1
|
Xian S, Xiang Y, Mitrová K, Jiráček J, Webber MJ. Diboronate-Modified Hyaluronic Acid for Glucose-Responsive Insulin Delivery. Biomacromolecules 2025. [PMID: 40143560 DOI: 10.1021/acs.biomac.5c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Diabetes requires precise insulin management to maintain glycemic control and prevent severe complications. Glucose-responsive delivery systems envision an autonomous approach to improve insulin therapy. Here, a glucose-sensitive insulin delivery system comprising hyaluronic acid conjugated with a diboronate glucose binder as a carrier for diol-modified insulin is shown. This approach seeks improved precision in insulin delivery, leveraging bidentate glucose binding to achieve enhanced glucose affinity and specificity. Modification of insulin with a diol motif preserves its native conformation and function. These insulin formulations correct blood glucose in diabetic mice, including glucose-responsive function when subjected to a glucose challenge. However, the absence of secondary interactions, such as electrostatic complexation, ultimately limits the duration of function relative to that of previous platforms. Integrating complementary interactions alongside dynamic-covalent glucose binders therefore enhances the functional duration and therapeutic efficacy in the design of glucose-responsive polymeric carriers, offering design insights into the development of new carriers for glucose-responsive insulin delivery.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yuanhui Xiang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Katarína Mitrová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague 16610, Czech Republic
| | - Jiří Jiráček
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague 16610, Czech Republic
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Pal S, Rakshit T, Saha S, Jinagal D. Glucose-Responsive Materials for Smart Insulin Delivery: From Protein-Based to Protein-Free Design. ACS MATERIALS AU 2025; 5:239-252. [PMID: 40093833 PMCID: PMC11907299 DOI: 10.1021/acsmaterialsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/19/2025]
Abstract
Over the last four decades, glucose-responsive materials have emerged as promising candidates for developing smart insulin delivery systems, offering an alternative approach to treating diabetes. These materials replicate the pancreas's natural "closed loop" insulin secretion function by detecting changes in blood glucose levels and releasing insulin accordingly. This perspective highlights the evolution of glucose-responsive materials from protein-based materials, such as glucose oxidase (GOx), and glucose-binding proteins, such as concanavalin A (ConA), to protein-free materials, including phenylboronic acid (PBA) and their applications in smart insulin delivery. We first describe protein-based glucose-responsive systems that depend on different macromolecules, including enzymes and proteins, that interact directly with glucose to promote insulin release. However, these systems encounter significant stability, scalability, and immunogenicity challenges. In contrast, protein-free systems include hydrogels, nanogels/microgels, and microneedle patches, offering long-term stability and storability. In this direction, we discuss the design principles, mechanisms of glucose/pH sensitivity, and the disintegration of both protein-based and protein-free systems into different glucose environments. Finally, we outline the key challenges, potential solutions, and prospects for developing smart insulin delivery systems.
Collapse
Affiliation(s)
- Suchetan Pal
- Department
of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| | - Tatini Rakshit
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Greater
Noida, 201314, UP India
| | - Sunita Saha
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| | - Dharmesh Jinagal
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| |
Collapse
|
3
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2025; 15:455-482. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
4
|
Patil PD, Gargate N, Tiwari MS, Nadar SS. Two-dimensional metal-organic frameworks (2D-MOFs) as a carrier for enzyme immobilization: A review on design and bio-applications. Int J Biol Macromol 2025; 291:138984. [PMID: 39706457 DOI: 10.1016/j.ijbiomac.2024.138984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
In the realm of carriers for enzyme immobilization, the use of MOFs has accelerated owing to their exceptional porosity and stability. Among these, 2D metal-organic frameworks (2D-MOFs) have emerged as promising supports for enzyme immobilization. This review highlights advancements in their synthesis, structural properties, and functional characteristics, focusing on enhancing catalytic performance and stability. Brief insights into computational approaches for optimizing these nanostructures and their catalytic efficiency are provided. The unique synergy between 2D MOF-based nanozymes and enzymes is discussed, showcasing their potential in diverse applications. Challenges in their practical implementation, prospective solutions, and future research directions are also outlined. This review emphasizes the transformative potential of 2D MOFs, focusing on their design and bioapplications and paving the way for innovative and sustainable strategies.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
5
|
Ji K, Wei X, Kahkoska AR, Zhang J, Zhang Y, Xu J, Wei X, Liu W, Wang Y, Yao Y, Huang X, Mei S, Liu Y, Wang S, Zhao Z, Lu Z, You J, Xu G, Shen Y, Buse JB, Wang J, Gu Z. An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs. NATURE NANOTECHNOLOGY 2024; 19:1880-1891. [PMID: 39223256 PMCID: PMC11646558 DOI: 10.1038/s41565-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient-similarly to endogenous insulin-for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes.
Collapse
Affiliation(s)
- Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xiangqian Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yang Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Wei Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yuejun Yao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shaoqian Mei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shiqi Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Zhengjie Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Ziyi Lu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Guangzheng Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Novikau IS, Novak EV, Kantorovich SS. The impact of cross-linker distribution on magnetic nanogels: encapsulation, transport and controlled release of the tracer. SOFT MATTER 2024; 20:8765-8774. [PMID: 39449291 DOI: 10.1039/d4sm00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Magnetic nanogels (MNGs) are highly attractive for biomedical applications because of their potential for remote control of the rheology and internal structure of these soft colloids with biocompatible magnetic fields. In this contribution, using molecular dynamics simulations, we investigate the impact of the cross-linker distribution in the body of a MNG on the shape and magnetic response to constant and AC magnetic fields and relate those properties to the behaviour of non-magnetic tracers placed in the MNGs and left to escape. We find that if no AC magnetic field is applied, although the escape times of the tracer particles barely depend on morphology, the highest degree of subdiffusion is observed for the gels with a non-uniform cross-linkerer distribution. We also find how the eigen frequency at which particles relax locally in the polymer matrix affects the dynamic magnetic response of the gel. We show that a magnetic field-induced wobbling can facilitate drug release from gels.
Collapse
Affiliation(s)
- Ivan S Novikau
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria.
| | - Ekaterina V Novak
- Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation
| | - Sofia S Kantorovich
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria.
| |
Collapse
|
7
|
Ying R, Wang W, Chen R, Zhou R, Mao X. Intestinal-Target and Glucose-Responsive Smart Hydrogel toward Oral Delivery System of Drug with Improved Insulin Utilization. Biomacromolecules 2024; 25:7446-7458. [PMID: 39413303 DOI: 10.1021/acs.biomac.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
An intelligent insulin delivery system targeting intestinal absorption and glucose responsiveness can enhance the bioavailability through oral insulin therapy, offering promising diabetes treatment. In this paper, a glucose and pH dual-response polymer hydrogel using carboxymethyl agarose modified with 3-amino-phenylboronic acid and l-valine (CPL) was developed as an insulin delivery carrier, exhibiting excellent biocompatibility and effective insulin encapsulation. The insulin encapsulated in the hydrogel (Ins-CPL) was released in a controlled manner in response to the in vivo stimulation of blood glucose and pH levels with higher levels of intracellular uptake and utilization of insulin in the intestinal environment simultaneously. Notably, the Ins-CPL hydrogel effectively regulated blood sugar in diabetic rats over a long period by simulating endogenous insulin, responding to changes in plasma pH and glucose levels, and overcoming the intestinal epithelium barrier. This indicates a significant boost in oral insulin bioavailability and broadens its application prospects.
Collapse
Affiliation(s)
- Rui Ying
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Rui Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Ruoyu Zhou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
8
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
Valentino A, Yazdanpanah S, Conte R, Calarco A, Peluso G. Smart Nanocomposite Hydrogels as Next-Generation Therapeutic and Diagnostic Solutions. Gels 2024; 10:689. [PMID: 39590045 PMCID: PMC11594247 DOI: 10.3390/gels10110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Stimuli-responsive nanocomposite gels combine the unique properties of hydrogels with those of nanoparticles, thus avoiding the suboptimal results of single components and creating versatile, multi-functional platforms for therapeutic and diagnostic applications. These hybrid materials are engineered to respond to various internal and external stimuli, such as temperature, pH, light, magnetic fields, and enzymatic activity, allowing precise control over drug release, tissue regeneration, and biosensing. Their responsiveness to environmental cues permits personalized medicine approaches, providing dynamic control over therapeutic interventions and real-time diagnostic capabilities. This review explores recent advances in stimuli-responsive hybrid gels' synthesis and application, including drug delivery, tissue engineering, and diagnostics. Overall, these platforms have significant clinical potential, and future research is expected to lead to unique solutions to address unmet medical needs.
Collapse
Affiliation(s)
- Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.Y.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sorur Yazdanpanah
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.Y.); (G.P.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.Y.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.Y.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.Y.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
10
|
Zhang J, Wei X, Liu W, Wang Y, Kahkoska AR, Zhou X, Zheng H, Zhang W, Sheng T, Zhang Y, Liu Y, Ji K, Xu Y, Zhang P, Xu J, Buse JB, Wang J, Gu Z. Week-long normoglycaemia in diabetic mice and minipigs via a subcutaneous dose of a glucose-responsive insulin complex. Nat Biomed Eng 2024; 8:1214-1225. [PMID: 38057427 PMCID: PMC11153331 DOI: 10.1038/s41551-023-01138-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Glucose-responsive formulations of insulin can increase its therapeutic index and reduce the burden of its administration. However, it has been difficult to develop single-dosage formulations that can release insulin in both a sustained and glucose-responsive manner. Here we report the development of a subcutaneously injected glucose-responsive formulation that nearly does not trigger the formation of a fibrous capsule and that leads to week-long normoglycaemia and negligible hypoglycaemia in mice and minipigs with type 1 diabetes. The formulation consists of gluconic acid-modified recombinant human insulin binding tightly to poly-L-lysine modified by 4-carboxy-3-fluorophenylboronic acid via glucose-responsive phenylboronic acid-diol complexation and electrostatic attraction. When the insulin complex is exposed to high glucose concentrations, the phenylboronic acid moieties of the polymers bind rapidly to glucose, breaking the complexation and reducing the polymers' positive charge density, which promotes the release of insulin. The therapeutic performance of this long-acting single-dose formulation supports its further evaluation and clinical translational studies.
Collapse
Affiliation(s)
- Juan Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangqian Wei
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanfang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Huimin Zheng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wentao Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tao Sheng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yun Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kangfan Ji
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yichen Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jianchang Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jinqiang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
| |
Collapse
|
11
|
Boase NRB, Gillies ER, Goh R, Kieltyka RE, Matson JB, Meng F, Sanyal A, Sedláček O. Stimuli-Responsive Polymers at the Interface with Biology. Biomacromolecules 2024; 25:5417-5436. [PMID: 39197109 DOI: 10.1021/acs.biomac.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
There has been growing interest in polymeric systems that break down or undergo property changes in response to stimuli. Such polymers can play important roles in biological systems, where they can be used to control the release of therapeutics, modulate imaging signals, actuate movement, or direct the growth of cells. In this Perspective, after discussing the most important stimuli relevant to biological applications, we will present a selection of recent exciting developments. The growing importance of stimuli-responsive polysaccharides will be discussed, followed by a variety of stimuli-responsive polymeric systems for the delivery of small molecule drugs and nucleic acids. Switchable polymers for the emerging area of therapeutic response measurement in theranostics will be described. Then, the diverse functions that can be achieved using hydrogels cross-linked covalently, as well as by various dynamic approaches will be presented. Finally, we will discuss some of the challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Nathan R B Boase
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Elizabeth R Gillies
- Department of Chemistry; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Rubayn Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Roxanne E Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Amitav Sanyal
- Department of Chemistry and Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Türkiye
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| |
Collapse
|
12
|
Liu Y, Wang S, Wang Z, Yu J, Wang J, Buse JB, Gu Z. Recent Progress in Glucose-Responsive Insulin. Diabetes 2024; 73:1377-1388. [PMID: 38857114 DOI: 10.2337/dbi23-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Insulin replacement therapy is indispensable in the treatment of type 1 and advanced type 2 diabetes. However, insulin's clinical application is challenging due to its narrow therapeutic index. To mitigate acute and chronic risks of glucose excursions, glucose-responsive insulin (GRI) has long been pursued for clinical application. By integrating GRI with glucose-sensitive elements, GRI is capable of releasing or activating insulin in response to plasma or interstitial glucose levels without external monitoring, thereby improving glycemic control and reducing hypoglycemic risk. In this Perspective, we first introduce the history of GRI development and then review major glucose-responsive components that can be leveraged to control insulin delivery. Subsequently, we highlight the recent advances in GRI delivery carriers and insulin analogs. Finally, we provide a look to the future and the challenges of clinical application of GRI. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiqi Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
14
|
Andreadi A, Lodeserto P, Todaro F, Meloni M, Romano M, Minasi A, Bellia A, Lauro D. Nanomedicine in the Treatment of Diabetes. Int J Mol Sci 2024; 25:7028. [PMID: 39000136 PMCID: PMC11241380 DOI: 10.3390/ijms25137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in β-cells or β-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Federica Todaro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
| | - Marco Meloni
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Maria Romano
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alessandro Minasi
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alfonso Bellia
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Davide Lauro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| |
Collapse
|
15
|
Huang Y, Hu W, Xu K, Dan R, Tan S, Shu Z, Li X, Liu H, Fan C, Xing M, Yang S. Plant mucus-derived microgels: Blood-triggered gelation and strong hemostatic adhesion. Biomaterials 2024; 307:122535. [PMID: 38518590 DOI: 10.1016/j.biomaterials.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Arrest of bleeding usually applies clotting agents to trigger coagulation procedures or adhesives to interrupt blood flow through sealing the vessel; however, the efficiency is compromised. Here, we propose a concept of integration of hemostasis and adhesion via yam mucus's microgels. The mucus microgels exhibit attractive attributes of hydrogel with uniform size and shape. Their shear-thinning, self-healing and strong adhesion make them feasible as injectable bioadhesion. Exceptionally, the blood can trigger the microgels' gelation with the outcome of super extensibility, which leads to the microgels a strong hemostatic agent. We also found a tight gel adhesive layer formed upon microgels' contacting the blood on the tissue, where there is the coagulation factor XIII triggered to form a dense three-dimensional fibrin meshwork. The generated structures show that the microgels look like hard balls in the dispersed phase into the blood-produced fibrin mesh of a soft net phase. Both phases work together for a super-extension gel. We demonstrated the microgels' fast adhesion and hemostasis in the livers and hearts of rabbits and mini pigs. The microgels also promoted wound healing with good biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg MB, R3T 2N2, Manitoba, Canada
| | - Ruijue Dan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Shali Tan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Xin Li
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Hangzong Liu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China; Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg MB, R3T 2N2, Manitoba, Canada.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China; Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China.
| |
Collapse
|
16
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
17
|
Ahmad A, Hassan A, Roy PG, Zhou S, Irfan A, Chaudhry AR, Kanwal F, Begum R, Farooqi ZH. Recent developments in chitosan based microgels and their hybrids. Int J Biol Macromol 2024; 260:129409. [PMID: 38224801 DOI: 10.1016/j.ijbiomac.2024.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
18
|
Okuno Y, Iwasaki Y. Encapsulation of multiple enzymes within a microgel via water-in-water emulsions for enzymatic cascade reactions. SOFT MATTER 2024; 20:1018-1024. [PMID: 38197458 DOI: 10.1039/d3sm01309j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Enzyme-loaded spherical microgels with diameters of several micrometers have been explored for use in therapeutic microreactors and biosensors. Conventional preparation strategies for enzyme-loaded microgels utilized water-in-oil emulsions or flow chemistry techniques. The former damage enzyme activity using organic solvents and the latter are expensive and difficult to expand because of the complex system. In this study, we present a simple strategy for creating multiple enzyme-loaded gelatin-based microgels with tunable diameters in a single flask. This strategy was based on our finding that enzymes spontaneously partitioned in a dispersed methacryloyl gelatin aqueous solution in a poly(vinylpyrrolidone) (WGelMA/WPVP) aqueous solution. The method achieved an encapsulation efficiency of over 70% even with four types of enzymes and retained their activity owing to the full aqueous system. Additionally, the encapsulated β-galactosidase activity was maintained for 24 hours at pH 6, although naked β-galactosidase lost approximately 60% of its activity, which was superior to that of previous enzyme-loaded gelatin gels. Moreover, this simple method enabled the production of 10 g-scale or more microgels in one batch. We also demonstrated that multiple enzyme-loaded gelatin microgels functioned as cascade microreactors for lactose and glucose sensing. This versatile strategy enables the production of enzyme-loaded microgels while maintaining the enzyme activity using very low technologies. This result contributes to the easy preparation of enzyme-loaded microgels and their applications in the biomedical and green catalytic fields.
Collapse
Affiliation(s)
- Yota Okuno
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
- Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
- Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
19
|
Elkhalifa AME, Nazar M, Ali SI, Khursheed I, Taifa S, Ahmad Mir M, Shah IH, Malik M, Ramzan Z, Ahad S, Bashir N, Elamin E, Bazie EA, Ahmed EM, Alruwaili MM, Baltoyour AW, Alarfaj AS, Ali Al Bataj I, Arabe AMA, Nabi SU. Novel Therapeutic Agents for Management of Diabetes Mellitus: A Hope for Drug Designing against Diabetes Mellitus. Life (Basel) 2024; 14:99. [PMID: 38255714 PMCID: PMC10821096 DOI: 10.3390/life14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus (DM) is characterized by an absolute decline in insulin secretion and peripheral resistance and is the most prevalent metabolic and endocrine disorder. However, the pathogenesis of DM also includes adipocyte insulin resistance, increased glucagon secretion, increased renal glomerular glucose absorption, and neurotransmitter dysfunction. Although there is a wide spectrum of therapeutics available for glycemic control, owing to the identification of various pathogenic determinants of DM, management of DM remains challenging and complex. Current therapeutic interventions against DM focus mostly on glycemic control without considering the other pathological determinants that eventually lead to treatment failure and the progression of DM. Furthermore, long-term use of these conventionally available anti-diabetic drugs leads to various side effects, henceforth development of novel drugs against DM remains an unending search strategy for researchers. Various studies conducted in various parts of the world have proposed that these novel therapeutic interventions target multiple and alternate pathogenic hotspots involved in DM. The current review article discusses novel therapeutic options that hold particular promise to support their safety and discuss the side effects resulting from their use so that these novel candidate drugs can be effectively fabricated into potential drugs for the treatment of DM.
Collapse
Affiliation(s)
- Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia;
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan;
| | - Mehak Nazar
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, Nunar, Ganderbal 191201, India;
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Elham Elamin
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan;
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti 1158, Sudan;
| | - Elsadig Mohamed Ahmed
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Majed Mowanes Alruwaili
- Nursing Administration & Education Department, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ammar W. Baltoyour
- Dhahran Eye Specialist Hospital, Ministry of Health, Dhahran 39455, Saudi Arabia;
| | | | | | | | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| |
Collapse
|
20
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
21
|
Bhadouria N, Alam A, Kaur A. Nanotechnology-based Herbal Drug Formulation in the Treatment of Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e310124226554. [PMID: 38299420 DOI: 10.2174/0115733998282162240116202813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
The utilization of nanotechnology-based herbal medication delivery systems is gaining attention as a novel approach to treating diabetes mellitus. The incorporation of nanotechnology into herbal medicine provides benefits such as enhanced Stability, solubility, and bioavailability of herbal medications. The purpose of this paper is to summarise the present status of research on herbal medicine delivery systems based on nanotechnology for the treatment of diabetic patients. The paper evaluates the various nanocarriers and herbal drugs used, the challenges and opportunities in the development of these systems, and their potential efficacy and safety. Additionally, the paper highlights the need for further research to optimize the formulation and delivery of these systems. This review's overarching objective is to provide a complete understanding of the possibilities of herbal medication delivery systems based on nanotechnology in diabetes mellitus treatment.
Collapse
Affiliation(s)
- Namrata Bhadouria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
23
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Zhang Y, Wu BM. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023; 9:838. [PMID: 37888411 PMCID: PMC10606589 DOI: 10.3390/gels9100838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, significant advancements in the field of advanced materials and hydrogel engineering have enabled the design and fabrication of smart hydrogels and nanogels that exhibit sensitivity to specific signals or pathological conditions, leading to a wide range of applications in drug delivery and disease treatment. This comprehensive review aims to provide an in-depth analysis of the stimuli-responsive principles exhibited by smart hydrogels in response to various triggers, such as pH levels, temperature fluctuations, light exposure, redox conditions, or the presence of specific biomolecules. The functionality and performance characteristics of these hydrogels are highly influenced by both their constituent components and fabrication processes. Key design principles, their applications in disease treatments, challenges, and future prospects were also discussed. Overall, this review aims to contribute to the current understanding of gel-based drug delivery systems and stimulate further research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
| | - Benjamin M. Wu
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Yang S, Yang JF, Gong X, Weiss MA, Strano MS. Rational Design and Efficacy of Glucose-Responsive Insulin Therapeutics and Insulin Delivery Systems by Computation Using Connected Human and Rodent Models. Adv Healthc Mater 2023; 12:e2300587. [PMID: 37319398 PMCID: PMC10592437 DOI: 10.1002/adhm.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Glucose-responsive insulins (GRIs) use plasma glucose levels in a diabetic patient to activate a specifically designed insulin analogue to a more potent state in real time. Alternatively, some GRI concepts use glucose-mediated release or injection of insulin into the bloodstream. GRIs hold promise to exhibit much improved pharmacological control of the plasma glucose concentration, particularly for the problem of therapeutically induced hypoglycemia. Several innovative GRI schemes are introduced into the literature, but there remains a dearth of quantitative analysis to aid the development and optimization of these constructs into effective therapeutics. This work evaluates several classes of GRIs that are proposed using a pharmacokinetic model as previously described, PAMERAH, simulating the glucoregulatory system of humans and rodents. GRI concepts are grouped into three mechanistic classes: 1) intrinsic GRIs, 2) glucose-responsive particles, and 3) glucose-responsive devices. Each class is analyzed for optimal designs that maintain glucose levels within the euglycemic range. These derived GRI parameter spaces are then compared between rodents and humans, providing the differences in clinical translation success for each candidate. This work demonstrates a computational framework to evaluate the potential clinical translatability of existing glucose-responsive systems, providing a useful approach for future GRI development.
Collapse
Affiliation(s)
- Sungyun Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jing Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University of Medicine, Indianapolis, IN, 46202, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
26
|
Ghanim R, Kaushik A, Park J, Abramson A. Communication Protocols Integrating Wearables, Ingestibles, and Implantables for Closed-Loop Therapies. DEVICE 2023; 1:100092. [PMID: 38465200 PMCID: PMC10923538 DOI: 10.1016/j.device.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Body-conformal sensors and tissue interfacing robotic therapeutics enable the real-time monitoring and treatment of diabetes, wound healing, and other critical conditions. By integrating sensors and drug delivery devices, scientists and engineers have developed closed-loop drug delivery systems with on-demand therapeutic capabilities to provide just-in-time treatments that correspond to chemical, electrical, and physical signals of a target morbidity. To enable closed-loop functionality in vivo, engineers utilize various low-power means of communication that reduce the size of implants by orders of magnitude, increase device lifetime from hours to months, and ensure the secure high-speed transfer of data. In this review, we highlight how communication protocols used to integrate sensors and drug delivery devices, such as radio frequency communication (e.g., Bluetooth, near-field communication), in-body communication, and ultrasound, enable improved treatment outcomes.
Collapse
Affiliation(s)
- Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anika Kaushik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Yang D, Cai C, Liu K, Peng Z, Yan C, Xi J, Xie F, Li X. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment. J Mater Chem B 2023; 11:7582-7608. [PMID: 37522237 DOI: 10.1039/d3tb01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.
Collapse
Affiliation(s)
- Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
28
|
Cambuli VM, Baroni MG. Intelligent Insulin vs. Artificial Intelligence for Type 1 Diabetes: Will the Real Winner Please Stand Up? Int J Mol Sci 2023; 24:13139. [PMID: 37685946 PMCID: PMC10488097 DOI: 10.3390/ijms241713139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Research in the treatment of type 1 diabetes has been addressed into two main areas: the development of "intelligent insulins" capable of auto-regulating their own levels according to glucose concentrations, or the exploitation of artificial intelligence (AI) and its learning capacity, to provide decision support systems to improve automated insulin therapy. This review aims to provide a synthetic overview of the current state of these two research areas, providing an outline of the latest development in the search for "intelligent insulins," and the results of new and promising advances in the use of artificial intelligence to regulate automated insulin infusion and glucose control. The future of insulin treatment in type 1 diabetes appears promising with AI, with research nearly reaching the possibility of finally having a "closed-loop" artificial pancreas.
Collapse
Affiliation(s)
- Valentina Maria Cambuli
- Diabetology and Metabolic Diseaseas, San Michele Hospital, ARNAS Giuseppe Brotzu, 09121 Cagliari, Italy;
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
29
|
Wang Y, Yu H, Wang L, Hu J, Feng J. Progress in the preparation and evaluation of glucose-sensitive microneedle systems and their blood glucose regulation. Biomater Sci 2023; 11:5410-5438. [PMID: 37395463 DOI: 10.1039/d3bm00463e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Glucose-sensitive microneedle systems (GSMSs) as an intelligent strategy for treating diabetes can well solve the problems of puncture pain, hypoglycemia, skin damage, and complications caused by the subcutaneous injection of insulin. According to the various functions of each component, herein, therapeutic GSMSs are reviewed based on three parts (glucose-sensitive models, diabetes medications, and microneedle body). Moreover, the characteristics, benefits, and drawbacks of three types of typical glucose-sensitive models (phenylboronic acid based polymer, glucose oxidase, and concanavalin A) and their drug delivery models are reviewed. In particular, phenylboronic acid-based GSMSs can provide a long-acting drug dose and controlled release rate for the treatment of diabetes. Moreover, their painless, minimally invasive puncture also greatly improves patient compliance, treatment safety, and potential application prospects.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Hu
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| |
Collapse
|
30
|
Ali A, Saroj S, Saha S, Gupta SK, Rakshit T, Pal S. Glucose-Responsive Chitosan Nanoparticle/Poly(vinyl alcohol) Hydrogels for Sustained Insulin Release In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368956 DOI: 10.1021/acsami.3c05031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Stimuli-responsive hydrogels (HGs) with a controlled drug release profile are the current challenge for advanced therapeutic applications. Specifically, antidiabetic drug-loaded glucose-responsive HGs are being investigated for closed-loop insulin delivery in insulin-dependent diabetes patients. In this direction, new design principles must be exploited to create inexpensive, naturally occurring, biocompatible glucose-responsive HG materials for the future. In this work, we developed chitosan nanoparticle/poly(vinyl alcohol) (PVA) hybrid HGs (CPHGs) for controlled insulin delivery for diabetes management. In this design, PVA and chitosan nanoparticles (CNPs) are cross-linked with a glucose-responsive formylphenylboronic acid (FPBA)-based cross-linker in situ. Leveraging the structural diversity of FPBA and its pinacol ester-based cross-linkers, we fabricate six CPHGs (CPHG1-6) with more than 80% water content. Using dynamic rheological measurements, we demonstrate elastic solid-like properties of CPHG1-6, which are dramatically reduced under low-pH and high-glucose environments. An in vitro drug release assay reveals size-dependent glucose-responsive drug release from the CPHGs under physiological conditions. It is important to note that the CPHGs show appreciable self-healing and noncytotoxic properties. Promisingly, we observe a significantly slower insulin release profile from the CPHG matrix in the type-1 diabetes (T1D) rat model. We are actively pursuing scaling up of CPHGs and the in vivo safety studies for clinical trial in the near future.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
| | - Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, UP, India
| | - Sunita Saha
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
| | - Sanjay Kumar Gupta
- Department of Pharmacology, Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari 490042, CG, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, UP, India
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai Raipur 492015, CG, India
| |
Collapse
|
31
|
Xu R, Bhangu SK, Sourris KC, Vanni D, Sani MA, Karas JA, Alt K, Niego B, Ale A, Besford QA, Dyett B, Patrick J, Carmichael I, Shaw JE, Caruso F, Cooper ME, Hagemeyer CE, Cavalieri F. An Engineered Nanosugar Enables Rapid and Sustained Glucose-Responsive Insulin Delivery in Diabetic Mice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210392. [PMID: 36908046 DOI: 10.1002/adma.202210392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Indexed: 05/26/2023]
Abstract
Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.
Collapse
Affiliation(s)
- Rong Xu
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Sukhvir Kaur Bhangu
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Domitilla Vanni
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3000, Australia
- Dipartimento di Scienze e Tecnologie Chimiche Universita' di Roma "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Marc-Antoine Sani
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - John A Karas
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Karen Alt
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Be'eri Niego
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Anukreity Ale
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Quinn A Besford
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Brendan Dyett
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Joshua Patrick
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Irena Carmichael
- Monash Micro Imaging, Monash University, Melbourne, Victoria, 3004, Australia
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
- Dipartimento di Scienze e Tecnologie Chimiche Universita' di Roma "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| |
Collapse
|
32
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
33
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
34
|
Yadav AS, Tran DT, Teo AJT, Dai Y, Galogahi FM, Ooi CH, Nguyen NT. Core-Shell Particles: From Fabrication Methods to Diverse Manipulation Techniques. MICROMACHINES 2023; 14:497. [PMID: 36984904 PMCID: PMC10054063 DOI: 10.3390/mi14030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Core-shell particles are micro- or nanoparticles with solid, liquid, or gas cores encapsulated by protective solid shells. The unique composition of core and shell materials imparts smart properties on the particles. Core-shell particles are gaining increasing attention as tuneable and versatile carriers for pharmaceutical and biomedical applications including targeted drug delivery, controlled drug release, and biosensing. This review provides an overview of fabrication methods for core-shell particles followed by a brief discussion of their application and a detailed analysis of their manipulation including assembly, sorting, and triggered release. We compile current methodologies employed for manipulation of core-shell particles and demonstrate how existing methods of assembly and sorting micro/nanospheres can be adopted or modified for core-shell particles. Various triggered release approaches for diagnostics and drug delivery are also discussed in detail.
Collapse
Affiliation(s)
- Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Adrian J. T. Teo
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore 637460, Singapore
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Fariba Malekpour Galogahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
35
|
Zhang L, Jin M, Pan Y, Yang F, Wu Y, Gao J, Chen T, Tan S, Yang T, Chen Y, Huang J. Sustained release of GLP-1 analog from γ-PGA-PAE copolymers for management of type 2 diabetes. BIOMATERIALS ADVANCES 2023; 148:213352. [PMID: 36867980 DOI: 10.1016/j.bioadv.2023.213352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
GLP-1 has been clinically exploited for treating type 2 diabetes, while its short circulation half-life requires multiple daily injections to maintain effective glycemic control, thus limiting its widespread application. Here we developed a drug delivery system based on self-assembling polymer-amino acid conjugates (γ-PGA-PAE) to provide sustained release of GLP-1 analog (DLG3312). The DLG3312 loaded γ-PGA based nanoparticles (DLG3312@NPs) exhibited a spherical shape with a good monodispersity under transmission electron microscope (TEM) observation. The DLG3312 encapsulation was optimized, and the loading efficiency was as high as 78.4 ± 2.2 %. The transformation of DLG3312@NPs to network structures was observed upon treatment with the fresh serum, resulting in a sustained drug release. The in vivo long-term hypoglycemic assays indicated that DLG3312@NPs significantly reduced blood glucose and glycosylated hemoglobin level. Furthermore, DLG3312@NPs extended the efficacy of DLG3312, leading to a decrease in the dosing schedule that from once a day to once every other day. This approach combined the molecular and materials engineering strategies that offered a unique solution to maximize the availability of anti-diabetic drug and minimize its burdens to type 2 diabetic patients.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Mingfei Jin
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yingying Pan
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Fang Yang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Wu
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianbo Gao
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shiming Tan
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Ting Yang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yazhou Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China; Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
36
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
37
|
Dai J, Shi H, Zhang C, Li B, Li Y, Wei Y. Multimeric adiponectin nanoparticles regulate glucose metabolism by activating phosphatidylinositol-3-kinase, protein kinase B and T-cadherin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Muñoz-Galán H, Molina BG, Bertran O, Pérez-Madrigal MM, Alemán C. Combining rapid and sustained insulin release from conducting hydrogels for glycemic control. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Hosseinalizadeh H, Mahmoodpour M, Razaghi Bahabadi Z, Hamblin MR, Mirzaei H. Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomed Pharmacother 2022; 156:113841. [DOI: 10.1016/j.biopha.2022.113841] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
|
40
|
Chen Q, Xiao Z, Wang C, Chen G, Zhang Y, Zhang X, Han X, Wang J, Ye X, Prausnitz MR, Li S, Gu Z. Microneedle Patches Loaded with Nanovesicles for Glucose Transporter-Mediated Insulin Delivery. ACS NANO 2022; 16:18223-18231. [PMID: 36322923 PMCID: PMC10738036 DOI: 10.1021/acsnano.2c05687] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose-responsive insulin delivery systems that mimic insulin secretion activity in the pancreas show great potential to improve clinical therapeutic outcomes for people with type 1 and advanced type 2 diabetes. Here, we report a glucose-responsive insulin delivery microneedle (MN) array patch that is loaded with red blood cell (RBC) vesicles or liposome nanoparticles containing glucose transporters (GLUTs) bound with glucosamine-modified insulin (Glu-Insulin). In hyperglycemic conditions, high concentrations of glucose in interstitial fluid can replace Glu-Insulin via a competitive interaction with GLUT, leading to a quick release of Glu-Insulin and subsequent regulation of blood glucose (BG) levels in vivo. To prolong the effective glucose-responsive insulin release from MNs, additional free Glu-Insulin, which serves as "stored insulin", is loaded after RBC vesicles or liposome nanoparticles bound with Glu-Insulin. In the streptozotocin (STZ)-induced type 1 diabetic mouse model, this smart GLUT-based insulin patch can effectively control BG levels without causing hypoglycemia.
Collapse
Affiliation(s)
- Qian Chen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123
| | - Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yuqi Zhang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xudong Zhang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiao Han
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Ye
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
41
|
Zhang Y, Hu H, Deng X, Song Q, Xing X, Liu W, Zhang Y. Cascade-Enhanced Catalytic Nanocomposite with Glutathione Depletion and Respiration Inhibition for Effective Starving-Chemodynamic Therapy Against Hypoxic Tumor. Int J Nanomedicine 2022; 17:5491-5510. [DOI: 10.2147/ijn.s382750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
|
42
|
Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. J Pharm Sci 2022; 111:2968-2982. [PMID: 36058255 DOI: 10.1016/j.xphs.2022.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Multiple advanced formulations and drug delivery systems (DDSs) have been developed to deliver protein-based biotherapeutics via the subcutaneous (SC) route. These formulations/DDSs include high-concentration solution, co-formulation of two or more proteins, large volume injection, protein cluster/complex, suspension, nanoparticle, microparticle, and hydrogel. These advanced systems provide clinical benefits related to efficacy and safety, but meanwhile, have more complicated formulations and manufacturing processes compared to conventional solution formulations. To develop a fit-for-purpose formulation/DDS for SC delivery, scientists need to consider multiple factors, such as the primary indication, targeted site, immunogenicity, compatibility, biopharmaceutics, patient compliance, etc. Next, they need to develop appropriate formulation (s) and manufacturing processes using the QbD principle and have a control strategy. This paper aims to provide a comprehensive review of advanced formulations/DDSs recently developed for SC delivery of proteins, as well as some knowledge gaps and potential strategies to narrow them through future research.
Collapse
|
43
|
Zhu J, Liu W, Zhang B, Zhou D, Fan X, Wang X, Liu X. Carbon Dots Embedded Hybrid Microgel with Phenylboronic Acid as Monomer for Fluorescent Glucose Sensing and Glucose-Triggered Insulin Release at Physiological pH. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3065. [PMID: 36080102 PMCID: PMC9457936 DOI: 10.3390/nano12173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
A multifunctional and biocompatible hybrid microgel (poly(VPBA-AAm)-CD) using N, S-doped carbon dots (CDs) and ethylene glycol dimethacrylate (EGDMA) as cross-linking agents, and 4-vinylbenzene boronic acid (VPBA) and acrylamide (AAm) as monomers, was designed in this work. This microgel can be easily prepared by a simple one-pot radical dispersion polymerization of the reactants using a rationally designed hydrogen-bonded complex method. The hybrid microgels were spherical particles with a smooth surface and an average particle size of 234 ± 8 nm. The poly(VPBA-AAm)-CD microgel displayed the glucose-responsive swelling within a clinically concerned range at a physiological pH and could realize the controllable release of insulin. In addition, the release rate of insulin in the hybrid microgel (poly(VPBA-AAm)-CD) could be triggered by glucose concentrations in the solution, and the increasing glucose concentrations can accelerate the insulin release. Further in vitro cytotoxicity studies showed that the microgel had good biocompatibility and no obvious toxicity to the cells. These indicate that the prepared microgel (poly(VPBA-AAm)-CD) may supply a new pattern for the self-regulating therapy of insulin deficiency in diabetes.
Collapse
Affiliation(s)
- Jinhua Zhu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| | | | | | | | | | | | - Xiuhua Liu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| |
Collapse
|
44
|
Dutta G, Manickam S, Sugumaran A. Stimuli-Responsive Hybrid Metal Nanocomposite - A Promising Technology for Effective Anticancer Therapy. Int J Pharm 2022; 624:121966. [PMID: 35764265 DOI: 10.1016/j.ijpharm.2022.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
Abstract
Cancer is one of the most challenging, life-threatening illnesses to cure, with over 10 million new cases diagnosed each year globally. Improved diagnostic cum treatment with common side-effects are warranting for successful therapy. Nanomaterials are recognized to improve early diagnosis, imaging, and treatment. Recently, multifunctional nanocomposites attracted considerable interest due to their low-cost production, and ideal thermal and chemical stability, and will be beneficial in future diagnostics and customized treatment capacity. Stimuli-Responsive Hybrid Metal Nanocomposites (SRHMNs) based nanocomposite materials pose the on/off delivery of bioactive compounds such as medications, genes, RNA, and DNA to specific tissue or organs and reduce toxicity. They simultaneously serve as sophisticated imaging and diagnostic tools when certain stimuli (e.g., temperature, pH, redox, ultrasound, or enzymes) activate the nanocomposite, resulting in the imaging-guided transport of the payload at defined sites. This review in detail addresses the recent advancements in the design and mechanism of internal breakdown processes of the functional moiety from stimuli-responsive systems in response to a range of stimuli coupled with metal nanoparticles. Also, it provides a thorough understanding of SRHMNs, enabling non-invasive interventional therapy by resolving several difficulties in cancer theranostics.
Collapse
Affiliation(s)
- Gouranga Dutta
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
45
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
46
|
|
47
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
48
|
A Porous Reservoir-Backed Boronate Gel Microneedle for Efficient Skin Penetration and Sustained Glucose-Responsive Insulin Delivery. Gels 2022; 8:gels8020074. [PMID: 35200456 PMCID: PMC8871697 DOI: 10.3390/gels8020074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, phenylboronic acid (PBA) gel containing microneedle (MN) technology with acute and sustained glucose-sensitive functionality has attracted significant research attention. Herein, we report a polyvinyl alcohol(PVA)-coated MNs patch with an interconnected porous gel drug reservoir for enhanced skin penetration efficiency and mechanical strength. The hybrid MNs patch fabricated with a novel, efficient method displayed a “cake-like” two-layer structure, with the tip part being composed of boronate-containing smart gel attached to a porous gel layer as a drug reservoir. The porous structure provides the necessary structural support for skin insertion and space for insulin loading. The mechanical strength of the hybrid MNs patch was further enhanced by surface coating with crystallized PVA. Compared with MNs patches attached to hollow drug reservoirs, this hybrid MNs patch with a porous gel reservoir was shown to be able to penetrate the skin more effectively, and is promising for on-demand, long-acting transdermal insulin delivery with increased patient compliance.
Collapse
|
49
|
Ali A, Nouseen S, Saroj S, Shegane M, Majumder P, Puri A, Rakshit T, Manna D, Pal S. Repurposing Pinacol Esters of Boronic Acids for Tuning Viscoelastic Properties of Glucose-responsive Polymer Hydrogels: Effects on Insulin Release Kinetics. J Mater Chem B 2022; 10:7591-7599. [DOI: 10.1039/d2tb00603k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the era of the diabetes pandemic, Injectable hydrogels (HGs) capable of releasing the desired amount of insulin under hyperglycemic conditions will significantly advance smart insulin development. Several smart boronic...
Collapse
|
50
|
Ma R, An X, Shao R, Zhang Q, Sun S. Recent advancement in noninvasive glucose monitoring and closed-loop management system for diabetes. J Mater Chem B 2022; 10:5537-5555. [DOI: 10.1039/d2tb00749e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes can cause many complications, which has become one of the most common diseases that may lead to death. Currently, the number of diabetics continues increasing year by year. Thus,...
Collapse
|