PLPs) derived from bacteriophage lambda possess physiochemical properties compatible with pharmaceutical standards, and in vitro particle tracking and cell targeting are accomplished by simultaneous display of fluorescein-5-maleimide (F5M) and trastuzumab (Trz), respectively (Trz-PLPs). Trz-PLPs bind to the oncogenically active human epidermal growth factor receptor 2 (HER2) and are internalized by breast cancer cells of the HER2 overexpression subtype, but not by those lacking the HER2 amplification. Compared to treatment with Trz, robust internalization of Trz-PLPs results in higher intracellular concentrations of Trz, prolonged inhibition of cell growth, and modulated regulation of cellular programs associated with HER2 signaling, proliferation, metabolism, and protein synthesis. Given the implications to cancer pathogenesis and that dysregulated signaling and metabolism can lead to drug resistance and cancer cell survival, the present study identifies metabolic and proteomic liabilities that could be exploited by the PLP platform to enhance therapeutic efficacy. The lambda PLP system is robust and rapidly modifiable, which offers a platform that can be easily "tuned" for broad utility and tailored functionality.
Collapse
Affiliation(s)
- Alexis Catala
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Guankui Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Arthur Gutierrez-Hartmann
- Departments of Biochemistry and Molecular Genetics and Medicine - Division of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Angelo D'Alessandro
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Departments of Biochemistry and Molecular Genetics and Medicine - Division of Hematology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
17
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
19
|
Wu H, Zhong D, Zhang Z, Li Y, Zhang X, Li Y, Zhang Z, Xu X, Yang J, Gu Z. Bioinspired Artificial Tobacco Mosaic Virus with Combined Oncolytic Properties to Completely Destroy Multidrug-Resistant Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904958. [PMID: 33231347 DOI: 10.1002/adma.201904958] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/22/2019] [Indexed: 05/06/2023]
|
20
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
21
|
Miller EP, Pokorski JK, Palomo L, Eppell SJ. A Bottom-Up Approach Grafts Collagen Fibrils Perpendicularly to Titanium Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:6088-6095. [PMID: 35021741 DOI: 10.1021/acsabm.0c00678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, titanium dental implant apposition to bone is achieved via osseointegration leading to ankylosis. A biomimetic Sharpey's fiber-type interface could be constructed around collagen fibrils robustly attached and projecting perpendicularly from the titanium surface. We present a proof-of-concept for a method to create upright-standing collagen nanofibrils covalently bonded to a titanium surface. The method involves activation of the titanium surface using a plasma discharge treatment followed by functionalization with an oxyamine-terminated silane coupling molecule. Using Rapoport's salt, the N-termini of individual type I collagen monomers are converted to ketones. When presented to the functionalized titanium surface, these ketones form oxime linkages with the silanes thus immobilizing the collagen. In a two-step process, these covalently bonded monomers act as sites for the formation of fibrils. Many fibril-surface junctions were observed by scanning electron microscopy on three different surfaces. These findings set the stage for working toward a high surface density of such features which might act as a platform from which to build a synthetic ligament.
Collapse
Affiliation(s)
- Eloise P Miller
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Leena Palomo
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
22
|
Herbert FC, Brohlin OR, Galbraith T, Benjamin C, Reyes CA, Luzuriaga MA, Shahrivarkevishahi A, Gassensmith JJ. Supramolecular Encapsulation of Small-Ultrared Fluorescent Proteins in Virus-Like Nanoparticles for Noninvasive In Vivo Imaging Agents. Bioconjug Chem 2020; 31:1529-1536. [PMID: 32343135 DOI: 10.1021/acs.bioconjchem.0c00190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultrared fluorescent protein (smURFP) were produced using a versatile supramolecular capsid disassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their nonfluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability toward pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows the biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveals a localization in the liver and kidneys after 2 h blood circulation and substantial elimination after 16 h of imaging, highlighting the potential application of these constructs as noninvasive in vivo imaging agents.
Collapse
|
23
|
Jayapaul J, Schröder L. Nanoparticle-Based Contrast Agents for 129Xe HyperCEST NMR and MRI Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9498173. [PMID: 31819739 PMCID: PMC6893250 DOI: 10.1155/2019/9498173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Spin hyperpolarization techniques have enabled important advancements in preclinical and clinical MRI applications to overcome the intrinsic low sensitivity of nuclear magnetic resonance. Functionalized xenon biosensors represent one of these approaches. They combine two amplification strategies, namely, spin exchange optical pumping (SEOP) and chemical exchange saturation transfer (CEST). The latter one requires host structures that reversibly bind the hyperpolarized noble gas. Different nanoparticle approaches have been implemented and have enabled molecular MRI with 129Xe at unprecedented sensitivity. This review gives an overview of the Xe biosensor concept, particularly how different nanoparticles address various critical aspects of gas binding and exchange, spectral dispersion for multiplexing, and targeted reporter delivery. As this concept is emerging into preclinical applications, comprehensive sensor design will be indispensable in translating the outstanding sensitivity potential into biomedical molecular imaging applications.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
24
|
Ratnatilaka Na Bhuket P, Luckanagul JA, Rojsitthisak P, Wang Q. Chemical modification of enveloped viruses for biomedical applications. Integr Biol (Camb) 2019; 10:666-679. [PMID: 30295307 DOI: 10.1039/c8ib00118a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The unique characteristics of enveloped viruses including nanometer size, consistent morphology, narrow size distribution, versatile functionality and biocompatibility have attracted attention from scientists to develop enveloped viruses for biomedical applications. The biomedical applications of the viral-based nanoparticles include vaccine development, imaging and targeted drug delivery. The modification of the structural elements of enveloped viruses is necessary for the desired functions. Here, we review the chemical approaches that have been utilized to develop bionanomaterials based on enveloped viruses for biomedical applications. We first provide an overview of the structures of enveloped viruses which are composed of nucleic acids, structural and functional proteins, glycan residues and lipid envelope. The methods for modification, including direct conjugation, metabolic incorporation of functional groups and peptide tag insertion, are described based on the biomolecular types of viral components. Layer-by-layer technology is also included in this review to illustrate the non-covalent modification of enveloped viruses. Then, we further elaborate the applications of chemically-modified enveloped viruses, virus-like particles and viral subcomponents in biomedical research.
Collapse
Affiliation(s)
- Pahweenvaj Ratnatilaka Na Bhuket
- Biomedicinal Chemistry Program, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
25
|
Raja IS, Kim C, Song SJ, Shin YC, Kang MS, Hyon SH, Oh JW, Han DW. Virus-Incorporated Biomimetic Nanocomposites for Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1014. [PMID: 31311134 PMCID: PMC6669830 DOI: 10.3390/nano9071014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Owing to the astonishing properties of non-harmful viruses, tissue regeneration using virus-based biomimetic materials has been an emerging trend recently. The selective peptide expression and enrichment of the desired peptide on the surface, monodispersion, self-assembly, and ease of genetic and chemical modification properties have allowed viruses to take a long stride in biomedical applications. Researchers have published many reviews so far describing unusual properties of virus-based nanoparticles, phage display, modification, and possible biomedical applications, including biosensors, bioimaging, tissue regeneration, and drug delivery, however the integration of the virus into different biomaterials for the application of tissue regeneration is not yet discussed in detail. This review will focus on various morphologies of virus-incorporated biomimetic nanocomposites in tissue regeneration and highlight the progress, challenges, and future directions in this area.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Yong Cheol Shin
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Suong-Hyu Hyon
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-8580, Japan
| | - Jin-Woo Oh
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
26
|
Bi X, Yin J, Rao C, Balamkundu S, Banerjee B, Zhang D, Zhang D, Dedon PC, Liu CF. Thiazolidin-5-imine Formation as a Catalyst-Free Bioorthogonal Reaction for Protein and Live Cell Labeling. Org Lett 2018; 20:7790-7793. [PMID: 30517009 DOI: 10.1021/acs.orglett.8b03195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A previously undescribed reaction involving the formation of a thiazolidin-5-imine linkage was developed for bioconjugation. Being highly specific and operating in aqueous media, this simple condensation reaction is used to chemoselectively label peptides, proteins, and living cells under physiological conditions without the need to use toxic catalysts or reducing reagents.
Collapse
Affiliation(s)
- Xiaobao Bi
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Juan Yin
- Program in Neuroscience and Behavioural Disorders , Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
| | - Chang Rao
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Seetharamsing Balamkundu
- Singapore-MIT Alliance for Research and Technology , 1 Create Way , Singapore 138602 , Singapore
| | - Biplab Banerjee
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Dingpeng Zhang
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering , Jiangsu University of Technology , Changzhou 213001 , China
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology , 1 Create Way , Singapore 138602 , Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| |
Collapse
|
27
|
Jayapaul J, Schröder L. Complete Generation of a 129Xe Biosensor on the Solid Support by Systematic Backbone Assembly. Bioconjug Chem 2018; 29:4004-4011. [PMID: 30428668 DOI: 10.1021/acs.bioconjchem.8b00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Xenon biosensors are an emerging tool for different molecular imaging approaches. For many applications, their development requires peptide synthesis steps, followed by the selective installation of a xenon host onto the peptide backbone in solution. In this study, three different strategies were attempted for generating entire Xe biosensors on the solid support. Notably, one strategy involving CryA-da was beneficial by directly integrating this host into the growing construct on a low loaded resin via modification of the administered subcomponent equivalents and by prolonging the coupling procedure. Subsequently, installation of additional amino acids or of additional labels onto the growing construct was achieved by a procedure in which an excess amine was administered to the activated CryA-da (acid) anchored onto the resin. Further, the as-generated Xe biosensor was tested for its NMR and MRI capabilities in H2O and compared to the performance of CryA-ma. Xe NMR of the biosensor indicated a clear CEST response and the Xe MR images revealed similar contrast compared to the reference host. These observations suggest that functionalizing CryA-da on both sides with multiple labels did not alter significantly its NMR capabilities. Hereby, we could show the successful and complete synthesis of a CryA-da-based xenon biosensor on the solid support without any notable side reactions and without the necessity of multiple purification steps.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| |
Collapse
|
28
|
Tridgett M, Lozano L, Passaretti P, Desai NR, Proctor TJ, Little HA, Logan RT, Arkill KP, Oppenheimer PG, Dafforn TR. Dye Aggregate-Mediated Self-Assembly of Bacteriophage Bioconjugates. Bioconjug Chem 2018; 29:3705-3714. [PMID: 30347978 DOI: 10.1021/acs.bioconjchem.8b00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the central themes of biomolecular engineering is the challenge of exploiting the properties of biological materials. Part of this challenge has been uncovering and harnessing properties of biological components that only emerge following their ordered self-assembly. One biomolecular building block that has received significant interest in the past decade is the M13 bacteriophage. There have been a number of recent attempts to trigger the ordered assembly of M13 bacteriophage into multivirion structures, relying on the innate tendency of M13 to form liquid crystals at high concentrations. These, in general, yield planar two-dimensional materials. Presented here is the production of multivirion assemblies of M13 bacteriophage via the chemical modification of its surface by the covalent attachment of the xanthene-based dye tetramethylrhodamine (TMR) isothiocyanate (TRITC). We show that TMR induces the formation of three-dimensional aster-like assemblies of M13 by providing "adhesive" action between bacteriophage particles through the formation of H-aggregates (face-to-face stacking of dye molecules). We also show that the H-aggregation of TMR is greatly enhanced by covalent attachment to M13 and is enhanced further still upon the ordered self-assembly of M13, leading to the suggestion that M13 could be used to promote the self-assembly of dyes that form J-aggregates, a desirable arrangement of fluorescent dye, which has interesting optical properties and potential applications in the fields of medicine and light harvesting technology.
Collapse
Affiliation(s)
| | | | | | | | - Toby J Proctor
- Research Department of Haematology , UCL Medical School, Royal Free Campus , Rowland Hill Street , London , NW3 2PF , United Kingdom
| | | | | | - Kenton P Arkill
- School of Medicine , University of Nottingham , Nottingham , NG7 2UH , United Kingdom
| | | | | |
Collapse
|
29
|
Murale DP, Hong SC, Jang S, Lee J. Reinvestigation of an
O
‐Salicylaldehyde Ester Functional Group in Aqueous Buffer and Discovery of a Coumarin Scaffold Probe for Selective N‐Terminal Cysteine Labeling. Chembiochem 2018; 19:2545-2549. [DOI: 10.1002/cbic.201800565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Dhiraj P. Murale
- Molecular Recognition Research CenterKorea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 South Korea
| | - Seong Cheol Hong
- Molecular Recognition Research CenterKorea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 South Korea
- Division of Bio-MedKIST-School UST 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 South Korea
| | - Se‐young Jang
- Molecular Recognition Research CenterKorea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 South Korea
- Division of Bio-MedKIST-School UST 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 South Korea
| | - Jun‐Seok Lee
- Molecular Recognition Research CenterKorea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 South Korea
- Division of Bio-MedKIST-School UST 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 South Korea
| |
Collapse
|
30
|
Baek IH, Han HS, Baik S, Helms V, Kim Y. Detection of Acidic Pharmaceutical Compounds Using Virus-Based Molecularly Imprinted Polymers. Polymers (Basel) 2018; 10:polym10090974. [PMID: 30960899 PMCID: PMC6403656 DOI: 10.3390/polym10090974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) have proven to be particularly effective chemical probes for the molecular recognition of proteins, DNA, and viruses. Here, we started from a filamentous bacteriophage to synthesize a multi-functionalized MIP for detecting the acidic pharmaceutic clofibric acid (CA) as a chemical pollutant. Adsorption and quartz crystal microbalance with dissipation monitoring experiments showed that the phage-functionalized MIP had a good binding affinity for CA, compared with the non-imprinted polymer and MIP. In addition, the reusability of the phage-functionalized MIP was demonstrated for at least five repeated cycles, without significant loss in the binding activity. The results indicate that the exposed amino acids of the phage, together with the polymer matrix, create functional binding cavities that provide higher affinity to acidic pharmaceutical compounds.
Collapse
Affiliation(s)
- In-Hyuk Baek
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, 66123 Saarbrücken, Germany.
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.
| | - Hyung-Seop Han
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, B4495 Oxford, UK.
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, 66123 Saarbrücken, Germany.
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, 66123 Saarbrücken, Germany.
| |
Collapse
|
31
|
Tridgett M, Lloyd JR, Kennefick J, Moore-Kelly C, Dafforn TR. Mutation of M13 Bacteriophage Major Coat Protein for Increased Conjugation to Exogenous Compounds. Bioconjug Chem 2018; 29:1872-1875. [PMID: 29800521 DOI: 10.1021/acs.bioconjchem.8b00307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past ten years there has been increasing interest in the conjugation of exogenous compounds to the surface of the M13 bacteriophage. M13 offers a convenient scaffold for the development of nanoassemblies with useful functions, such as highly specific drug delivery and pathogen detection. However, the progress of these technologies has been hindered by the limited efficiency of conjugation to the bacteriophage. Here we generate a mutant version of M13 with an additional lysine residue expressed on the outer surface of the M13 major coat protein, pVIII. We show that this mutation is accommodated by the bacteriophage and that up to an additional 520 exogenous groups can be attached to the bacteriophage surface via amine-directed conjugation. These results could aid the development of high payload drug delivery nanoassemblies and pathogen detection systems with increased sensitivity.
Collapse
Affiliation(s)
- Matthew Tridgett
- School of Biosciences , University of Birmingham , Edgbaston, Birmingham , West Midlands , B15 2TT , United Kingdom
| | - James R Lloyd
- School of Biosciences , University of Birmingham , Edgbaston, Birmingham , West Midlands , B15 2TT , United Kingdom
| | - Jack Kennefick
- School of Biosciences , University of Birmingham , Edgbaston, Birmingham , West Midlands , B15 2TT , United Kingdom
| | - Charles Moore-Kelly
- School of Biosciences , University of Birmingham , Edgbaston, Birmingham , West Midlands , B15 2TT , United Kingdom
| | - Timothy R Dafforn
- School of Biosciences , University of Birmingham , Edgbaston, Birmingham , West Midlands , B15 2TT , United Kingdom
| |
Collapse
|
32
|
Deci MB, Liu M, Dinh QT, Nguyen J. Precision engineering of targeted nanocarriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1511. [PMID: 29436157 DOI: 10.1002/wnan.1511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Since their introduction in 1980, the number of advanced targeted nanocarrier systems has grown considerably. Nanocarriers capable of targeting single receptors, multiple receptors, or multiple epitopes have all been used to enhance delivery efficiency and selectivity. Despite tremendous progress, preclinical studies and clinically translatable nanotechnology remain disconnected. The disconnect in targeting efficacy may stem from poorly-understood factors such as receptor clustering, spatial control of targeting ligands, ligand mobility, and ligand architecture. Further, the relationship between receptor distribution and ligand architecture remains elusive. Traditionally, targeted nanocarriers were engineered assuming a "static" target. However, it is becoming increasingly clear that receptor expression patterns change in response to external stimuli and disease progression. Here, we discuss how cutting-edge technologies will enable a better characterization of the spatiotemporal distribution of membrane receptors and their clustering. We further describe how this will enable the design of new nanocarriers that selectively target the site of disease. Ultimately, we explore how the precision engineering of targeted nanocarriers that adapt to receptor dynamics will have the potential to drive nanotechnology to the forefront of therapy and make targeted nanomedicine a clinical reality. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Maixian Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| |
Collapse
|
33
|
Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 2017; 24:1898-1908. [PMID: 29191048 PMCID: PMC8241185 DOI: 10.1080/10717544.2017.1410259] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.
Collapse
Affiliation(s)
- Zhigang Ju
- Medicine College, Guiyang University of Chinese Medicine, Huaxi university town, Guiyang City, Guizhou Province, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, College of Life Science, Guizhou Normal University, Huaxi university town, Guiyang City, Guizhou Province, China
| |
Collapse
|
34
|
Abstract
The formation of well-defined protein bioconjugates is critical for many studies and technologies in chemical biology. Tried-and-true methods for accomplishing this typically involve the targeting of cysteine residues, but the rapid growth of contemporary bioconjugate applications has required an expanded repertoire of modification techniques. One very powerful set of strategies involves the modification of proteins at their N termini, as these positions are typically solvent exposed and provide chemically distinct sites for many protein targets. Several chemical techniques can be used to modify N-terminal amino acids directly or convert them into unique functional groups for further ligations. A growing number of N-terminus-specific enzymatic ligation strategies have provided additional possibilities. This Perspective provides an overview of N-terminal modification techniques and the chemical rationale governing each. Examples of specific N-terminal protein conjugates are provided, along with their uses in a number of diverse biological applications.
Collapse
|
35
|
Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev 2016; 106:45-62. [PMID: 26994592 PMCID: PMC5026880 DOI: 10.1016/j.addr.2016.03.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/08/2023]
Abstract
The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology & Nanomedicine Research Group [ANNRG], Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mohsen Moghoofei
- Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran; Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Finbloom JA, Han K, Aanei IL, Hartman EC, Finley DT, Dedeo MT, Fishman M, Downing KH, Francis MB. Stable Disk Assemblies of a Tobacco Mosaic Virus Mutant as Nanoscale Scaffolds for Applications in Drug Delivery. Bioconjug Chem 2016; 27:2480-2485. [PMID: 27712069 DOI: 10.1021/acs.bioconjchem.6b00424] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current approaches to nanoscale therapeutic delivery rely on the attachment of a drug of interest to a nanomaterial scaffold that is capable of releasing the drug selectively in a tumor environment. One class of nanocarriers receiving significant attention is protein nanomaterials, which are biodegradable and homogeneous in morphology and can be equipped with multiple functional handles for drug attachment. Although most protein-based nanocarriers are spherical in morphology, recent research has revealed that nonspherical nanomaterials may have favorable tumor uptake in comparison to their spherical counterparts. It is therefore important to expand the number of nonspherical protein-based nanocarriers that are available. Herein, we report the development of a self-assembling nanoscale disk derived from a double arginine mutant of recombinantly expressed tobacco mosaic virus coat protein (RR-TMV). RR-TMV disks display highly stable double-disk assembly states. These RR-TMV disks were functionalized with the chemotherapy drug doxorubicin (DOX) and further modified with polyethylene glycol (PEG) for improved solubility. RR-TMVDOX-PEG displayed cytotoxic properties similar to those of DOX alone when incubated with U87MG glioblastoma cells, but unmodified RR-TMV did not cause any cytotoxicity. The RR-TMV disk assembly represents a promising protein-based nanomaterial for applications in drug delivery.
Collapse
Affiliation(s)
- Joel A Finbloom
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Kenneth Han
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Ioana L Aanei
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Emily C Hartman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Daniel T Finley
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Michel T Dedeo
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Max Fishman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | - Matthew B Francis
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
37
|
Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 2016; 500:259-274. [PMID: 27644585 DOI: 10.1016/j.virol.2016.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022]
Abstract
To expand the quantitative, systems level understanding and foster the expansion of the biotechnological applications of the filamentous bacteriophage M13, we have unified the accumulated quantitative information on M13 biology into a genetically-structured, experimentally-based computational simulation of the entire phage life cycle. The deterministic chemical kinetic simulation explicitly includes the molecular details of DNA replication, mRNA transcription, protein translation and particle assembly, as well as the competing protein-protein and protein-nucleic acid interactions that control the timing and extent of phage production. The simulation reproduces the holistic behavior of M13, closely matching experimentally reported values of the intracellular levels of phage species and the timing of events in the M13 life cycle. The computational model provides a quantitative description of phage biology, highlights gaps in the present understanding of M13, and offers a framework for exploring alternative mechanisms of regulation in the context of the complete M13 life cycle.
Collapse
|
38
|
Mohan K, Weiss GA. Engineering chemically modified viruses for prostate cancer cell recognition. MOLECULAR BIOSYSTEMS 2016; 11:3264-72. [PMID: 26463253 DOI: 10.1039/c5mb00511f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.
Collapse
Affiliation(s)
- K Mohan
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA
| | - G A Weiss
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA and Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA.
| |
Collapse
|
39
|
Trindade AF, Bode JW. Irreversible Conjugation of Aldehydes in Water To Form Stable 1,2,4-Oxadiazinan-5-ones. Org Lett 2016; 18:4210-3. [PMID: 27541010 DOI: 10.1021/acs.orglett.6b01889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new, irreversible aldehyde conjugation reaction in aqueous media was developed. α-Aminooxy acetohydrazides undergo irreversible condensation reactions with aliphatic, aromatic, or unsaturated aldehydes and isatins in a mixture of acetonitrile and acetate buffer at pH 4 to yield 1,2,4-oxadiazinan-5-one heterocycles in excellent isolated yields (40-99%). This class of heterocycles proved to be hydrolytically stable throughout a wide range of temperatures and pH (4.5-7).
Collapse
Affiliation(s)
- Alexandre F Trindade
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland.,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| |
Collapse
|
40
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
41
|
Abstract
Long fascinating to biologists, viruses offer nanometer-scale benchtops for building molecular-scale devices and materials. Viruses tolerate a wide range of chemical modifications including reaction conditions, pH values, and temperatures. Recent examples of nongenetic manipulation of viral surfaces have extended viruses into applications ranging from biomedical imaging, drug delivery, tissue regeneration, and biosensors to materials for catalysis and energy generation. Chemical reactions on the phage surface include both covalent and noncovalent modifications, including some applied in conjunction with genetic modifications. Here, we survey viruses chemically augmented with capabilities limited only by imagination.
Collapse
Affiliation(s)
- Kritika Mohan
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Gregory A. Weiss
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
42
|
Zan T, Wu F, Pei X, Jia S, Zhang R, Wu S, Niu Z, Zhang Z. Into the polymer brush regime through the "grafting-to" method: densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior. SOFT MATTER 2016; 12:798-805. [PMID: 26531814 DOI: 10.1039/c5sm02015h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The current work reports an intriguing discovery of how the force exerted on protein complexes like filamentous viruses by the strong interchain repulsion of polymer brushes can induce subtle changes of the constituent subunits at the molecular scale. Such changes transform into the macroscopic rearrangement of the chiral ordering of the rodlike virus in three dimensions. For this, a straightforward "grafting-to" PEGylation method has been developed to densely graft a filamentous virus with poly(ethylene glycol) (PEG). The grafting density is so high that PEG is in the polymer brush regime, resulting in straight and thick rodlike particles with a thin viral backbone. Scission of the densely PEGylated viruses into fragments was observed due to the steric repulsion of the PEG brush, as facilitated by adsorption onto a mica surface. The high grafting density of PEG endows the virus with an isotropic-nematic (I-N) liquid crystal (LC) phase transition that is independent of the ionic strength and the densely PEGylated viruses enter into the nematic LC phase at much lower virus concentrations. Most importantly, while the intact virus and the one grafted with PEG of low grafting density can form a chiral nematic LC phase, the densely PEGylated viruses only form a pure nematic LC phase. This can be traced back to the secondary to tertiary structural change of the major coat protein of the virus, driven by the steric repulsion of the PEG brush. Quantitative parameters characterising the conformation of the grafted PEG derived from the grafting density or the I-N LC transition are elegantly consistent with the theoretical prediction.
Collapse
Affiliation(s)
- Tingting Zan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Brasino MD, Cha JN. Isothermal rolling circle amplification of virus genomes for rapid antigen detection and typing. Analyst 2016; 140:5138-44. [PMID: 26040578 DOI: 10.1039/c5an00721f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, isothermal rolling circle amplification (RCA) of the multi-kilobase genome of engineered filamentous bacteriophage is used to report the presence and identification of specific protein analytes in solution. First, bacteriophages were chosen as sensing platforms because peptides or antibodies that bind medically relevant targets can be isolated through phage display or expressed as fusions to their p3 and p8 coat proteins. Second, the circular, single-stranded genome contained within the phage serves as a natural large DNA template for a RCA reaction to rapidly generate exponential amounts of double stranded DNA in a single isothermal step that can be easily detected using low-cost fluorescent nucleic acid stains. Amplifying the entire phage genome also provides high detection sensitivities. Furthermore, since the sequence of the viral DNA can be easily modified with multiple restriction enzyme sites, a simple DNA digest can be applied to detect and identify multiple antigens simultaneously. The methods developed here will lead to protein sensors that are highly scalable to produce, can be run without complex biological equipment and do not require the use of multiple antibodies or high-cost fluorescent DNA probes or nucleotides.
Collapse
Affiliation(s)
- Michael D Brasino
- Materials Science and Engineering Program, University of Colorado, Boulder, USA
| | | |
Collapse
|
44
|
Abstract
Nanoscale engineering is revolutionizing the way we prevent, detect, and treat diseases. Viruses have played a special role in these developments because they can function as prefabricated nanoscaffolds that have unique properties and are easily modified. The interiors of virus particles can encapsulate and protect sensitive compounds, while the exteriors can be altered to display large and small molecules in precisely defined arrays. These properties of viruses, along with their innate biocompatibility, have led to their development as actively targeted drug delivery systems that expand on and improve current pharmaceutical options. Viruses are naturally immunogenic, and antigens displayed on their surface have been used to create vaccines against pathogens and to break self-tolerance to initiate an immune response to dysfunctional proteins. Densely and specifically aligned imaging agents on viruses have allowed for high-resolution and noninvasive visualization tools to detect and treat diseases earlier than previously possible. These and future applications of viruses have created an exciting new field within the disciplines of both nanotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Nicole F Steinmetz
- Departments of 2Biomedical Engineering
- Radiology
- Materials Science and Engineering, and
- Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland, Ohio 44106;
| |
Collapse
|
45
|
Lobo DP, Wemyss AM, Smith DJ, Straube A, Betteridge KB, Salmon AHJ, Foster RR, Elhegni HE, Satchell SC, Little HA, Pacheco-Gómez R, Simmons MJ, Hicks MR, Bates DO, Rodger A, Dafforn TR, Arkill KP. Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle. NANO RESEARCH 2015; 8:3307-3315. [PMID: 27570611 PMCID: PMC4996322 DOI: 10.1007/s12274-015-0831-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 05/24/2023]
Abstract
The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics.
Collapse
Affiliation(s)
- Daniela P Lobo
- Department of Chemistry and Warwick Analytical Science Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Alan M Wemyss
- Department of Chemistry and Warwick Analytical Science Centre, University of Warwick, Coventry CV4 7AL, UK; MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - David J Smith
- Mathematics, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Anne Straube
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kai B Betteridge
- Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Andrew H J Salmon
- Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Rebecca R Foster
- Clinical Sciences, Whitson Street, University of Bristol, Bristol BS1 3NY, UK
| | - Hesham E Elhegni
- Clinical Sciences, Whitson Street, University of Bristol, Bristol BS1 3NY, UK
| | - Simon C Satchell
- Clinical Sciences, Whitson Street, University of Bristol, Bristol BS1 3NY, UK
| | - Haydn A Little
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Raúl Pacheco-Gómez
- Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Mark J Simmons
- Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Matthew R Hicks
- Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - David O Bates
- School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| | - Alison Rodger
- Department of Chemistry and Warwick Analytical Science Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Timothy R Dafforn
- Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Kenton P Arkill
- Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
46
|
Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:708-21. [PMID: 25683790 PMCID: PMC4620044 DOI: 10.1002/wnan.1335] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/15/2014] [Indexed: 01/17/2023]
Abstract
Viruses have recently emerged as ideal protein scaffolds for a new class of contrast agents that can be used in medical imaging procedures such as positron emission tomography (PET) and magnetic resonance imaging (MRI). Whereas synthetic nanoparticles are difficult to produce as homogeneous formulations due to the inherently stochastic nature of the synthesis process, virus-based nanoparticles are genetically encoded and are therefore produced as homogeneous and monodisperse preparations with a high degree of quality control. Because the virus capsids have a defined chemical structure that has evolved to carry cargoes of nucleic acids, they can be modified to carry precisely defined cargoes of contrast agents and can be decorated with spatially defined contrast reagents on the internal or external surfaces. Viral nanoparticles can also be genetically programed or conjugated with targeting ligands to deliver contrast agents to specific cells, and the natural biocompatibility of viruses means that they are cleared rapidly from the body. Nanoparticles based on bacteriophages and plant viruses are safe for use in humans and can be produced inexpensively in large quantities as self-assembling recombinant proteins. Based on these considerations, a new generation of contrast agents has been developed using bacteriophages and plant viruses as scaffolds to carry positron-emitting radioisotopes such as [(18) F] fluorodeoxyglucose for PET imaging and iron oxide or Gd(3+) for MRI. Although challenges such as immunogenicity, loading efficiency, and regulatory compliance remain to be address, virus-based nanoparticles represent a promising new enabling technology for a new generation of highly biocompatible and biodegradable targeted imaging reagents.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Radiology, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Materials Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| |
Collapse
|
47
|
Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015; 6:755. [PMID: 26300850 PMCID: PMC4523942 DOI: 10.3389/fmicb.2015.00755] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Collapse
Affiliation(s)
- Kevin A. Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
- School of Environmental Sciences, University of Guelph, GuelphON, Canada
- Department of Biology, Carleton University, OttawaON, Canada
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCCanada
- Faculty of Health Sciences, Simon Fraser University, BurnabyBC, Canada
| |
Collapse
|
48
|
Nault L, Taofifenua C, Anne A, Chovin A, Demaille C, Besong-Ndika J, Cardinale D, Carette N, Michon T, Walter J. Electrochemical atomic force microscopy imaging of redox-immunomarked proteins on native potyviruses: from subparticle to single-protein resolution. ACS NANO 2015; 9:4911-4924. [PMID: 25905663 DOI: 10.1021/acsnano.5b00952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We show herein that electrochemical atomic force microscopy (AFM-SECM), operated in molecule touching (Mt) mode and combined with redox immunomarking, enables the in situ mapping of the distribution of proteins on individual virus particles and makes localization of individual viral proteins possible. Acquisition of a topography image allows isolated virus particles to be identified and structurally characterized, while simultaneous acquisition of a current image allows the sought after protein, marked by redox antibodies, to be selectively located. We concomitantly show that Mt/AFM-SECM, due to its single-particle resolution, can also uniquely reveal the way redox functionalization endowed to viral particles is distributed both statistically among the viruses and spatially over individual virus particles. This possibility makes Mt/AFM-SECM a unique tool for viral nanotechnology.
Collapse
Affiliation(s)
- Laurent Nault
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Cécilia Taofifenua
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Agnès Anne
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Arnaud Chovin
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Christophe Demaille
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Jane Besong-Ndika
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
- §Department of Food and Environmental Sciences, University of Helsinki, Latokartanonkaari 11, FI-00014 Helsinki, Finland
| | - Daniela Cardinale
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| | - Noëlle Carette
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| | - Thierry Michon
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| | - Jocelyne Walter
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| |
Collapse
|
49
|
Affiliation(s)
- Yuhe R. Yang
- Center for Molecular Design
and Biomimetics, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- Center for Molecular Design
and Biomimetics, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design
and Biomimetics, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
50
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|